| 1 | #include "muscle.h" |
|---|
| 2 | #include "tree.h" |
|---|
| 3 | #include <math.h> |
|---|
| 4 | |
|---|
| 5 | #define TRACE 0 |
|---|
| 6 | |
|---|
| 7 | /*** |
|---|
| 8 | Node has 0 to 3 neighbors: |
|---|
| 9 | 0 neighbors: singleton root |
|---|
| 10 | 1 neighbor: leaf, neighbor is parent |
|---|
| 11 | 2 neigbors: non-singleton root |
|---|
| 12 | 3 neighbors: internal node (other than root) |
|---|
| 13 | |
|---|
| 14 | Minimal rooted tree is single node. |
|---|
| 15 | Minimal unrooted tree is single edge. |
|---|
| 16 | Leaf node always has nulls in neighbors 2 and 3, neighbor 1 is parent. |
|---|
| 17 | When tree is rooted, neighbor 1=parent, 2=left, 3=right. |
|---|
| 18 | ***/ |
|---|
| 19 | |
|---|
| 20 | void Tree::AssertAreNeighbors(unsigned uNodeIndex1, unsigned uNodeIndex2) const |
|---|
| 21 | { |
|---|
| 22 | if (uNodeIndex1 >= m_uNodeCount || uNodeIndex2 >= m_uNodeCount) |
|---|
| 23 | Quit("AssertAreNeighbors(%u,%u), are %u nodes", |
|---|
| 24 | uNodeIndex1, uNodeIndex2, m_uNodeCount); |
|---|
| 25 | |
|---|
| 26 | if (m_uNeighbor1[uNodeIndex1] != uNodeIndex2 && |
|---|
| 27 | m_uNeighbor2[uNodeIndex1] != uNodeIndex2 && |
|---|
| 28 | m_uNeighbor3[uNodeIndex1] != uNodeIndex2) |
|---|
| 29 | { |
|---|
| 30 | LogMe(); |
|---|
| 31 | Quit("AssertAreNeighbors(%u,%u) failed", uNodeIndex1, uNodeIndex2); |
|---|
| 32 | } |
|---|
| 33 | |
|---|
| 34 | if (m_uNeighbor1[uNodeIndex2] != uNodeIndex1 && |
|---|
| 35 | m_uNeighbor2[uNodeIndex2] != uNodeIndex1 && |
|---|
| 36 | m_uNeighbor3[uNodeIndex2] != uNodeIndex1) |
|---|
| 37 | { |
|---|
| 38 | LogMe(); |
|---|
| 39 | Quit("AssertAreNeighbors(%u,%u) failed", uNodeIndex1, uNodeIndex2); |
|---|
| 40 | } |
|---|
| 41 | |
|---|
| 42 | bool Has12 = HasEdgeLength(uNodeIndex1, uNodeIndex2); |
|---|
| 43 | bool Has21 = HasEdgeLength(uNodeIndex2, uNodeIndex1); |
|---|
| 44 | if (Has12 != Has21) |
|---|
| 45 | { |
|---|
| 46 | HasEdgeLength(uNodeIndex1, uNodeIndex2); |
|---|
| 47 | HasEdgeLength(uNodeIndex2, uNodeIndex1); |
|---|
| 48 | LogMe(); |
|---|
| 49 | Log("HasEdgeLength(%u, %u)=%c HasEdgeLength(%u, %u)=%c\n", |
|---|
| 50 | uNodeIndex1, |
|---|
| 51 | uNodeIndex2, |
|---|
| 52 | Has12 ? 'T' : 'F', |
|---|
| 53 | uNodeIndex2, |
|---|
| 54 | uNodeIndex1, |
|---|
| 55 | Has21 ? 'T' : 'F'); |
|---|
| 56 | |
|---|
| 57 | Quit("Tree::AssertAreNeighbors, HasEdgeLength not symmetric"); |
|---|
| 58 | } |
|---|
| 59 | |
|---|
| 60 | if (Has12) |
|---|
| 61 | { |
|---|
| 62 | double d12 = GetEdgeLength(uNodeIndex1, uNodeIndex2); |
|---|
| 63 | double d21 = GetEdgeLength(uNodeIndex2, uNodeIndex1); |
|---|
| 64 | if (d12 != d21) |
|---|
| 65 | { |
|---|
| 66 | LogMe(); |
|---|
| 67 | Quit("Tree::AssertAreNeighbors, Edge length disagrees %u-%u=%.3g, %u-%u=%.3g", |
|---|
| 68 | uNodeIndex1, uNodeIndex2, d12, |
|---|
| 69 | uNodeIndex2, uNodeIndex1, d21); |
|---|
| 70 | } |
|---|
| 71 | } |
|---|
| 72 | } |
|---|
| 73 | |
|---|
| 74 | void Tree::ValidateNode(unsigned uNodeIndex) const |
|---|
| 75 | { |
|---|
| 76 | if (uNodeIndex >= m_uNodeCount) |
|---|
| 77 | Quit("ValidateNode(%u), %u nodes", uNodeIndex, m_uNodeCount); |
|---|
| 78 | |
|---|
| 79 | const unsigned uNeighborCount = GetNeighborCount(uNodeIndex); |
|---|
| 80 | |
|---|
| 81 | if (2 == uNeighborCount) |
|---|
| 82 | { |
|---|
| 83 | if (!m_bRooted) |
|---|
| 84 | { |
|---|
| 85 | LogMe(); |
|---|
| 86 | Quit("Tree::ValidateNode: Node %u has two neighbors, tree is not rooted", |
|---|
| 87 | uNodeIndex); |
|---|
| 88 | } |
|---|
| 89 | if (uNodeIndex != m_uRootNodeIndex) |
|---|
| 90 | { |
|---|
| 91 | LogMe(); |
|---|
| 92 | Quit("Tree::ValidateNode: Node %u has two neighbors, but not root node=%u", |
|---|
| 93 | uNodeIndex, m_uRootNodeIndex); |
|---|
| 94 | } |
|---|
| 95 | } |
|---|
| 96 | |
|---|
| 97 | const unsigned n1 = m_uNeighbor1[uNodeIndex]; |
|---|
| 98 | const unsigned n2 = m_uNeighbor2[uNodeIndex]; |
|---|
| 99 | const unsigned n3 = m_uNeighbor3[uNodeIndex]; |
|---|
| 100 | |
|---|
| 101 | if (NULL_NEIGHBOR == n2 && NULL_NEIGHBOR != n3) |
|---|
| 102 | { |
|---|
| 103 | LogMe(); |
|---|
| 104 | Quit("Tree::ValidateNode, n2=null, n3!=null", uNodeIndex); |
|---|
| 105 | } |
|---|
| 106 | if (NULL_NEIGHBOR == n3 && NULL_NEIGHBOR != n2) |
|---|
| 107 | { |
|---|
| 108 | LogMe(); |
|---|
| 109 | Quit("Tree::ValidateNode, n3=null, n2!=null", uNodeIndex); |
|---|
| 110 | } |
|---|
| 111 | |
|---|
| 112 | if (n1 != NULL_NEIGHBOR) |
|---|
| 113 | AssertAreNeighbors(uNodeIndex, n1); |
|---|
| 114 | if (n2 != NULL_NEIGHBOR) |
|---|
| 115 | AssertAreNeighbors(uNodeIndex, n2); |
|---|
| 116 | if (n3 != NULL_NEIGHBOR) |
|---|
| 117 | AssertAreNeighbors(uNodeIndex, n3); |
|---|
| 118 | |
|---|
| 119 | if (n1 != NULL_NEIGHBOR && (n1 == n2 || n1 == n3)) |
|---|
| 120 | { |
|---|
| 121 | LogMe(); |
|---|
| 122 | Quit("Tree::ValidateNode, duplicate neighbors in node %u", uNodeIndex); |
|---|
| 123 | } |
|---|
| 124 | if (n2 != NULL_NEIGHBOR && (n2 == n1 || n2 == n3)) |
|---|
| 125 | { |
|---|
| 126 | LogMe(); |
|---|
| 127 | Quit("Tree::ValidateNode, duplicate neighbors in node %u", uNodeIndex); |
|---|
| 128 | } |
|---|
| 129 | if (n3 != NULL_NEIGHBOR && (n3 == n1 || n3 == n2)) |
|---|
| 130 | { |
|---|
| 131 | LogMe(); |
|---|
| 132 | Quit("Tree::ValidateNode, duplicate neighbors in node %u", uNodeIndex); |
|---|
| 133 | } |
|---|
| 134 | |
|---|
| 135 | if (IsRooted()) |
|---|
| 136 | { |
|---|
| 137 | if (NULL_NEIGHBOR == GetParent(uNodeIndex)) |
|---|
| 138 | { |
|---|
| 139 | if (uNodeIndex != m_uRootNodeIndex) |
|---|
| 140 | { |
|---|
| 141 | LogMe(); |
|---|
| 142 | Quit("Tree::ValiateNode(%u), no parent", uNodeIndex); |
|---|
| 143 | } |
|---|
| 144 | } |
|---|
| 145 | else if (GetLeft(GetParent(uNodeIndex)) != uNodeIndex && |
|---|
