1 | // ================================================================ // |
---|
2 | // // |
---|
3 | // File : TreeNode.cxx // |
---|
4 | // Purpose : // |
---|
5 | // // |
---|
6 | // Coded by Ralf Westram (coder@reallysoft.de) in December 2013 // |
---|
7 | // Institute of Microbiology (Technical University Munich) // |
---|
8 | // http://www.arb-home.de/ // |
---|
9 | // // |
---|
10 | // ================================================================ // |
---|
11 | |
---|
12 | #include "TreeNode.h" |
---|
13 | #include <arb_progress.h> |
---|
14 | #include <arb_str.h> |
---|
15 | #include <map> |
---|
16 | #include <set> |
---|
17 | #include <cmath> // needed with 4.4.3 (but not with 4.7.3) |
---|
18 | |
---|
19 | // ------------------ |
---|
20 | // TreeRoot |
---|
21 | |
---|
22 | TreeRoot::~TreeRoot() { |
---|
23 | deleteWithNodes = false; // avoid recursive call of ~TreeRoot (obsolete?) |
---|
24 | rt_assert(!rootNode); // you have to call TreeRoot::predelete() before dtor! you can do this is dtor of that derived class, which defines makeNode/destroyNode |
---|
25 | // Note: destroying nodes from here is impossible (leads to pure virtual call, as derived class instance of 'this' is already under destruction) |
---|
26 | } |
---|
27 | |
---|
28 | void TreeRoot::change_root(TreeNode *oldroot, TreeNode *newroot) { |
---|
29 | rt_assert(rootNode == oldroot); |
---|
30 | rt_assert(implicated(newroot, !newroot->father)); |
---|
31 | rootNode = newroot; |
---|
32 | |
---|
33 | if (oldroot && oldroot->get_tree_root() && !oldroot->is_inside(newroot)) oldroot->set_tree_root(NULp); // unlink from this |
---|
34 | if (newroot && newroot->get_tree_root() != this) newroot->set_tree_root(this); // link to this |
---|
35 | } |
---|
36 | |
---|
37 | // -------------------- |
---|
38 | // TreeNode |
---|
39 | |
---|
40 | #if defined(PROVIDE_TREE_STRUCTURE_TESTS) |
---|
41 | |
---|
42 | Validity TreeNode::is_valid() const { |
---|
43 | rt_assert(knownNonNull(this)); |
---|
44 | Validity valid; |
---|
45 | |
---|
46 | TreeRoot *troot = get_tree_root(); |
---|
47 | if (troot) { |
---|
48 | if (is_leaf()) { |
---|
49 | valid = Validity(!rightson && !leftson, "leaf has son"); |
---|
50 | } |
---|
51 | else { |
---|
52 | valid = Validity(rightson && leftson, "inner node lacks sons"); |
---|
53 | if (valid) valid = get_rightson()->is_valid(); |
---|
54 | if (valid) valid = get_leftson()->is_valid(); |
---|
55 | } |
---|
56 | if (father) { |
---|
57 | if (valid) valid = Validity(is_inside(get_father()), "node not inside father subtree"); |
---|
58 | if (valid) valid = Validity(troot->get_root_node()->is_ancestor_of(this), "root is not nodes ancestor"); |
---|
59 | if (valid) valid = Validity(get_father()->get_tree_root() == troot, "node and father have different TreeRoot"); |
---|
60 | } |
---|
61 | else { |
---|
62 | if (valid) valid = Validity(troot->get_root_node() == this, "node has no father, but isn't root-node"); |
---|
63 | if (valid) valid = Validity(!is_leaf(), "root-node is leaf"); // leaf@root (tree has to have at least 2 leafs) |
---|
64 | if (valid) valid = Validity(has_valid_root_remarks(), "root-node has invalid remarks"); |
---|
65 | } |
---|
66 | } |
---|
67 | else { // removed node (may be incomplete) |
---|
68 | if (is_leaf()) { |
---|
69 | valid = Validity(!rightson && !leftson, "(removed) leaf has son"); |
---|
70 | } |
---|
71 | else { |
---|
72 | if (rightson) valid = get_rightson()->is_valid(); |
---|
73 | if (leftson && valid) valid = get_leftson()->is_valid(); |
---|
74 | } |
---|
75 | if (father) { |
---|
76 | if (valid) valid = Validity(is_inside(get_father()), "(removed) node not inside father subtree"); |
---|
77 | if (valid) valid = Validity(get_father()->get_tree_root() == troot, "(removed) node and father have different TreeRoot"); |
---|
78 | } |
---|
79 | } |
---|
80 | return valid; |
---|
81 | } |
---|
82 | #endif // PROVIDE_TREE_STRUCTURE_TESTS |
---|
83 | |
---|
84 | void TreeNode::set_tree_root(TreeRoot *new_root) { |
---|
85 | if (tree_root != new_root) { |
---|
86 | tree_root = new_root; |
---|
87 | if (leftson) get_leftson()->set_tree_root(new_root); |
---|
88 | if (rightson) get_rightson()->set_tree_root(new_root); |
---|
89 | } |
---|
90 | } |
---|
91 | |
---|
92 | void TreeNode::reorder_subtree(TreeOrder mode) { |
---|
93 | static const char *smallest_leafname; // has to be set to the alphabetically smallest name (when function exits) |
---|
94 | |
---|
95 | if (is_leaf()) { |
---|
96 | smallest_leafname = name; |
---|
97 | } |
---|
98 | else { |
---|
99 | int leftsize = get_leftson() ->get_leaf_count(); |
---|
100 | int rightsize = get_rightson()->get_leaf_count(); |
---|
101 | |
---|
102 | { |
---|
103 | bool big_at_top = leftsize>rightsize; |
---|
104 | bool big_at_bottom = leftsize<rightsize; |
---|
