1 | // =============================================================== // |
---|
2 | // // |
---|
3 | // File : AP_Tree.cxx // |
---|
4 | // Purpose : // |
---|
5 | // // |
---|
6 | // Institute of Microbiology (Technical University Munich) // |
---|
7 | // http://www.arb-home.de/ // |
---|
8 | // // |
---|
9 | // =============================================================== // |
---|
10 | |
---|
11 | #include "AP_Tree.hxx" |
---|
12 | #include "AP_TreeShader.hxx" |
---|
13 | |
---|
14 | #include <AP_filter.hxx> |
---|
15 | #include <aw_msg.hxx> |
---|
16 | #include <arb_progress.h> |
---|
17 | #include <arb_str.h> |
---|
18 | #include <ad_cb.h> |
---|
19 | |
---|
20 | #include <math.h> |
---|
21 | #include <map> |
---|
22 | #include <climits> |
---|
23 | #include <algorithm> |
---|
24 | |
---|
25 | using namespace std; |
---|
26 | |
---|
27 | /*!*************************************************************************************** |
---|
28 | ************ Rates ********** |
---|
29 | *****************************************************************************************/ |
---|
30 | void AP_rates::print() { |
---|
31 | AP_FLOAT max; |
---|
32 | int i; |
---|
33 | |
---|
34 | max = 0.0; |
---|
35 | for (i=0; i<rate_len; i++) { |
---|
36 | if (rates[i] > max) max = rates[i]; |
---|
37 | } |
---|
38 | printf("rates:"); |
---|
39 | for (i=0; i<rate_len; i++) { |
---|
40 | putchar('0' + (int)(rates[i]/max*9.9)); |
---|
41 | } |
---|
42 | printf("\n"); |
---|
43 | } |
---|
44 | |
---|
45 | AP_rates::AP_rates() { |
---|
46 | memset ((char *)this, 0, sizeof(AP_rates)); |
---|
47 | } |
---|
48 | |
---|
49 | char *AP_rates::init(AP_filter *fil) { |
---|
50 | if (fil->get_timestamp() <= this->update) return NULp; |
---|
51 | |
---|
52 | rate_len = fil->get_filtered_length(); |
---|
53 | delete [] rates; |
---|
54 | rates = new AP_FLOAT[rate_len]; |
---|
55 | for (int i=0; i<rate_len; i++) { // LOOP_VECTORIZED // tested down to gcc 5.5.0 (may fail on older gcc versions) |
---|
56 | rates[i] = 1.0; |
---|
57 | } |
---|
58 | this->update = fil->get_timestamp(); |
---|
59 | return NULp; |
---|
60 | } |
---|
61 | |
---|
62 | char *AP_rates::init(AP_FLOAT * ra, AP_filter *fil) { |
---|
63 | if (fil->get_timestamp() <= this->update) return NULp; |
---|
64 | |
---|
65 | rate_len = fil->get_filtered_length(); |
---|
66 | delete [] rates; |
---|
67 | rates = new AP_FLOAT[rate_len]; |
---|
68 | int i, j; |
---|
69 | for (j=i=0; i<rate_len; j++) { |
---|
70 | if (fil->use_position(j)) { |
---|
71 | rates[i++] = ra[j]; |
---|
72 | } |
---|
73 | } |
---|
74 | this->update = fil->get_timestamp(); |
---|
75 | return NULp; |
---|
76 | } |
---|
77 | |
---|
78 | AP_rates::~AP_rates() { delete [] rates; } |
---|
79 | |
---|
80 | |
---|
81 | /*!*************************************************************************************** |
---|
82 | ************ AP_tree_root ********** |
---|
83 | *****************************************************************************************/ |
---|
84 | |
---|
85 | AP_tree_root::AP_tree_root(AliView *aliView, AP_sequence *seq_proto, bool add_delete_callbacks, const group_scaling *scaling) |
---|
86 | : ARB_seqtree_root(aliView, seq_proto, add_delete_callbacks), |
---|
87 | root_changed_cb(NULp), root_changed_cd(NULp), |
---|
88 | node_deleted_cb(NULp), node_deleted_cd(NULp), |
---|
89 | gScale(scaling), |
---|
90 | gb_tree_gone(NULp), |
---|
91 | gone_tree_name(NULp), |
---|
92 | tree_timer(0), |
---|
93 | species_timer(0), |
---|
94 | rates(NULp) |
---|
95 | { |
---|
96 | GBDATA *gb_main = get_gb_main(); |
---|
97 | GB_transaction ta(gb_main); |
---|
98 | |
---|
99 | gb_species_data = GBT_get_species_data(gb_main); |
---|
100 | } |
---|
101 | |
---|
102 | AP_tree_root::~AP_tree_root() { |
---|
103 | predelete(); |
---|
104 | free(gone_tree_name); |
---|
105 | ap_assert(!get_root_node()); |
---|
106 | } |
---|
107 | |
---|
108 | bool AP_tree_root::is_tree_updated() { |
---|
109 | GBDATA *gbtree = get_gb_tree(); |
---|
110 | if (gbtree) { |
---|
111 | GB_transaction ta(gbtree); |
---|
112 | return GB_read_clock(gbtree)>tree_timer; |
---|
113 | } |
---|
114 | return true; |
---|
115 | } |
---|
116 | |
---|
117 | bool AP_tree_root::is_species_updated() { |
---|
118 | if (gb_species_data) { |
---|
119 | GB_transaction ta(gb_species_data); |
---|
120 | return GB_read_clock(gb_species_data)>species_timer; |
---|
121 | } |
---|
122 | return true; |
---|
123 | } |
---|
124 | |
---|
125 | void AP_tree_root::update_timers() { |
---|
126 | if (gb_species_data) { |
---|
127 | GB_transaction ta(GB_get_root(gb_species_data)); |
---|
128 | GBDATA *gbtree = get_gb_tree(); |
---|
129 | if (gbtree) tree_timer = GB_read_clock(gbtree); |
---|
130 | species_timer = GB_read_clock(gb_species_data); |
---|
131 | } |
---|
132 | } |
---|
133 | |
---|
134 | /*!*************************************************************************************** |
---|
135 | ************ AP_tree ********** |
---|
136 | *****************************************************************************************/ |
---|
137 | |
---|
138 | static void ap_tree_node_deleted(GBDATA *, AP_tree *tree) { |
---|
139 | tree->gb_node = NULp; |
---|
140 | } |
---|
141 | |
---|
142 | AP_tree::~AP_tree() { |
---|
143 | if (gr.callback_exists && gb_node) { |
---|
144 | GB_remove_callback(gb_node, GB_CB_DELETE, makeDatabaseCallback(ap_tree_node_deleted, this)); |
---|
145 | } |
---|
146 | |
---|
147 | AP_tree_root *root = get_tree_root(); |
---|
148 | if (root) root->inform_about_delete(this); |
---|
149 | } |
---|
150 | |
---|
151 | void AP_tree::initial_insert(AP_tree *new_brother, AP_tree_root *troot) { |