| 146 | GetRight(GetParent(uNodeIndex)) != uNodeIndex) |
|---|
| 147 | { |
|---|
| 148 | LogMe(); |
|---|
| 149 | Quit("Tree::ValidateNode(%u), parent / child mismatch", uNodeIndex); |
|---|
| 150 | } |
|---|
| 151 | } |
|---|
| 152 | } |
|---|
| 153 | |
|---|
| 154 | void Tree::Validate() const |
|---|
| 155 | { |
|---|
| 156 | for (unsigned uNodeIndex = 0; uNodeIndex < m_uNodeCount; ++uNodeIndex) |
|---|
| 157 | ValidateNode(uNodeIndex); |
|---|
| 158 | } |
|---|
| 159 | |
|---|
| 160 | bool Tree::IsEdge(unsigned uNodeIndex1, unsigned uNodeIndex2) const |
|---|
| 161 | { |
|---|
| 162 | assert(uNodeIndex1 < m_uNodeCount && uNodeIndex2 < m_uNodeCount); |
|---|
| 163 | |
|---|
| 164 | return m_uNeighbor1[uNodeIndex1] == uNodeIndex2 || |
|---|
| 165 | m_uNeighbor2[uNodeIndex1] == uNodeIndex2 || |
|---|
| 166 | m_uNeighbor3[uNodeIndex1] == uNodeIndex2; |
|---|
| 167 | } |
|---|
| 168 | |
|---|
| 169 | double Tree::GetEdgeLength(unsigned uNodeIndex1, unsigned uNodeIndex2) const |
|---|
| 170 | { |
|---|
| 171 | assert(uNodeIndex1 < m_uNodeCount && uNodeIndex2 < m_uNodeCount); |
|---|
| 172 | if (!HasEdgeLength(uNodeIndex1, uNodeIndex2)) |
|---|
| 173 | { |
|---|
| 174 | LogMe(); |
|---|
| 175 | Quit("Missing edge length in tree %u-%u", uNodeIndex1, uNodeIndex2); |
|---|
| 176 | } |
|---|
| 177 | |
|---|
| 178 | if (m_uNeighbor1[uNodeIndex1] == uNodeIndex2) |
|---|
| 179 | return m_dEdgeLength1[uNodeIndex1]; |
|---|
| 180 | else if (m_uNeighbor2[uNodeIndex1] == uNodeIndex2) |
|---|
| 181 | return m_dEdgeLength2[uNodeIndex1]; |
|---|
| 182 | assert(m_uNeighbor3[uNodeIndex1] == uNodeIndex2); |
|---|
| 183 | return m_dEdgeLength3[uNodeIndex1]; |
|---|
| 184 | } |
|---|
| 185 | |
|---|
| 186 | void Tree::ExpandCache() |
|---|
| 187 | { |
|---|
| 188 | const unsigned uNodeCount = 100; |
|---|
| 189 | unsigned uNewCacheCount = m_uCacheCount + uNodeCount; |
|---|
| 190 | unsigned *uNewNeighbor1 = new unsigned[uNewCacheCount]; |
|---|
| 191 | unsigned *uNewNeighbor2 = new unsigned[uNewCacheCount]; |
|---|
| 192 | unsigned *uNewNeighbor3 = new unsigned[uNewCacheCount]; |
|---|
| 193 | |
|---|
| 194 | unsigned *uNewIds = new unsigned[uNewCacheCount]; |
|---|
| 195 | memset(uNewIds, 0xff, uNewCacheCount*sizeof(unsigned)); |
|---|
| 196 | |
|---|
| 197 | double *dNewEdgeLength1 = new double[uNewCacheCount]; |
|---|
| 198 | double *dNewEdgeLength2 = new double[uNewCacheCount]; |
|---|
| 199 | double *dNewEdgeLength3 = new double[uNewCacheCount]; |
|---|
| 200 | double *dNewHeight = new double[uNewCacheCount]; |
|---|
| 201 | |
|---|
| 202 | bool *bNewHasEdgeLength1 = new bool[uNewCacheCount]; |
|---|
| 203 | bool *bNewHasEdgeLength2 = new bool[uNewCacheCount]; |
|---|
| 204 | bool *bNewHasEdgeLength3 = new bool[uNewCacheCount]; |
|---|
| 205 | bool *bNewHasHeight = new bool[uNewCacheCount]; |
|---|
| 206 | |
|---|
| 207 | char **ptrNewName = new char *[uNewCacheCount]; |
|---|
| 208 | memset(ptrNewName, 0, uNewCacheCount*sizeof(char *)); |
|---|
| 209 | |
|---|
| 210 | if (m_uCacheCount > 0) |
|---|
| 211 | { |
|---|
| 212 | const unsigned uUnsignedBytes = m_uCacheCount*sizeof(unsigned); |
|---|
| 213 | memcpy(uNewNeighbor1, m_uNeighbor1, uUnsignedBytes); |
|---|
| 214 | memcpy(uNewNeighbor2, m_uNeighbor2, uUnsignedBytes); |
|---|
| 215 | memcpy(uNewNeighbor3, m_uNeighbor3, uUnsignedBytes); |
|---|
| 216 | |
|---|
| 217 | memcpy(uNewIds, m_Ids, uUnsignedBytes); |
|---|
| 218 | |
|---|
| 219 | const unsigned uEdgeBytes = m_uCacheCount*sizeof(double); |
|---|
| 220 | memcpy(dNewEdgeLength1, m_dEdgeLength1, uEdgeBytes); |
|---|
| 221 | memcpy(dNewEdgeLength2, m_dEdgeLength2, uEdgeBytes); |
|---|
| 222 | memcpy(dNewEdgeLength3, m_dEdgeLength3, uEdgeBytes); |
|---|
| 223 | memcpy(dNewHeight, m_dHeight, uEdgeBytes); |
|---|
| 224 | |
|---|
| 225 | const unsigned uBoolBytes = m_uCacheCount*sizeof(bool); |
|---|
| 226 | memcpy(bNewHasEdgeLength1, m_bHasEdgeLength1, uBoolBytes); |
|---|
| 227 | memcpy(bNewHasEdgeLength2, m_bHasEdgeLength2, uBoolBytes); |
|---|
| 228 | memcpy(bNewHasEdgeLength3, m_bHasEdgeLength3, uBoolBytes); |
|---|
| 229 | memcpy(bNewHasHeight, m_bHasHeight, uBoolBytes); |
|---|
| 230 | |
|---|
| 231 | const unsigned uNameBytes = m_uCacheCount*sizeof(char *); |
|---|
| 232 | memcpy(ptrNewName, m_ptrName, uNameBytes); |
|---|
| 233 | |
|---|
| 234 | delete[] m_uNeighbor1; |
|---|
| 235 | delete[] m_uNeighbor2; |
|---|
| 236 | delete[] m_uNeighbor3; |
|---|
| 237 | |
|---|
| 238 | delete[] m_Ids; |
|---|
| 239 | |
|---|
| 240 | delete[] m_dEdgeLength1; |
|---|
| 241 | delete[] m_dEdgeLength2; |
|---|
| 242 | delete[] m_dEdgeLength3; |
|---|
| 243 | |
|---|
| 244 | delete[] m_bHasEdgeLength1; |
|---|
| 245 | delete[] m_bHasEdgeLength2; |
|---|
| 246 | delete[] m_bHasEdgeLength3; |
|---|
| 247 | delete[] m_bHasHeight; |
|---|
| 248 | |
|---|
| 249 | delete[] m_ptrName; |
|---|
| 250 | } |
|---|
| 251 | m_uCacheCount = uNewCacheCount; |
|---|
| 252 | m_uNeighbor1 = uNewNeighbor1; |
|---|
| 253 | m_uNeighbor2 = uNewNeighbor2; |
|---|
| 254 | m_uNeighbor3 = uNewNeighbor3; |
|---|
| 255 | m_Ids = uNewIds; |
|---|
| 256 | m_dEdgeLength1 = dNewEdgeLength1; |
|---|
| 257 | m_dEdgeLength2 = dNewEdgeLength2; |
|---|
| 258 | m_dEdgeLength3 = dNewEdgeLength3; |
|---|
| 259 | m_dHeight = dNewHeight; |
|---|
| 260 | m_bHasEdgeLength1 = bNewHasEdgeLength1; |
|---|
| 261 | m_bHasEdgeLength2 = bNewHasEdgeLength2; |
|---|
| 262 | m_bHasEdgeLength3 = bNewHasEdgeLength3; |
|---|
| 263 | m_bHasHeight = bNewHasHeight; |
|---|
| 264 | m_ptrName = ptrNewName; |
|---|
| 265 | } |
|---|
| 266 | |
|---|
| 267 | // Creates tree with single node, no edges. |
|---|
| 268 | // Root node always has index 0. |
|---|
| 269 | void Tree::CreateRooted() |
|---|
| 270 | { |
|---|
| 271 | Clear(); |
|---|
| 272 | ExpandCache(); |
|---|