105 | bool swap_branches = (mode&ORDER_BIG_DOWN) ? big_at_top : big_at_bottom; |
---|
106 | if (swap_branches) swap_sons(); |
---|
107 | } |
---|
108 | |
---|
109 | TreeOrder lmode, rmode; |
---|
110 | if (mode & (ORDER_BIG_TO_EDGE|ORDER_BIG_TO_CENTER)) { // symmetric |
---|
111 | if (mode & ORDER_ALTERNATING) mode = TreeOrder(mode^(ORDER_BIG_TO_EDGE|ORDER_BIG_TO_CENTER)); |
---|
112 | |
---|
113 | if (mode & ORDER_BIG_TO_CENTER) { |
---|
114 | lmode = TreeOrder(mode | ORDER_BIG_DOWN); |
---|
115 | rmode = TreeOrder(mode & ~ORDER_BIG_DOWN); |
---|
116 | } |
---|
117 | else { |
---|
118 | lmode = TreeOrder(mode & ~ORDER_BIG_DOWN); |
---|
119 | rmode = TreeOrder(mode | ORDER_BIG_DOWN); |
---|
120 | } |
---|
121 | } |
---|
122 | else { // asymmetric |
---|
123 | if (mode & ORDER_ALTERNATING) mode = TreeOrder(mode^ORDER_BIG_DOWN); |
---|
124 | |
---|
125 | lmode = mode; |
---|
126 | rmode = mode; |
---|
127 | } |
---|
128 | |
---|
129 | get_leftson()->reorder_subtree(lmode); |
---|
130 | const char *leftleafname = smallest_leafname; |
---|
131 | |
---|
132 | get_rightson()->reorder_subtree(rmode); |
---|
133 | const char *rightleafname = smallest_leafname; |
---|
134 | |
---|
135 | if (leftleafname && rightleafname) { |
---|
136 | int name_cmp = strcmp(leftleafname, rightleafname); |
---|
137 | if (name_cmp <= 0) { |
---|
138 | smallest_leafname = leftleafname; |
---|
139 | } |
---|
140 | else { |
---|
141 | smallest_leafname = rightleafname; |
---|
142 | if (leftsize == rightsize) { // if sizes of subtrees are equal and rightleafname<leftleafname -> swap branches |
---|
143 | const char *smallest_leafname_save = smallest_leafname; |
---|
144 | |
---|
145 | swap_sons(); |
---|
146 | get_leftson ()->reorder_subtree(lmode); rt_assert(strcmp(smallest_leafname, rightleafname)== 0); |
---|
147 | get_rightson()->reorder_subtree(rmode); rt_assert(strcmp(smallest_leafname, leftleafname) == 0); |
---|
148 | |
---|
149 | smallest_leafname = smallest_leafname_save; |
---|
150 | } |
---|
151 | } |
---|
152 | } |
---|
153 | } |
---|
154 | rt_assert(smallest_leafname); |
---|
155 | } |
---|
156 | |
---|
157 | void TreeNode::reorder_tree(TreeOrder mode) { |
---|
158 | /*! beautify tree (does not change topology, only swaps branches) |
---|
159 | */ |
---|
160 | compute_tree(); |
---|
161 | reorder_subtree(mode); |
---|
162 | } |
---|
163 | |
---|
164 | void TreeNode::rotate_subtree() { |
---|
165 | if (!is_leaf()) { |
---|
166 | swap_sons(); |
---|
167 | get_leftson()->rotate_subtree(); |
---|
168 | get_rightson()->rotate_subtree(); |
---|
169 | } |
---|
170 | } |
---|
171 | |
---|
172 | void TreeNode::keelOver(TreeNode *prev, TreeNode *next, double len) { |
---|
173 | /*! atomic part of set_root operation that keels over edges between new and old root |
---|
174 | * @param prev previously a son of 'this', will become father |
---|
175 | * @param next previously the father of 'this', will become son |
---|
176 | * @param len length of branch to nextSon |
---|
177 | */ |
---|
178 | |
---|
179 | if (leftson == prev) { |
---|
180 | leftson = next; |
---|
181 | leftlen = len; |
---|
182 | |
---|
183 | if (keeledOver) { |
---|
184 | if (inverseLeft) keeledOver = false; |
---|
185 | } |
---|
186 | else { |
---|
187 | keeledOver = true; |
---|
188 | inverseLeft = true; |
---|
189 | } |
---|
190 | } |
---|
191 | else { |
---|
192 | rightson = next; |
---|
193 | rightlen = len; |
---|
194 | |
---|
195 | if (keeledOver) { |
---|
196 | if (!inverseLeft) keeledOver = false; |
---|
197 | } |
---|
198 | else { |
---|
199 | keeledOver = true; |
---|
200 | inverseLeft = false; |
---|
201 | } |
---|
202 | } |
---|
203 | father = prev; |
---|
204 | } |
---|
205 | |
---|
206 | void TreeNode::set_root() { |
---|
207 | /*! set the root at parent edge of this |
---|
208 | * pointers to tree-nodes remain valid, but all parent-nodes of this change their meaning |
---|
209 | * (afterwards they will point to [father+brother] instead of [this+brother]) |
---|
210 | * esp. pointers to the root-node will still point to the root-node (which only changed children) |
---|
211 | */ |
---|
212 | |
---|
213 | if (at_root()) return; // already root |
---|
214 | |
---|
215 | TreeNode *old_root = get_root_node(); |
---|
216 | TreeNode *old_brother = is_inside(old_root->get_leftson()) ? old_root->get_rightson() : old_root->get_leftson(); |
---|
217 | |
---|
218 | rt_assert(old_root->has_valid_root_remarks()); |
---|
219 | |
---|
220 | // move remark branches to top |
---|
221 | { |
---|
222 | // Note: no remark is lost here (duplicate removed from old root; new duplicate created at new root) |
---|
223 | SmartCharPtr remarkPtr; |
---|
224 | if (!is_leaf()) remarkPtr = get_remark_ptr(); |
---|
225 | for (TreeNode *node = this; node->father; node = node->get_father()) { |
---|
226 | std::swap(node->remark_branch, remarkPtr); |
---|
227 | } |
