1 | /* |
---|
2 | |
---|
3 | PhyML: a program that computes maximum likelihood phylogenies from |
---|
4 | DNA or AA homologous sequences. |
---|
5 | |
---|
6 | Copyright (C) Stephane Guindon. Oct 2003 onward. |
---|
7 | |
---|
8 | All parts of the source except where indicated are distributed under |
---|
9 | the GNU public licence. See http://www.opensource.org for details. |
---|
10 | |
---|
11 | */ |
---|
12 | |
---|
13 | |
---|
14 | /* Routines for molecular clock trees and molecular dating */ |
---|
15 | |
---|
16 | |
---|
17 | #include "times.h" |
---|
18 | |
---|
19 | ////////////////////////////////////////////////////////////// |
---|
20 | ////////////////////////////////////////////////////////////// |
---|
21 | |
---|
22 | #ifdef PHYTIME |
---|
23 | |
---|
24 | int TIMES_main(int argc, char **argv) |
---|
25 | { |
---|
26 | align **data; |
---|
27 | calign *cdata; |
---|
28 | option *io; |
---|
29 | t_tree *tree; |
---|
30 | int num_data_set; |
---|
31 | int num_tree,num_rand_tree; |
---|
32 | t_mod *mod; |
---|
33 | time_t t_beg,t_end; |
---|
34 | int r_seed; |
---|
35 | char *most_likely_tree; |
---|
36 | int i; |
---|
37 | int user_lk_approx; |
---|
38 | |
---|
39 | #ifdef MPI |
---|
40 | int rc; |
---|
41 | rc = MPI_Init(&argc,&argv); |
---|
42 | if (rc != MPI_SUCCESS) { |
---|
43 | PhyML_Printf("\n. Error starting MPI program. Terminating.\n"); |
---|
44 | MPI_Abort(MPI_COMM_WORLD, rc); |
---|
45 | } |
---|
46 | MPI_Comm_size(MPI_COMM_WORLD,&Global_numTask); |
---|
47 | MPI_Comm_rank(MPI_COMM_WORLD,&Global_myRank); |
---|
48 | #endif |
---|
49 | |
---|
50 | #ifdef QUIET |
---|
51 | setvbuf(stdout,NULL,_IOFBF,2048); |
---|
52 | #endif |
---|
53 | |
---|
54 | tree = NULL; |
---|
55 | mod = NULL; |
---|
56 | data = NULL; |
---|
57 | most_likely_tree = NULL; |
---|
58 | |
---|
59 | io = (option *)Get_Input(argc,argv); |
---|
60 | r_seed = (io->r_seed < 0)?(time(NULL)):(io->r_seed); |
---|
61 | /* !!!!!!!!!!!!!!!!!!!!!!!! */ |
---|
62 | /* r_seed = 1289246338; */ |
---|
63 | /* r_seed = 1289266727; */ |
---|
64 | /* r_seed = 1289422815; */ |
---|
65 | /* r_seed = 1289443891; */ |
---|
66 | /* r_seed = 1290652518; */ |
---|
67 | /* r_seed = 1292195490; */ |
---|
68 | /* r_seed = 1298284669; */ |
---|
69 | /* r_seed = 1298403366; */ |
---|
70 | /* r_seed = 1298509108; */ |
---|
71 | /* sys = system("sleep 5s"); */ |
---|
72 | /* r_seed = 1299649586; */ |
---|
73 | /* r_seed = 1302160422; */ |
---|
74 | /* r_seed = 1302576741; */ |
---|
75 | /* r_seed = 1302588678; */ |
---|
76 | /* r_seed = 1303247709; */ |
---|
77 | /* r_seed = 1303970631; */ |
---|
78 | /* r_seed = 1304059976; */ |
---|
79 | /* r_seed = 1306315195; */ |
---|
80 | /* r_seed = 1308263660; */ |
---|
81 | /* r_seed = 1313356025; */ |
---|
82 | |
---|
83 | |
---|
84 | /* phydbl mean; */ |
---|
85 | /* phydbl T,A,B,u; */ |
---|
86 | /* phydbl K; */ |
---|
87 | |
---|
88 | /* u = 1.E-4; */ |
---|
89 | |
---|
90 | /* K = 1.; */ |
---|
91 | /* T = 9 * K; */ |
---|
92 | /* A = LOG(1/K); */ |
---|
93 | /* B = LOG(2/K); */ |
---|
94 | |
---|
95 | /* Integrated_Geometric_Brownian_Bridge_Mean(T,A,B,u,&mean); */ |
---|
96 | /* printf("\n. mean = %f",mean*T); */ |
---|
97 | |
---|
98 | /* K = 1.E+2; */ |
---|
99 | /* T = 9 * K; */ |
---|
100 | /* A = LOG(1/K); */ |
---|
101 | /* B = LOG(2/K); */ |
---|
102 | |
---|
103 | /* Integrated_Geometric_Brownian_Bridge_Mean(T,A,B,u,&mean); */ |
---|
104 | /* printf("\n. mean = %f",mean*T); */ |
---|
105 | |
---|
106 | |
---|
107 | Exit("\n"); |
---|
108 | |
---|
109 | |
---|
110 | |
---|
111 | io->r_seed = r_seed; |
---|
112 | |
---|
113 | srand(r_seed); rand(); |
---|
114 | PhyML_Printf("\n. Seed: %d\n",r_seed); |
---|
115 | PhyML_Printf("\n. Pid: %d\n",getpid()); |
---|
116 | Make_Model_Complete(io->mod); |
---|
117 | mod = io->mod; |
---|
118 | if(io->in_tree == 2) Test_Multiple_Data_Set_Format(io); |
---|
119 | else io->n_trees = 1; |
---|
120 | |
---|
121 | if((io->n_data_sets > 1) && (io->n_trees > 1)) |
---|
122 | { |
---|
123 | io->n_data_sets = MIN(io->n_trees,io->n_data_sets); |
---|
124 | io->n_trees = MIN(io->n_trees,io->n_data_sets); |
---|
125 | } |
---|
126 | |
---|
127 | For(num_data_set,io->n_data_sets) |
---|
128 | { |
---|
129 | data = Get_Seq(io); |
---|
130 | |
---|
131 | if(data) |
---|
132 | { |
---|
133 | if(io->n_data_sets > 1) PhyML_Printf("\n. Data set [#%d]\n",num_data_set+1); |
---|
134 | PhyML_Printf("\n. Compressing sequences...\n"); |
---|
135 | cdata = Compact_Data(data,io); |
---|
136 | Free_Seq(data,cdata->n_otu); |
---|
137 | Check_Ambiguities(cdata,io->mod->io->datatype,io->state_len); |
---|
138 | |
---|
139 | for(num_tree=(io->n_trees == 1)?(0):(num_data_set);num_tree < io->n_trees;num_tree++) |
---|
140 | { |
---|
141 | if(!io->mod->s_opt->random_input_tree) io->mod->s_opt->n_rand_starts = 1; |
---|
142 | |
---|
143 | For(num_rand_tree,io->mod->s_opt->n_rand_starts) |
---|
144 | { |
---|
145 | if((io->mod->s_opt->random_input_tree) && (io->mod->s_opt->topo_search != NNI_MOVE)) |
---|
146 | PhyML_Printf("\n. [Random start %3d/%3d]\n",num_rand_tree+1,io->mod->s_opt->n_rand_starts); |
---|
147 | |
---|
148 | |
---|
149 | Init_Model(cdata,mod,io); |
---|
150 | |
---|
151 | if(io->mod->use_m4mod) M4_Init_Model(mod->m4mod,cdata,mod); |
---|
152 | |
---|
153 | /* A BioNJ tree is built here */ |
---|
154 | if(!io->in_tree) tree = Dist_And_BioNJ(cdata,mod,io); |
---|
155 | /* A user-given tree is used here instead of BioNJ */ |
---|
156 | else tree = Read_User_Tree(cdata,mod,io); |
---|
157 | |
---|
158 | |
---|
159 | if(io->fp_in_constraint_tree != NULL) |
---|
160 | { |
---|
161 | io->cstr_tree = Read_Tree_File_Phylip(io->fp_in_constraint_tree); |
---|
162 | io->cstr_tree->rates = RATES_Make_Rate_Struct(io->cstr_tree->n_otu); |
---|
163 | RATES_Init_Rate_Struct(io->cstr_tree->rates,io->rates,io->cstr_tree->n_otu); |
---|
164 | } |
---|
165 | |
---|
166 | if(!tree) continue; |
---|
167 | |
---|
168 | if(!tree->n_root) |
---|
169 | { |
---|
170 | PhyML_Printf("\n. Sorry, PhyTime requires a rooted tree as input."); |
---|
171 | Exit("\n"); |
---|
172 | } |
---|
173 | |
---|
174 | time(&t_beg); |
---|
175 | time(&(tree->t_beg)); |
---|
176 | tree->rates = RATES_Make_Rate_Struct(tree->n_otu); |
---|
177 | RATES_Init_Rate_Struct(tree->rates,io->rates,tree->n_otu); |
---|
178 | |
---|
179 | Update_Ancestors(tree->n_root,tree->n_root->v[2],tree); |
---|
180 | Update_Ancestors(tree->n_root,tree->n_root->v[1],tree); |
---|
181 | |
---|
182 | RATES_Fill_Lca_Table(tree); |
---|
183 | |
---|
184 | tree->mod = mod; |
---|
185 | tree->io = io; |
---|
186 | tree->data = cdata; |
---|
187 | tree->n_pattern = tree->data->crunch_len/tree->io->state_len; |
---|
188 | |
---|
189 | Set_Both_Sides(YES,tree); |
---|
190 | |
---|
191 | Prepare_Tree_For_Lk(tree); |
---|
192 | |
---|
193 | /* Read node age priors */ |
---|
194 | Read_Clade_Priors(io->clade_list_file,tree); |
---|
195 | |
---|
196 | /* Set upper and lower bounds for all node ages */ |
---|
197 | TIMES_Set_All_Node_Priors(tree); |
---|
198 | |
---|
199 | /* Count the number of time slices */ |
---|
200 | TIMES_Get_Number_Of_Time_Slices(tree); |
---|
201 | |
---|
202 | TIMES_Label_Edges_With_Calibration_Intervals(tree); |
---|
203 | tree->write_br_lens = NO; |
---|
204 | PhyML_Printf("\n"); |
---|
205 | PhyML_Printf("\n. Input tree with calibration information ('almost' compatible with MCMCtree).\n"); |
---|
206 | PhyML_Printf("\n%s\n",Write_Tree(tree,YES)); |
---|
207 | tree->write_br_lens = YES; |
---|
208 | |
---|
209 | |
---|
210 | /* Get_Edge_Binary_Coding_Number(tree); */ |