| 273 | m_uNodeCount = 1; |
|---|
| 274 | |
|---|
| 275 | m_uNeighbor1[0] = NULL_NEIGHBOR; |
|---|
| 276 | m_uNeighbor2[0] = NULL_NEIGHBOR; |
|---|
| 277 | m_uNeighbor3[0] = NULL_NEIGHBOR; |
|---|
| 278 | |
|---|
| 279 | m_bHasEdgeLength1[0] = false; |
|---|
| 280 | m_bHasEdgeLength2[0] = false; |
|---|
| 281 | m_bHasEdgeLength3[0] = false; |
|---|
| 282 | m_bHasHeight[0] = false; |
|---|
| 283 | |
|---|
| 284 | m_uRootNodeIndex = 0; |
|---|
| 285 | m_bRooted = true; |
|---|
| 286 | |
|---|
| 287 | #if DEBUG |
|---|
| 288 | Validate(); |
|---|
| 289 | #endif |
|---|
| 290 | } |
|---|
| 291 | |
|---|
| 292 | // Creates unrooted tree with single edge. |
|---|
| 293 | // Nodes for that edge are always 0 and 1. |
|---|
| 294 | void Tree::CreateUnrooted(double dEdgeLength) |
|---|
| 295 | { |
|---|
| 296 | Clear(); |
|---|
| 297 | ExpandCache(); |
|---|
| 298 | |
|---|
| 299 | m_uNeighbor1[0] = 1; |
|---|
| 300 | m_uNeighbor2[0] = NULL_NEIGHBOR; |
|---|
| 301 | m_uNeighbor3[0] = NULL_NEIGHBOR; |
|---|
| 302 | |
|---|
| 303 | m_uNeighbor1[1] = 0; |
|---|
| 304 | m_uNeighbor2[1] = NULL_NEIGHBOR; |
|---|
| 305 | m_uNeighbor3[1] = NULL_NEIGHBOR; |
|---|
| 306 | |
|---|
| 307 | m_dEdgeLength1[0] = dEdgeLength; |
|---|
| 308 | m_dEdgeLength1[1] = dEdgeLength; |
|---|
| 309 | |
|---|
| 310 | m_bHasEdgeLength1[0] = true; |
|---|
| 311 | m_bHasEdgeLength1[1] = true; |
|---|
| 312 | |
|---|
| 313 | m_bRooted = false; |
|---|
| 314 | |
|---|
| 315 | #if DEBUG |
|---|
| 316 | Validate(); |
|---|
| 317 | #endif |
|---|
| 318 | } |
|---|
| 319 | |
|---|
| 320 | void Tree::SetLeafName(unsigned uNodeIndex, const char *ptrName) |
|---|
| 321 | { |
|---|
| 322 | assert(uNodeIndex < m_uNodeCount); |
|---|
| 323 | assert(IsLeaf(uNodeIndex)); |
|---|
| 324 | free(m_ptrName[uNodeIndex]); |
|---|
| 325 | m_ptrName[uNodeIndex] = strsave(ptrName); |
|---|
| 326 | } |
|---|
| 327 | |
|---|
| 328 | void Tree::SetLeafId(unsigned uNodeIndex, unsigned uId) |
|---|
| 329 | { |
|---|
| 330 | assert(uNodeIndex < m_uNodeCount); |
|---|
| 331 | assert(IsLeaf(uNodeIndex)); |
|---|
| 332 | m_Ids[uNodeIndex] = uId; |
|---|
| 333 | } |
|---|
| 334 | |
|---|
| 335 | const char *Tree::GetLeafName(unsigned uNodeIndex) const |
|---|
| 336 | { |
|---|
| 337 | assert(uNodeIndex < m_uNodeCount); |
|---|
| 338 | assert(IsLeaf(uNodeIndex)); |
|---|
| 339 | return m_ptrName[uNodeIndex]; |
|---|
| 340 | } |
|---|
| 341 | |
|---|
| 342 | unsigned Tree::GetLeafId(unsigned uNodeIndex) const |
|---|
| 343 | { |
|---|
| 344 | assert(uNodeIndex < m_uNodeCount); |
|---|
| 345 | assert(IsLeaf(uNodeIndex)); |
|---|
| 346 | return m_Ids[uNodeIndex]; |
|---|
| 347 | } |
|---|
| 348 | |
|---|
| 349 | // Append a new branch. |
|---|
| 350 | // This adds two new nodes and joins them to an existing leaf node. |
|---|
| 351 | // Return value is k, new nodes have indexes k and k+1 respectively. |
|---|
| 352 | unsigned Tree::AppendBranch(unsigned uExistingLeafIndex) |
|---|
| 353 | { |
|---|
| 354 | if (0 == m_uNodeCount) |
|---|
| 355 | Quit("Tree::AppendBranch: tree has not been created"); |
|---|
| 356 | |
|---|
| 357 | #if DEBUG |
|---|
| 358 | assert(uExistingLeafIndex < m_uNodeCount); |
|---|
| 359 | if (!IsLeaf(uExistingLeafIndex)) |
|---|
| 360 | { |
|---|
| 361 | LogMe(); |
|---|
| 362 | Quit("AppendBranch(%u): not leaf", uExistingLeafIndex); |
|---|
| 363 | } |
|---|
| 364 | #endif |
|---|
| 365 | |
|---|
| 366 | if (m_uNodeCount >= m_uCacheCount - 2) |
|---|
| 367 | ExpandCache(); |
|---|
| 368 | |
|---|
| 369 | const unsigned uNewLeaf1 = m_uNodeCount; |
|---|
| 370 | const unsigned uNewLeaf2 = m_uNodeCount + 1; |
|---|
| 371 | |
|---|
| 372 | m_uNodeCount += 2; |
|---|
| 373 | |
|---|
| 374 | assert(m_uNeighbor2[uExistingLeafIndex] == NULL_NEIGHBOR); |
|---|
| 375 | assert(m_uNeighbor3[uExistingLeafIndex] == NULL_NEIGHBOR); |
|---|
| 376 | |
|---|
| 377 | m_uNeighbor2[uExistingLeafIndex] = uNewLeaf1; |
|---|
| 378 | m_uNeighbor3[uExistingLeafIndex] = uNewLeaf2; |
|---|
| 379 | |
|---|
| 380 | m_uNeighbor1[uNewLeaf1] = uExistingLeafIndex; |
|---|
| 381 | m_uNeighbor1[uNewLeaf2] = uExistingLeafIndex; |
|---|
| 382 | |
|---|
| 383 | m_uNeighbor2[uNewLeaf1] = NULL_NEIGHBOR; |
|---|
| 384 | m_uNeighbor2[uNewLeaf2] = NULL_NEIGHBOR; |
|---|
| 385 | |
|---|
| 386 | m_uNeighbor3[uNewLeaf1] = NULL_NEIGHBOR; |
|---|
| 387 | m_uNeighbor3[uNewLeaf2] = NULL_NEIGHBOR; |
|---|
| 388 | |
|---|
| 389 | m_dEdgeLength2[uExistingLeafIndex] = 0; |
|---|
| 390 | m_dEdgeLength3[uExistingLeafIndex] = 0; |
|---|
| 391 | |
|---|
| 392 | m_dEdgeLength1[uNewLeaf1] = 0; |
|---|
| 393 | m_dEdgeLength2[uNewLeaf1] = 0; |
|---|
| 394 | m_dEdgeLength3[uNewLeaf1] = 0; |
|---|
| 395 | |
|---|
| 396 | m_dEdgeLength1[uNewLeaf2] = 0; |
|---|
| 397 | m_dEdgeLength2[uNewLeaf2] = 0; |
|---|
| 398 | m_dEdgeLength3[uNewLeaf2] = 0; |
|---|
| 399 | |
|---|
| 400 | m_bHasEdgeLength1[uNewLeaf1] = false; |
|---|
| 401 | m_bHasEdgeLength2[uNewLeaf1] = false; |
|---|
| 402 | m_bHasEdgeLength3[uNewLeaf1] = false; |
|---|
| 403 | |
|---|
| 404 | m_bHasEdgeLength1[uNewLeaf2] = false; |
|---|
| 405 | m_bHasEdgeLength2[uNewLeaf2] = false; |
|---|
| 406 | m_bHasEdgeLength3[uNewLeaf2] = false; |
|---|
| 407 | |
|---|
| 408 | m_bHasHeight[uNewLeaf1] = false; |
|---|
| 409 | m_bHasHeight[uNewLeaf2] = false; |
|---|
| 410 | |
|---|
| 411 | m_Ids[uNewLeaf1] = uInsane; |
|---|
| 412 | m_Ids[uNewLeaf2] = uInsane; |
|---|
| 413 | return uNewLeaf1; |
|---|
| 414 | } |
|---|
| 415 | |
|---|
| 416 | void Tree::LogMe() const |
|---|
| 417 | { |
|---|
| 418 | Log("Tree::LogMe %u nodes, ", m_uNodeCount); |
|---|
| 419 | |
|---|
| 420 | if (IsRooted()) |
|---|
| 421 | { |
|---|
| 422 | Log("rooted.\n"); |
|---|
| 423 | Log("\n"); |
|---|
| 424 | Log("Index Parnt LengthP Left LengthL Right LengthR Id Name\n"); |