---|
152 | ap_assert(troot); |
---|
153 | ap_assert(is_leaf()); |
---|
154 | ap_assert(new_brother->is_leaf()); |
---|
155 | ap_assert(!troot->get_root_node()); |
---|
156 | |
---|
157 | ASSERT_VALID_TREE(this); |
---|
158 | ASSERT_VALID_TREE(new_brother); |
---|
159 | |
---|
160 | AP_tree *new_root = DOWNCAST(AP_tree*, troot->makeNode()); |
---|
161 | |
---|
162 | new_root->leftson = this; |
---|
163 | new_root->rightson = new_brother; |
---|
164 | new_root->father = NULp; |
---|
165 | |
---|
166 | father = new_root; |
---|
167 | new_brother->father = new_root; |
---|
168 | |
---|
169 | new_root->leftlen = 0.5; |
---|
170 | new_root->rightlen = 0.5; |
---|
171 | |
---|
172 | troot->change_root(NULp, new_root); |
---|
173 | |
---|
174 | set_tree_root(troot); |
---|
175 | new_brother->set_tree_root(troot); |
---|
176 | } |
---|
177 | |
---|
178 | void AP_tree::insert(AP_tree *new_brother) { |
---|
179 | ASSERT_VALID_TREE(this); |
---|
180 | ASSERT_VALID_TREE(new_brother); |
---|
181 | ap_assert(new_brother->get_tree_root()->get_root_node()->has_valid_root_remarks()); |
---|
182 | |
---|
183 | AP_tree *new_tree = DOWNCAST(AP_tree*, new_brother->get_tree_root()->makeNode()); |
---|
184 | AP_FLOAT laenge; |
---|
185 | |
---|
186 | if (new_brother->is_son_of_root()) { |
---|
187 | new_brother->get_father()->remove_root_remark(); |
---|
188 | } |
---|
189 | |
---|
190 | new_tree->leftson = this; |
---|
191 | new_tree->rightson = new_brother; |
---|
192 | new_tree->father = new_brother->father; |
---|
193 | father = new_tree; |
---|
194 | |
---|
195 | if (new_brother->father) { |
---|
196 | if (new_brother->father->leftson == new_brother) { |
---|
197 | laenge = new_brother->father->leftlen = new_brother->father->leftlen*.5; |
---|
198 | new_brother->father->leftson = new_tree; |
---|
199 | } |
---|
200 | else { |
---|
201 | laenge = new_brother->father->rightlen = new_brother->father->rightlen*.5; |
---|
202 | new_brother->father->rightson = new_tree; |
---|
203 | } |
---|
204 | } |
---|
205 | else { |
---|
206 | laenge = 0.5; |
---|
207 | } |
---|
208 | new_tree->leftlen = laenge; |
---|
209 | new_tree->rightlen = laenge; |
---|
210 | new_brother->father = new_tree; |
---|
211 | |
---|
212 | AP_tree_root *troot = new_brother->get_tree_root(); |
---|
213 | ap_assert(troot); // Note: initial_insert() has to be used to build initial tree |
---|
214 | |
---|
215 | if (!new_tree->father) troot->change_root(new_brother, new_tree); |
---|
216 | new_tree->set_tree_root(troot); |
---|
217 | set_tree_root(troot); |
---|
218 | |
---|
219 | ASSERT_VALID_TREE(troot->get_root_node()); |
---|
220 | ap_assert(get_tree_root()->get_root_node()->has_valid_root_remarks()); |
---|
221 | } |
---|
222 | |
---|
223 | void AP_tree_root::change_root(TreeNode *oldroot, TreeNode *newroot) { |
---|
224 | if (root_changed_cb) { // @@@ better call after calling base::change_root? |
---|
225 | root_changed_cb(root_changed_cd, DOWNCAST(AP_tree*, oldroot), DOWNCAST(AP_tree*, newroot)); |
---|
226 | } |
---|
227 | if (!oldroot) { |
---|
228 | ap_assert(newroot); |
---|
229 | if (gb_tree_gone) { // when tree was temporarily deleted (e.g. by 'Remove & add all') |
---|
230 | set_gb_tree(gb_tree_gone); // re-use previous DB entry |
---|
231 | gb_tree_gone = NULp; |
---|
232 | } |
---|
233 | } |
---|
234 | if (!newroot) { // tree empty |
---|
235 | GBDATA *gbtree = get_gb_tree(); |
---|
236 | if (gbtree) { |
---|
237 | ap_assert(!gb_tree_gone); // no tree should be remembered yet |
---|
238 | gb_tree_gone = gbtree; // remember for deletion (done in AP_tree::save) |
---|
239 | } |
---|
240 | } |
---|
241 | ARB_seqtree_root::change_root(oldroot, newroot); |
---|
242 | } |
---|
243 | |
---|
244 | void AP_tree_root::inform_about_delete(AP_tree *del) { |
---|
245 | if (node_deleted_cb) node_deleted_cb(node_deleted_cd, del); |
---|
246 | } |
---|
247 | |
---|
248 | void AP_tree_root::set_root_changed_callback(AP_rootChangedCb cb, void *cd) { |
---|
249 | root_changed_cb = cb; |
---|
250 | root_changed_cd = cd; |
---|
251 | } |
---|
252 | |
---|
253 | void AP_tree_root::set_node_deleted_callback(AP_nodeDelCb cb, void *cd) { |
---|
254 | node_deleted_cb = cb; |
---|
255 | node_deleted_cd = cd; |
---|
256 | } |
---|
257 | |
---|
258 | |
---|
259 | AP_tree *AP_tree::REMOVE() { |
---|
260 | // Remove this + father from tree. Father node will be destroyed. |
---|
261 | // Caller has to destroy the removed node (if intended). |
---|
262 | // |
---|
263 | // Warning: when removing the 2nd to last node from the tree, |
---|
264 | // the whole tree will be removed. |
---|
265 | // In that case both leaf nodes remain undestroyed. |
---|
266 | |
---|
267 | ASSERT_VALID_TREE(this); |
---|
268 | if (!father) { |
---|
269 | get_tree_root()->change_root(this, NULp); // tell AP_tree_root that the root node has been removed |
---|
270 | forget_origin(); // removed nodes are rootless |
---|
271 | } |
---|
272 | else { |
---|
273 | AP_tree *brother = get_brother(); // brother remains in tree |
---|
274 | GBT_LEN brothersLen = brother->get_branchlength(); |
---|
275 | AP_tree *fath = get_father(); // fath of this is removed as well |
---|
276 | ARB_seqtree *grandfather = fath->get_father(); |
---|
277 | AP_tree_root *troot = get_tree_root(); |
---|
278 | |
---|
279 | if (fath->gb_node) { // move inner information to remaining subtree |
---|
280 | if (!brother->gb_node && !brother->is_leaf()) { |
---|
281 | brother->gb_node = fath->gb_node; |
---|
282 | fath->gb_node = NULp; |
---|
283 | } |
---|
284 | } |
---|
285 | |
---|
286 | remove_remarks_from_this_and_parent(); // remove remarks of this + father |
