1 | /* |
---|
2 | * gamma.c |
---|
3 | * |
---|
4 | * |
---|
5 | * Part of TREE-PUZZLE 5.0 (June 2000) |
---|
6 | * |
---|
7 | * (c) 1999-2000 by Heiko A. Schmidt, Korbinian Strimmer, |
---|
8 | * M. Vingron, and Arndt von Haeseler |
---|
9 | * (c) 1995-1999 by Korbinian Strimmer and Arndt von Haeseler |
---|
10 | * |
---|
11 | * All parts of the source except where indicated are distributed under |
---|
12 | * the GNU public licence. See http://www.opensource.org for details. |
---|
13 | */ |
---|
14 | |
---|
15 | #include <math.h> |
---|
16 | #include "util.h" |
---|
17 | #include "gamma.h" |
---|
18 | |
---|
19 | /* private prototypes */ |
---|
20 | static double IncompleteGamma (double x, double alpha, double ln_gamma_alpha); |
---|
21 | static double PointNormal (double prob); |
---|
22 | static double PointChi2 (double prob, double v); |
---|
23 | |
---|
24 | /* Gamma density function */ |
---|
25 | double densityGamma (double x, double shape) |
---|
26 | { |
---|
27 | return pow (shape, shape) * pow (x, shape-1) / |
---|
28 | exp (shape*x + LnGamma(shape)); |
---|
29 | } |
---|
30 | |
---|
31 | /* Gamma cdf */ |
---|
32 | double cdfGamma (double x, double shape) |
---|
33 | { |
---|
34 | double result; |
---|
35 | |
---|
36 | result = IncompleteGamma (shape*x, shape, LnGamma(shape)); |
---|
37 | |
---|
38 | return result; |
---|
39 | } |
---|
40 | |
---|
41 | /* Gamma inverse cdf */ |
---|
42 | double icdfGamma (double y, double shape) |
---|
43 | { |
---|
44 | double result; |
---|
45 | |
---|
46 | result = PointChi2 (y, 2.0*shape)/(2.0*shape); |
---|
47 | |
---|
48 | /* to avoid -1.0 */ |
---|
49 | if (result < 0.0) |
---|
50 | { |
---|
51 | result = 0.0; |
---|
52 | } |
---|
53 | |
---|
54 | return result; |
---|
55 | } |
---|
56 | |
---|
57 | /* Gamma n-th moment */ |
---|
58 | double momentGamma (int n, double shape) |
---|
59 | { |
---|
60 | int i; |
---|
61 | double tmp = 1.0; |
---|
62 | |
---|
63 | for (i = 1; i < n; i++) |
---|
64 | { |
---|
65 | tmp *= (shape + i)/shape; |
---|
66 | } |
---|
67 | |
---|
68 | return tmp; |
---|
69 | } |
---|
70 | |
---|
71 | /* The following code comes from tools.c in Yang's PAML package */ |
---|
72 | |
---|
73 | double LnGamma (double alpha) |
---|
74 | { |
---|
75 | /* returns ln(gamma(alpha)) for alpha>0, accurate to 10 decimal places. |
---|
76 | Stirling's formula is used for the central polynomial part of the procedure. |
---|
77 | Pike MC & Hill ID (1966) Algorithm 291: Logarithm of the gamma function. |
---|
78 | Communications of the Association for Computing Machinery, 9:684 |
---|
79 | */ |
---|
80 | double x=alpha, f=0, z; |
---|
81 | |
---|
82 | if (x<7) { |
---|
83 | f=1; z=x-1; |
---|
84 | while (++z<7) f*=z; |
---|
85 | x=z; f=-log(f); |
---|
86 | } |
---|
87 | z = 1/(x*x); |
---|
88 | return f + (x-0.5)*log(x) - x + .918938533204673 |
---|
89 | + (((-.000595238095238*z+.000793650793651)*z-.002777777777778)*z |
---|
90 | +.083333333333333)/x; |
---|
91 | } |
---|
92 | |
---|
93 | static double IncompleteGamma (double x, double alpha, double ln_gamma_alpha) |
---|
94 | { |
---|
95 | /* returns the incomplete gamma ratio I(x,alpha) where x is the upper |