|---|
| 425 | Log("----- ----- ------- ---- ------- ----- ------- ----- ----\n"); |
|---|
| 426 | } |
|---|
| 427 | else |
|---|
| 428 | { |
|---|
| 429 | Log("unrooted.\n"); |
|---|
| 430 | Log("\n"); |
|---|
| 431 | Log("Index Nbr_1 Length1 Nbr_2 Length2 Nbr_3 Length3 Id Name\n"); |
|---|
| 432 | Log("----- ----- ------- ----- ------- ----- ------- ----- ----\n"); |
|---|
| 433 | } |
|---|
| 434 | |
|---|
| 435 | for (unsigned uNodeIndex = 0; uNodeIndex < m_uNodeCount; ++uNodeIndex) |
|---|
| 436 | { |
|---|
| 437 | Log("%5u ", uNodeIndex); |
|---|
| 438 | const unsigned n1 = m_uNeighbor1[uNodeIndex]; |
|---|
| 439 | const unsigned n2 = m_uNeighbor2[uNodeIndex]; |
|---|
| 440 | const unsigned n3 = m_uNeighbor3[uNodeIndex]; |
|---|
| 441 | if (NULL_NEIGHBOR != n1) |
|---|
| 442 | { |
|---|
| 443 | Log("%5u ", n1); |
|---|
| 444 | if (m_bHasEdgeLength1[uNodeIndex]) |
|---|
| 445 | Log("%7.4f ", m_dEdgeLength1[uNodeIndex]); |
|---|
| 446 | else |
|---|
| 447 | Log(" * "); |
|---|
| 448 | } |
|---|
| 449 | else |
|---|
| 450 | Log(" "); |
|---|
| 451 | |
|---|
| 452 | if (NULL_NEIGHBOR != n2) |
|---|
| 453 | { |
|---|
| 454 | Log("%5u ", n2); |
|---|
| 455 | if (m_bHasEdgeLength2[uNodeIndex]) |
|---|
| 456 | Log("%7.4f ", m_dEdgeLength2[uNodeIndex]); |
|---|
| 457 | else |
|---|
| 458 | Log(" * "); |
|---|
| 459 | } |
|---|
| 460 | else |
|---|
| 461 | Log(" "); |
|---|
| 462 | |
|---|
| 463 | if (NULL_NEIGHBOR != n3) |
|---|
| 464 | { |
|---|
| 465 | Log("%5u ", n3); |
|---|
| 466 | if (m_bHasEdgeLength3[uNodeIndex]) |
|---|
| 467 | Log("%7.4f ", m_dEdgeLength3[uNodeIndex]); |
|---|
| 468 | else |
|---|
| 469 | Log(" * "); |
|---|
| 470 | } |
|---|
| 471 | else |
|---|
| 472 | Log(" "); |
|---|
| 473 | |
|---|
| 474 | if (m_Ids != 0 && IsLeaf(uNodeIndex)) |
|---|
| 475 | { |
|---|
| 476 | unsigned uId = m_Ids[uNodeIndex]; |
|---|
| 477 | if (uId == uInsane) |
|---|
| 478 | Log(" *"); |
|---|
| 479 | else |
|---|
| 480 | Log("%5u", uId); |
|---|
| 481 | } |
|---|
| 482 | else |
|---|
| 483 | Log(" "); |
|---|
| 484 | |
|---|
| 485 | if (m_bRooted && uNodeIndex == m_uRootNodeIndex) |
|---|
| 486 | Log(" [ROOT] "); |
|---|
| 487 | const char *ptrName = m_ptrName[uNodeIndex]; |
|---|
| 488 | if (ptrName != 0) |
|---|
| 489 | Log(" %s", ptrName); |
|---|
| 490 | Log("\n"); |
|---|
| 491 | } |
|---|
| 492 | } |
|---|
| 493 | |
|---|
| 494 | void Tree::SetEdgeLength(unsigned uNodeIndex1, unsigned uNodeIndex2, |
|---|
| 495 | double dLength) |
|---|
| 496 | { |
|---|
| 497 | assert(uNodeIndex1 < m_uNodeCount && uNodeIndex2 < m_uNodeCount); |
|---|
| 498 | assert(IsEdge(uNodeIndex1, uNodeIndex2)); |
|---|
| 499 | |
|---|
| 500 | if (m_uNeighbor1[uNodeIndex1] == uNodeIndex2) |
|---|
| 501 | { |
|---|
| 502 | m_dEdgeLength1[uNodeIndex1] = dLength; |
|---|
| 503 | m_bHasEdgeLength1[uNodeIndex1] = true; |
|---|
| 504 | } |
|---|
| 505 | else if (m_uNeighbor2[uNodeIndex1] == uNodeIndex2) |
|---|
| 506 | { |
|---|
| 507 | m_dEdgeLength2[uNodeIndex1] = dLength; |
|---|
| 508 | m_bHasEdgeLength2[uNodeIndex1] = true; |
|---|
| 509 | |
|---|
| 510 | } |
|---|
| 511 | else |
|---|
| 512 | { |
|---|
| 513 | assert(m_uNeighbor3[uNodeIndex1] == uNodeIndex2); |
|---|
| 514 | m_dEdgeLength3[uNodeIndex1] = dLength; |
|---|
| 515 | m_bHasEdgeLength3[uNodeIndex1] = true; |
|---|
| 516 | } |
|---|
| 517 | |
|---|
| 518 | if (m_uNeighbor1[uNodeIndex2] == uNodeIndex1) |
|---|
| 519 | { |
|---|
| 520 | m_dEdgeLength1[uNodeIndex2] = dLength; |
|---|
| 521 | m_bHasEdgeLength1[uNodeIndex2] = true; |
|---|
| 522 | } |
|---|
| 523 | else if (m_uNeighbor2[uNodeIndex2] == uNodeIndex1) |
|---|
| 524 | { |
|---|
| 525 | m_dEdgeLength2[uNodeIndex2] = dLength; |
|---|
| 526 | m_bHasEdgeLength2[uNodeIndex2] = true; |
|---|
| 527 | } |
|---|
| 528 | else |
|---|
| 529 | { |
|---|
| 530 | assert(m_uNeighbor3[uNodeIndex2] == uNodeIndex1); |
|---|
| 531 | m_dEdgeLength3[uNodeIndex2] = dLength; |
|---|
| 532 | m_bHasEdgeLength3[uNodeIndex2] = true; |
|---|
| 533 | } |
|---|
| 534 | } |
|---|
| 535 | |
|---|
| 536 | unsigned Tree::UnrootFromFile() |
|---|
| 537 | { |
|---|
| 538 | #if TRACE |
|---|
| 539 | Log("Before unroot:\n"); |
|---|
| 540 | LogMe(); |
|---|
| 541 | #endif |
|---|
| 542 | |
|---|
| 543 | if (!m_bRooted) |
|---|
| 544 | Quit("Tree::Unroot, not rooted"); |
|---|
| 545 | |
|---|
| 546 | // Convention: root node is always node zero |
|---|
| 547 | assert(IsRoot(0)); |
|---|
| 548 | assert(NULL_NEIGHBOR == m_uNeighbor1[0]); |
|---|
| 549 | |
|---|
| 550 | const unsigned uThirdNode = m_uNodeCount++; |
|---|
| 551 | |
|---|
| 552 | m_uNeighbor1[0] = uThirdNode; |
|---|
| 553 | m_uNeighbor1[uThirdNode] = 0; |
|---|
| 554 | |
|---|
| 555 | m_uNeighbor2[uThirdNode] = NULL_NEIGHBOR; |
|---|
| 556 | m_uNeighbor3[uThirdNode] = NULL_NEIGHBOR; |
|---|
| 557 | |
|---|
| 558 | m_dEdgeLength1[0] = 0; |
|---|
| 559 | m_dEdgeLength1[uThirdNode] = 0; |
|---|
| 560 | m_bHasEdgeLength1[uThirdNode] = true; |
|---|
| 561 | |
|---|
| 562 | m_bRooted = false; |
|---|
| 563 | |
|---|
| 564 | #if TRACE |
|---|
| 565 | Log("After unroot:\n"); |
|---|
| 566 | LogMe(); |
|---|
| 567 | #endif |
|---|
| 568 | |
|---|
| 569 | return uThirdNode; |
|---|
| 570 | } |
|---|
| 571 | |
|---|
| 572 | // In an unrooted tree, equivalent of GetLeft/Right is |
|---|
| 573 | // GetFirst/SecondNeighbor. |
|---|
| 574 | // uNeighborIndex must be a known neighbor of uNodeIndex. |
|---|
| 575 | // This is the way to find the other two neighbor nodes of |
|---|
| 576 | // an internal node. |
|---|
| 577 | // The labeling as "First" and "Second" neighbor is arbitrary. |
|---|
| 578 | // Calling these functions on a leaf returns NULL_NEIGHBOR, as |
|---|
| 579 | // for GetLeft/Right. |
|---|
| 580 | unsigned Tree::GetFirstNeighbor(unsigned uNodeIndex, unsigned uNeighborIndex) const |