---|
228 | } |
---|
229 | |
---|
230 | GBT_LEN old_root_len = old_root->leftlen + old_root->rightlen; |
---|
231 | |
---|
232 | // new node & this init |
---|
233 | old_root->leftson = this; |
---|
234 | old_root->rightson = father; // will be set later |
---|
235 | |
---|
236 | if (father->leftson == this) { |
---|
237 | old_root->leftlen = old_root->rightlen = father->leftlen*.5; |
---|
238 | } |
---|
239 | else { |
---|
240 | old_root->leftlen = old_root->rightlen = father->rightlen*.5; |
---|
241 | } |
---|
242 | |
---|
243 | TreeNode *next = get_father()->get_father(); |
---|
244 | TreeNode *prev = old_root; |
---|
245 | TreeNode *pntr = get_father(); |
---|
246 | |
---|
247 | if (father->leftson == this) father->leftson = old_root; // to set the flag correctly |
---|
248 | |
---|
249 | // loop from father to son of root, rotate tree |
---|
250 | while (next->father) { |
---|
251 | double len = (next->leftson == pntr) ? next->leftlen : next->rightlen; |
---|
252 | |
---|
253 | pntr->keelOver(prev, next, len); |
---|
254 | |
---|
255 | prev = pntr; |
---|
256 | pntr = next; |
---|
257 | next = next->get_father(); |
---|
258 | } |
---|
259 | // now 'next' points to the old root, which has been destroyed above |
---|
260 | // 'pntr' points to one former son-of-root (the one nearer to new root) |
---|
261 | // |
---|
262 | // pointer at oldroot |
---|
263 | // pntr == brother before old root == next |
---|
264 | |
---|
265 | pntr->keelOver(prev, old_brother, old_root_len); |
---|
266 | |
---|
267 | old_brother->father = pntr; |
---|
268 | father = old_root; |
---|
269 | |
---|
270 | rt_assert(get_root_node() == old_root); // the root node itself remains unchanged (its sons change) |
---|
271 | rt_assert(old_root->has_valid_root_remarks()); |
---|
272 | } |
---|
273 | |
---|
274 | TreeNode *TreeNode::findLeafNamed(const char *wantedName) { |
---|
275 | TreeNode *found = NULp; |
---|
276 | if (is_leaf()) { |
---|
277 | if (name && strcmp(name, wantedName) == 0) found = this; |
---|
278 | } |
---|
279 | else { |
---|
280 | found = get_leftson()->findLeafNamed(wantedName); |
---|
281 | if (!found) found = get_rightson()->findLeafNamed(wantedName); |
---|
282 | } |
---|
283 | return found; |
---|
284 | } |
---|
285 | |
---|
286 | // ---------------------------- |
---|
287 | // find_innermost_edge |
---|
288 | |
---|
289 | class NodeLeafDistance { |
---|
290 | GBT_LEN downdist, updist; |
---|
291 | enum { NLD_NODIST = 0, NLD_DOWNDIST, NLD_BOTHDIST } state; |
---|
292 | |
---|
293 | public: |
---|
294 | |
---|
295 | NodeLeafDistance() |
---|
296 | : downdist(-1.0), |
---|
297 | updist(-1.0), |
---|
298 | state(NLD_NODIST) |
---|
299 | {} |
---|
300 | |
---|
301 | GBT_LEN get_downdist() const { rt_assert(state >= NLD_DOWNDIST); return downdist; } |
---|
302 | void set_downdist(GBT_LEN DownDist) { |
---|
303 | if (state < NLD_DOWNDIST) state = NLD_DOWNDIST; |
---|
304 | downdist = DownDist; |
---|
305 | } |
---|
306 | |
---|
307 | GBT_LEN get_updist() const { rt_assert(state >= NLD_BOTHDIST); return updist; } |
---|
308 | void set_updist(GBT_LEN UpDist) { |
---|
309 | if (state < NLD_BOTHDIST) state = NLD_BOTHDIST; |
---|
310 | updist = UpDist; |
---|
311 | } |
---|
312 | |
---|
313 | }; |
---|
314 | |
---|
315 | class EdgeFinder { |
---|
316 | std::map<TreeNode*, NodeLeafDistance> data; // maximum distance to farthest leaf |
---|
317 | |
---|
318 | ARB_edge innermost; |
---|
319 | double min_distdiff; // abs diff between up- and downdiff |
---|
320 | |
---|
321 | GBT_LEN calc_distdiff(GBT_LEN d1, GBT_LEN d2) { return fabs(d1-d2); } |
---|
322 | |
---|
323 | void insert_tree(TreeNode *node) { |
---|
324 | if (node->is_leaf()) { |
---|
325 | data[node].set_downdist(0.0); |
---|
326 | } |
---|
327 | else { |
---|
328 | insert_tree(node->get_leftson()); |
---|
329 | insert_tree(node->get_rightson()); |
---|
330 | |
---|
331 | data[node].set_downdist(std::max(data[node->get_leftson()].get_downdist()+node->leftlen, |
---|
332 | data[node->get_rightson()].get_downdist()+node->rightlen)); |
---|
333 | } |
---|
334 | } |
---|
335 | |
---|
336 | void findBetterEdge_sub(TreeNode *node) { |
---|
337 | TreeNode *father = node->get_father(); |
---|
338 | TreeNode *brother = node->get_brother(); |
---|
339 | |
---|
340 | GBT_LEN len = node->get_branchlength(); |
---|
341 | GBT_LEN brothLen = brother->get_branchlength(); |
---|
342 | |
---|
343 | GBT_LEN upDist = std::max(data[father].get_updist(), data[brother].get_downdist()+brothLen); |
---|
344 | GBT_LEN downDist = data[node].get_downdist(); |
---|
345 | |
---|
346 | { |
---|
347 | GBT_LEN edge_dd = calc_distdiff(upDist, downDist); |
---|
348 | if (edge_dd<min_distdiff) { // found better edge |
---|
349 | innermost = ARB_edge(node, father); |
---|
350 | min_distdiff = edge_dd; |
---|
351 | } |
---|
352 | } |
---|
353 | |