---|
211 | /* Exit("\n"); */ |
---|
212 | |
---|
213 | /* Print_CSeq_Select(stdout,NO,tree->data,tree); */ |
---|
214 | /* Exit("\n"); */ |
---|
215 | |
---|
216 | /* TIMES_Set_Root_Given_Tip_Dates(tree); */ |
---|
217 | /* int i; */ |
---|
218 | /* char *s; */ |
---|
219 | /* FILE *fp; */ |
---|
220 | /* For(i,2*tree->n_otu-2) tree->rates->cur_l[i] = 1.; */ |
---|
221 | /* s = Write_Tree(tree,NO); */ |
---|
222 | /* fp = fopen("rooted_tree","w"); */ |
---|
223 | /* fprintf(fp,"%s\n",s); */ |
---|
224 | /* fclose(fp); */ |
---|
225 | /* Exit("\n"); */ |
---|
226 | |
---|
227 | |
---|
228 | /* Work with log of branch lengths? */ |
---|
229 | if(tree->mod->log_l == YES) Log_Br_Len(tree); |
---|
230 | |
---|
231 | if(io->mcmc->use_data == YES) |
---|
232 | { |
---|
233 | /* Force the exact likelihood score */ |
---|
234 | user_lk_approx = tree->io->lk_approx; |
---|
235 | tree->io->lk_approx = EXACT; |
---|
236 | |
---|
237 | /* printf("\n. %s",Write_Tree(tree,NO)); */ |
---|
238 | /* Lk(NULL,tree); */ |
---|
239 | /* printf("\n. %f",tree->c_lnL); */ |
---|
240 | /* Exit("\n"); */ |
---|
241 | |
---|
242 | /* MLE for branch lengths */ |
---|
243 | PhyML_Printf("\n"); |
---|
244 | Round_Optimize(tree,tree->data,ROUND_MAX); |
---|
245 | |
---|
246 | /* Set vector of mean branch lengths for the Normal approximation |
---|
247 | of the likelihood */ |
---|
248 | RATES_Set_Mean_L(tree); |
---|
249 | |
---|
250 | /* Estimate the matrix of covariance for the Normal approximation of |
---|
251 | the likelihood */ |
---|
252 | PhyML_Printf("\n"); |
---|
253 | PhyML_Printf("\n. Computing Hessian..."); |
---|
254 | tree->rates->bl_from_rt = 0; |
---|
255 | Free(tree->rates->cov_l); |
---|
256 | tree->rates->cov_l = Hessian_Seo(tree); |
---|
257 | /* tree->rates->cov_l = Hessian_Log(tree); */ |
---|
258 | For(i,(2*tree->n_otu-3)*(2*tree->n_otu-3)) tree->rates->cov_l[i] *= -1.0; |
---|
259 | if(!Iter_Matinv(tree->rates->cov_l,2*tree->n_otu-3,2*tree->n_otu-3,YES)) Exit("\n"); |
---|
260 | tree->rates->covdet = Matrix_Det(tree->rates->cov_l,2*tree->n_otu-3,YES); |
---|
261 | For(i,(2*tree->n_otu-3)*(2*tree->n_otu-3)) tree->rates->invcov[i] = tree->rates->cov_l[i]; |
---|
262 | if(!Iter_Matinv(tree->rates->invcov,2*tree->n_otu-3,2*tree->n_otu-3,YES)) Exit("\n"); |
---|
263 | tree->rates->grad_l = Gradient(tree); |
---|
264 | |
---|
265 | |
---|
266 | /* Pre-calculation of conditional variances to speed up calculations */ |
---|
267 | RATES_Bl_To_Ml(tree); |
---|
268 | RATES_Get_Conditional_Variances(tree); |
---|
269 | RATES_Get_All_Reg_Coeff(tree); |
---|
270 | RATES_Get_Trip_Conditional_Variances(tree); |
---|
271 | RATES_Get_All_Trip_Reg_Coeff(tree); |
---|
272 | |
---|
273 | Lk(NULL,tree); |
---|
274 | PhyML_Printf("\n"); |
---|
275 | PhyML_Printf("\n. p(data|model) [exact ] ~ %.2f",tree->c_lnL); |
---|
276 | |
---|
277 | tree->io->lk_approx = NORMAL; |
---|
278 | For(i,2*tree->n_otu-3) tree->rates->u_cur_l[i] = tree->rates->mean_l[i] ; |
---|
279 | tree->c_lnL = Lk(NULL,tree); |
---|
280 | PhyML_Printf("\n. p(data|model) [approx] ~ %.2f",tree->c_lnL); |
---|
281 | |
---|
282 | tree->io->lk_approx = user_lk_approx; |
---|
283 | } |
---|
284 | |
---|
285 | |
---|
286 | tree->rates->model = io->rates->model; |
---|
287 | PhyML_Printf("\n. Selected model '%s'",RATES_Get_Model_Name(io->rates->model)); |
---|
288 | if(tree->rates->model == GUINDON) tree->mod->gamma_mgf_bl = YES; |
---|
289 | |
---|
290 | tree->rates->bl_from_rt = YES; |
---|
291 | |
---|
292 | if(tree->io->cstr_tree) Find_Surviving_Edges_In_Small_Tree(tree,tree->io->cstr_tree); |
---|
293 | |
---|
294 | time(&t_beg); |
---|
295 | tree->mcmc = MCMC_Make_MCMC_Struct(); |
---|
296 | MCMC_Copy_MCMC_Struct(tree->io->mcmc,tree->mcmc,"phytime"); |
---|
297 | MCMC_Complete_MCMC(tree->mcmc,tree); |
---|
298 | tree->mcmc->is_burnin = NO; |
---|
299 | MCMC(tree); |
---|
300 | MCMC_Close_MCMC(tree->mcmc); |
---|
301 | MCMC_Free_MCMC(tree->mcmc); |
---|
302 | PhyML_Printf("\n"); |
---|
303 | |
---|
304 | /* tree->mcmc = MCMC_Make_MCMC_Struct(); */ |
---|
305 | /* MCMC_Copy_MCMC_Struct(tree->io->mcmc,tree->mcmc,"burnin"); */ |
---|
306 | /* MCMC_Complete_MCMC(tree->mcmc,tree); */ |
---|
307 | /* tree->mcmc->adjust_tuning = YES; */ |
---|
308 | /* tree->mcmc->is_burnin = YES; */ |
---|
309 | /* tree->mcmc->chain_len = tree->io->mcmc->chain_len_burnin; */ |
---|
310 | /* MCMC(tree); */ |
---|
311 | /* MCMC_Close_MCMC(tree->mcmc); */ |
---|
312 | |
---|
313 | |
---|
314 | /* new_mcmc = MCMC_Make_MCMC_Struct(tree); */ |
---|
315 | /* MCMC_Complete_MCMC(new_mcmc,tree); */ |
---|
316 | /* MCMC_Copy_MCMC_Struct(tree->mcmc,new_mcmc,"phytime"); */ |
---|
317 | /* MCMC_Free_MCMC(tree->mcmc); */ |
---|
318 | |
---|
319 | /* tree->mcmc = new_mcmc; */ |
---|
320 | /* tree->mcmc->chain_len = tree->io->mcmc->chain_len; */ |
---|
321 | /* tree->mcmc->randomize = NO; */ |
---|
322 | /* tree->mcmc->adjust_tuning = NO; */ |
---|
323 | /* tree->mcmc->is_burnin = NO; */ |
---|
324 | |
---|
325 | /* time(&t_beg); */ |
---|
326 | /* MCMC(tree); */ |
---|
327 | /* MCMC_Close_MCMC(tree->mcmc); */ |
---|
328 | /* MCMC_Free_MCMC(tree->mcmc); */ |
---|
329 | /* PhyML_Printf("\n"); */ |
---|
330 | |
---|
331 | |
---|
332 | Free_Tree_Pars(tree); |
---|
333 | Free_Tree_Lk(tree); |
---|
334 | Free_Tree(tree); |
---|
335 | } |
---|
336 | |
---|
337 | break; |
---|
338 | } |
---|
339 | Free_Cseq(cdata); |
---|
340 | } |
---|
341 | } |
---|
342 | |
---|
343 | Free_Model(mod); |
---|
344 | |
---|
345 | if(io->fp_in_align) fclose(io->fp_in_align); |
---|
346 | if(io->fp_in_tree) fclose(io->fp_in_tree); |
---|
347 | if(io->fp_out_lk) fclose(io->fp_out_lk); |
---|
348 | if(io->fp_out_tree) fclose(io->fp_out_tree); |
---|
349 | if(io->fp_out_trees) fclose(io->fp_out_trees); |
---|
350 | if(io->fp_out_stats) fclose(io->fp_out_stats); |
---|
351 | |
---|
352 | Free(most_likely_tree); |
---|
353 | Free_Input(io); |
---|
354 | |
---|
355 | time(&t_end); |
---|
356 | Print_Time_Info(t_beg,t_end); |
---|
357 | |
---|
358 | #ifdef MPI |
---|
359 | MPI_Finalize(); |
---|
360 | #endif |
---|
361 | |
---|
362 | return 0; |
---|
363 | } |
---|
364 | |
---|
365 | #endif |
---|
366 | |
---|
367 | ////////////////////////////////////////////////////////////// |
---|
368 | ////////////////////////////////////////////////////////////// |
---|
369 | |
---|
370 | |
---|
371 | void TIMES_Least_Square_Node_Times(t_edge *e_root, t_tree *tree) |
---|
372 | { |
---|
373 | |
---|
374 | /* Solve A.x = b, where x are the t_node time estimated |
---|
375 | under the least square criterion. |
---|
376 | |
---|
377 | A is a n x n matrix, with n being the number of |
---|
378 | nodes in a rooted tree (i.e. 2*n_otu-1). |
---|
379 | |
---|
380 | */ |
---|
381 | |
---|
382 | phydbl *A, *b, *x; |
---|
383 | int n; |
---|
384 | int i,j; |
---|
385 | t_node *root; |
---|
386 | |
---|
387 | n = 2*tree->n_otu-1; |
---|
388 | |
---|
389 | A = (phydbl *)mCalloc(n*n,sizeof(phydbl)); |
---|
390 | b = (phydbl *)mCalloc(n, sizeof(phydbl)); |
---|
391 | x = (phydbl *)mCalloc(n, sizeof(phydbl)); |
---|
392 | |
---|
393 | if(!tree->n_root && e_root) Add_Root(e_root,tree); |
---|
394 | else if(!e_root) Add_Root(tree->a_edges[0],tree); |
---|
395 | |
---|
396 | root = tree->n_root; |
---|
397 | |
---|
398 | TIMES_Least_Square_Node_Times_Pre(root,root->v[2],A,b,n,tree); |
---|
399 | TIMES_Least_Square_Node_Times_Pre(root,root->v[1],A,b,n,tree); |
---|
400 | |
---|
401 | b[root->num] = tree->e_root->l->v/2.; |
---|
402 | |
---|
403 | A[root->num * n + root->num] = 1.0; |