|---|
| 581 | { |
|---|
| 582 | assert(uNodeIndex < m_uNodeCount); |
|---|
| 583 | assert(uNeighborIndex < m_uNodeCount); |
|---|
| 584 | assert(IsEdge(uNodeIndex, uNeighborIndex)); |
|---|
| 585 | |
|---|
| 586 | for (unsigned n = 0; n < 3; ++n) |
|---|
| 587 | { |
|---|
| 588 | unsigned uNeighbor = GetNeighbor(uNodeIndex, n); |
|---|
| 589 | if (NULL_NEIGHBOR != uNeighbor && uNeighborIndex != uNeighbor) |
|---|
| 590 | return uNeighbor; |
|---|
| 591 | } |
|---|
| 592 | return NULL_NEIGHBOR; |
|---|
| 593 | } |
|---|
| 594 | |
|---|
| 595 | unsigned Tree::GetSecondNeighbor(unsigned uNodeIndex, unsigned uNeighborIndex) const |
|---|
| 596 | { |
|---|
| 597 | assert(uNodeIndex < m_uNodeCount); |
|---|
| 598 | assert(uNeighborIndex < m_uNodeCount); |
|---|
| 599 | assert(IsEdge(uNodeIndex, uNeighborIndex)); |
|---|
| 600 | |
|---|
| 601 | bool bFoundOne = false; |
|---|
| 602 | for (unsigned n = 0; n < 3; ++n) |
|---|
| 603 | { |
|---|
| 604 | unsigned uNeighbor = GetNeighbor(uNodeIndex, n); |
|---|
| 605 | if (NULL_NEIGHBOR != uNeighbor && uNeighborIndex != uNeighbor) |
|---|
| 606 | { |
|---|
| 607 | if (bFoundOne) |
|---|
| 608 | return uNeighbor; |
|---|
| 609 | else |
|---|
| 610 | bFoundOne = true; |
|---|
| 611 | } |
|---|
| 612 | } |
|---|
| 613 | return NULL_NEIGHBOR; |
|---|
| 614 | } |
|---|
| 615 | |
|---|
| 616 | // Compute the number of leaves in the sub-tree defined by an edge |
|---|
| 617 | // in an unrooted tree. Conceptually, the tree is cut at this edge, |
|---|
| 618 | // and uNodeIndex2 considered the root of the sub-tree. |
|---|
| 619 | unsigned Tree::GetLeafCountUnrooted(unsigned uNodeIndex1, unsigned uNodeIndex2, |
|---|
| 620 | double *ptrdTotalDistance) const |
|---|
| 621 | { |
|---|
| 622 | assert(!IsRooted()); |
|---|
| 623 | |
|---|
| 624 | if (IsLeaf(uNodeIndex2)) |
|---|
| 625 | { |
|---|
| 626 | *ptrdTotalDistance = GetEdgeLength(uNodeIndex1, uNodeIndex2); |
|---|
| 627 | return 1; |
|---|
| 628 | } |
|---|
| 629 | |
|---|
| 630 | // Recurse down the rooted sub-tree defined by cutting the edge |
|---|
| 631 | // and considering uNodeIndex2 as the root. |
|---|
| 632 | const unsigned uLeft = GetFirstNeighbor(uNodeIndex2, uNodeIndex1); |
|---|
| 633 | const unsigned uRight = GetSecondNeighbor(uNodeIndex2, uNodeIndex1); |
|---|
| 634 | |
|---|
| 635 | double dLeftDistance; |
|---|
| 636 | double dRightDistance; |
|---|
| 637 | |
|---|
| 638 | const unsigned uLeftCount = GetLeafCountUnrooted(uNodeIndex2, uLeft, |
|---|
| 639 | &dLeftDistance); |
|---|
| 640 | const unsigned uRightCount = GetLeafCountUnrooted(uNodeIndex2, uRight, |
|---|
| 641 | &dRightDistance); |
|---|
| 642 | |
|---|
| 643 | *ptrdTotalDistance = dLeftDistance + dRightDistance; |
|---|
| 644 | return uLeftCount + uRightCount; |
|---|
| 645 | } |
|---|
| 646 | |
|---|
| 647 | void Tree::RootUnrootedTree(ROOT Method) |
|---|
| 648 | { |
|---|
| 649 | assert(!IsRooted()); |
|---|
| 650 | #if TRACE |
|---|
| 651 | Log("Tree::RootUnrootedTree, before:"); |
|---|
| 652 | LogMe(); |
|---|
| 653 | #endif |
|---|
| 654 | |
|---|
| 655 | unsigned uNode1; |
|---|
| 656 | unsigned uNode2; |
|---|
| 657 | double dLength1; |
|---|
| 658 | double dLength2; |
|---|
| 659 | FindRoot(*this, &uNode1, &uNode2, &dLength1, &dLength2, Method); |
|---|
| 660 | |
|---|
| 661 | if (m_uNodeCount == m_uCacheCount) |
|---|
| 662 | ExpandCache(); |
|---|
| 663 | m_uRootNodeIndex = m_uNodeCount++; |
|---|
| 664 | |
|---|
| 665 | double dEdgeLength = GetEdgeLength(uNode1, uNode2); |
|---|
| 666 | |
|---|
| 667 | m_uNeighbor1[m_uRootNodeIndex] = NULL_NEIGHBOR; |
|---|
| 668 | m_uNeighbor2[m_uRootNodeIndex] = uNode1; |
|---|
| 669 | m_uNeighbor3[m_uRootNodeIndex] = uNode2; |
|---|
| 670 | |
|---|
| 671 | if (m_uNeighbor1[uNode1] == uNode2) |
|---|
| 672 | m_uNeighbor1[uNode1] = m_uRootNodeIndex; |
|---|
| 673 | else if (m_uNeighbor2[uNode1] == uNode2) |
|---|
| 674 | m_uNeighbor2[uNode1] = m_uRootNodeIndex; |
|---|
| 675 | else |
|---|
| 676 | { |
|---|
| 677 | assert(m_uNeighbor3[uNode1] == uNode2); |
|---|
| 678 | m_uNeighbor3[uNode1] = m_uRootNodeIndex; |
|---|
| 679 | } |
|---|
| 680 | |
|---|
| 681 | if (m_uNeighbor1[uNode2] == uNode1) |
|---|
| 682 | m_uNeighbor1[uNode2] = m_uRootNodeIndex; |
|---|
| 683 | else if (m_uNeighbor2[uNode2] == uNode1) |
|---|
| 684 | m_uNeighbor2[uNode2] = m_uRootNodeIndex; |
|---|
| 685 | else |
|---|
| 686 | { |
|---|
| 687 | assert(m_uNeighbor3[uNode2] == uNode1); |
|---|
| 688 | m_uNeighbor3[uNode2] = m_uRootNodeIndex; |
|---|
| 689 | } |
|---|
| 690 | |
|---|
| 691 | OrientParent(uNode1, m_uRootNodeIndex); |
|---|
| 692 | OrientParent(uNode2, m_uRootNodeIndex); |
|---|
| 693 | |
|---|
| 694 | SetEdgeLength(m_uRootNodeIndex, uNode1, dLength1); |
|---|
| 695 | SetEdgeLength(m_uRootNodeIndex, uNode2, dLength2); |
|---|
| 696 | |
|---|
| 697 | m_bHasHeight[m_uRootNodeIndex] = false; |
|---|
| 698 | |
|---|
| 699 | m_ptrName[m_uRootNodeIndex] = 0; |
|---|
| 700 | |
|---|
| 701 | m_bRooted = true; |
|---|
| 702 | |
|---|
| 703 | #if TRACE |
|---|
| 704 | Log("\nPhy::RootUnrootedTree, after:"); |
|---|
| 705 | LogMe(); |
|---|
| 706 | #endif |
|---|
| 707 | |
|---|
| 708 | Validate(); |
|---|
| 709 | } |
|---|
| 710 | |
|---|
| 711 | bool Tree::HasEdgeLength(unsigned uNodeIndex1, unsigned uNodeIndex2) const |
|---|
| 712 | { |
|---|
| 713 | assert(uNodeIndex1 < m_uNodeCount); |
|---|
| 714 | assert(uNodeIndex2 < m_uNodeCount); |
|---|
| 715 | assert(IsEdge(uNodeIndex1, uNodeIndex2)); |
|---|
| 716 | |
|---|
| 717 | if (m_uNeighbor1[uNodeIndex1] == uNodeIndex2) |
|---|
| 718 | return m_bHasEdgeLength1[uNodeIndex1]; |
|---|
| 719 | else if (m_uNeighbor2[uNodeIndex1] == uNodeIndex2) |
|---|
| 720 | return m_bHasEdgeLength2[uNodeIndex1]; |
|---|