---|
354 | data[node].set_updist(upDist+len); |
---|
355 | |
---|
356 | if (!node->is_leaf()) { |
---|
357 | findBetterEdge_sub(node->get_leftson()); |
---|
358 | findBetterEdge_sub(node->get_rightson()); |
---|
359 | } |
---|
360 | } |
---|
361 | |
---|
362 | void findBetterEdge(TreeNode *node) { |
---|
363 | if (!node->is_leaf()) { |
---|
364 | findBetterEdge_sub(node->get_leftson()); |
---|
365 | findBetterEdge_sub(node->get_rightson()); |
---|
366 | } |
---|
367 | } |
---|
368 | |
---|
369 | public: |
---|
370 | EdgeFinder(TreeNode *rootNode) |
---|
371 | : innermost(rootNode->get_leftson(), rootNode->get_rightson()) // root-edge |
---|
372 | { |
---|
373 | insert_tree(rootNode); |
---|
374 | |
---|
375 | TreeNode *lson = rootNode->get_leftson(); |
---|
376 | TreeNode *rson = rootNode->get_rightson(); |
---|
377 | |
---|
378 | GBT_LEN rootEdgeLen = rootNode->leftlen + rootNode->rightlen; |
---|
379 | |
---|
380 | GBT_LEN lddist = data[lson].get_downdist(); |
---|
381 | GBT_LEN rddist = data[rson].get_downdist(); |
---|
382 | |
---|
383 | data[lson].set_updist(rddist+rootEdgeLen); |
---|
384 | data[rson].set_updist(lddist+rootEdgeLen); |
---|
385 | |
---|
386 | min_distdiff = calc_distdiff(lddist, rddist); |
---|
387 | |
---|
388 | findBetterEdge(lson); |
---|
389 | findBetterEdge(rson); |
---|
390 | } |
---|
391 | |
---|
392 | const ARB_edge& innermost_edge() const { return innermost; } |
---|
393 | }; |
---|
394 | |
---|
395 | ARB_edge TreeRoot::find_innermost_edge() { |
---|
396 | EdgeFinder edgeFinder(get_root_node()); |
---|
397 | return edgeFinder.innermost_edge(); |
---|
398 | } |
---|
399 | |
---|
400 | // ------------------------ |
---|
401 | // multifurcation |
---|
402 | |
---|
403 | class TreeNode::LengthCollector { |
---|
404 | typedef std::map<TreeNode*,GBT_LEN> LengthMap; |
---|
405 | typedef std::set<TreeNode*> NodeSet; |
---|
406 | |
---|
407 | LengthMap eliminatedParentLength; |
---|
408 | LengthMap addedParentLength; |
---|
409 | |
---|
410 | public: |
---|
411 | void eliminate_parent_edge(TreeNode *node) { |
---|
412 | rt_assert(!node->is_root_node()); |
---|
413 | eliminatedParentLength[node] += parentEdge(node).eliminate(); |
---|
414 | } |
---|
415 | |
---|
416 | void add_parent_length(TreeNode *node, GBT_LEN addLen) { |
---|
417 | rt_assert(!node->is_root_node()); |
---|
418 | addedParentLength[node] += addLen; |
---|
419 | } |
---|
420 | |
---|
421 | void independent_distribution(bool useProgress) { |
---|
422 | // step 2: (see caller) |
---|
423 | arb_progress *progress = NULp; |
---|
424 | int redistCount = 0; |
---|
425 | if (useProgress) progress = new arb_progress("Distributing eliminated lengths", eliminatedParentLength.size()); |
---|
426 | |
---|
427 | while (!eliminatedParentLength.empty()) { // got eliminated lengths which need to be distributed |
---|
428 | for (LengthMap::iterator from = eliminatedParentLength.begin(); from != eliminatedParentLength.end(); ++from) { |
---|
429 | ARB_edge elimEdge = parentEdge(from->first); |
---|
430 | GBT_LEN elimLen = from->second; |
---|
431 | |
---|
432 | elimEdge.virtually_distribute_length(elimLen, *this); |
---|
433 | if (progress) ++*progress; |
---|
434 | } |
---|
435 | eliminatedParentLength.clear(); // all distributed! |
---|
436 | |
---|
437 | // handle special cases where distributed length is negative and results in negative destination branches. |
---|
438 | // Avoid generating negative dest. branchlengths by |
---|
439 | // - eliminating the dest. branch |
---|
440 | // - redistributing the additional (negative) length (may cause additional negative lengths on other dest. branches) |
---|
441 | |
---|
442 | NodeSet handled; |
---|
443 | for (LengthMap::iterator to = addedParentLength.begin(); to != addedParentLength.end(); ++to) { |
---|
444 | ARB_edge affectedEdge = parentEdge(to->first); |
---|
445 | GBT_LEN additionalLen = to->second; |
---|
446 | double effective_length = affectedEdge.length() + additionalLen; |
---|
447 | |
---|
448 | if (effective_length<=0.0) { // negative or zero |
---|
449 | affectedEdge.set_length(effective_length); |
---|
450 | eliminate_parent_edge(to->first); // adds entry to eliminatedParentLength and causes another additional loop |
---|
451 | handled.insert(to->first); |
---|
452 | } |
---|
453 | } |
---|
454 | |
---|
455 | if (progress && !eliminatedParentLength.empty()) { |
---|
456 | delete progress; |
---|
457 | ++redistCount; |
---|
458 | progress = new arb_progress(GBS_global_string("Redistributing negative lengths (#%i)", redistCount), eliminatedParentLength.size()); |
---|
459 | } |
---|
460 | |
---|
461 | // remove all redistributed nodes |
---|
462 | for (NodeSet::iterator del = handled.begin(); del != handled.end(); ++del) { |
---|
463 | addedParentLength.erase(*del); |
---|
464 | } |
---|
465 | } |
---|
466 | |
---|
467 | // step 3: |