---|
404 | A[root->num * n + root->v[2]->num] = -.5; |
---|
405 | A[root->num * n + root->v[1]->num] = -.5; |
---|
406 | |
---|
407 | if(!Matinv(A, n, n,YES)) |
---|
408 | { |
---|
409 | PhyML_Printf("\n. Err in file %s at line %d\n",__FILE__,__LINE__); |
---|
410 | Exit("\n"); |
---|
411 | } |
---|
412 | |
---|
413 | For(i,n) x[i] = .0; |
---|
414 | For(i,n) For(j,n) x[i] += A[i*n+j] * b[j]; |
---|
415 | |
---|
416 | For(i,n-1) { tree->rates->nd_t[tree->a_nodes[i]->num] = -x[i]; } |
---|
417 | tree->rates->nd_t[root->num] = -x[n-1]; |
---|
418 | tree->n_root->l[2] = tree->rates->nd_t[root->v[2]->num] - tree->rates->nd_t[root->num]; |
---|
419 | tree->n_root->l[1] = tree->rates->nd_t[root->v[1]->num] - tree->rates->nd_t[root->num]; |
---|
420 | //////////////////////////////////////// |
---|
421 | return; |
---|
422 | //////////////////////////////////////// |
---|
423 | |
---|
424 | /* Rescale the t_node times such that the time at the root |
---|
425 | is -100. This constraint implies that the clock rate |
---|
426 | is fixed to the actual tree length divided by the tree |
---|
427 | length measured in term of differences of t_node times */ |
---|
428 | |
---|
429 | phydbl scale_f,time_tree_length,tree_length; |
---|
430 | |
---|
431 | scale_f = -100./tree->rates->nd_t[root->num]; |
---|
432 | For(i,2*tree->n_otu-1) tree->rates->nd_t[i] *= scale_f; |
---|
433 | For(i,2*tree->n_otu-1) if(tree->rates->nd_t[i] > .0) tree->rates->nd_t[i] = .0; |
---|
434 | |
---|
435 | time_tree_length = 0.0; |
---|
436 | For(i,2*tree->n_otu-3) |
---|
437 | if(tree->a_edges[i] != tree->e_root) |
---|
438 | time_tree_length += |
---|
439 | FABS(tree->rates->nd_t[tree->a_edges[i]->left->num] - |
---|
440 | tree->rates->nd_t[tree->a_edges[i]->rght->num]); |
---|
441 | time_tree_length += FABS(tree->rates->nd_t[root->num] - tree->rates->nd_t[root->v[2]->num]); |
---|
442 | time_tree_length += FABS(tree->rates->nd_t[root->num] - tree->rates->nd_t[root->v[1]->num]); |
---|
443 | |
---|
444 | tree_length = 0.0; |
---|
445 | For(i,2*tree->n_otu-3) tree_length += tree->a_edges[i]->l->v; |
---|
446 | |
---|
447 | tree->rates->clock_r = tree_length / time_tree_length; |
---|
448 | |
---|
449 | Free(A); |
---|
450 | Free(b); |
---|
451 | Free(x); |
---|
452 | |
---|
453 | } |
---|
454 | |
---|
455 | ////////////////////////////////////////////////////////////// |
---|
456 | ////////////////////////////////////////////////////////////// |
---|
457 | |
---|
458 | |
---|
459 | void TIMES_Least_Square_Node_Times_Pre(t_node *a, t_node *d, phydbl *A, phydbl *b, int n, t_tree *tree) |
---|
460 | { |
---|
461 | if(d->tax) |
---|
462 | { |
---|
463 | A[d->num * n + d->num] = 1.; |
---|
464 | |
---|
465 | /* Set the time stamp at tip nodes to 0.0 */ |
---|
466 | /* PhyML_Printf("\n. Tip t_node date set to 0"); */ |
---|
467 | b[d->num] = 0.0; |
---|
468 | return; |
---|
469 | } |
---|
470 | else |
---|
471 | { |
---|
472 | int i; |
---|
473 | |
---|
474 | |
---|
475 | For(i,3) |
---|
476 | if((d->v[i] != a) && (d->b[i] != tree->e_root)) |
---|
477 | TIMES_Least_Square_Node_Times_Pre(d,d->v[i],A,b,n,tree); |
---|
478 | |
---|
479 | A[d->num * n + d->num] = 1.; |
---|
480 | b[d->num] = .0; |
---|
481 | For(i,3) |
---|
482 | { |
---|
483 | A[d->num * n + d->v[i]->num] = -1./3.; |
---|
484 | if(d->v[i] != a) b[d->num] += d->b[i]->l->v; |
---|
485 | else b[d->num] -= d->b[i]->l->v; |
---|
486 | } |
---|
487 | b[d->num] /= 3.; |
---|
488 | } |
---|
489 | } |
---|
490 | |
---|
491 | ////////////////////////////////////////////////////////////// |
---|
492 | ////////////////////////////////////////////////////////////// |
---|
493 | |
---|
494 | |
---|
495 | /* Adjust t_node times in order to have correct time stamp ranking with |
---|
496 | respect to the tree topology */ |
---|
497 | |
---|
498 | void TIMES_Adjust_Node_Times(t_tree *tree) |
---|
499 | { |
---|
500 | TIMES_Adjust_Node_Times_Pre(tree->n_root->v[2],tree->n_root->v[1],tree); |
---|
501 | TIMES_Adjust_Node_Times_Pre(tree->n_root->v[1],tree->n_root->v[2],tree); |
---|
502 | |
---|
503 | if(tree->rates->nd_t[tree->n_root->num] > MIN(tree->rates->nd_t[tree->n_root->v[2]->num], |
---|
504 | tree->rates->nd_t[tree->n_root->v[1]->num])) |
---|
505 | { |
---|
506 | tree->rates->nd_t[tree->n_root->num] = MIN(tree->rates->nd_t[tree->n_root->v[2]->num], |
---|
507 | tree->rates->nd_t[tree->n_root->v[1]->num]); |
---|
508 | } |
---|
509 | } |
---|
510 | |
---|
511 | ////////////////////////////////////////////////////////////// |
---|
512 | ////////////////////////////////////////////////////////////// |
---|
513 | |
---|
514 | |
---|
515 | void TIMES_Adjust_Node_Times_Pre(t_node *a, t_node *d, t_tree *tree) |
---|
516 | { |
---|
517 | if(d->tax) return; |
---|
518 | else |
---|
519 | { |
---|
520 | int i; |
---|
521 | phydbl min_height; |
---|
522 | |
---|
523 | For(i,3) |
---|
524 | if((d->v[i] != a) && (d->b[i] != tree->e_root)) |
---|
525 | { |
---|
526 | TIMES_Adjust_Node_Times_Pre(d,d->v[i],tree); |
---|
527 | } |
---|
528 | |
---|
529 | min_height = 0.0; |
---|
530 | For(i,3) |
---|
531 | { |
---|
532 | if((d->v[i] != a) && (d->b[i] != tree->e_root)) |
---|
533 | { |
---|
534 | if(tree->rates->nd_t[d->v[i]->num] < min_height) |
---|
535 | { |
---|
536 | min_height = tree->rates->nd_t[d->v[i]->num]; |
---|
537 | } |
---|
538 | } |
---|
539 | } |
---|
540 | |
---|
541 | if(tree->rates->nd_t[d->num] > min_height) tree->rates->nd_t[d->num] = min_height; |
---|
542 | |
---|
543 | if(tree->rates->nd_t[d->num] < -100.) tree->rates->nd_t[d->num] = -100.; |
---|
544 | |
---|
545 | } |
---|
546 | } |
---|
547 | |
---|
548 | ////////////////////////////////////////////////////////////// |
---|
549 | ////////////////////////////////////////////////////////////// |
---|
550 | |
---|
551 | |
---|
552 | /* Multiply each time stamp at each internal |
---|
553 | t_node by 'tree->time_stamp_mult'. |
---|
554 | */ |
---|
555 | |
---|
556 | void TIMES_Mult_Time_Stamps(t_tree *tree) |
---|
557 | { |
---|
558 | int i; |
---|
559 | For(i,2*tree->n_otu-2) tree->rates->nd_t[tree->a_nodes[i]->num] *= FABS(tree->mod->s_opt->tree_size_mult); |
---|
560 | tree->rates->nd_t[tree->n_root->num] *= FABS(tree->mod->s_opt->tree_size_mult); |
---|
561 | } |
---|
562 | |
---|
563 | ////////////////////////////////////////////////////////////// |
---|
564 | ////////////////////////////////////////////////////////////// |
---|
565 | |
---|
566 | |
---|
567 | void TIMES_Print_Node_Times(t_node *a, t_node *d, t_tree *tree) |
---|
568 | { |
---|
569 | t_edge *b; |
---|
570 | int i; |
---|
571 | |
---|
572 | b = NULL; |
---|
573 | For(i,3) if((d->v[i]) && (d->v[i] == a)) {b = d->b[i]; break;} |
---|
574 | |
---|
575 | PhyML_Printf("\n. (%3d %3d) a->t = %12f d->t = %12f (#=%12f) b->l->v = %12f [%12f;%12f]", |
---|
576 | a->num,d->num, |
---|
577 | tree->rates->nd_t[a->num], |
---|
578 | tree->rates->nd_t[d->num], |
---|
579 | tree->rates->nd_t[a->num]-tree->rates->nd_t[d->num], |
---|
580 | (b)?(b->l->v):(-1.0), |
---|
581 | tree->rates->t_prior_min[d->num], |
---|
582 | tree->rates->t_prior_max[d->num]); |
---|
583 | if(d->tax) return; |
---|
584 | else |
---|
585 | { |
---|
586 | int i; |
---|
587 | For(i,3) |
---|
588 | if((d->v[i] != a) && (d->b[i] != tree->e_root)) |
---|
589 | TIMES_Print_Node_Times(d,d->v[i],tree); |
---|
590 | } |
---|
591 | } |
---|
592 | |
---|
593 | ////////////////////////////////////////////////////////////// |
---|
594 | ////////////////////////////////////////////////////////////// |
---|
595 | |
---|
596 | |
---|