| 721 | assert(m_uNeighbor3[uNodeIndex1] == uNodeIndex2); |
|---|
| 722 | return m_bHasEdgeLength3[uNodeIndex1]; |
|---|
| 723 | } |
|---|
| 724 | |
|---|
| 725 | void Tree::OrientParent(unsigned uNodeIndex, unsigned uParentNodeIndex) |
|---|
| 726 | { |
|---|
| 727 | if (NULL_NEIGHBOR == uNodeIndex) |
|---|
| 728 | return; |
|---|
| 729 | |
|---|
| 730 | if (m_uNeighbor1[uNodeIndex] == uParentNodeIndex) |
|---|
| 731 | ; |
|---|
| 732 | else if (m_uNeighbor2[uNodeIndex] == uParentNodeIndex) |
|---|
| 733 | { |
|---|
| 734 | double dEdgeLength2 = m_dEdgeLength2[uNodeIndex]; |
|---|
| 735 | m_uNeighbor2[uNodeIndex] = m_uNeighbor1[uNodeIndex]; |
|---|
| 736 | m_dEdgeLength2[uNodeIndex] = m_dEdgeLength1[uNodeIndex]; |
|---|
| 737 | m_uNeighbor1[uNodeIndex] = uParentNodeIndex; |
|---|
| 738 | m_dEdgeLength1[uNodeIndex] = dEdgeLength2; |
|---|
| 739 | } |
|---|
| 740 | else |
|---|
| 741 | { |
|---|
| 742 | assert(m_uNeighbor3[uNodeIndex] == uParentNodeIndex); |
|---|
| 743 | double dEdgeLength3 = m_dEdgeLength3[uNodeIndex]; |
|---|
| 744 | m_uNeighbor3[uNodeIndex] = m_uNeighbor1[uNodeIndex]; |
|---|
| 745 | m_dEdgeLength3[uNodeIndex] = m_dEdgeLength1[uNodeIndex]; |
|---|
| 746 | m_uNeighbor1[uNodeIndex] = uParentNodeIndex; |
|---|
| 747 | m_dEdgeLength1[uNodeIndex] = dEdgeLength3; |
|---|
| 748 | } |
|---|
| 749 | |
|---|
| 750 | OrientParent(m_uNeighbor2[uNodeIndex], uNodeIndex); |
|---|
| 751 | OrientParent(m_uNeighbor3[uNodeIndex], uNodeIndex); |
|---|
| 752 | } |
|---|
| 753 | |
|---|
| 754 | unsigned Tree::FirstDepthFirstNode() const |
|---|
| 755 | { |
|---|
| 756 | assert(IsRooted()); |
|---|
| 757 | |
|---|
| 758 | // Descend via left branches until we hit a leaf |
|---|
| 759 | unsigned uNodeIndex = m_uRootNodeIndex; |
|---|
| 760 | while (!IsLeaf(uNodeIndex)) |
|---|
| 761 | uNodeIndex = GetLeft(uNodeIndex); |
|---|
| 762 | return uNodeIndex; |
|---|
| 763 | } |
|---|
| 764 | |
|---|
| 765 | unsigned Tree::FirstDepthFirstNodeR() const |
|---|
| 766 | { |
|---|
| 767 | assert(IsRooted()); |
|---|
| 768 | |
|---|
| 769 | // Descend via left branches until we hit a leaf |
|---|
| 770 | unsigned uNodeIndex = m_uRootNodeIndex; |
|---|
| 771 | while (!IsLeaf(uNodeIndex)) |
|---|
| 772 | uNodeIndex = GetRight(uNodeIndex); |
|---|
| 773 | return uNodeIndex; |
|---|
| 774 | } |
|---|
| 775 | |
|---|
| 776 | unsigned Tree::NextDepthFirstNode(unsigned uNodeIndex) const |
|---|
| 777 | { |
|---|
| 778 | #if TRACE |
|---|
| 779 | Log("NextDepthFirstNode(%3u) ", uNodeIndex); |
|---|
| 780 | #endif |
|---|
| 781 | |
|---|
| 782 | assert(IsRooted()); |
|---|
| 783 | assert(uNodeIndex < m_uNodeCount); |
|---|
| 784 | |
|---|
| 785 | if (IsRoot(uNodeIndex)) |
|---|
| 786 | { |
|---|
| 787 | #if TRACE |
|---|
| 788 | Log(">> Node %u is root, end of traversal\n", uNodeIndex); |
|---|
| 789 | #endif |
|---|
| 790 | return NULL_NEIGHBOR; |
|---|
| 791 | } |
|---|
| 792 | |
|---|
| 793 | unsigned uParent = GetParent(uNodeIndex); |
|---|
| 794 | if (GetRight(uParent) == uNodeIndex) |
|---|
| 795 | { |
|---|
| 796 | #if TRACE |
|---|
| 797 | Log(">> Is right branch, return parent=%u\n", uParent); |
|---|
| 798 | #endif |
|---|
| 799 | return uParent; |
|---|
| 800 | } |
|---|
| 801 | |
|---|
| 802 | uNodeIndex = GetRight(uParent); |
|---|
| 803 | #if TRACE |
|---|
| 804 | Log(">> Descend left from right sibling=%u ... ", uNodeIndex); |
|---|
| 805 | #endif |
|---|
| 806 | while (!IsLeaf(uNodeIndex)) |
|---|
| 807 | uNodeIndex = GetLeft(uNodeIndex); |
|---|
| 808 | |
|---|
| 809 | #if TRACE |
|---|
| 810 | Log("bottom out at leaf=%u\n", uNodeIndex); |
|---|
| 811 | #endif |
|---|
| 812 | return uNodeIndex; |
|---|
| 813 | } |
|---|
| 814 | |
|---|
| 815 | unsigned Tree::NextDepthFirstNodeR(unsigned uNodeIndex) const |
|---|
| 816 | { |
|---|
| 817 | #if TRACE |
|---|
| 818 | Log("NextDepthFirstNode(%3u) ", uNodeIndex); |
|---|
| 819 | #endif |
|---|
| 820 | |
|---|
| 821 | assert(IsRooted()); |
|---|
| 822 | assert(uNodeIndex < m_uNodeCount); |
|---|
| 823 | |
|---|
| 824 | if (IsRoot(uNodeIndex)) |
|---|
| 825 | { |
|---|
| 826 | #if TRACE |
|---|
| 827 | Log(">> Node %u is root, end of traversal\n", uNodeIndex); |
|---|
| 828 | #endif |
|---|
| 829 | return NULL_NEIGHBOR; |
|---|
| 830 | } |
|---|
| 831 | |
|---|
| 832 | unsigned uParent = GetParent(uNodeIndex); |
|---|
| 833 | if (GetLeft(uParent) == uNodeIndex) |
|---|
| 834 | { |
|---|
| 835 | #if TRACE |
|---|
| 836 | Log(">> Is left branch, return parent=%u\n", uParent); |
|---|
| 837 | #endif |
|---|
| 838 | return uParent; |
|---|
| 839 | } |
|---|
| 840 | |
|---|
| 841 | uNodeIndex = GetLeft(uParent); |
|---|
| 842 | #if TRACE |
|---|
| 843 | Log(">> Descend right from left sibling=%u ... ", uNodeIndex); |
|---|
| 844 | #endif |
|---|
| 845 | while (!IsLeaf(uNodeIndex)) |
|---|
| 846 | uNodeIndex = GetRight(uNodeIndex); |
|---|
| 847 | |
|---|
| 848 | #if TRACE |
|---|
| 849 | Log("bottom out at leaf=%u\n", uNodeIndex); |
|---|
| 850 | #endif |
|---|
| 851 | return uNodeIndex; |
|---|
| 852 | } |
|---|
| 853 | |
|---|
| 854 | void Tree::UnrootByDeletingRoot() |
|---|
| 855 | { |
|---|
| 856 | assert(IsRooted()); |
|---|
| 857 | assert(m_uNodeCount >= 3); |
|---|
| 858 | |
|---|
| 859 | const unsigned uLeft = GetLeft(m_uRootNodeIndex); |
|---|
| 860 | const unsigned uRight = GetRight(m_uRootNodeIndex); |
|---|
| 861 | |
|---|
| 862 | m_uNeighbor1[uLeft] = uRight; |
|---|
| 863 | m_uNeighbor1[uRight] = uLeft; |
|---|
| 864 | |
|---|
| 865 | bool bHasEdgeLength = HasEdgeLength(m_uRootNodeIndex, uLeft) && |
|---|
| 866 | HasEdgeLength(m_uRootNodeIndex, uRight); |
|---|
| 867 | if (bHasEdgeLength) |
|---|
| 868 | { |
|---|
| 869 | double dEdgeLength = GetEdgeLength(m_uRootNodeIndex, uLeft) + |
|---|
| 870 | GetEdgeLength(m_uRootNodeIndex, uRight); |