---|
468 | for (LengthMap::iterator to = addedParentLength.begin(); to != addedParentLength.end(); ++to) { |
---|
469 | ARB_edge affectedEdge = parentEdge(to->first); |
---|
470 | GBT_LEN additionalLen = to->second; |
---|
471 | double effective_length = affectedEdge.length() + additionalLen; |
---|
472 | |
---|
473 | affectedEdge.set_length(effective_length); |
---|
474 | } |
---|
475 | |
---|
476 | if (progress) delete progress; |
---|
477 | } |
---|
478 | }; |
---|
479 | |
---|
480 | GBT_LEN ARB_edge::adjacent_distance() const { |
---|
481 | //! return length of edges starting from this->dest() |
---|
482 | |
---|
483 | if (is_edge_to_leaf()) return 0.0; |
---|
484 | return next().length_or_adjacent_distance() + counter_next().length_or_adjacent_distance(); |
---|
485 | } |
---|
486 | |
---|
487 | void ARB_edge::virtually_add_or_distribute_length_forward(GBT_LEN len, TreeNode::LengthCollector& collect) const { |
---|
488 | rt_assert(!is_nan_or_inf(len)); |
---|
489 | if (length() > 0.0) { |
---|
490 | collect.add_parent_length(son(), len); |
---|
491 | } |
---|
492 | else { |
---|
493 | if (len != 0.0) virtually_distribute_length_forward(len, collect); |
---|
494 | } |
---|
495 | } |
---|
496 | |
---|
497 | |
---|
498 | void ARB_edge::virtually_distribute_length_forward(GBT_LEN len, TreeNode::LengthCollector& collect) const { |
---|
499 | /*! distribute length to edges adjacent in edge direction (i.e. edges starting from this->dest()) |
---|
500 | * Split 'len' proportional to adjacent edges lengths. |
---|
501 | * |
---|
502 | * Note: length will not be distributed to tree-struction itself (yet), but collected in 'collect' |
---|
503 | */ |
---|
504 | |
---|
505 | rt_assert(is_normal(len)); |
---|
506 | rt_assert(!is_edge_to_leaf()); // cannot forward anything (nothing beyond leafs) |
---|
507 | |
---|
508 | ARB_edge e1 = next(); |
---|
509 | ARB_edge e2 = counter_next(); |
---|
510 | |
---|
511 | GBT_LEN d1 = e1.length_or_adjacent_distance(); |
---|
512 | GBT_LEN d2 = e2.length_or_adjacent_distance(); |
---|
513 | |
---|
514 | len = len/(d1+d2); |
---|
515 | |
---|
516 | e1.virtually_add_or_distribute_length_forward(len*d1, collect); |
---|
517 | e2.virtually_add_or_distribute_length_forward(len*d2, collect); |
---|
518 | } |
---|
519 | |
---|
520 | void ARB_edge::virtually_distribute_length(GBT_LEN len, TreeNode::LengthCollector& collect) const { |
---|
521 | /*! distribute length to all adjacent edges. |
---|
522 | * Longer edges receive more than shorter ones. |
---|
523 | * |
---|
524 | * Edges with length zero will not be changed, instead both edges "beyond" |
---|
525 | * the edge will be affected (they will be affected equally to direct edges, |
---|
526 | * because edges at multifurcations are considered to BE direct edges). |
---|
527 | * |
---|
528 | * Note: length will not be distributed to tree-struction itself (yet), but collected in 'collect' |
---|
529 | */ |
---|
530 | |
---|
531 | ARB_edge backEdge = inverse(); |
---|
532 | GBT_LEN len_fwd, len_bwd; |
---|
533 | { |
---|
534 | GBT_LEN dist_fwd = adjacent_distance(); |
---|
535 | GBT_LEN dist_bwd = backEdge.adjacent_distance(); |
---|
536 | GBT_LEN lenW = len/(dist_fwd+dist_bwd); |
---|
537 | len_fwd = lenW*dist_fwd; |
---|
538 | len_bwd = lenW*dist_bwd; |
---|
539 | |
---|
540 | } |
---|
541 | |
---|
542 | if (is_normal(len_fwd)) virtually_distribute_length_forward(len_fwd, collect); |
---|
543 | if (is_normal(len_bwd)) backEdge.virtually_distribute_length_forward(len_bwd, collect); |
---|
544 | } |
---|
545 | |
---|
546 | void TreeNode::eliminate_and_collect(const multifurc_limits& below, LengthCollector& collect) { |
---|
547 | /*! eliminate edges specified by 'below' and |
---|
548 | * store their length in 'collect' for later distribution. |
---|
549 | */ |
---|
550 | rt_assert(!is_root_node()); |
---|
551 | if (!is_leaf() || below.applyAtLeafs) { |
---|
552 | double value; |
---|
553 | if (is_leaf()) { |
---|
554 | value = 100.0; |
---|
555 | goto hack; // @@@ remove applyAtLeafs from multifurc_limits (does that really make sense? rethink!) |
---|
556 | } |
---|
557 | switch (parse_bootstrap(value)) { |
---|
558 | case REMARK_NONE: |
---|
559 | value = 100.0; |
---|
560 | // fall-through |
---|
561 | case REMARK_BOOTSTRAP: |
---|
562 | hack: |
---|
563 | if (value<below.bootstrap && get_branchlength_unrooted()<below.branchlength) { |
---|
564 | collect.eliminate_parent_edge(this); |
---|
565 | } |
---|
566 | break; |
---|
567 | |
---|
568 | case REMARK_OTHER: break; |
---|
569 | } |
---|
570 | } |
---|
571 | |
---|
572 | if (!is_leaf()) { |
---|
573 | get_leftson() ->eliminate_and_collect(below, collect); |
---|
574 | get_rightson()->eliminate_and_collect(below, collect); |
---|
575 | } |
---|
576 | } |
---|
577 | |
---|
578 | void ARB_edge::multifurcate() { |
---|