---|
96 | limit of the integration and alpha is the shape parameter. |
---|
97 | returns (-1) if in error |
---|
98 | (1) series expansion if (alpha>x || x<=1) |
---|
99 | (2) continued fraction otherwise |
---|
100 | RATNEST FORTRAN by |
---|
101 | Bhattacharjee GP (1970) The incomplete gamma integral. Applied Statistics, |
---|
102 | 19: 285-287 (AS32) |
---|
103 | */ |
---|
104 | int i; |
---|
105 | double p=alpha, g=ln_gamma_alpha; |
---|
106 | double accurate=1e-8, overflow=1e30; |
---|
107 | double factor, gin=0, rn=0, a=0,b=0,an=0,dif=0, term=0, pn[6]; |
---|
108 | |
---|
109 | if (x==0) return (0); |
---|
110 | if (x<0 || p<=0) return (-1); |
---|
111 | |
---|
112 | factor=exp(p*log(x)-x-g); |
---|
113 | if (x>1 && x>=p) goto l30; |
---|
114 | /* (1) series expansion */ |
---|
115 | gin=1; term=1; rn=p; |
---|
116 | l20: |
---|
117 | rn++; |
---|
118 | term*=x/rn; gin+=term; |
---|
119 | |
---|
120 | if (term > accurate) goto l20; |
---|
121 | gin*=factor/p; |
---|
122 | goto l50; |
---|
123 | l30: |
---|
124 | /* (2) continued fraction */ |
---|
125 | a=1-p; b=a+x+1; term=0; |
---|
126 | pn[0]=1; pn[1]=x; pn[2]=x+1; pn[3]=x*b; |
---|
127 | gin=pn[2]/pn[3]; |
---|
128 | l32: |
---|
129 | a++; b+=2; term++; an=a*term; |
---|
130 | for (i=0; i<2; i++) pn[i+4]=b*pn[i+2]-an*pn[i]; |
---|
131 | if (pn[5] == 0) goto l35; |
---|
132 | rn=pn[4]/pn[5]; dif=fabs(gin-rn); |
---|
133 | if (dif>accurate) goto l34; |
---|
134 | if (dif<=accurate*rn) goto l42; |
---|
135 | l34: |
---|
136 | gin=rn; |
---|
137 | l35: |
---|
138 | for (i=0; i<4; i++) pn[i]=pn[i+2]; |
---|
139 | if (fabs(pn[4]) < overflow) goto l32; |
---|
140 | for (i=0; i<4; i++) pn[i]/=overflow; |
---|
141 | goto l32; |
---|
142 | l42: |
---|
143 | gin=1-factor*gin; |
---|
144 | |
---|
145 | l50: |
---|
146 | return (gin); |
---|
147 | } |
---|
148 | |
---|
149 | |
---|
150 | /* functions concerning the CDF and percentage points of the gamma and |
---|
151 | Chi2 distribution |
---|
152 | */ |
---|
153 | static double PointNormal (double prob) |
---|
154 | { |
---|
155 | /* returns z so that Prob{x<z}=prob where x ~ N(0,1) and (1e-12)<prob<1-(1e-12) |
---|
156 | returns (-9999) if in error |
---|
157 | Odeh RE & Evans JO (1974) The percentage points of the normal distribution. |
---|
158 | Applied Statistics 22: 96-97 (AS70) |
---|
159 | |
---|
160 | Newer methods: |
---|
161 | Wichura MJ (1988) Algorithm AS 241: the percentage points of the |
---|
162 | normal distribution. 37: 477-484. |
---|
163 | Beasley JD & Springer SG (1977). Algorithm AS 111: the percentage |
---|
164 | points of the normal distribution. 26: 118-121. |
---|
165 | |
---|
166 | */ |
---|
167 | double a0=-.322232431088, a1=-1, a2=-.342242088547, a3=-.0204231210245; |
---|
168 | double a4=-.453642210148e-4, b0=.0993484626060, b1=.588581570495; |
---|
169 | double b2=.531103462366, b3=.103537752850, b4=.0038560700634; |
---|
170 | double y, z=0, p=prob, p1; |
---|
171 | |
---|
172 | p1 = (p<0.5 ? p : 1-p); |
---|
173 | if (p1<1e-20) return (-9999); |
---|
174 | |
---|
175 | y = sqrt (log(1/(p1*p1))); |
---|
176 | z = y + ((((y*a4+a3)*y+a2)*y+a1)*y+a0) / ((((y*b4+b3)*y+b2)*y+b1)*y+b0); |
---|