|---|
| 871 | m_dEdgeLength1[uLeft] = dEdgeLength; |
|---|
| 872 | m_dEdgeLength1[uRight] = dEdgeLength; |
|---|
| 873 | } |
|---|
| 874 | |
|---|
| 875 | // Remove root node entry from arrays |
|---|
| 876 | const unsigned uMoveCount = m_uNodeCount - m_uRootNodeIndex; |
|---|
| 877 | const unsigned uUnsBytes = uMoveCount*sizeof(unsigned); |
|---|
| 878 | memmove(m_uNeighbor1 + m_uRootNodeIndex, m_uNeighbor1 + m_uRootNodeIndex + 1, |
|---|
| 879 | uUnsBytes); |
|---|
| 880 | memmove(m_uNeighbor2 + m_uRootNodeIndex, m_uNeighbor2 + m_uRootNodeIndex + 1, |
|---|
| 881 | uUnsBytes); |
|---|
| 882 | memmove(m_uNeighbor3 + m_uRootNodeIndex, m_uNeighbor3 + m_uRootNodeIndex + 1, |
|---|
| 883 | uUnsBytes); |
|---|
| 884 | |
|---|
| 885 | const unsigned uDoubleBytes = uMoveCount*sizeof(double); |
|---|
| 886 | memmove(m_dEdgeLength1 + m_uRootNodeIndex, m_dEdgeLength1 + m_uRootNodeIndex + 1, |
|---|
| 887 | uDoubleBytes); |
|---|
| 888 | memmove(m_dEdgeLength2 + m_uRootNodeIndex, m_dEdgeLength2 + m_uRootNodeIndex + 1, |
|---|
| 889 | uDoubleBytes); |
|---|
| 890 | memmove(m_dEdgeLength3 + m_uRootNodeIndex, m_dEdgeLength3 + m_uRootNodeIndex + 1, |
|---|
| 891 | uDoubleBytes); |
|---|
| 892 | |
|---|
| 893 | const unsigned uBoolBytes = uMoveCount*sizeof(bool); |
|---|
| 894 | memmove(m_bHasEdgeLength1 + m_uRootNodeIndex, m_bHasEdgeLength1 + m_uRootNodeIndex + 1, |
|---|
| 895 | uBoolBytes); |
|---|
| 896 | memmove(m_bHasEdgeLength2 + m_uRootNodeIndex, m_bHasEdgeLength2 + m_uRootNodeIndex + 1, |
|---|
| 897 | uBoolBytes); |
|---|
| 898 | memmove(m_bHasEdgeLength3 + m_uRootNodeIndex, m_bHasEdgeLength3 + m_uRootNodeIndex + 1, |
|---|
| 899 | uBoolBytes); |
|---|
| 900 | |
|---|
| 901 | const unsigned uPtrBytes = uMoveCount*sizeof(char *); |
|---|
| 902 | memmove(m_ptrName + m_uRootNodeIndex, m_ptrName + m_uRootNodeIndex + 1, uPtrBytes); |
|---|
| 903 | |
|---|
| 904 | --m_uNodeCount; |
|---|
| 905 | m_bRooted = false; |
|---|
| 906 | |
|---|
| 907 | // Fix up table entries |
|---|
| 908 | for (unsigned uNodeIndex = 0; uNodeIndex < m_uNodeCount; ++uNodeIndex) |
|---|
| 909 | { |
|---|
| 910 | #define DEC(x) if (x != NULL_NEIGHBOR && x > m_uRootNodeIndex) --x; |
|---|
| 911 | DEC(m_uNeighbor1[uNodeIndex]) |
|---|
| 912 | DEC(m_uNeighbor2[uNodeIndex]) |
|---|
| 913 | DEC(m_uNeighbor3[uNodeIndex]) |
|---|
| 914 | #undef DEC |
|---|
| 915 | } |
|---|
| 916 | |
|---|
| 917 | Validate(); |
|---|
| 918 | } |
|---|
| 919 | |
|---|
| 920 | unsigned Tree::GetLeafParent(unsigned uNodeIndex) const |
|---|
| 921 | { |
|---|
| 922 | assert(IsLeaf(uNodeIndex)); |
|---|
| 923 | |
|---|
| 924 | if (IsRooted()) |
|---|
| 925 | return GetParent(uNodeIndex); |
|---|
| 926 | |
|---|
| 927 | if (m_uNeighbor1[uNodeIndex] != NULL_NEIGHBOR) |
|---|
| 928 | return m_uNeighbor1[uNodeIndex]; |
|---|
| 929 | if (m_uNeighbor2[uNodeIndex] != NULL_NEIGHBOR) |
|---|
| 930 | return m_uNeighbor2[uNodeIndex]; |
|---|
| 931 | return m_uNeighbor3[uNodeIndex]; |
|---|
| 932 | } |
|---|
| 933 | |
|---|
| 934 | // TODO: This is not efficient for large trees, should cache. |
|---|
| 935 | double Tree::GetNodeHeight(unsigned uNodeIndex) const |
|---|
| 936 | { |
|---|
| 937 | if (!IsRooted()) |
|---|
| 938 | Quit("Tree::GetNodeHeight: undefined unless rooted tree"); |
|---|
| 939 | |
|---|
| 940 | if (IsLeaf(uNodeIndex)) |
|---|
| 941 | return 0.0; |
|---|
| 942 | |
|---|
| 943 | if (m_bHasHeight[uNodeIndex]) |
|---|
| 944 | return m_dHeight[uNodeIndex]; |
|---|
| 945 | |
|---|
| 946 | const unsigned uLeft = GetLeft(uNodeIndex); |
|---|
| 947 | const unsigned uRight = GetRight(uNodeIndex); |
|---|
| 948 | double dLeftLength = GetEdgeLength(uNodeIndex, uLeft); |
|---|
| 949 | double dRightLength = GetEdgeLength(uNodeIndex, uRight); |
|---|
| 950 | |
|---|
| 951 | if (dLeftLength < 0) |
|---|
| 952 | dLeftLength = 0; |
|---|
| 953 | if (dRightLength < 0) |
|---|
| 954 | dRightLength = 0; |
|---|
| 955 | |
|---|
| 956 | const double dLeftHeight = dLeftLength + GetNodeHeight(uLeft); |
|---|
| 957 | const double dRightHeight = dRightLength + GetNodeHeight(uRight); |
|---|
| 958 | const double dHeight = (dLeftHeight + dRightHeight)/2; |
|---|
| 959 | m_bHasHeight[uNodeIndex] = true; |
|---|
| 960 | m_dHeight[uNodeIndex] = dHeight; |
|---|
| 961 | return dHeight; |
|---|
| 962 | } |
|---|
| 963 | |
|---|
| 964 | unsigned Tree::GetNeighborSubscript(unsigned uNodeIndex, unsigned uNeighborIndex) const |
|---|
| 965 | { |
|---|
| 966 | assert(uNodeIndex < m_uNodeCount); |
|---|
| 967 | assert(uNeighborIndex < m_uNodeCount); |
|---|
| 968 | if (uNeighborIndex == m_uNeighbor1[uNodeIndex]) |
|---|
| 969 | return 0; |
|---|
| 970 | if (uNeighborIndex == m_uNeighbor2[uNodeIndex]) |
|---|
| 971 | return 1; |
|---|
| 972 | if (uNeighborIndex == m_uNeighbor3[uNodeIndex]) |
|---|
| 973 | return 2; |
|---|
| 974 | return NULL_NEIGHBOR; |
|---|
| 975 | } |
|---|
| 976 | |
|---|
| 977 | unsigned Tree::GetNeighbor(unsigned uNodeIndex, unsigned uNeighborSubscript) const |
|---|
| 978 | { |
|---|
| 979 | switch (uNeighborSubscript) |
|---|
| 980 | { |
|---|
| 981 | case 0: |
|---|
| 982 | return m_uNeighbor1[uNodeIndex]; |
|---|
| 983 | case 1: |
|---|
| 984 | return m_uNeighbor2[uNodeIndex]; |
|---|
| 985 | case 2: |
|---|
| 986 | return m_uNeighbor3[uNodeIndex]; |
|---|
| 987 | } |
|---|
| 988 | Quit("Tree::GetNeighbor, sub=%u", uNeighborSubscript); |
|---|
| 989 | return NULL_NEIGHBOR; |
|---|
| 990 | } |
|---|
| 991 | |
|---|
| 992 | // TODO: check if this is a performance issue, could cache a lookup table |
|---|
| 993 | unsigned Tree::LeafIndexToNodeIndex(unsigned uLeafIndex) const |
|---|
| 994 | { |
|---|
| 995 | const unsigned uNodeCount = GetNodeCount(); |
|---|
| 996 | unsigned uLeafCount = 0; |
|---|