597 | void TIMES_Set_All_Node_Priors(t_tree *tree) |
---|
598 | { |
---|
599 | int i; |
---|
600 | phydbl min_prior; |
---|
601 | |
---|
602 | /* Set all t_prior_max values */ |
---|
603 | TIMES_Set_All_Node_Priors_Bottom_Up(tree->n_root,tree->n_root->v[2],tree); |
---|
604 | TIMES_Set_All_Node_Priors_Bottom_Up(tree->n_root,tree->n_root->v[1],tree); |
---|
605 | |
---|
606 | tree->rates->t_prior_max[tree->n_root->num] = |
---|
607 | MIN(tree->rates->t_prior_max[tree->n_root->num], |
---|
608 | MIN(tree->rates->t_prior_max[tree->n_root->v[2]->num], |
---|
609 | tree->rates->t_prior_max[tree->n_root->v[1]->num])); |
---|
610 | |
---|
611 | |
---|
612 | /* Set all t_prior_min values */ |
---|
613 | if(!tree->rates->t_has_prior[tree->n_root->num]) |
---|
614 | { |
---|
615 | min_prior = 1.E+10; |
---|
616 | For(i,2*tree->n_otu-2) |
---|
617 | { |
---|
618 | if(tree->rates->t_has_prior[i]) |
---|
619 | { |
---|
620 | if(tree->rates->t_prior_min[i] < min_prior) |
---|
621 | min_prior = tree->rates->t_prior_min[i]; |
---|
622 | } |
---|
623 | } |
---|
624 | tree->rates->t_prior_min[tree->n_root->num] = 2.0 * min_prior; |
---|
625 | /* tree->rates->t_prior_min[tree->n_root->num] = 10. * min_prior; */ |
---|
626 | } |
---|
627 | |
---|
628 | if(tree->rates->t_prior_min[tree->n_root->num] > 0.0) |
---|
629 | { |
---|
630 | PhyML_Printf("\n== Failed to set the lower bound for the root node."); |
---|
631 | PhyML_Printf("\n== Make sure at least one of the calibration interval"); |
---|
632 | PhyML_Printf("\n== provides a lower bound."); |
---|
633 | Exit("\n"); |
---|
634 | } |
---|
635 | |
---|
636 | |
---|
637 | TIMES_Set_All_Node_Priors_Top_Down(tree->n_root,tree->n_root->v[2],tree); |
---|
638 | TIMES_Set_All_Node_Priors_Top_Down(tree->n_root,tree->n_root->v[1],tree); |
---|
639 | |
---|
640 | Get_Node_Ranks(tree); |
---|
641 | TIMES_Set_Floor(tree); |
---|
642 | } |
---|
643 | |
---|
644 | ////////////////////////////////////////////////////////////// |
---|
645 | ////////////////////////////////////////////////////////////// |
---|
646 | |
---|
647 | |
---|
648 | void TIMES_Set_All_Node_Priors_Bottom_Up(t_node *a, t_node *d, t_tree *tree) |
---|
649 | { |
---|
650 | int i; |
---|
651 | phydbl t_sup; |
---|
652 | |
---|
653 | if(d->tax) return; |
---|
654 | else |
---|
655 | { |
---|
656 | t_node *v1, *v2; /* the two sons of d */ |
---|
657 | |
---|
658 | For(i,3) |
---|
659 | { |
---|
660 | if((d->v[i] != a) && (d->b[i] != tree->e_root)) |
---|
661 | { |
---|
662 | TIMES_Set_All_Node_Priors_Bottom_Up(d,d->v[i],tree); |
---|
663 | } |
---|
664 | } |
---|
665 | |
---|
666 | v1 = v2 = NULL; |
---|
667 | For(i,3) if((d->v[i] != a) && (d->b[i] != tree->e_root)) |
---|
668 | { |
---|
669 | if(!v1) v1 = d->v[i]; |
---|
670 | else v2 = d->v[i]; |
---|
671 | } |
---|
672 | |
---|
673 | if(tree->rates->t_has_prior[d->num] == YES) |
---|
674 | { |
---|
675 | t_sup = MIN(tree->rates->t_prior_max[d->num], |
---|
676 | MIN(tree->rates->t_prior_max[v1->num], |
---|
677 | tree->rates->t_prior_max[v2->num])); |
---|
678 | |
---|
679 | tree->rates->t_prior_max[d->num] = t_sup; |
---|
680 | |
---|
681 | if(tree->rates->t_prior_max[d->num] < tree->rates->t_prior_min[d->num]) |
---|
682 | { |
---|
683 | PhyML_Printf("\n. prior_min=%f prior_max=%f",tree->rates->t_prior_min[d->num],tree->rates->t_prior_max[d->num]); |
---|
684 | PhyML_Printf("\n. Inconsistency in the prior settings detected at t_node %d",d->num); |
---|
685 | PhyML_Printf("\n. Err in file %s at line %d\n\n",__FILE__,__LINE__); |
---|
686 | Warn_And_Exit("\n"); |
---|
687 | } |
---|
688 | } |
---|
689 | else |
---|
690 | { |
---|
691 | tree->rates->t_prior_max[d->num] = |
---|
692 | MIN(tree->rates->t_prior_max[v1->num], |
---|
693 | tree->rates->t_prior_max[v2->num]); |
---|
694 | } |
---|
695 | } |
---|
696 | } |
---|
697 | |
---|
698 | ////////////////////////////////////////////////////////////// |
---|
699 | ////////////////////////////////////////////////////////////// |
---|
700 | |
---|
701 | |
---|
702 | void TIMES_Set_All_Node_Priors_Top_Down(t_node *a, t_node *d, t_tree *tree) |
---|
703 | { |
---|
704 | if(d->tax) return; |
---|
705 | else |
---|
706 | { |
---|
707 | int i; |
---|
708 | |
---|
709 | if(tree->rates->t_has_prior[d->num] == YES) |
---|
710 | { |
---|
711 | tree->rates->t_prior_min[d->num] = MAX(tree->rates->t_prior_min[d->num],tree->rates->t_prior_min[a->num]); |
---|
712 | |
---|
713 | if(tree->rates->t_prior_max[d->num] < tree->rates->t_prior_min[d->num]) |
---|
714 | { |
---|
715 | PhyML_Printf("\n. prior_min=%f prior_max=%f",tree->rates->t_prior_min[d->num],tree->rates->t_prior_max[d->num]); |
---|
716 | PhyML_Printf("\n. Inconsistency in the prior settings detected at t_node %d",d->num); |
---|
717 | PhyML_Printf("\n. Err in file %s at line %d\n\n",__FILE__,__LINE__); |
---|
718 | Warn_And_Exit("\n"); |
---|
719 | } |
---|
720 | } |
---|
721 | else |
---|
722 | { |
---|
723 | tree->rates->t_prior_min[d->num] = tree->rates->t_prior_min[a->num]; |
---|
724 | } |
---|
725 | |
---|
726 | For(i,3) |
---|
727 | { |
---|
728 | if((d->v[i] != a) && (d->b[i] != tree->e_root)) |
---|
729 | { |
---|
730 | TIMES_Set_All_Node_Priors_Top_Down(d,d->v[i],tree); |
---|
731 | } |
---|
732 | } |
---|
733 | } |
---|
734 | } |
---|
735 | |
---|
736 | ////////////////////////////////////////////////////////////// |
---|
737 | ////////////////////////////////////////////////////////////// |
---|
738 | |
---|
739 | |
---|
740 | void TIMES_Set_Floor(t_tree *tree) |
---|
741 | { |
---|
742 | TIMES_Set_Floor_Post(tree->n_root,tree->n_root->v[2],tree); |
---|
743 | TIMES_Set_Floor_Post(tree->n_root,tree->n_root->v[1],tree); |
---|
744 | tree->rates->t_floor[tree->n_root->num] = MIN(tree->rates->t_floor[tree->n_root->v[2]->num], |
---|
745 | tree->rates->t_floor[tree->n_root->v[1]->num]); |
---|
746 | } |
---|
747 | |
---|
748 | ////////////////////////////////////////////////////////////// |
---|
749 | ////////////////////////////////////////////////////////////// |
---|
750 | |
---|
751 | |
---|
752 | void TIMES_Set_Floor_Post(t_node *a, t_node *d, t_tree *tree) |
---|
753 | { |
---|
754 | if(d->tax) |
---|
755 | { |
---|
756 | tree->rates->t_floor[d->num] = tree->rates->nd_t[d->num]; |
---|
757 | d->rank_max = d->rank; |
---|
758 | return; |
---|
759 | } |
---|
760 | else |
---|
761 | { |
---|
762 | int i; |
---|
763 | t_node *v1,*v2; |
---|
764 | |
---|
765 | v1 = v2 = NULL; |
---|
766 | For(i,3) |
---|
767 | { |
---|
768 | if(d->v[i] != a && d->b[i] != tree->e_root) |
---|
769 | { |
---|
770 | TIMES_Set_Floor_Post(d,d->v[i],tree); |
---|
771 | if(!v1) v1 = d->v[i]; |
---|
772 | else v2 = d->v[i]; |
---|
773 | } |
---|
774 | } |
---|
775 | tree->rates->t_floor[d->num] = MIN(tree->rates->t_floor[v1->num], |
---|
776 | tree->rates->t_floor[v2->num]); |
---|
777 | |
---|
778 | if(tree->rates->t_floor[v1->num] < tree->rates->t_floor[v2->num]) |
---|
779 | { |
---|
780 | d->rank_max = v1->rank_max; |
---|
781 | } |
---|
782 | else if(tree->rates->t_floor[v2->num] < tree->rates->t_floor[v1->num]) |
---|
783 | { |
---|
784 | d->rank_max = v2->rank_max; |
---|
785 | } |
---|
786 | else |
---|
787 | { |
---|
788 | d->rank_max = MAX(v1->rank_max,v2->rank_max); |
---|
789 | } |
---|
790 | } |
---|
791 | } |
---|
792 | |
---|
793 | ////////////////////////////////////////////////////////////// |
---|
794 | ////////////////////////////////////////////////////////////// |
---|
795 | |
---|
796 | /* Does it work for serial samples? */ |
---|
797 | phydbl TIMES_Log_Conditional_Uniform_Density(t_tree *tree) |
---|
798 | { |