177 | return (p<0.5 ? -z : z); |
---|
178 | } |
---|
179 | |
---|
180 | |
---|
181 | static double PointChi2 (double prob, double v) |
---|
182 | { |
---|
183 | /* returns z so that Prob{x<z}=prob where x is Chi2 distributed with df=v |
---|
184 | returns -1 if in error. 0.000002<prob<0.999998 |
---|
185 | RATNEST FORTRAN by |
---|
186 | Best DJ & Roberts DE (1975) The percentage points of the |
---|
187 | Chi2 distribution. Applied Statistics 24: 385-388. (AS91) |
---|
188 | Converted into C by Ziheng Yang, Oct. 1993. |
---|
189 | */ |
---|
190 | double e=.5e-6, aa=.6931471805, p=prob, g; |
---|
191 | double xx, c, ch, a=0,q=0,p1=0,p2=0,t=0,x=0,b=0,s1,s2,s3,s4,s5,s6; |
---|
192 | |
---|
193 | if (p<.000002 || p>.999998 || v<=0) return (-1); |
---|
194 | |
---|
195 | g = LnGamma (v/2); |
---|
196 | xx=v/2; c=xx-1; |
---|
197 | if (v >= -1.24*log(p)) goto l1; |
---|
198 | |
---|
199 | ch=pow((p*xx*exp(g+xx*aa)), 1/xx); |
---|
200 | if (ch-e<0) return (ch); |
---|
201 | goto l4; |
---|
202 | l1: |
---|
203 | if (v>.32) goto l3; |
---|
204 | ch=0.4; a=log(1-p); |
---|
205 | l2: |
---|
206 | q=ch; p1=1+ch*(4.67+ch); p2=ch*(6.73+ch*(6.66+ch)); |
---|
207 | t=-0.5+(4.67+2*ch)/p1 - (6.73+ch*(13.32+3*ch))/p2; |
---|
208 | ch-=(1-exp(a+g+.5*ch+c*aa)*p2/p1)/t; |
---|
209 | if (fabs(q/ch-1)-.01 <= 0) goto l4; |
---|
210 | else goto l2; |
---|
211 | |
---|
212 | l3: |
---|
213 | x=PointNormal (p); |
---|
214 | p1=0.222222/v; ch=v*pow((x*sqrt(p1)+1-p1), 3.0); |
---|
215 | if (ch>2.2*v+6) ch=-2*(log(1-p)-c*log(.5*ch)+g); |
---|
216 | l4: |
---|
217 | |
---|
218 | do |
---|
219 | { |
---|
220 | q=ch; p1=.5*ch; |
---|
221 | if ((t=IncompleteGamma (p1, xx, g))<0) { |
---|
222 | return (-1); |
---|
223 | } |
---|
224 | p2=p-t; |
---|
225 | t=p2*exp(xx*aa+g+p1-c*log(ch)); |
---|
226 | b=t/ch; a=0.5*t-b*c; |
---|
227 | |
---|
228 | s1=(210+a*(140+a*(105+a*(84+a*(70+60*a))))) / 420; |
---|
229 | s2=(420+a*(735+a*(966+a*(1141+1278*a))))/2520; |
---|
230 | s3=(210+a*(462+a*(707+932*a)))/2520; |
---|
231 | s4=(252+a*(672+1182*a)+c*(294+a*(889+1740*a)))/5040; |
---|
232 | s5=(84+264*a+c*(175+606*a))/2520; |
---|
233 | s6=(120+c*(346+127*c))/5040; |
---|
234 | ch+=t*(1+0.5*t*s1-b*c*(s1-b*(s2-b*(s3-b*(s4-b*(s5-b*s6)))))); |
---|
235 | } |
---|
236 | while (fabs(q/ch-1) > e); |
---|
237 | |
---|
238 | return (ch); |
---|
239 | } |
---|
240 | |
---|
241 | |
---|
242 | /* Incomplete Gamma function Q(a,x) |
---|
243 | - this is a cleanroom implementation of NRs gammq(a,x) |
---|
244 | */ |
---|
245 | double IncompleteGammaQ (double a, double x) |
---|
246 | { |
---|
247 | return 1.0-IncompleteGamma (x, a, LnGamma(a)); |
---|
248 | } |
---|
249 | |
---|
250 | |
---|
251 | /* probability that the observed chi-square |
---|
252 | exceeds chi2 even if model is correct */ |
---|
253 | double chi2prob (int deg, double chi2) |
---|
254 | { |
---|
255 | return IncompleteGammaQ (0.5*deg, 0.5*chi2); |
---|
256 | } |
---|
257 | |
---|
258 | |
---|
259 | |
---|
260 | /* chi square test |
---|
261 | ef expected frequencies (sum up to 1 !!) |
---|
262 | of observed frequencies (sum up to the number of samples) |
---|
263 | numcat number of categories |
---|