| 997 | for (unsigned uNodeIndex = 0; uNodeIndex < uNodeCount; ++uNodeIndex) |
|---|
| 998 | { |
|---|
| 999 | if (IsLeaf(uNodeIndex)) |
|---|
| 1000 | { |
|---|
| 1001 | if (uLeafCount == uLeafIndex) |
|---|
| 1002 | return uNodeIndex; |
|---|
| 1003 | else |
|---|
| 1004 | ++uLeafCount; |
|---|
| 1005 | } |
|---|
| 1006 | } |
|---|
| 1007 | Quit("LeafIndexToNodeIndex: out of range"); |
|---|
| 1008 | return 0; |
|---|
| 1009 | } |
|---|
| 1010 | |
|---|
| 1011 | unsigned Tree::GetLeafNodeIndex(const char *ptrName) const |
|---|
| 1012 | { |
|---|
| 1013 | const unsigned uNodeCount = GetNodeCount(); |
|---|
| 1014 | for (unsigned uNodeIndex = 0; uNodeIndex < uNodeCount; ++uNodeIndex) |
|---|
| 1015 | { |
|---|
| 1016 | if (!IsLeaf(uNodeIndex)) |
|---|
| 1017 | continue; |
|---|
| 1018 | const char *ptrLeafName = GetLeafName(uNodeIndex); |
|---|
| 1019 | if (0 == strcmp(ptrName, ptrLeafName)) |
|---|
| 1020 | return uNodeIndex; |
|---|
| 1021 | } |
|---|
| 1022 | Quit("Tree::GetLeafNodeIndex, name not found"); |
|---|
| 1023 | return 0; |
|---|
| 1024 | } |
|---|
| 1025 | |
|---|
| 1026 | void Tree::Copy(const Tree &tree) |
|---|
| 1027 | { |
|---|
| 1028 | const unsigned uNodeCount = tree.GetNodeCount(); |
|---|
| 1029 | InitCache(uNodeCount); |
|---|
| 1030 | |
|---|
| 1031 | m_uNodeCount = uNodeCount; |
|---|
| 1032 | |
|---|
| 1033 | const size_t UnsignedBytes = uNodeCount*sizeof(unsigned); |
|---|
| 1034 | const size_t DoubleBytes = uNodeCount*sizeof(double); |
|---|
| 1035 | const size_t BoolBytes = uNodeCount*sizeof(bool); |
|---|
| 1036 | |
|---|
| 1037 | memcpy(m_uNeighbor1, tree.m_uNeighbor1, UnsignedBytes); |
|---|
| 1038 | memcpy(m_uNeighbor2, tree.m_uNeighbor2, UnsignedBytes); |
|---|
| 1039 | memcpy(m_uNeighbor3, tree.m_uNeighbor3, UnsignedBytes); |
|---|
| 1040 | |
|---|
| 1041 | memcpy(m_Ids, tree.m_Ids, UnsignedBytes); |
|---|
| 1042 | |
|---|
| 1043 | memcpy(m_dEdgeLength1, tree.m_dEdgeLength1, DoubleBytes); |
|---|
| 1044 | memcpy(m_dEdgeLength2, tree.m_dEdgeLength2, DoubleBytes); |
|---|
| 1045 | memcpy(m_dEdgeLength3, tree.m_dEdgeLength3, DoubleBytes); |
|---|
| 1046 | |
|---|
| 1047 | memcpy(m_dHeight, tree.m_dHeight, DoubleBytes); |
|---|
| 1048 | |
|---|
| 1049 | memcpy(m_bHasEdgeLength1, tree.m_bHasEdgeLength1, BoolBytes); |
|---|
| 1050 | memcpy(m_bHasEdgeLength2, tree.m_bHasEdgeLength2, BoolBytes); |
|---|
| 1051 | memcpy(m_bHasEdgeLength3, tree.m_bHasEdgeLength3, BoolBytes); |
|---|
| 1052 | |
|---|
| 1053 | memcpy(m_bHasHeight, tree.m_bHasHeight, BoolBytes); |
|---|
| 1054 | |
|---|
| 1055 | m_uRootNodeIndex = tree.m_uRootNodeIndex; |
|---|
| 1056 | m_bRooted = tree.m_bRooted; |
|---|
| 1057 | |
|---|
| 1058 | for (unsigned uNodeIndex = 0; uNodeIndex < m_uNodeCount; ++uNodeIndex) |
|---|
| 1059 | { |
|---|
| 1060 | if (tree.IsLeaf(uNodeIndex)) |
|---|
| 1061 | { |
|---|
| 1062 | const char *ptrName = tree.GetLeafName(uNodeIndex); |
|---|
| 1063 | m_ptrName[uNodeIndex] = strsave(ptrName); |
|---|
| 1064 | } |
|---|
| 1065 | else |
|---|
| 1066 | m_ptrName[uNodeIndex] = 0; |
|---|
| 1067 | } |
|---|
| 1068 | |
|---|
| 1069 | #if DEBUG |
|---|
| 1070 | Validate(); |
|---|
| 1071 | #endif |
|---|
| 1072 | } |
|---|
| 1073 | |
|---|
| 1074 | // Create rooted tree from a vector description. |
|---|
| 1075 | // Node indexes are 0..N-1 for leaves, N..2N-2 for |
|---|
| 1076 | // internal nodes. |
|---|
| 1077 | // Vector subscripts are i-N and have values for |
|---|
| 1078 | // internal nodes only, but those values are node |
|---|
| 1079 | // indexes 0..2N-2. So e.g. if N=6 and Left[2]=1, |
|---|
| 1080 | // this means that the third internal node (node index 8) |
|---|
| 1081 | // has the second leaf (node index 1) as its left child. |
|---|
| 1082 | // uRoot gives the vector subscript of the root, so add N |
|---|
| 1083 | // to get the node index. |
|---|
| 1084 | void Tree::Create(unsigned uLeafCount, unsigned uRoot, const unsigned Left[], |
|---|
| 1085 | const unsigned Right[], const float LeftLength[], const float RightLength[], |
|---|
| 1086 | const unsigned LeafIds[], char **LeafNames) |
|---|
| 1087 | { |
|---|
| 1088 | Clear(); |
|---|
| 1089 | |
|---|
| 1090 | m_uNodeCount = 2*uLeafCount - 1; |
|---|
| 1091 | InitCache(m_uNodeCount); |
|---|
| 1092 | |
|---|
| 1093 | for (unsigned uNodeIndex = 0; uNodeIndex < uLeafCount; ++uNodeIndex) |
|---|
| 1094 | { |
|---|
| 1095 | m_Ids[uNodeIndex] = LeafIds[uNodeIndex]; |
|---|
| 1096 | m_ptrName[uNodeIndex] = strsave(LeafNames[uNodeIndex]); |
|---|
| 1097 | } |
|---|
| 1098 | |
|---|
| 1099 | for (unsigned uNodeIndex = uLeafCount; uNodeIndex < m_uNodeCount; ++uNodeIndex) |
|---|
| 1100 | { |
|---|
| 1101 | unsigned v = uNodeIndex - uLeafCount; |
|---|
| 1102 | unsigned uLeft = Left[v]; |
|---|
| 1103 | unsigned uRight = Right[v]; |
|---|
| 1104 | float fLeft = LeftLength[v]; |
|---|
| 1105 | float fRight = RightLength[v]; |
|---|
| 1106 | |
|---|
| 1107 | m_uNeighbor2[uNodeIndex] = uLeft; |
|---|
| 1108 | m_uNeighbor3[uNodeIndex] = uRight; |
|---|
| 1109 | |
|---|
| 1110 | m_bHasEdgeLength2[uNodeIndex] = true; |
|---|
| 1111 | m_bHasEdgeLength3[uNodeIndex] = true; |
|---|
| 1112 | |
|---|
| 1113 | m_dEdgeLength2[uNodeIndex] = fLeft; |
|---|
| 1114 | m_dEdgeLength3[uNodeIndex] = fRight; |
|---|
| 1115 | |
|---|
| 1116 | m_uNeighbor1[uLeft] = uNodeIndex; |
|---|
| 1117 | m_uNeighbor1[uRight] = uNodeIndex; |
|---|
| 1118 | |
|---|
| 1119 | m_dEdgeLength1[uLeft] = fLeft; |
|---|
| 1120 | m_dEdgeLength1[uRight] = fRight; |
|---|
| 1121 | |
|---|
| 1122 | m_bHasEdgeLength1[uLeft] = true; |
|---|
| 1123 | m_bHasEdgeLength1[uRight] = true; |
|---|
| 1124 | } |
|---|
| 1125 | |
|---|
| 1126 | m_bRooted = true; |
|---|
| 1127 | m_uRootNodeIndex = uRoot + uLeafCount; |
|---|
| 1128 | |
|---|
| 1129 | Validate(); |
|---|
| 1130 | } |
|---|