---|
287 | |
---|
288 | if (grandfather) { |
---|
289 | brother->unlink_from_father(); |
---|
290 | |
---|
291 | bool wasLeftSon = fath->is_leftson(); |
---|
292 | fath->unlink_from_father(); |
---|
293 | |
---|
294 | if (wasLeftSon) { |
---|
295 | ap_assert(!grandfather->leftson); |
---|
296 | grandfather->leftlen += brothersLen; |
---|
297 | grandfather->leftson = brother; |
---|
298 | } |
---|
299 | else { |
---|
300 | ap_assert(!grandfather->rightson); |
---|
301 | grandfather->rightlen += brothersLen; |
---|
302 | grandfather->rightson = brother; |
---|
303 | } |
---|
304 | brother->father = grandfather; |
---|
305 | if (!grandfather->father) { |
---|
306 | ap_assert(brother->is_son_of_root()); |
---|
307 | if (!brother->is_leaf()) brother->remove_remark(); |
---|
308 | } |
---|
309 | } |
---|
310 | else { // father is root, make brother the new root |
---|
311 | if (brother->is_leaf()) { |
---|
312 | troot->change_root(fath, NULp); // erase tree from root |
---|
313 | brother->unlink_from_father(); // do not automatically delete brother |
---|
314 | } |
---|
315 | else { |
---|
316 | brother->unlink_from_father(); |
---|
317 | troot->change_root(fath, brother); |
---|
318 | } |
---|
319 | } |
---|
320 | |
---|
321 | ap_assert(fath == father); |
---|
322 | |
---|
323 | ASSERT_VALID_TREE_OR_NULL(troot->get_root_node()); |
---|
324 | |
---|
325 | troot->inform_about_delete(fath); |
---|
326 | troot->inform_about_delete(this); |
---|
327 | |
---|
328 | fath->forget_origin(); |
---|
329 | ASSERT_VALID_TREE(fath); |
---|
330 | |
---|
331 | unlink_from_father(); |
---|
332 | destroy(fath, troot); |
---|
333 | ASSERT_VALID_TREE(this); |
---|
334 | } |
---|
335 | return this; |
---|
336 | } |
---|
337 | |
---|
338 | GB_ERROR AP_tree::cantMoveNextTo(AP_tree *new_brother) { |
---|
339 | GB_ERROR error = NULp; |
---|
340 | |
---|
341 | if (!father) error = "Can't move the root of the tree"; |
---|
342 | else if (!new_brother->father) error = "Can't move to the root of the tree"; |
---|
343 | else if (new_brother->father == father) error = "Already there"; |
---|
344 | else if (new_brother == father) error = "Already there"; |
---|
345 | else if (!father->father) error = "Can't move son of root"; |
---|
346 | else if (new_brother->is_inside(this)) error = "Can't move a subtree into itself"; |
---|
347 | |
---|
348 | return error; |
---|
349 | } |
---|
350 | |
---|
351 | void AP_tree::moveNextTo(AP_tree *new_brother, AP_FLOAT rel_pos) { |
---|
352 | // rel_pos: 0.0 -> branch at father; 1.0 -> branch at brother; 0.5 -> branch at half distance between father and brother |
---|
353 | |
---|
354 | // @@@ "move subtree" needs better correction for groups (esp. if moving from root-of-group or when keeled groups are involved; see #785) |
---|
355 | |
---|
356 | ap_assert(father); |
---|
357 | ap_assert(new_brother); |
---|
358 | ap_assert(new_brother->father); |
---|
359 | ap_assert(new_brother->father != father); // already there |
---|
360 | ap_assert(new_brother != father); // already there |
---|
361 | |
---|
362 | ap_assert(!new_brother->is_inside(this)); // can't move tree into itself |
---|
363 | ap_assert(get_tree_root()->get_root_node()->has_valid_root_remarks()); |
---|
364 | |
---|
365 | remove_remarks_from_this_and_parent(); |
---|
366 | get_brother()->smart_remove_remark(); |
---|
367 | new_brother->remove_remarks_from_this_and_parent(); |
---|
368 | |
---|
369 | if (father->leftson != this) get_father()->swap_sons(); |
---|
370 | |
---|
371 | AP_tree *new_root = NULp; |
---|
372 | if (!father->father) { // move son of root |
---|
373 | ap_assert(!father->has_group_info()); |
---|
374 | |
---|
375 | get_father()->remove_root_remark(); |
---|
376 | |
---|
377 | new_root = get_brother(); |
---|
378 | new_root->father = NULp; |
---|
379 | |
---|
380 | ap_assert(!new_root->is_leaf()); // a leaf is no valid tree (should be impossible, because new_brother!=brother) |
---|
381 | } |
---|
382 | else { |
---|
383 | AP_tree *grandfather = get_father()->get_father(); |
---|
384 | if (!grandfather->father) { // move grandchild of root |
---|
385 | grandfather->remove_root_remark(); |
---|
386 | } |
---|
387 | if (grandfather->leftson == father) { |
---|
388 | grandfather->leftlen += father->rightlen; |
---|
389 | grandfather->leftson = father->rightson; |
---|
390 | } |
---|
391 | else { |
---|
392 | grandfather->rightlen += father->rightlen; |
---|
393 | grandfather->rightson = father->rightson; |
---|
394 | } |
---|
395 | father->rightson->father = grandfather; |
---|
396 | } |
---|
397 | |
---|
398 | AP_tree *new_tree = get_father(); |
---|
399 | AP_tree *brother_father = new_brother->get_father(); |
---|
400 | AP_FLOAT laenge; |
---|
401 | |
---|
402 | if (brother_father->leftson == new_brother) { |
---|
403 | laenge = brother_father->leftlen; |
---|
404 | laenge -= brother_father->leftlen = laenge * rel_pos; |
---|
405 | brother_father->leftson = new_tree; |
---|
406 | } |
---|
407 | else { |
---|
408 | laenge = brother_father->rightlen; |
---|
409 | laenge -= brother_father->rightlen = laenge * rel_pos; |
---|
410 | brother_father->rightson = new_tree; |
---|
411 | } |
---|
412 | |
---|
413 | new_tree->rightlen = laenge; |
---|
414 | new_brother->father = new_tree; |
---|
415 | new_tree->rightson = new_brother; |
---|
416 | new_tree->father = brother_father; |
---|
417 | |
---|
418 | if (new_root) { |
---|
419 | new_tree->get_tree_root()->change_root(new_tree, new_root); |
---|
420 | new_root->remove_root_remark(); |
---|
421 | } |
---|
422 | |
---|
423 | ap_assert(new_tree->get_tree_root()->get_root_node()->has_valid_root_remarks()); |