579 | /*! eliminate edge and distribute length to adjacent edges |
---|
580 | * - sets its length to zero |
---|
581 | * - removes remark (bootstrap) |
---|
582 | * - distributes length to neighbour-branches |
---|
583 | */ |
---|
584 | TreeNode::LengthCollector collector; |
---|
585 | collector.eliminate_parent_edge(son()); |
---|
586 | collector.independent_distribution(false); |
---|
587 | } |
---|
588 | void TreeNode::multifurcate() { |
---|
589 | /*! eliminate branch from 'this' to 'father' (or brother @ root) |
---|
590 | * @see ARB_edge::multifurcate() |
---|
591 | */ |
---|
592 | rt_assert(father); // cannot multifurcate at root; call with son of root to multifurcate root-edge |
---|
593 | if (father) parentEdge(this).multifurcate(); |
---|
594 | } |
---|
595 | |
---|
596 | void TreeNode::set_branchlength_preserving(GBT_LEN new_len) { |
---|
597 | /*! set branchlength to 'new_len' while preserving overall distance in tree. |
---|
598 | * |
---|
599 | * Always works on unrooted tree (i.e. lengths @ root are treated correctly). |
---|
600 | * Length is preserved as in multifurcate() |
---|
601 | */ |
---|
602 | |
---|
603 | GBT_LEN old_len = get_branchlength_unrooted(); |
---|
604 | GBT_LEN change = new_len-old_len; |
---|
605 | |
---|
606 | char *old_remark = is_leaf() ? NULp : nulldup(get_remark()); |
---|
607 | |
---|
608 | // distribute the negative 'change' to neighbours: |
---|
609 | set_branchlength_unrooted(-change); |
---|
610 | multifurcate(); |
---|
611 | |
---|
612 | set_branchlength_unrooted(new_len); |
---|
613 | if (old_remark) { |
---|
614 | use_as_remark(old_remark); // restore remark (was removed by multifurcate()) |
---|
615 | } |
---|
616 | #if defined(ASSERTION_USED) |
---|
617 | else { |
---|
618 | rt_assert(has_no_remark()); |
---|
619 | } |
---|
620 | #endif |
---|
621 | } |
---|
622 | |
---|
623 | void TreeNode::multifurcate_whole_tree(const multifurc_limits& below) { |
---|
624 | /*! multifurcate all branches specified by 'below' |
---|
625 | * - step 1: eliminate all branches, store eliminated lengths |
---|
626 | * - step 2: calculate length distribution for all adjacent branches (proportionally to original length of each branch) |
---|
627 | * - step 3: apply distributed length |
---|
628 | */ |
---|
629 | TreeNode *root = get_root_node(); |
---|
630 | LengthCollector collector; |
---|
631 | arb_progress progress("Multifurcating tree"); |
---|
632 | |
---|
633 | // step 1: |
---|
634 | progress.subtitle("Collecting branches to eliminate"); |
---|
635 | root->get_leftson()->eliminate_and_collect(below, collector); |
---|
636 | root->get_rightson()->eliminate_and_collect(below, collector); |
---|
637 | // root-edge is handled twice by the above calls. |
---|
638 | // Unproblematic: first call will eliminate root-edge, so second call will do nothing. |
---|
639 | |
---|
640 | // step 2 and 3: |
---|
641 | collector.independent_distribution(true); |
---|
642 | } |
---|
643 | |
---|
644 | void TreeNode::remove_bootstrap() { |
---|
645 | remark_branch.setNull(); |
---|
646 | if (!is_leaf()) { |
---|
647 | get_leftson()->remove_bootstrap(); |
---|
648 | get_rightson()->remove_bootstrap(); |
---|
649 | } |
---|
650 | } |
---|
651 | |
---|
652 | GB_ERROR TreeNode::apply_aci_to_remarks(const char *aci, const GBL_call_env& callEnv) { |
---|
653 | GB_ERROR error = NULp; |
---|
654 | if (!is_leaf()) { |
---|
655 | { |
---|
656 | char *new_remark = GB_command_interpreter_in_env(remark_branch.isSet() ? remark_branch.content() : "", aci, callEnv); |
---|
657 | if (!new_remark) { |
---|
658 | error = GB_await_error(); |
---|
659 | } |
---|
660 | else { |
---|
661 | freeset(new_remark, GBS_trim(new_remark)); |
---|
662 | if (!new_remark[0]) { // skip empty results |
---|
663 | free(new_remark); |
---|
664 | remark_branch.setNull(); |
---|
665 | } |
---|
666 | else { |
---|
667 | remark_branch = new_remark; |
---|
668 | } |
---|
669 | } |
---|
670 | } |
---|
671 | |
---|
672 | if (!error) error = get_leftson()->apply_aci_to_remarks(aci, callEnv); |
---|
673 | if (!error) error = get_rightson()->apply_aci_to_remarks(aci, callEnv); |
---|
674 | } |
---|
675 | |
---|
676 | return error; |
---|
677 | } |
---|
678 | void TreeNode::reset_branchlengths() { |
---|
679 | if (!is_leaf()) { |
---|
680 | leftlen = rightlen = DEFAULT_BRANCH_LENGTH; |
---|
681 | |
---|
682 | get_leftson()->reset_branchlengths(); |
---|
683 | get_rightson()->reset_branchlengths(); |
---|
684 | } |
---|
685 | } |
---|
686 | |
---|
687 | void TreeNode::scale_branchlengths(double factor) { |
---|
688 | if (!is_leaf()) { |
---|
689 | leftlen *= factor; |
---|
690 | rightlen *= factor; |
---|
691 | |
---|
692 | get_leftson()->scale_branchlengths(factor); |
---|
693 | get_rightson()->scale_branchlengths(factor); |
---|
694 | } |
---|
695 | } |
---|
696 | |
---|