---|
799 | phydbl min,max; |
---|
800 | phydbl dens; |
---|
801 | int i; |
---|
802 | |
---|
803 | min = tree->rates->nd_t[tree->n_root->num]; |
---|
804 | |
---|
805 | dens = 0.0; |
---|
806 | For(i,2*tree->n_otu-1) |
---|
807 | { |
---|
808 | if((tree->a_nodes[i]->tax == NO) && (tree->a_nodes[i] != tree->n_root)) |
---|
809 | { |
---|
810 | max = tree->rates->t_floor[i]; |
---|
811 | |
---|
812 | dens += LOG(Dorder_Unif(tree->rates->nd_t[i], |
---|
813 | tree->a_nodes[i]->rank-1, |
---|
814 | tree->a_nodes[i]->rank_max-2, |
---|
815 | min,max)); |
---|
816 | } |
---|
817 | } |
---|
818 | return dens; |
---|
819 | } |
---|
820 | |
---|
821 | ////////////////////////////////////////////////////////////// |
---|
822 | ////////////////////////////////////////////////////////////// |
---|
823 | // Returns the marginal density of tree height assuming the |
---|
824 | // Yule model of speciation. |
---|
825 | phydbl TIMES_Lk_Yule_Root_Marginal(t_tree *tree) |
---|
826 | { |
---|
827 | int n; |
---|
828 | int j; |
---|
829 | t_node *nd; |
---|
830 | phydbl *t,*ts; |
---|
831 | phydbl lbda; |
---|
832 | phydbl T; |
---|
833 | |
---|
834 | lbda = tree->rates->birth_rate; |
---|
835 | t = tree->rates->nd_t; |
---|
836 | ts = tree->rates->time_slice_lims; |
---|
837 | T = ts[0] - t[tree->n_root->num]; |
---|
838 | |
---|
839 | n = 0; |
---|
840 | nd = NULL; |
---|
841 | For(j,2*tree->n_otu-2) |
---|
842 | { |
---|
843 | nd = tree->a_nodes[j]; |
---|
844 | |
---|
845 | if((t[nd->num] > ts[0] && t[nd->anc->num] < ts[0]) || // lineage that is crossing ts[0] |
---|
846 | (nd->tax == YES && Are_Equal(t[nd->num],ts[0],1.E-6) == YES)) // tip that is lying on ts[0] |
---|
847 | n++; |
---|
848 | } |
---|
849 | |
---|
850 | return LnGamma(n+1) + LOG(lbda) - 2.*lbda*T + (n-2.)*LOG(1. - EXP(-lbda*T)); |
---|
851 | } |
---|
852 | |
---|
853 | ////////////////////////////////////////////////////////////// |
---|
854 | ////////////////////////////////////////////////////////////// |
---|
855 | // Returns the joint density of internal node heights assuming |
---|
856 | // the Yule model of speciation. |
---|
857 | phydbl TIMES_Lk_Yule_Joint(t_tree *tree) |
---|
858 | { |
---|
859 | int i,j; |
---|
860 | phydbl loglk; |
---|
861 | phydbl *t; |
---|
862 | phydbl dt; |
---|
863 | int n; // number of lineages at a given time point |
---|
864 | phydbl lbda; |
---|
865 | t_node *nd; |
---|
866 | phydbl *ts; |
---|
867 | int *tr; |
---|
868 | phydbl top_t; |
---|
869 | short int *interrupted; |
---|
870 | phydbl sumdt; |
---|
871 | |
---|
872 | interrupted = (short int *)mCalloc(tree->n_otu,sizeof(short int)); |
---|
873 | |
---|
874 | t = tree->rates->nd_t; |
---|
875 | ts = tree->rates->time_slice_lims; |
---|
876 | tr = tree->rates->t_ranked; |
---|
877 | lbda = tree->rates->birth_rate; |
---|
878 | |
---|
879 | TIMES_Update_Node_Ordering(tree); |
---|
880 | |
---|
881 | For(j,tree->n_otu) interrupted[j] = NO; |
---|
882 | |
---|
883 | loglk = .0; |
---|
884 | |
---|
885 | sumdt = .0; |
---|
886 | n = 1; |
---|
887 | For(i,2*tree->n_otu-2) // t[tr[0]] is the oldest node, t[tr[1]], the second oldest and so on... |
---|
888 | { |
---|
889 | |
---|
890 | For(j,tree->n_otu) |
---|
891 | if((t[j] < t[tr[i]]) && (interrupted[j] == NO)) |
---|
892 | { |
---|
893 | interrupted[j] = YES; |
---|
894 | n--; // How many lineages have stopped above t[tr[i]]? |
---|
895 | } |
---|
896 | |
---|
897 | top_t = t[tr[i+1]]; |
---|
898 | dt = top_t - t[tr[i]]; |
---|
899 | sumdt += dt; |
---|
900 | |
---|
901 | /* printf("\n. %d node up=%d [%f] node do=%d [%f] dt=%f",i,tr[i],t[tr[i]],tr[i+1],t[tr[i+1]],dt); */ |
---|
902 | |
---|
903 | if(n<1) |
---|
904 | { |
---|
905 | PhyML_Printf("\n. i=%d tr[i]=%f",i,t[tr[i]]); |
---|
906 | PhyML_Printf("\n. Err in file %s at line %d\n",__FILE__,__LINE__); |
---|
907 | Exit("\n"); |
---|
908 | } |
---|
909 | |
---|
910 | if(dt > 1.E-10) loglk += LOG((n+1)*lbda) - (n+1)*lbda*dt; |
---|
911 | n++; |
---|
912 | } |
---|
913 | |
---|
914 | /* printf("\n. sumdt = %f th=%f",sumdt,tree->rates->nd_t[tree->n_root->num]); */ |
---|
915 | /* printf("\n0 loglk = %f",loglk); */ |
---|
916 | |
---|
917 | For(i,tree->rates->n_time_slices-1) |
---|
918 | { |
---|
919 | n = 0; |
---|
920 | dt = 0.; |
---|
921 | For(j,2*tree->n_otu-2) |
---|
922 | { |
---|
923 | nd = tree->a_nodes[j]; |
---|
924 | if(t[nd->num] > ts[i] && t[nd->anc->num] < ts[i]) // How many lineages are crossing this time slice limit? |
---|
925 | { |
---|
926 | n++; |
---|
927 | if(t[nd->num] < dt) dt = t[nd->num]; // take the oldest node younger than the time slice |
---|
928 | } |
---|
929 | } |
---|
930 | dt -= ts[i]; |
---|
931 | loglk += LOG(n*lbda) - n*lbda*dt; |
---|
932 | } |
---|
933 | |
---|
934 | /* printf("\n1 loglk = %f",loglk); */ |
---|
935 | |
---|
936 | Free(interrupted); |
---|
937 | |
---|
938 | return loglk; |
---|
939 | } |
---|
940 | |
---|
941 | ////////////////////////////////////////////////////////////// |
---|
942 | ////////////////////////////////////////////////////////////// |
---|
943 | // Returns the conditional density of internal node heights |
---|
944 | // given the tree height under the Yule model. Uses the order |
---|
945 | // statistics 'simplification' as described in Yang and Rannala, 2005. |
---|
946 | phydbl TIMES_Lk_Yule_Order(t_tree *tree) |
---|
947 | { |
---|
948 | |
---|
949 | int j; |
---|
950 | phydbl *t,*tf; |
---|
951 | t_node *n; |
---|
952 | phydbl loglk; |
---|
953 | phydbl loglbda; |
---|
954 | phydbl lbda; |
---|
955 | phydbl *tp_min,*tp_max; |
---|
956 | phydbl lower_bound,upper_bound; |
---|
957 | |
---|
958 | tp_min = tree->rates->t_prior_min; |
---|
959 | tp_max = tree->rates->t_prior_max; |
---|
960 | tf = tree->rates->t_floor; |
---|
961 | t = tree->rates->nd_t; |
---|
962 | n = NULL; |
---|
963 | loglbda = LOG(tree->rates->birth_rate); |
---|
964 | lbda = tree->rates->birth_rate; |
---|
965 | lower_bound = -1.; |
---|
966 | upper_bound = -1.; |
---|
967 | |
---|
968 | /*! Adapted from Equation (6) in T. Stadler's Systematic Biology, 2012 paper with |
---|
969 | sampling fraction set to 1 and death rate set to 0. Dropped the 1/(n-1) scaling |
---|
970 | factor. */ |
---|
971 | |
---|
972 | /* loglk = 0.0; */ |
---|
973 | /* For(j,2*tree->n_otu-2) */ |
---|
974 | /* { */ |
---|
975 | /* n = tree->a_nodes[j]; */ |
---|
976 | /* lower_bound = MAX(FABS(tf[j]),FABS(tp_max[j])); */ |
---|
977 | /* upper_bound = MIN(FABS(t[tree->n_root->num]),FABS(tp_min[j])); */ |
---|
978 | |
---|
979 | /* if(n->tax == NO) */ |
---|
980 | /* { */ |
---|
981 | /* loglk += (loglbda - lbda * FABS(t[j])); */ |
---|
982 | /* /\* loglk -= LOG(EXP(-lbda*lower_bound) - EXP(-lbda*upper_bound)); // incorporate calibration boundaries here. *\/ */ |
---|
983 | /* } */ |
---|
984 | /* } */ |
---|
985 | |
---|
986 | |
---|
987 | /*! Adapted from Equation (7) in T. Stadler's Systematic Biology, 2012 paper with |
---|
988 | sampling fraction set to 1 and death rate set to 0. */ |
---|
989 | |
---|
990 | // Check that each node is within its calibration-derived interval |
---|
991 | For(j,2*tree->n_otu-1) if(t[j] < tp_min[j] || t[j] > tp_max[j]) return(-INFINITY); |
---|
992 | |
---|
993 | loglk = 0.0; |
---|
994 | For(j,2*tree->n_otu-2) |
---|
995 | { |
---|
996 | n = tree->a_nodes[j]; |
---|
997 | lower_bound = MAX(FABS(tf[j]),FABS(tp_max[j])); |
---|
998 | upper_bound = FABS(tp_min[j]); |
---|
999 | |
---|
1000 | if(n->tax == NO) |
---|
1001 | { |
---|
1002 | loglk += (loglbda - lbda * FABS(t[j])); |
---|
1003 | loglk -= LOG(EXP(-lbda*lower_bound) - EXP(-lbda*upper_bound)); // incorporate calibration boundaries here. |