---|
424 | } |
---|
425 | |
---|
426 | inline int tree_read_byte(GBDATA *tree, const char *key, int init) { |
---|
427 | if (tree) { |
---|
428 | GBDATA *gbd = GB_entry(tree, key); |
---|
429 | if (gbd) return GB_read_byte(gbd); |
---|
430 | } |
---|
431 | return init; |
---|
432 | } |
---|
433 | |
---|
434 | inline float tree_read_float(GBDATA *tree, const char *key, float init) { |
---|
435 | if (tree) { |
---|
436 | GBDATA *gbd = GB_entry(tree, key); |
---|
437 | if (gbd) return GB_read_float(gbd); |
---|
438 | } |
---|
439 | return init; |
---|
440 | } |
---|
441 | |
---|
442 | |
---|
443 | |
---|
444 | //! moves all node/leaf information from struct TreeNode to AP_tree |
---|
445 | void AP_tree::load_node_info() { |
---|
446 | gr.spread = tree_read_float(gb_node, "spread", 1.0); |
---|
447 | gr.left_angle = tree_read_float(gb_node, "left_angle", 0.0); |
---|
448 | gr.right_angle = tree_read_float(gb_node, "right_angle", 0.0); |
---|
449 | gr.left_linewidth = tree_read_byte (gb_node, "left_linewidth", 0); |
---|
450 | gr.right_linewidth = tree_read_byte (gb_node, "right_linewidth", 0); |
---|
451 | gr.grouped = tree_read_byte (gb_node, "grouped", 0); |
---|
452 | } |
---|
453 | |
---|
454 | void AP_tree::load_subtree_info() { |
---|
455 | load_node_info(); |
---|
456 | if (!is_leaf()) { |
---|
457 | get_leftson()->load_subtree_info(); |
---|
458 | get_rightson()->load_subtree_info(); |
---|
459 | } |
---|
460 | } |
---|
461 | |
---|
462 | #if defined(DEBUG) |
---|
463 | #if defined(DEVEL_RALF) |
---|
464 | #define DEBUG_tree_write_byte |
---|
465 | #endif // DEVEL_RALF |
---|
466 | #endif // DEBUG |
---|
467 | |
---|
468 | |
---|
469 | static GB_ERROR tree_write_byte(GBDATA *gb_tree, AP_tree *node, short i, const char *key, int init) { |
---|
470 | GBDATA *gbd; |
---|
471 | GB_ERROR error = NULp; |
---|
472 | if (i==init) { |
---|
473 | if (node->gb_node) { |
---|
474 | gbd = GB_entry(node->gb_node, key); |
---|
475 | if (gbd) { |
---|
476 | #if defined(DEBUG_tree_write_byte) |
---|
477 | printf("[tree_write_byte] deleting db entry %p\n", gbd); |
---|
478 | #endif // DEBUG_tree_write_byte |
---|
479 | GB_delete(gbd); |
---|
480 | } |
---|
481 | } |
---|
482 | } |
---|
483 | else { |
---|
484 | if (!node->gb_node) { |
---|
485 | node->gb_node = GB_create_container(gb_tree, "node"); |
---|
486 | #if defined(DEBUG_tree_write_byte) |
---|
487 | printf("[tree_write_byte] created node-container %p\n", node->gb_node); |
---|
488 | #endif // DEBUG_tree_write_byte |
---|
489 | } |
---|
490 | gbd = GB_entry(node->gb_node, key); |
---|
491 | if (!gbd) { |
---|
492 | gbd = GB_create(node->gb_node, key, GB_BYTE); |
---|
493 | #if defined(DEBUG_tree_write_byte) |
---|
494 | printf("[tree_write_byte] created db entry %p\n", gbd); |
---|
495 | #endif // DEBUG_tree_write_byte |
---|
496 | } |
---|
497 | error = GB_write_byte(gbd, i); |
---|
498 | } |
---|
499 | return error; |
---|
500 | } |
---|
501 | |
---|
502 | static GB_ERROR tree_write_float(GBDATA *gb_tree, AP_tree *node, float f, const char *key, float init) { |
---|
503 | GB_ERROR error = NULp; |
---|
504 | if (f==init) { |
---|
505 | if (node->gb_node) { |
---|
506 | GBDATA *gbd = GB_entry(node->gb_node, key); |
---|
507 | if (gbd) error = GB_delete(gbd); |
---|
508 | } |
---|
509 | } |
---|
510 | else { |
---|
511 | if (!node->gb_node) { |
---|
512 | node->gb_node = GB_create_container(gb_tree, "node"); |
---|
513 | if (!node->gb_node) error = GB_await_error(); |
---|
514 | } |
---|
515 | if (!error) error = GBT_write_float(node->gb_node, key, f); |
---|
516 | } |
---|
517 | return error; |
---|
518 | } |
---|
519 | |
---|
520 | GB_ERROR AP_tree::tree_write_tree_rek(GBDATA *gb_tree) { |
---|
521 | GB_ERROR error = NULp; |
---|
522 | if (!is_leaf()) { |
---|
523 | error = get_leftson()->tree_write_tree_rek(gb_tree); |
---|
524 | if (!error) error = get_rightson()->tree_write_tree_rek(gb_tree); |
---|
525 | |
---|
526 | if (!error) error = tree_write_float(gb_tree, this, gr.spread, "spread", 1.0); |
---|
527 | if (!error) error = tree_write_float(gb_tree, this, gr.left_angle, "left_angle", 0.0); |
---|
528 | if (!error) error = tree_write_float(gb_tree, this, gr.right_angle, "right_angle", 0.0); |
---|
529 | if (!error) error = tree_write_byte (gb_tree, this, gr.left_linewidth, "left_linewidth", 0); |
---|
530 | if (!error) error = tree_write_byte (gb_tree, this, gr.right_linewidth, "right_linewidth", 0); |
---|
531 | if (!error) error = tree_write_byte (gb_tree, this, gr.grouped, "grouped", 0); |
---|
532 | } |
---|
533 | return error; |
---|
534 | } |
---|
535 | |
---|
536 | GB_ERROR AP_tree_root::saveToDB() { |
---|
537 | GB_ERROR error = GB_push_transaction(get_gb_main()); |
---|
538 | if (get_gb_tree()) { |
---|
539 | error = get_root_node()->tree_write_tree_rek(get_gb_tree()); |
---|
540 | } |
---|
541 | else { |
---|
542 | ap_assert(!gb_tree_gone); // should have been handled by caller (e.g. in AWT_graphic_tree::save) |
---|
543 | } |
---|
544 | if (!error) { |
---|
545 | if (!get_gb_tree() && gone_tree_name) { // tree was deleted before |
---|
546 | GBDATA *gb_tree_exists = GBT_find_tree(get_gb_main(), gone_tree_name); |
---|
547 | if (gb_tree_exists) { |
---|
548 | error = "tree already exists"; |
---|
549 | } |
---|
550 | else { |
---|
551 | error = GBT_write_tree(get_gb_main(), gone_tree_name, get_root_node()); |
---|
552 | if (!error) { |
---|
553 | gb_tree_exists = GBT_find_tree(get_gb_main(), gone_tree_name); |
---|
554 | ap_assert(gb_tree_exists); |
---|
555 | if (gb_tree_exists) { |
---|
556 | set_gb_tree_and_name(GBT_find_tree(get_gb_main(), gone_tree_name), gone_tree_name); |