697 | GBT_LEN TreeNode::sum_child_lengths() const { |
---|
698 | if (is_leaf()) return 0.0; |
---|
699 | return |
---|
700 | leftlen + |
---|
701 | rightlen + |
---|
702 | get_leftson()->sum_child_lengths() + |
---|
703 | get_rightson()->sum_child_lengths(); |
---|
704 | } |
---|
705 | |
---|
706 | void TreeNode::bootstrap2branchlen() { |
---|
707 | //! copy bootstraps to branchlengths |
---|
708 | if (is_leaf()) { |
---|
709 | set_branchlength_unrooted(DEFAULT_BRANCH_LENGTH); |
---|
710 | } |
---|
711 | else { |
---|
712 | if (father) { |
---|
713 | double bootstrap; |
---|
714 | GBT_RemarkType rtype = parse_bootstrap(bootstrap); |
---|
715 | |
---|
716 | if (rtype == REMARK_BOOTSTRAP) { |
---|
717 | double len = bootstrap/100.0; |
---|
718 | set_branchlength_unrooted(len); |
---|
719 | } |
---|
720 | else { |
---|
721 | set_branchlength_unrooted(1.0); // no bootstrap means "100%" |
---|
722 | } |
---|
723 | } |
---|
724 | get_leftson()->bootstrap2branchlen(); |
---|
725 | get_rightson()->bootstrap2branchlen(); |
---|
726 | } |
---|
727 | } |
---|
728 | |
---|
729 | void TreeNode::branchlen2bootstrap() { |
---|
730 | //! copy branchlengths to bootstraps |
---|
731 | if (!is_leaf()) { |
---|
732 | remove_remark(); |
---|
733 | if (!is_root_node()) { |
---|
734 | set_bootstrap(get_branchlength_unrooted()*100.0); |
---|
735 | } |
---|
736 | get_leftson()->branchlen2bootstrap(); |
---|
737 | get_rightson()->branchlen2bootstrap(); |
---|
738 | } |
---|
739 | #if defined(ASSERTION_USED) |
---|
740 | else { |
---|
741 | rt_assert(has_no_remark()); |
---|
742 | } |
---|
743 | #endif |
---|
744 | } |
---|
745 | |
---|
746 | TreeNode *TreeNode::fixDeletedSon() { |
---|
747 | // fix node after one son has been deleted |
---|
748 | TreeNode *result = NULp; |
---|
749 | |
---|
750 | if (leftson) { |
---|
751 | gb_assert(!rightson); |
---|
752 | result = get_leftson(); |
---|
753 | leftson = NULp; |
---|
754 | } |
---|
755 | else { |
---|
756 | gb_assert(!leftson); |
---|
757 | gb_assert(rightson); |
---|
758 | |
---|
759 | result = get_rightson(); |
---|
760 | rightson = NULp; |
---|
761 | } |
---|
762 | |
---|
763 | // now 'result' contains the lasting tree |
---|
764 | result->father = father; |
---|
765 | |
---|
766 | // rescue remarks if possible |
---|
767 | if (!is_leaf() && !result->is_leaf()) { |
---|
768 | if (get_remark() && !result->get_remark()) { |
---|
769 | result->use_as_remark(get_remark_ptr()); |
---|
770 | remove_remark(); |
---|
771 | } |
---|
772 | } |
---|
773 | |
---|
774 | if (gb_node && !result->gb_node) { // rescue group if possible |
---|
775 | result->gb_node = gb_node; |
---|
776 | gb_node = NULp; |
---|
777 | } |
---|
778 | |
---|
779 | if (!result->father) { |
---|
780 | get_tree_root()->change_root(this, result); |
---|
781 | } |
---|
782 | |
---|
783 | gb_assert(!is_root_node()); |
---|
784 | |
---|
785 | forget_origin(); |
---|
786 | forget_relatives(); |
---|
787 | delete this; |
---|
788 | |
---|
789 | return result; |
---|
790 | } |
---|
791 | |
---|
792 | const TreeNode *TreeNode::ancestor_common_with(const TreeNode *other) const { |
---|
793 | if (this == other) return this; |
---|
794 | if (is_ancestor_of(other)) return this; |
---|
795 | if (other->is_ancestor_of(this)) return other; |
---|
796 | return get_father()->ancestor_common_with(other->get_father()); |
---|
797 | } |
---|
798 | |
---|
799 | int TreeNode::count_clades() const { |
---|
800 | if (is_leaf()) return is_clade(); |
---|
801 | return get_leftson()->count_clades() + get_rightson()->count_clades() + is_clade(); |
---|
802 | } |
---|
803 | |
---|
804 | #if defined(ASSERTION_USED) || defined(PROVIDE_TREE_STRUCTURE_TESTS) |
---|
805 | bool TreeNode::has_valid_root_remarks() const { |
---|
806 | // tests whether the root-edge has a valid remark: |
---|
807 | // - if one son is a leaf, the other son may contain the remark for the root-edge |
---|
808 | // - if no son is a leaf, both sons shall contain the same remark (or none) |
---|
809 | rt_assert(is_root_node()); |
---|
810 | return implicated(!get_leftson()->is_leaf() && !get_rightson()->is_leaf(), |
---|
811 | ARB_strNULLcmp(get_leftson()->get_remark(), get_rightson()->get_remark()) == 0); |
---|
812 | } |
---|
813 | #endif |
---|
814 | |
---|
815 | // -------------------------------------------------------------------------------- |
---|
816 | |
---|
817 | #ifdef UNIT_TESTS |
---|
818 | #ifndef TEST_UNIT_H |
---|
819 | #include <test_unit.h> |
---|
820 | #endif |
---|
821 | |
---|
822 | void TEST_tree_iterator() { |
---|
823 | GB_shell shell; |
---|
824 | GBDATA *gb_main = GB_open("TEST_trees.arb", "r"); |
---|
825 | { |
---|
826 | GB_transaction ta(gb_main); |
---|
827 | TreeNode *tree = GBT_read_tree(gb_main, "tree_removal", new SimpleRoot); |
---|
828 | |
---|
829 | int leafs = GBT_count_leafs(tree); |
---|
830 | TEST_EXPECT_EQUAL(leafs, 17); |