---|
1004 | |
---|
1005 | } |
---|
1006 | } |
---|
1007 | |
---|
1008 | lower_bound = MAX(FABS(tf[tree->n_root->num]),FABS(tp_max[tree->n_root->num])); |
---|
1009 | upper_bound = FABS(tp_min[tree->n_root->num]); |
---|
1010 | loglk += LOG(2) + loglbda - 2.*lbda * FABS(t[tree->n_root->num]); |
---|
1011 | loglk -= LOG(EXP(-2.*lbda*lower_bound) - EXP(-2.*lbda*upper_bound)); |
---|
1012 | |
---|
1013 | return(loglk); |
---|
1014 | } |
---|
1015 | |
---|
1016 | ////////////////////////////////////////////////////////////// |
---|
1017 | ////////////////////////////////////////////////////////////// |
---|
1018 | |
---|
1019 | phydbl TIMES_Lk_Times(t_tree *tree) |
---|
1020 | { |
---|
1021 | |
---|
1022 | #ifdef PHYTIME |
---|
1023 | tree->rates->c_lnL_times = TIMES_Lk_Yule_Order(tree); |
---|
1024 | #elif SERGEII |
---|
1025 | tree->rates->c_lnL_times = TIMES_Calib_Cond_Prob(tree); |
---|
1026 | //tree->rates->c_lnL_times = TIMES_Lk_Yule_Order(tree); |
---|
1027 | #endif |
---|
1028 | |
---|
1029 | |
---|
1030 | if(isinf(tree->rates->c_lnL_times)) |
---|
1031 | { |
---|
1032 | tree->rates->c_lnL_times = -INFINITY; |
---|
1033 | } |
---|
1034 | |
---|
1035 | return(tree->rates->c_lnL_times); |
---|
1036 | } |
---|
1037 | |
---|
1038 | ////////////////////////////////////////////////////////////// |
---|
1039 | ////////////////////////////////////////////////////////////// |
---|
1040 | |
---|
1041 | |
---|
1042 | void TIMES_Lk_Times_Trav(t_node *a, t_node *d, phydbl lim_inf, phydbl lim_sup, phydbl *logdens, t_tree *tree) |
---|
1043 | { |
---|
1044 | int i; |
---|
1045 | |
---|
1046 | if(!d->tax) |
---|
1047 | { |
---|
1048 | /* if(tree->rates->nd_t[d->num] > lim_sup) */ |
---|
1049 | /* { */ |
---|
1050 | /* lim_inf = lim_sup; */ |
---|
1051 | /* lim_sup = 0.0; */ |
---|
1052 | /* For(i,2*tree->n_otu-2) */ |
---|
1053 | /* if((tree->rates->t_floor[i] < lim_sup) && (tree->rates->t_floor[i] > tree->rates->nd_t[d->num])) */ |
---|
1054 | /* lim_sup = tree->rates->t_floor[i]; */ |
---|
1055 | /* } */ |
---|
1056 | |
---|
1057 | /* if(tree->rates->nd_t[d->num] < lim_inf || tree->rates->nd_t[d->num] > lim_sup) */ |
---|
1058 | /* { */ |
---|
1059 | /* PhyML_Printf("\n. nd_t = %f lim_inf = %f lim_sup = %f",tree->rates->nd_t[d->num],lim_inf,lim_sup); */ |
---|
1060 | /* PhyML_Printf("\n. Err in file %s at line %d\n",__FILE__,__LINE__); */ |
---|
1061 | /* Exit("\n"); */ |
---|
1062 | /* } */ |
---|
1063 | |
---|
1064 | lim_inf = tree->rates->nd_t[tree->n_root->num]; |
---|
1065 | lim_sup = tree->rates->t_floor[d->num]; |
---|
1066 | |
---|
1067 | *logdens = *logdens + LOG(lim_sup - lim_inf); |
---|
1068 | } |
---|
1069 | |
---|
1070 | if(d->tax == YES) return; |
---|
1071 | else |
---|
1072 | { |
---|
1073 | For(i,3) |
---|
1074 | { |
---|
1075 | if(d->v[i] != a && d->b[i] != tree->e_root) |
---|
1076 | { |
---|
1077 | TIMES_Lk_Times_Trav(d,d->v[i],lim_inf,lim_sup,logdens,tree); |
---|
1078 | } |
---|
1079 | } |
---|
1080 | } |
---|
1081 | } |
---|
1082 | |
---|
1083 | ////////////////////////////////////////////////////////////// |
---|
1084 | ////////////////////////////////////////////////////////////// |
---|
1085 | |
---|
1086 | |
---|
1087 | phydbl TIMES_Log_Number_Of_Ranked_Labelled_Histories(t_node *root, int per_slice, t_tree *tree) |
---|
1088 | { |
---|
1089 | int i; |
---|
1090 | phydbl logn; |
---|
1091 | t_node *v1,*v2; |
---|
1092 | int n1,n2; |
---|
1093 | |
---|
1094 | TIMES_Update_Curr_Slice(tree); |
---|
1095 | |
---|
1096 | logn = .0; |
---|
1097 | v1 = v2 = NULL; |
---|
1098 | if(root == tree->n_root) |
---|
1099 | { |
---|
1100 | TIMES_Log_Number_Of_Ranked_Labelled_Histories_Post(root,root->v[2],per_slice,&logn,tree); |
---|
1101 | TIMES_Log_Number_Of_Ranked_Labelled_Histories_Post(root,root->v[1],per_slice,&logn,tree); |
---|
1102 | v1 = root->v[2]; |
---|
1103 | v2 = root->v[1]; |
---|
1104 | } |
---|
1105 | else |
---|
1106 | { |
---|
1107 | For(i,3) |
---|
1108 | { |
---|
1109 | if(root->v[i] != root->anc && root->b[i] != tree->e_root) |
---|
1110 | { |
---|
1111 | TIMES_Log_Number_Of_Ranked_Labelled_Histories_Post(root,root->v[i],per_slice,&logn,tree); |
---|
1112 | if(!v1) v1 = root->v[i]; |
---|
1113 | else v2 = root->v[i]; |
---|
1114 | } |
---|
1115 | } |
---|
1116 | } |
---|
1117 | |
---|
1118 | |
---|
1119 | if(per_slice == NO) |
---|
1120 | { |
---|
1121 | n1 = tree->rates->n_tips_below[v1->num]; |
---|
1122 | n2 = tree->rates->n_tips_below[v2->num]; |
---|
1123 | } |
---|
1124 | else |
---|
1125 | { |
---|
1126 | if(tree->rates->curr_slice[v1->num] == tree->rates->curr_slice[root->num]) |
---|
1127 | n1 = tree->rates->n_tips_below[v1->num]; |
---|
1128 | else |
---|
1129 | n1 = 1; |
---|
1130 | |
---|
1131 | if(tree->rates->curr_slice[v2->num] == tree->rates->curr_slice[root->num]) |
---|
1132 | n2 = tree->rates->n_tips_below[v2->num]; |
---|
1133 | else |
---|
1134 | n2 = 1; |
---|
1135 | } |
---|
1136 | |
---|
1137 | tree->rates->n_tips_below[root->num] = n1+n2; |
---|
1138 | |
---|
1139 | logn += Factln(n1+n2-2) - Factln(n1-1) - Factln(n2-1); |
---|
1140 | |
---|
1141 | return(logn); |
---|
1142 | } |
---|
1143 | |
---|
1144 | ////////////////////////////////////////////////////////////// |
---|
1145 | ////////////////////////////////////////////////////////////// |
---|
1146 | |
---|
1147 | |
---|
1148 | void TIMES_Log_Number_Of_Ranked_Labelled_Histories_Post(t_node *a, t_node *d, int per_slice, phydbl *logn, t_tree *tree) |
---|
1149 | { |
---|
1150 | if(d->tax == YES) |
---|
1151 | { |
---|
1152 | tree->rates->n_tips_below[d->num] = 1; |
---|
1153 | return; |
---|
1154 | } |
---|
1155 | else |
---|
1156 | { |
---|
1157 | int i,n1,n2; |
---|
1158 | t_node *v1, *v2; |
---|
1159 | |
---|
1160 | For(i,3) |
---|
1161 | { |
---|
1162 | if(d->v[i] != a && d->b[i] != tree->e_root) |
---|
1163 | { |
---|
1164 | TIMES_Log_Number_Of_Ranked_Labelled_Histories_Post(d,d->v[i],per_slice,logn,tree); |
---|
1165 | } |
---|
1166 | } |
---|
1167 | |
---|
1168 | v1 = v2 = NULL; |
---|
1169 | For(i,3) |
---|
1170 | { |
---|
1171 | if(d->v[i] != a && d->b[i] != tree->e_root) |
---|
1172 | { |
---|
1173 | if(v1 == NULL) {v1 = d->v[i];} |
---|
1174 | else {v2 = d->v[i];} |
---|
1175 | } |
---|
1176 | } |
---|
1177 | |
---|
1178 | |
---|
1179 | if(per_slice == NO) |
---|
1180 | { |
---|
1181 | n1 = tree->rates->n_tips_below[v1->num]; |
---|
1182 | n2 = tree->rates->n_tips_below[v2->num]; |
---|
1183 | } |
---|
1184 | else |
---|
1185 | { |
---|
1186 | if(tree->rates->curr_slice[v1->num] == tree->rates->curr_slice[d->num]) |
---|
1187 | n1 = tree->rates->n_tips_below[v1->num]; |
---|
1188 | else |
---|
1189 | n1 = 1; |
---|
1190 | |
---|
1191 | if(tree->rates->curr_slice[v2->num] == tree->rates->curr_slice[d->num]) |
---|
1192 | n2 = tree->rates->n_tips_below[v2->num]; |
---|
1193 | else |
---|
1194 | n2 = 1; |
---|
1195 | } |
---|
1196 | |
---|
1197 | tree->rates->n_tips_below[d->num] = n1+n2; |
---|
1198 | |
---|
1199 | (*logn) += Factln(n1+n2-2) - Factln(n1-1) - Factln(n2-1); |
---|
1200 | } |
---|
1201 | } |
---|
1202 | |
---|
1203 | ////////////////////////////////////////////////////////////// |
---|
1204 | ////////////////////////////////////////////////////////////// |
---|
1205 | |
---|
1206 | |
---|
1207 | void TIMES_Update_Curr_Slice(t_tree *tree) |
---|
1208 | { |
---|
1209 | int i,j; |
---|
1210 | |
---|
1211 | For(i,2*tree->n_otu-1) |
---|
1212 | { |
---|
1213 | For(j,tree->rates->n_time_slices) |
---|
1214 | { |
---|
1215 | if(!(tree->rates->nd_t[i] > tree->rates->time_slice_lims[j])) break; |