---|
557 | aw_message(GBS_global_string("Recreated previously deleted '%s'", gone_tree_name)); |
---|
558 | freenull(gone_tree_name); |
---|
559 | } |
---|
560 | } |
---|
561 | } |
---|
562 | |
---|
563 | if (error) aw_message(GBS_global_string("Failed to recreate '%s' (Reason: %s)", gone_tree_name, error)); |
---|
564 | } |
---|
565 | |
---|
566 | if (!error) error = ARB_seqtree_root::saveToDB(); |
---|
567 | } |
---|
568 | if (!error) update_timers(); |
---|
569 | |
---|
570 | return GB_end_transaction(get_gb_main(), error); |
---|
571 | } |
---|
572 | |
---|
573 | inline GBDATA *find_group_name_entry(TreeNode *node) { return node->has_group_info() ? GB_entry(node->gb_node, "group_name") : NULp; } |
---|
574 | |
---|
575 | inline void TreeNode::swap_node_info(TreeNode *other, bool ofKeeledGroups) { |
---|
576 | if (ofKeeledGroups) { |
---|
577 | // member 'inverseLeft' cannot be handled correctly w/o knowing son nodes |
---|
578 | get_father()->swap_node_info(other->get_father(), false); |
---|
579 | fixKeeledOrientation(); |
---|
580 | other->fixKeeledOrientation(); |
---|
581 | } |
---|
582 | else if (this == other) { |
---|
583 | gb_assert(keeledOver && other->keeledOver); |
---|
584 | inverseLeft = !inverseLeft; |
---|
585 | } |
---|
586 | else { |
---|
587 | std::swap(name, other->name); |
---|
588 | std::swap(gb_node, other->gb_node); |
---|
589 | std::swap(keeledOver, other->keeledOver); |
---|
590 | } |
---|
591 | } |
---|
592 | |
---|
593 | GB_ERROR AP_tree::swap_group_with(AP_tree *dest, bool swapKeeled) { |
---|
594 | GB_ERROR error = NULp; |
---|
595 | if (swapKeeled) { |
---|
596 | ap_assert(!is_leaf() && is_keeled_group()); |
---|
597 | |
---|
598 | AP_tree *parent = get_father(); |
---|
599 | AP_tree *dest_parent = dest->get_father(); |
---|
600 | |
---|
601 | if (parent != dest_parent && dest_parent->has_group_info() && dest_parent->keelTarget() != dest ) { |
---|
602 | error = GBS_global_string("cannot move group '%s' (would create partial overlap with '%s')", parent->name, dest_parent->name); |
---|
603 | } |
---|
604 | if (!error && dest_parent->is_root_node()) { |
---|
605 | error = "invalid move of keeled group to tree-root"; |
---|
606 | } |
---|
607 | if (!error) { |
---|
608 | swap_node_info(dest, true); |
---|
609 | parent->load_node_info(); |
---|
610 | dest_parent->load_node_info(); |
---|
611 | } |
---|
612 | } |
---|
613 | else { |
---|
614 | ap_assert(!is_leaf() && is_normal_group()); |
---|
615 | if (dest->has_group_info() && !dest->is_normal_group()) { |
---|
616 | error = GBS_global_string("cannot move group '%s' (would create partial overlap with '%s')", name, dest->name); |
---|
617 | } |
---|
618 | if (!error) { |
---|
619 | swap_node_info(dest, false); |
---|
620 | load_node_info(); |
---|
621 | dest->load_node_info(); |
---|
622 | } |
---|
623 | } |
---|
624 | return error; |
---|
625 | } |
---|
626 | |
---|
627 | GB_ERROR AP_tree::move_group_to(AP_tree *dest) { |
---|
628 | GB_ERROR error = NULp; |
---|
629 | |
---|
630 | bool src_normal = !is_leaf() && is_normal_group(); |
---|
631 | bool src_keeled = !is_leaf() && is_keeled_group(); |
---|
632 | |
---|
633 | if (!src_normal && !src_keeled) { |
---|
634 | error = "Please select a valid source group"; |
---|
635 | } |
---|
636 | else { |
---|
637 | if (dest->is_leaf()) { |
---|
638 | error = GBS_global_string("'%s' is no valid destination for a group", dest->name); |
---|
639 | } |
---|
640 | else { |
---|
641 | if (src_keeled) { |
---|
642 | error = swap_group_with(dest, true); |
---|
643 | if (error && src_normal) { |
---|
644 | GB_ERROR error1 = error; |
---|
645 | error = swap_group_with(dest, false); |
---|
646 | if (error) error = GBS_global_string("Neighter keeled nor normal group can be moved that way:\n%s\n%s", error1, error); |
---|
647 | } |
---|
648 | } |
---|
649 | else { |
---|
650 | error = swap_group_with(dest, false); |
---|
651 | } |
---|
652 | |
---|
653 | if (!error) { |
---|
654 | GBDATA *gb_retax = NULp; |
---|
655 | |
---|
656 | if (!gb_retax && src_normal) gb_retax = find_group_name_entry(dest); |
---|
657 | if (!gb_retax && src_keeled) gb_retax = find_group_name_entry(dest->get_father()); |
---|
658 | if (!gb_retax) gb_retax = find_group_name_entry(this); |
---|
659 | if (!gb_retax) gb_retax = find_group_name_entry(get_father()); |
---|
660 | |
---|
661 | if (gb_retax) GB_touch(gb_retax); // force taxonomy reload |
---|
662 | ap_assert(gb_retax); // should normally always find at least one name |
---|
663 | } |
---|
664 | } |
---|
665 | } |
---|
666 | return error; |
---|
667 | } |
---|
668 | |
---|
669 | #if defined(ASSERTION_USED) || defined(UNIT_TESTS) |
---|
670 | bool AP_tree::has_correct_mark_flags() const { |
---|
671 | if (is_leaf()) return true; |
---|
672 | if (!get_leftson() ->has_correct_mark_flags()) return false; |
---|
673 | if (!get_rightson()->has_correct_mark_flags()) return false; |
---|
674 | |
---|
675 | const AP_tree_members& left = get_leftson()->gr; |
---|
676 | const AP_tree_members& right = get_rightson()->gr; |
---|
677 | |
---|
678 | unsigned wanted_mark_sum = left.mark_sum + right.mark_sum; |
---|
679 | return gr.mark_sum == wanted_mark_sum; |
---|
680 | } |
---|
681 | #endif |
---|
682 | |
---|
683 | class AP_DefaultTreeShader: public AP_TreeShader { |
---|
684 | // default tree shader (as used by unit-tests and ARB_PARSIMONY) |
---|
685 | |
---|
686 | static void default_shader_never_shades() { ap_assert(0); } |
---|
687 | public: |
---|
688 | AP_DefaultTreeShader() {} |
---|
689 | void init() OVERRIDE {} |
---|
690 | void update_settings() OVERRIDE { |