---|
831 | TEST_EXPECT_EQUAL(leafs_2_edges(leafs, UNROOTED), 31); |
---|
832 | |
---|
833 | int iter_steps = ARB_edge::iteration_count(leafs); |
---|
834 | TEST_EXPECT_EQUAL(iter_steps, 62); |
---|
835 | |
---|
836 | const ARB_edge start = rootEdge(tree->get_tree_root()); |
---|
837 | |
---|
838 | // iterate forward + count (until same edge reached) |
---|
839 | int count = 0; |
---|
840 | int count_leafs = 0; |
---|
841 | ARB_edge edge = start; |
---|
842 | do { |
---|
843 | ARB_edge next = edge.next(); |
---|
844 | TEST_EXPECT(next.previous() == edge); // test reverse operation |
---|
845 | edge = next; |
---|
846 | ++count; |
---|
847 | if (edge.is_edge_to_leaf()) ++count_leafs; |
---|
848 | } |
---|
849 | while (edge != start); |
---|
850 | TEST_EXPECT_EQUAL(count, iter_steps); |
---|
851 | TEST_EXPECT_EQUAL(count_leafs, leafs); |
---|
852 | |
---|
853 | // iterate backward + count (until same edge reached) |
---|
854 | count = 0; |
---|
855 | count_leafs = 0; |
---|
856 | edge = start; |
---|
857 | do { |
---|
858 | ARB_edge next = edge.previous(); |
---|
859 | TEST_EXPECT(next.next() == edge); // test reverse operation |
---|
860 | edge = next; |
---|
861 | ++count; |
---|
862 | if (edge.is_edge_to_leaf()) ++count_leafs; |
---|
863 | } |
---|
864 | while (edge != start); |
---|
865 | TEST_EXPECT_EQUAL(count, iter_steps); |
---|
866 | TEST_EXPECT_EQUAL(count_leafs, leafs); |
---|
867 | |
---|
868 | if (tree) { |
---|
869 | gb_assert(tree->is_root_node()); |
---|
870 | destroy(tree); |
---|
871 | } |
---|
872 | } |
---|
873 | GB_close(gb_main); |
---|
874 | } |
---|
875 | |
---|
876 | void TEST_tree_branch_modifications() { |
---|
877 | GB_shell shell; |
---|
878 | GBDATA *gb_main = GB_open("TEST_trees.arb", "r"); |
---|
879 | { |
---|
880 | const char *left_newick = "((((((CloTyro3:1.046,CloTyro4:0.061)'40%':0.026,CloTyro2:0.017)'0%':0.017,CloTyrob:0.009)'97%':0.274,CloInnoc:0.371)'0%':0.057,CloBifer:0.388)'53%':0.124,(((CloButy2:0.009,CloButyr:0.000):0.564,CloCarni:0.120)'33%':0.010,CloPaste:0.179)'97%':0.131):0.081;"; |
---|
881 | const char *left_newick_bs2bl = "((((((CloTyro3:0.100,CloTyro4:0.100):0.400,CloTyro2:0.100):0.000,CloTyrob:0.100):0.970,CloInnoc:0.100):0.000,CloBifer:0.100):0.530,(((CloButy2:0.100,CloButyr:0.100):1.000,CloCarni:0.100):0.330,CloPaste:0.100):0.970):0.500;"; // bootstrap2branchlen |
---|
882 | |
---|
883 | const char *right_newick = "((((CorAquat:0.084,CurCitre:0.058):0.103,CorGluta:0.522)'17%':0.053,CelBiazo:0.059)'40%':0.207,CytAquat:0.711):0.081;"; |
---|
884 | const char *right_newick_preserved1 = "((((CorAquat:0.084,CurCitre:0.058):0.103,CorGluta:0.522)'17%':0.060,CelBiazo:0.029)'40%':0.231,CytAquat:0.711):0.081;"; // set_branchlength_preserving to 0.029 at CelBiazo |
---|
885 | const char *right_newick_preserved2 = "((((CorAquat:0.084,CurCitre:0.058):0.103,CorGluta:0.522)'17%':0.041,CelBiazo:0.117)'40%':0.161,CytAquat:0.711):0.081;"; // set_branchlength_preserving to 0.117 at CelBiazo |
---|
886 | const char *right_newick_bl2bs = "((((CorAquat,CurCitre)'10%',CorGluta)'5%',CelBiazo)'21%',CytAquat)'100%';"; // branchlen2bootstrap |
---|
887 | |
---|
888 | NewickFormat BSLEN = NewickFormat(nREMARK|nLENGTH); |
---|
889 | |
---|
890 | GB_transaction ta(gb_main); |
---|
891 | { |
---|
892 | TreeNode *tree = GBT_read_tree(gb_main, "tree_test", new SimpleRoot); |
---|
893 | |
---|
894 | TreeNode *left = tree->get_leftson(); |
---|
895 | TreeNode *right = tree->get_rightson(); |
---|
896 | |
---|
897 | TEST_EXPECT_NEWICK(BSLEN, left, left_newick); |
---|
898 | TEST_EXPECT_NEWICK(BSLEN, right, right_newick); |
---|
899 | |
---|
900 | left->bootstrap2branchlen(); |
---|
901 | right->branchlen2bootstrap(); |
---|
902 | |
---|
903 | TEST_EXPECT_NEWICK(nLENGTH, left, left_newick_bs2bl); |
---|
904 | TEST_EXPECT_NEWICK(nREMARK, right, right_newick_bl2bs); |
---|
905 | |
---|
906 | destroy(tree); |
---|
907 | } |
---|
908 | { |
---|
909 | TreeNode *tree = GBT_read_tree(gb_main, "tree_test", new SimpleRoot); |
---|
910 | |
---|
911 | TreeNode *right = tree->get_rightson(); |
---|
912 | TreeNode *CelBiazo = right->findLeafNamed("CelBiazo"); |
---|
913 | |
---|
914 | CelBiazo->set_branchlength_preserving(CelBiazo->get_branchlength() * 0.5); |
---|
915 | TEST_EXPECT_NEWICK(BSLEN, right, right_newick_preserved1); |
---|
916 | |
---|
917 | CelBiazo->set_branchlength_preserving(CelBiazo->get_branchlength() * 4.0); |
---|
918 | TEST_EXPECT_NEWICK(BSLEN, right, right_newick_preserved2); |
---|
919 | |
---|
920 | destroy(tree); |
---|
921 | } |
---|
922 | } |
---|
923 | GB_close(gb_main); |
---|
924 | } |
---|
925 | |
---|
926 | TEST_PUBLISH(TEST_tree_branch_modifications); |
---|
927 | |
---|
928 | #endif // UNIT_TESTS |
---|
929 | |
---|
930 | // -------------------------------------------------------------------------------- |
---|