---|
1216 | } |
---|
1217 | tree->rates->curr_slice[i] = j; |
---|
1218 | |
---|
1219 | /* PhyML_Printf("\n. Node %3d [%12f] is in slice %3d.",i,tree->rates->nd_t[i],j); */ |
---|
1220 | } |
---|
1221 | } |
---|
1222 | |
---|
1223 | ////////////////////////////////////////////////////////////// |
---|
1224 | ////////////////////////////////////////////////////////////// |
---|
1225 | |
---|
1226 | |
---|
1227 | phydbl TIMES_Lk_Uniform_Core(t_tree *tree) |
---|
1228 | { |
---|
1229 | phydbl logn; |
---|
1230 | |
---|
1231 | logn = TIMES_Log_Number_Of_Ranked_Labelled_Histories(tree->n_root,YES,tree); |
---|
1232 | |
---|
1233 | tree->rates->c_lnL_times = 0.0; |
---|
1234 | TIMES_Lk_Uniform_Post(tree->n_root,tree->n_root->v[2],tree); |
---|
1235 | TIMES_Lk_Uniform_Post(tree->n_root,tree->n_root->v[1],tree); |
---|
1236 | |
---|
1237 | /* printf("\n. ^ %f %f %f", */ |
---|
1238 | /* (phydbl)(tree->rates->n_tips_below[tree->n_root->num]-2.), */ |
---|
1239 | /* LOG(tree->rates->time_slice_lims[tree->rates->curr_slice[tree->n_root->num]] - */ |
---|
1240 | /* tree->rates->nd_t[tree->n_root->num]), */ |
---|
1241 | /* (phydbl)(tree->rates->n_tips_below[tree->n_root->num]-2.) * */ |
---|
1242 | /* LOG(tree->rates->time_slice_lims[tree->rates->curr_slice[tree->n_root->num]] - */ |
---|
1243 | /* tree->rates->nd_t[tree->n_root->num])); */ |
---|
1244 | |
---|
1245 | tree->rates->c_lnL_times += |
---|
1246 | Factln(tree->rates->n_tips_below[tree->n_root->num]-2.) - |
---|
1247 | (phydbl)(tree->rates->n_tips_below[tree->n_root->num]-2.) * |
---|
1248 | LOG(tree->rates->time_slice_lims[tree->rates->curr_slice[tree->n_root->num]] - |
---|
1249 | tree->rates->nd_t[tree->n_root->num]); |
---|
1250 | |
---|
1251 | tree->rates->c_lnL_times -= logn; |
---|
1252 | |
---|
1253 | return(tree->rates->c_lnL_times); |
---|
1254 | } |
---|
1255 | |
---|
1256 | ////////////////////////////////////////////////////////////// |
---|
1257 | ////////////////////////////////////////////////////////////// |
---|
1258 | |
---|
1259 | |
---|
1260 | void TIMES_Get_Number_Of_Time_Slices(t_tree *tree) |
---|
1261 | { |
---|
1262 | int i; |
---|
1263 | |
---|
1264 | tree->rates->n_time_slices=0; |
---|
1265 | TIMES_Get_Number_Of_Time_Slices_Post(tree->n_root,tree->n_root->v[2],tree); |
---|
1266 | TIMES_Get_Number_Of_Time_Slices_Post(tree->n_root,tree->n_root->v[1],tree); |
---|
1267 | Qksort(tree->rates->time_slice_lims,NULL,0,tree->rates->n_time_slices-1); |
---|
1268 | |
---|
1269 | if(tree->rates->n_time_slices > 1) |
---|
1270 | { |
---|
1271 | PhyML_Printf("\n"); |
---|
1272 | PhyML_Printf("\n. Sequences were collected at %d different time points.",tree->rates->n_time_slices); |
---|
1273 | For(i,tree->rates->n_time_slices) printf("\n+ [%3d] time point @ %12f ",i+1,tree->rates->time_slice_lims[i]); |
---|
1274 | } |
---|
1275 | } |
---|
1276 | |
---|
1277 | ////////////////////////////////////////////////////////////// |
---|
1278 | ////////////////////////////////////////////////////////////// |
---|
1279 | |
---|
1280 | |
---|
1281 | void TIMES_Get_Number_Of_Time_Slices_Post(t_node *a, t_node *d, t_tree *tree) |
---|
1282 | { |
---|
1283 | int i; |
---|
1284 | |
---|
1285 | if(d->tax == YES) |
---|
1286 | { |
---|
1287 | For(i,tree->rates->n_time_slices) |
---|
1288 | if(Are_Equal(tree->rates->t_floor[d->num],tree->rates->time_slice_lims[i],1.E-6)) break; |
---|
1289 | |
---|
1290 | if(i == tree->rates->n_time_slices) |
---|
1291 | { |
---|
1292 | tree->rates->time_slice_lims[i] = tree->rates->t_floor[d->num]; |
---|
1293 | tree->rates->n_time_slices++; |
---|
1294 | } |
---|
1295 | return; |
---|
1296 | } |
---|
1297 | else |
---|
1298 | { |
---|
1299 | For(i,3) |
---|
1300 | if(d->v[i] != a && d->b[i] != tree->e_root) |
---|
1301 | TIMES_Get_Number_Of_Time_Slices_Post(d,d->v[i],tree); |
---|
1302 | } |
---|
1303 | } |
---|
1304 | |
---|
1305 | ////////////////////////////////////////////////////////////// |
---|
1306 | ////////////////////////////////////////////////////////////// |
---|
1307 | |
---|
1308 | |
---|
1309 | void TIMES_Get_N_Slice_Spans(t_tree *tree) |
---|
1310 | { |
---|
1311 | int i,j; |
---|
1312 | |
---|
1313 | For(i,2*tree->n_otu-2) |
---|
1314 | { |
---|
1315 | if(tree->a_nodes[i]->tax == NO) |
---|
1316 | { |
---|
1317 | For(j,tree->rates->n_time_slices) |
---|
1318 | { |
---|
1319 | if(Are_Equal(tree->rates->t_floor[i],tree->rates->time_slice_lims[j],1.E-6)) |
---|
1320 | { |
---|
1321 | tree->rates->n_time_slice_spans[i] = j+1; |
---|
1322 | /* PhyML_Printf("\n. Node %3d spans %3d slices [%12f].", */ |
---|
1323 | /* i+1, */ |
---|
1324 | /* tree->rates->n_slice_spans[i], */ |
---|
1325 | /* tree->rates->t_floor[i]); */ |
---|
1326 | break; |
---|
1327 | } |
---|
1328 | } |
---|
1329 | } |
---|
1330 | } |
---|
1331 | } |
---|
1332 | |
---|
1333 | ////////////////////////////////////////////////////////////// |
---|
1334 | ////////////////////////////////////////////////////////////// |
---|
1335 | |
---|
1336 | |
---|
1337 | void TIMES_Lk_Uniform_Post(t_node *a, t_node *d, t_tree *tree) |
---|
1338 | { |
---|
1339 | if(d->tax == YES) return; |
---|
1340 | else |
---|
1341 | { |
---|
1342 | int i; |
---|
1343 | |
---|
1344 | For(i,3) |
---|
1345 | { |
---|
1346 | if(d->v[i] != a && d->b[i] != tree->e_root) |
---|
1347 | { |
---|
1348 | TIMES_Lk_Uniform_Post(d,d->v[i],tree); |
---|
1349 | } |
---|
1350 | } |
---|
1351 | |
---|
1352 | if(tree->rates->curr_slice[a->num] != tree->rates->curr_slice[d->num]) |
---|
1353 | { |
---|
1354 | tree->rates->c_lnL_times += |
---|
1355 | Factln(tree->rates->n_tips_below[d->num]-1.) - |
---|
1356 | (phydbl)(tree->rates->n_tips_below[d->num]-1.) * |
---|
1357 | LOG(tree->rates->time_slice_lims[tree->rates->curr_slice[d->num]] - |
---|
1358 | tree->rates->nd_t[d->num]); |
---|
1359 | } |
---|
1360 | } |
---|
1361 | } |
---|
1362 | |
---|
1363 | ////////////////////////////////////////////////////////////// |
---|
1364 | ////////////////////////////////////////////////////////////// |
---|
1365 | |
---|
1366 | |
---|
1367 | /* Set the root position so that most of the taxa in the outgroup |
---|
1368 | correspond to the most ancient time point. |
---|
1369 | */ |
---|
1370 | void TIMES_Set_Root_Given_Tip_Dates(t_tree *tree) |
---|
1371 | { |
---|
1372 | int i,j; |
---|
1373 | t_node *left,*rght; |
---|
1374 | int n_left_in, n_left_out; |
---|
1375 | int n_rght_in, n_rght_out; |
---|
1376 | t_edge *b,*best; |
---|
1377 | phydbl eps,score,max_score; |
---|
1378 | |
---|
1379 | Free_Bip(tree); |
---|
1380 | Alloc_Bip(tree); |
---|
1381 | Get_Bip(tree->a_nodes[0],tree->a_nodes[0]->v[0],tree); |
---|
1382 | |
---|
1383 | left = rght = NULL; |
---|
1384 | b = best = NULL; |
---|
1385 | n_left_in = n_left_out = -1; |
---|
1386 | n_rght_in = n_rght_out = -1; |
---|
1387 | eps = 1.E-6; |
---|
1388 | score = max_score = -1.; |
---|
1389 | |
---|
1390 | For(i,2*tree->n_otu-3) |
---|
1391 | { |
---|
1392 | left = tree->a_edges[i]->left; |
---|
1393 | rght = tree->a_edges[i]->rght; |
---|
1394 | b = tree->a_edges[i]; |
---|
1395 | |
---|
1396 | n_left_in = 0; |
---|
1397 | For(j,left->bip_size[b->l_r]) |
---|
1398 | if(FABS(tree->rates->nd_t[left->bip_node[b->l_r][j]->num] - tree->rates->time_slice_lims[0]) < eps) |
---|
1399 | n_left_in++; |
---|
1400 | |
---|
1401 | n_left_out = left->bip_size[b->l_r]-n_left_in; |
---|
1402 | |
---|
1403 | n_rght_in = 0; |
---|
1404 | For(j,rght->bip_size[b->r_l]) |
---|
1405 | if(FABS(tree->rates->nd_t[rght->bip_node[b->r_l][j]->num] - tree->rates->time_slice_lims[0]) < eps) |