---|
691 | colorize_marked = true; |
---|
692 | colorize_groups = AW_color_groups_active(); |
---|
693 | shade_species = false; |
---|
694 | } |
---|
695 | |
---|
696 | ShadedValue calc_shaded_leaf_GC(GBDATA */*gb_node*/) const OVERRIDE { default_shader_never_shades(); return NULp; } |
---|
697 | ShadedValue calc_shaded_inner_GC(const ShadedValue& /*left*/, float /*left_ratio*/, const ShadedValue& /*right*/) const OVERRIDE { default_shader_never_shades(); return NULp; } |
---|
698 | int to_GC(const ShadedValue& /*val*/) const OVERRIDE { default_shader_never_shades(); return -1; } |
---|
699 | }; |
---|
700 | |
---|
701 | |
---|
702 | AP_TreeShader *AP_tree::shader = new AP_DefaultTreeShader; |
---|
703 | |
---|
704 | void AP_tree::set_tree_shader(AP_TreeShader *new_shader) { |
---|
705 | delete shader; |
---|
706 | shader = new_shader; |
---|
707 | shader->init(); |
---|
708 | } |
---|
709 | |
---|
710 | inline void AP_tree::recalc_hidden() { |
---|
711 | // gr.hidden of father needs to be up-to-date! |
---|
712 | gr.hidden = get_father() && (get_father()->gr.hidden || get_father()->gr.grouped); |
---|
713 | } |
---|
714 | |
---|
715 | inline void AP_tree::recalc_view_sum(const group_scaling& gscaling) { |
---|
716 | // childs need to be up-to-date |
---|
717 | // gr.leaf_sum needs to be up-to-date |
---|
718 | |
---|
719 | ap_assert(!is_leaf()); |
---|
720 | |
---|
721 | if (is_folded_group()) { |
---|
722 | ap_assert(gscaling.has_been_set()); |
---|
723 | |
---|
724 | const unsigned MIN_GROUP_SIZE = 2U; |
---|
725 | unsigned squared_size = unsigned(pow(double(gr.leaf_sum), gscaling.pow) * gscaling.linear); |
---|
726 | |
---|
727 | gr.view_sum = std::max(squared_size, MIN_GROUP_SIZE); |
---|
728 | gr.view_sum = std::min(gr.leaf_sum, gr.view_sum); // folded group will never use more space than unfolded |
---|
729 | } |
---|
730 | else { |
---|
731 | gr.view_sum = get_leftson()->gr.view_sum + get_rightson()->gr.view_sum; |
---|
732 | } |
---|
733 | } |
---|
734 | |
---|
735 | GB_ERROR AP_tree::update_and_write_folding(GBDATA *gb_tree, const group_scaling& gscaling) { |
---|
736 | // Warning: only use if you know what you are doing! |
---|
737 | // |
---|
738 | // recalculates gr.hidden and gr.view_sum (after gr.grouped was modified) |
---|
739 | // writes changed gr.grouped to database |
---|
740 | |
---|
741 | GB_ERROR error = NULp; |
---|
742 | recalc_hidden(); |
---|
743 | if (!is_leaf()) { |
---|
744 | error = get_leftson()->update_and_write_folding(gb_tree, gscaling); |
---|
745 | if (!error) error = get_rightson()->update_and_write_folding(gb_tree, gscaling); |
---|
746 | if (!error) { |
---|
747 | recalc_view_sum(gscaling); |
---|
748 | error = tree_write_byte(gb_tree, this, gr.grouped, "grouped", 0); |
---|
749 | } |
---|
750 | } |
---|
751 | return error; |
---|
752 | } |
---|
753 | |
---|
754 | void AP_tree::recompute_and_write_folding() { |
---|
755 | // Warning: only use if you know what you are doing! |
---|
756 | // |
---|
757 | // Usable only if: folding changed (but nothing else!) |
---|
758 | // Call with root-node of subtree for which folding shall be recalculated |
---|
759 | // (needs to be the root of ALL folding changes!). |
---|
760 | // Need to do resize afterwards. |
---|
761 | // |
---|
762 | // Note: gr.hidden is assumed to be correct for parent nodes! |
---|
763 | |
---|
764 | AP_tree_root *troot = get_tree_root(); |
---|
765 | GBDATA *gb_tree = troot->get_gb_tree(); |
---|
766 | const group_scaling *gscaling = troot->get_group_scaling(); |
---|
767 | |
---|
768 | ap_assert(gb_tree); |
---|
769 | ap_assert(gscaling); |
---|
770 | |
---|
771 | GB_ERROR error = update_and_write_folding(gb_tree, *gscaling); |
---|
772 | if (error) aw_message(GBS_global_string("Error in folding-update: %s", error)); |
---|
773 | |
---|
774 | // update view_sum of parent-nodes |
---|
775 | { |
---|
776 | AP_tree *fath = get_father(); |
---|
777 | while (fath) { |
---|
778 | fath->recalc_view_sum(*gscaling); |
---|
779 | fath = fath->get_father(); |
---|
780 | } |
---|
781 | } |
---|
782 | } |
---|
783 | |
---|
784 | |
---|
785 | template<> |
---|
786 | ShadedValue AP_tree::update_subtree_information(const group_scaling& gscaling) { |
---|
787 | ShadedValue val; |
---|
788 | recalc_hidden(); |
---|
789 | |
---|
790 | if (is_leaf()) { |
---|
791 | gr.view_sum = 1; |
---|
792 | gr.leaf_sum = 1; |
---|
793 | |
---|
794 | gr.max_tree_depth = 0.0; |
---|
795 | gr.min_tree_depth = 0.0; |
---|
796 | |
---|
797 | bool is_marked = gb_node && GB_read_flag(gb_node); |
---|
798 | |
---|
799 | gr.mark_sum = int(is_marked); |
---|
800 | |
---|
801 | gr.gc = shader->calc_leaf_GC(gb_node, is_marked); |
---|
802 | if (shader->does_shade()) { |
---|
803 | val = shader->calc_shaded_leaf_GC(gb_node); |
---|
804 | if (gr.gc == AWT_GC_NONE_MARKED) { |
---|
805 | gr.gc = shader->to_GC(val); |
---|
806 | } |
---|
807 | } |
---|
808 | } |
---|
809 | else { |
---|
810 | ShadedValue leftVal = get_leftson()->update_subtree_information<ShadedValue>(gscaling); |
---|
811 | ShadedValue rightVal = get_rightson()->update_subtree_information<ShadedValue>(gscaling); |
---|
812 | |
---|
813 | { |
---|
814 | AP_tree_members& left = get_leftson()->gr; |
---|
815 | AP_tree_members& right = get_rightson()->gr; |
---|
816 | |
---|
817 | gr.leaf_sum = left.leaf_sum + right.leaf_sum; |
---|
818 | |
---|
819 | recalc_view_sum(gscaling); |
---|
820 | |
---|
821 | gr.min_tree_depth = std::min(leftlen+left.min_tree_depth, rightlen+right.min_tree_depth); |
---|
822 | gr.max_tree_depth = std::max(leftlen+left.max_tree_depth, rightlen+right.max_tree_depth); |
---|