264 | returns critical significance level */ |
---|
265 | double chi2test(double *ef, int *of, int numcat, int *chi2fail) |
---|
266 | { |
---|
267 | double chi2, criticals, efn; |
---|
268 | int i, below1, below5, reducedcat; |
---|
269 | int samples; |
---|
270 | |
---|
271 | *chi2fail = FALSE; |
---|
272 | reducedcat = numcat; |
---|
273 | below1 = 0; |
---|
274 | below5 = 0; |
---|
275 | |
---|
276 | /* compute number of samples */ |
---|
277 | samples = 0; |
---|
278 | for (i = 0; i < numcat; i++) |
---|
279 | samples = samples + of[i]; |
---|
280 | |
---|
281 | /* compute chi square */ |
---|
282 | chi2 = 0; |
---|
283 | for (i = 0; i < numcat; i++) { |
---|
284 | efn = ef[i]*((double) samples); |
---|
285 | if (efn < 1.0) below1++; |
---|
286 | if (efn < 5.0) below5++; |
---|
287 | if (efn == 0.0) { |
---|
288 | reducedcat--; |
---|
289 | fprintf(stdout, "FPE error: samples=%d, ef[%d]=%f, of[%d]=%d, efn=%f, nc=%d, rc=%d\n", |
---|
290 | samples, i, ef[i], i, of[i], efn, numcat, reducedcat); |
---|
291 | fprintf(stdout, "PLEASE REPORT THIS ERROR TO DEVELOPERS !!!\n"); |
---|
292 | fflush(stdout); |
---|
293 | } else chi2 = chi2 + ((double) of[i]-efn)*((double) of[i]-efn)/efn; |
---|
294 | } |
---|
295 | |
---|
296 | /* compute significance */ |
---|
297 | criticals = chi2prob (numcat-1, chi2); |
---|
298 | |
---|
299 | /* no expected frequency category (sum up to # samples) below 1.0 */ |
---|
300 | if (below1 > 0) *chi2fail = TRUE; |
---|
301 | /* no more than 1/5 of the frequency categories below 5.0 */ |
---|
302 | if (below5 > (int) floor(samples/5.0)) *chi2fail = TRUE; |
---|
303 | |
---|
304 | return criticals; |
---|
305 | } |
---|
306 | |
---|
307 | |
---|
308 | /* chi square test |
---|
309 | ef expected frequencies (sum up to 1 !!) |
---|
310 | of observed frequencies (sum up to the number of samples) |
---|
311 | numcat number of categories |
---|
312 | returns critical significance level */ |
---|
313 | double altchi2test(double *ef, int *of, int numcat, int *chi2fail) |
---|
314 | { |
---|
315 | double chi2, criticals, efn; |
---|
316 | int i, below1, below5; |
---|
317 | int samples; |
---|
318 | |
---|
319 | *chi2fail = FALSE; |
---|
320 | below1 = 0; |
---|
321 | below5 = 0; |
---|
322 | |
---|
323 | /* compute number of samples */ |
---|
324 | samples = 0; |
---|
325 | for (i = 0; i < numcat; i++) |
---|
326 | samples = samples + of[i]; |
---|
327 | |
---|
328 | /* compute chi square */ |
---|
329 | chi2 = 0; |
---|
330 | for (i = 0; i < numcat; i++) { |
---|
331 | efn = ef[i]*((double) samples); |
---|
332 | if (efn < 1.0) below1++; |
---|
333 | if (efn < 5.0) below5++; |
---|
334 | chi2 = chi2 + ((double) of[i]-efn)*((double) of[i]-efn)/efn; |
---|
335 | } |
---|
336 | |
---|
337 | /* compute significance */ |
---|
338 | criticals = chi2prob (numcat-1, chi2); |
---|
339 | |
---|
340 | /* no expected frequency category (sum up to # samples) below 1.0 */ |
---|
341 | if (below1 > 0) *chi2fail = TRUE; |
---|
342 | /* no more than 1/5 of the frequency categories below 5.0 */ |
---|
343 | if (below5 > (int) floor(samples/5.0)) *chi2fail = TRUE; |
---|
344 | |
---|
345 | return criticals; |
---|
346 | } |
---|