---|
1406 | n_rght_in++; |
---|
1407 | |
---|
1408 | n_rght_out = rght->bip_size[b->r_l]-n_rght_in; |
---|
1409 | |
---|
1410 | |
---|
1411 | /* score = POW((phydbl)(n_left_in)/(phydbl)(n_left_in+n_left_out)- */ |
---|
1412 | /* (phydbl)(n_rght_in)/(phydbl)(n_rght_in+n_rght_out),2); */ |
---|
1413 | /* score = (phydbl)(n_left_in * n_rght_out + eps)/(n_left_out * n_rght_in + eps); */ |
---|
1414 | /* score = (phydbl)(n_left_in * n_rght_out + eps); */ |
---|
1415 | score = FABS((phydbl)((n_left_in+1.) * (n_rght_out+1.)) - (phydbl)((n_left_out+1.) * (n_rght_in+1.))); |
---|
1416 | |
---|
1417 | if(score > max_score) |
---|
1418 | { |
---|
1419 | max_score = score; |
---|
1420 | best = b; |
---|
1421 | } |
---|
1422 | } |
---|
1423 | |
---|
1424 | Add_Root(best,tree); |
---|
1425 | } |
---|
1426 | |
---|
1427 | ////////////////////////////////////////////////////////////// |
---|
1428 | ////////////////////////////////////////////////////////////// |
---|
1429 | |
---|
1430 | |
---|
1431 | void Get_Survival_Duration(t_tree *tree) |
---|
1432 | { |
---|
1433 | Get_Survival_Duration_Post(tree->n_root,tree->n_root->v[2],tree); |
---|
1434 | Get_Survival_Duration_Post(tree->n_root,tree->n_root->v[1],tree); |
---|
1435 | } |
---|
1436 | |
---|
1437 | ////////////////////////////////////////////////////////////// |
---|
1438 | ////////////////////////////////////////////////////////////// |
---|
1439 | |
---|
1440 | |
---|
1441 | void Get_Survival_Duration_Post(t_node *a, t_node *d, t_tree *tree) |
---|
1442 | { |
---|
1443 | if(d->tax) |
---|
1444 | { |
---|
1445 | tree->rates->survival_dur[d->num] = tree->rates->nd_t[d->num]; |
---|
1446 | return; |
---|
1447 | } |
---|
1448 | else |
---|
1449 | { |
---|
1450 | int i; |
---|
1451 | t_node *v1, *v2; |
---|
1452 | |
---|
1453 | For(i,3) |
---|
1454 | if(d->v[i] != a && d->b[i] != tree->e_root) |
---|
1455 | Get_Survival_Duration_Post(d,d->v[i],tree); |
---|
1456 | |
---|
1457 | v1 = v2 = NULL; |
---|
1458 | For(i,3) |
---|
1459 | { |
---|
1460 | if(d->v[i] != a && d->b[i] != tree->e_root) |
---|
1461 | { |
---|
1462 | if(!v1) v1 = d->v[i]; |
---|
1463 | else v2 = d->v[i]; |
---|
1464 | } |
---|
1465 | } |
---|
1466 | |
---|
1467 | tree->rates->survival_dur[d->num] = MAX(tree->rates->survival_dur[v1->num], |
---|
1468 | tree->rates->survival_dur[v2->num]); |
---|
1469 | } |
---|
1470 | } |
---|
1471 | |
---|
1472 | |
---|
1473 | ////////////////////////////////////////////////////////////// |
---|
1474 | ////////////////////////////////////////////////////////////// |
---|
1475 | |
---|
1476 | /* Update the ranking of node heights. Use bubble sort algorithm */ |
---|
1477 | |
---|
1478 | void TIMES_Update_Node_Ordering(t_tree *tree) |
---|
1479 | { |
---|
1480 | int buff; |
---|
1481 | int i; |
---|
1482 | phydbl *t; |
---|
1483 | int swap = NO; |
---|
1484 | |
---|
1485 | t = tree->rates->nd_t; |
---|
1486 | |
---|
1487 | do |
---|
1488 | { |
---|
1489 | swap = NO; |
---|
1490 | For(i,2*tree->n_otu-2) |
---|
1491 | { |
---|
1492 | if(t[tree->rates->t_ranked[i]] > t[tree->rates->t_ranked[i+1]]) // Sort in ascending order |
---|
1493 | { |
---|
1494 | swap = YES; |
---|
1495 | buff = tree->rates->t_ranked[i]; |
---|
1496 | tree->rates->t_ranked[i] = tree->rates->t_ranked[i+1]; |
---|
1497 | tree->rates->t_ranked[i+1] = buff; |
---|
1498 | } |
---|
1499 | } |
---|
1500 | } |
---|
1501 | while(swap == YES); |
---|
1502 | |
---|
1503 | /* For(i,2*tree->n_otu-1) */ |
---|
1504 | /* { */ |
---|
1505 | /* printf("\n. ..... %f",t[tree->rates->t_ranked[i]]); */ |
---|
1506 | /* } */ |
---|
1507 | } |
---|
1508 | |
---|
1509 | ////////////////////////////////////////////////////////////// |
---|
1510 | ////////////////////////////////////////////////////////////// |
---|
1511 | |
---|
1512 | void TIMES_Label_Edges_With_Calibration_Intervals(t_tree *tree) |
---|
1513 | { |
---|
1514 | char *s; |
---|
1515 | int i; |
---|
1516 | |
---|
1517 | s = (char *)mCalloc(T_MAX_LINE,sizeof(char)); |
---|
1518 | |
---|
1519 | tree->write_labels = YES; |
---|
1520 | |
---|
1521 | For(i,2*tree->n_otu-2) |
---|
1522 | { |
---|
1523 | if(tree->a_nodes[i]->tax == NO) |
---|
1524 | { |
---|
1525 | if(tree->rates->t_has_prior[i] == YES && tree->a_nodes[i]->b[0] != tree->e_root) |
---|
1526 | { |
---|
1527 | tree->a_nodes[i]->b[0]->n_labels = 1; |
---|
1528 | Make_New_Edge_Label(tree->a_nodes[i]->b[0]); |
---|
1529 | sprintf(s,"'>%f<%f'",FABS(tree->rates->t_prior_max[i])/100.,FABS(tree->rates->t_prior_min[i])/100.); |
---|
1530 | tree->a_nodes[i]->b[0]->labels[0] = (char *)mCalloc(strlen(s)+1,sizeof(char)); |
---|
1531 | strcpy(tree->a_nodes[i]->b[0]->labels[0],s); |
---|
1532 | } |
---|
1533 | } |
---|
1534 | } |
---|
1535 | |
---|
1536 | Free(s); |
---|
1537 | |
---|
1538 | } |
---|
1539 | |
---|
1540 | ////////////////////////////////////////////////////////////// |
---|
1541 | ////////////////////////////////////////////////////////////// |
---|
1542 | |
---|
1543 | void TIMES_Set_Calibration(t_tree *tree) |
---|
1544 | { |
---|
1545 | t_cal *cal; |
---|
1546 | int i; |
---|
1547 | |
---|
1548 | For(i,2*tree->n_otu-1) |
---|
1549 | { |
---|
1550 | tree->rates->t_has_prior[i] = NO; |
---|
1551 | tree->rates->t_prior_min[i] = BIG; |
---|
1552 | tree->rates->t_prior_max[i] = BIG; |
---|
1553 | } |
---|
1554 | |
---|
1555 | cal = tree->rates->calib; |
---|
1556 | while(cal) |
---|
1557 | { |
---|
1558 | /* if(cal->is_active == YES) */ |
---|
1559 | /* { */ |
---|
1560 | /* tree->rates->t_has_prior[cal->node_num] = YES; */ |
---|
1561 | /* tree->rates->t_prior_min[cal->node_num] = cal->lower; */ |
---|
1562 | /* tree->rates->t_prior_max[cal->node_num] = cal->upper; */ |
---|
1563 | /* } */ |
---|
1564 | cal = cal->next; |
---|
1565 | } |
---|
1566 | |
---|
1567 | TIMES_Set_All_Node_Priors(tree); |
---|
1568 | } |
---|
1569 | |
---|
1570 | |
---|
1571 | |
---|
1572 | ////////////////////////////////////////////////////////////// |
---|
1573 | ////////////////////////////////////////////////////////////// |
---|
1574 | |
---|
1575 | |
---|
1576 | void TIMES_Record_Prior_Times(t_tree *tree) |
---|
1577 | { |
---|
1578 | int i; |
---|
1579 | For(i,2*tree->n_otu-1) |
---|
1580 | { |
---|
1581 | tree->rates->t_prior_min_buff[i] = tree->rates->t_prior_min[i]; |
---|
1582 | tree->rates->t_prior_max_buff[i] = tree->rates->t_prior_max[i]; |
---|
1583 | } |
---|
1584 | } |
---|
1585 | |
---|
1586 | ////////////////////////////////////////////////////////////// |
---|
1587 | ////////////////////////////////////////////////////////////// |
---|
1588 | |
---|
1589 | |
---|
1590 | void TIMES_Reset_Prior_Times(t_tree *tree) |
---|
1591 | { |
---|
1592 | int i; |
---|
1593 | For(i,2*tree->n_otu-1) |
---|
1594 | { |
---|
1595 | tree->rates->t_prior_min[i] = tree->rates->t_prior_min_buff[i]; |
---|
1596 | tree->rates->t_prior_max[i] = tree->rates->t_prior_max_buff[i]; |
---|
1597 | } |
---|
1598 | } |
---|
1599 | |
---|
1600 | ////////////////////////////////////////////////////////////// |
---|
1601 | ////////////////////////////////////////////////////////////// |
---|
1602 | ////////////////////////////////////////////////////////////// |
---|
1603 | ////////////////////////////////////////////////////////////// |
---|
1604 | ////////////////////////////////////////////////////////////// |
---|
1605 | ////////////////////////////////////////////////////////////// |
---|
1606 | ////////////////////////////////////////////////////////////// |
---|
1607 | ////////////////////////////////////////////////////////////// |
---|