823 | |
---|
824 | gr.mark_sum = left.mark_sum + right.mark_sum; |
---|
825 | |
---|
826 | gr.gc = shader->calc_inner_GC(left.gc, right.gc); |
---|
827 | if (shader->does_shade()) { |
---|
828 | float left_weight = left.leaf_sum / float(gr.leaf_sum); |
---|
829 | val = shader->calc_shaded_inner_GC(leftVal, left_weight, rightVal); |
---|
830 | if (gr.gc == AWT_GC_NONE_MARKED) { |
---|
831 | gr.gc = shader->to_GC(val); |
---|
832 | } |
---|
833 | } |
---|
834 | } |
---|
835 | } |
---|
836 | ap_assert(implicated(shader->does_shade(), val.isSet())); // expect we have shaded value (if shading is performed) |
---|
837 | return val; |
---|
838 | } |
---|
839 | |
---|
840 | unsigned AP_tree::count_leafs() const { |
---|
841 | return is_leaf() |
---|
842 | ? 1 |
---|
843 | : get_leftson()->count_leafs() + get_rightson()->count_leafs(); |
---|
844 | } |
---|
845 | |
---|
846 | int AP_tree::colorize(GB_HASH *hashptr) { // currently only used for multiprobes |
---|
847 | // colorizes the tree according to 'hashptr' |
---|
848 | // hashkey = species id |
---|
849 | // hashvalue = gc |
---|
850 | |
---|
851 | int res; |
---|
852 | if (is_leaf()) { |
---|
853 | if (gb_node) { |
---|
854 | res = GBS_read_hash(hashptr, name); |
---|
855 | if (!res && GB_read_flag(gb_node)) { // marked but not in hash -> black |
---|
856 | res = AWT_GC_BLACK; |
---|
857 | } |
---|
858 | } |
---|
859 | else { |
---|
860 | res = AWT_GC_ONLY_ZOMBIES; |
---|
861 | } |
---|
862 | } |
---|
863 | else { |
---|
864 | int l = get_leftson()->colorize(hashptr); |
---|
865 | int r = get_rightson()->colorize(hashptr); |
---|
866 | |
---|
867 | if (l == r) res = l; |
---|
868 | else if (l == AWT_GC_ONLY_ZOMBIES) res = r; |
---|
869 | else if (r == AWT_GC_ONLY_ZOMBIES) res = l; |
---|
870 | else res = AWT_GC_SOME_MARKED; |
---|
871 | } |
---|
872 | gr.gc = res; |
---|
873 | return res; |
---|
874 | } |
---|
875 | |
---|
876 | void AP_tree::compute_tree() { |
---|
877 | #if defined(DEVEL_RALF) && 0 |
---|
878 | fputs(" - AP_tree::compute_tree() called\n", stderr); |
---|
879 | #endif |
---|
880 | AP_tree_root *troot = get_tree_root(); |
---|
881 | const group_scaling *gscaling = troot->get_group_scaling(); |
---|
882 | ap_assert(gscaling && gscaling->has_been_set()); |
---|
883 | |
---|
884 | { |
---|
885 | GB_transaction ta(troot->get_gb_main()); |
---|
886 | shader->update_settings(); |
---|
887 | update_subtree_information<ShadedValue>(*gscaling); |
---|
888 | } |
---|
889 | } |
---|
890 | |
---|
891 | GB_ERROR AP_tree_root::loadFromDB(const char *name) { |
---|
892 | GB_ERROR error = ARB_seqtree_root::loadFromDB(name); |
---|
893 | if (!error) { |
---|
894 | get_root_node()->load_subtree_info(); |
---|
895 | } |
---|
896 | update_timers(); // maybe after link() ? // @@@ really do if error? |
---|
897 | return error; |
---|
898 | } |
---|
899 | |
---|
900 | GB_ERROR AP_tree::relink() { |
---|
901 | GB_transaction ta(get_tree_root()->get_gb_main()); // open close a transaction |
---|
902 | GB_ERROR error = GBT_link_tree(this, get_tree_root()->get_gb_main(), false, NULp, NULp); // no status |
---|
903 | get_tree_root()->update_timers(); |
---|
904 | return error; |
---|
905 | } |
---|
906 | |
---|
907 | AP_UPDATE_FLAGS AP_tree_root::check_update() { |
---|
908 | GBDATA *gb_main = get_gb_main(); |
---|
909 | if (!gb_main) { |
---|
910 | return AP_UPDATE_RELOADED; |
---|
911 | } |
---|
912 | else { |
---|
913 | GB_transaction ta(gb_main); |
---|
914 | |
---|
915 | if (is_tree_updated()) return AP_UPDATE_RELOADED; |
---|
916 | if (is_species_updated()) return AP_UPDATE_RELINKED; |
---|
917 | return AP_UPDATE_OK; |
---|
918 | } |
---|
919 | } |
---|
920 | |
---|
921 | void AP_tree::buildLeafList_rek(AP_tree **list, long& num) { |
---|
922 | // builds a list of all species |
---|
923 | if (!is_leaf()) { |
---|
924 | get_leftson()->buildLeafList_rek(list, num); |
---|
925 | get_rightson()->buildLeafList_rek(list, num); |
---|
926 | } |
---|
927 | else { |
---|
928 | list[num] = this; |
---|
929 | num++; |
---|
930 | } |
---|
931 | } |
---|
932 | |
---|
933 | void AP_tree::buildLeafList(AP_tree **&list, long &num) { |
---|
934 | num = count_leafs(); |
---|
935 | list = new AP_tree *[num+1]; |
---|
936 | list[num] = NULp; |
---|
937 | long count = 0; |
---|
938 | |
---|
939 | buildLeafList_rek(list, count); |
---|
940 | |
---|
941 | ap_assert(count == num); |
---|
942 | } |
---|
943 | |
---|
944 | long AP_tree_root::remove_leafs(AWT_RemoveType awt_remove_type) { |
---|
945 | // may remove the complete tree |
---|
946 | |
---|
947 | ASSERT_VALID_TREE(get_root_node()); |
---|
948 | |
---|
949 | AP_tree **list; |
---|
950 | long count; |
---|
951 | get_root_node()->buildLeafList(list, count); |
---|
952 | |
---|
953 | GB_transaction ta(get_gb_main()); |
---|
954 | long removed = 0; |
---|
955 | |
---|
956 | for (long i=0; i<count; i++) { |
---|
957 | bool removeNode = false; |
---|
958 | AP_tree *leaf = list[i]; |
---|
959 | |
---|
960 | if (leaf->gb_node) { |
---|
961 | if ((awt_remove_type & AWT_REMOVE_NO_SEQUENCE) && !leaf->get_seq()) { |
---|
962 | removeNode = true; |
---|
963 | } |
---|
964 | else if (awt_remove_type & (AWT_REMOVE_MARKED|AWT_REMOVE_UNMARKED)) { |
---|
965 | long flag = GB_read_flag(list[i]->gb_node); |
---|
966 | removeNode = (flag && (awt_remove_type&AWT_REMOVE_MARKED)) || (!flag && (awt_remove_type&AWT_REMOVE_UNMARKED)); |
---|
967 | } |
---|
968 | } |
---|
969 | else { |
---|
970 | if (awt_remove_type & AWT_REMOVE_ZOMBIES) { |
---|
971 | removeNode = true; |
---|
972 | } |
---|
973 | } |
---|
974 | |
---|
975 | if (removeNode) { |
---|
976 | destroyNode(list[i]->REMOVE()); |
---|
977 | removed++; |
---|
978 | if (!get_root_node()) { |
---|
979 | break; // tree has been deleted |
---|
980 | } |
---|
981 | } |
---|
982 | ASSERT_VALID_TREE(get_root_node()); |
---|
983 | } |
---|
984 | delete [] list; |
---|
985 | |
---|
986 | ASSERT_VALID_TREE_OR_NULL(get_root_node()); |
---|
987 | return removed; |
---|
988 | } |
---|
989 | |
---|
990 | // -------------------------------------------------------------------------------- |
---|
991 | |
---|
992 | template <typename T> |
---|
993 | class ValueCounter { |
---|
994 | T min, max, sum; |
---|
995 | int count; |
---|
996 | |
---|
997 | char *mean_min_max_impl() const; |
---|
998 | char *mean_min_max_percent_impl() const; |
---|
999 | |
---|
1000 | mutable char *buf; |
---|
1001 | const char *set_buf(char *content) const { freeset(buf, content); return buf; } |
---|
1002 | |
---|
1003 | public: |
---|
1004 | ValueCounter() |
---|
1005 | : min(INT_MAX), |
---|
1006 | max(INT_MIN), |
---|
1007 | sum(0), |
---|
1008 | count(0), |
---|
1009 | buf(NULp) |
---|
1010 | {} |
---|
1011 | ValueCounter(const ValueCounter<T>& other) |
---|
1012 | : min(other.min), |
---|
1013 | max(other.max), |
---|
1014 | sum(other.sum), |
---|
1015 | count(other.count), |
---|
1016 | buf(NULp) |
---|
1017 | {} |
---|
1018 | ~ValueCounter() { free(buf); } |
---|
1019 | |
---|
1020 | DECLARE_ASSIGNMENT_OPERATOR(ValueCounter<T>); |
---|
1021 | |
---|
1022 | void count_value(T val) { |
---|
1023 | count++; |
---|
1024 | min = std::min(min, val); |
---|
1025 | max = std::max(max, val); |
---|
1026 | sum += val; |
---|
1027 | } |
---|
1028 | |
---|
1029 | int get_count() const { return count; } |
---|
1030 | T get_min() const { return min; } |
---|
1031 | T get_max() const { return max; } |
---|
1032 | double get_mean() const { return sum/double(count); } |
---|
1033 | |
---|
1034 | const char *mean_min_max() const { return count ? set_buf(mean_min_max_impl()) : "<not available>"; } |
---|
1035 | const char *mean_min_max_percent() const { return count ? set_buf(mean_min_max_percent_impl()) : "<not available>"; } |
---|
1036 | |
---|
1037 | ValueCounter<T>& operator += (const T& inc) { |
---|
1038 | min += inc; |
---|
1039 | max += inc; |
---|
1040 | sum += inc*count; |
---|
1041 | return *this; |
---|
1042 | } |
---|
1043 | ValueCounter<T>& operator += (const ValueCounter<T>& other) { |
---|
1044 | min = std::min(min, other.min); |
---|
1045 | max = std::max(max, other.max); |
---|
1046 | sum += other.sum; |
---|
1047 | count += other.count; |
---|
1048 | return *this; |
---|
1049 | } |
---|
1050 | }; |
---|
1051 | |
---|
1052 | template<typename T> |
---|
1053 | inline ValueCounter<T> operator+(const ValueCounter<T>& c1, const ValueCounter<T>& c2) { |
---|
1054 | return ValueCounter<T>(c1) += c2; |
---|
1055 | } |
---|
1056 | template<typename T> |
---|
1057 | inline ValueCounter<T> operator+(const ValueCounter<T>& c, const T& inc) { |
---|
1058 | return ValueCounter<T>(c) += inc; |
---|
1059 | } |
---|
1060 | |
---|
1061 | template<> char *ValueCounter<int>::mean_min_max_impl() const { |
---|
1062 | return GBS_global_string_copy("%.2f (range: %i .. %i)", get_mean(), get_min(), get_max()); |
---|
1063 | } |
---|
1064 | template<> char *ValueCounter<double>::mean_min_max_impl() const { |
---|
1065 | return GBS_global_string_copy("%.2f (range: %.2f .. %.2f)", get_mean(), get_min(), get_max()); |
---|
1066 | } |
---|
1067 | template<> char *ValueCounter<double>::mean_min_max_percent_impl() const { |
---|
1068 | return GBS_global_string_copy("%.2f%% (range: %.2f%% .. %.2f%%)", get_mean()*100.0, get_min()*100.0, get_max()*100.0); |
---|
1069 | } |
---|
1070 | |
---|
1071 | class LongBranchMarker { |
---|
1072 | double min_rel_diff; |
---|
1073 | double min_abs_diff; |
---|
1074 | |
---|
1075 | int leafs; |
---|
1076 | int nonzeroleafs; |
---|
1077 | int multifurcs; |
---|
1078 | |
---|
1079 | ValueCounter<double> absdiff; |
---|
1080 | ValueCounter<double> reldiff; |
---|
1081 | ValueCounter<double> absdiff_marked; |
---|
1082 | ValueCounter<double> reldiff_marked; |
---|
1083 | |
---|
1084 | double perform_marking(AP_tree *at, bool& marked) { |
---|
1085 | marked = false; |
---|
1086 | if (at->is_leaf()) { |
---|
1087 | if (at->get_branchlength() != 0.0) { |
---|
1088 | nonzeroleafs++; |
---|
1089 | } |
---|
1090 | leafs++; |
---|
1091 | return 0.0; |
---|
1092 | } |
---|
1093 | |
---|
1094 | if (!at->is_root_node()) { |
---|
1095 | if (at->get_branchlength() == 0.0) { // is multifurcation |
---|
1096 | if (!at->get_father()->is_root_node() || at->is_leftson()) { // do not count two multifurcs @ sons of root |
---|
1097 | multifurcs++; |
---|
1098 | } |
---|
1099 | } |
---|
1100 | } |
---|
1101 | |
---|
1102 | bool marked_left; |
---|
1103 | bool marked_right; |
---|
1104 | double max = perform_marking(at->get_leftson(), marked_left) + at->leftlen; |
---|
1105 | double min = perform_marking(at->get_rightson(), marked_right) + at->rightlen; |
---|
1106 | |
---|
1107 | bool max_is_left = true; |
---|
1108 | if (max<min) { |
---|
1109 | double h = max; max = min; min = h; |
---|
1110 | max_is_left = false; |
---|
1111 | } |
---|
1112 | |
---|
1113 | double abs_diff = max-min; |
---|
1114 | absdiff.count_value(abs_diff); |
---|
1115 | |
---|
1116 | double rel_diff = (max == 0.0) ? 0.0 : abs_diff/max; |
---|
1117 | reldiff.count_value(rel_diff); |
---|
1118 | |
---|
1119 | if (abs_diff>min_abs_diff && rel_diff>min_rel_diff) { |
---|
1120 | if (max_is_left) { |
---|
1121 | if (!marked_left) { |
---|
1122 | at->get_leftson()->mark_subtree(); |
---|
1123 | marked = true; |
---|
1124 | } |
---|
1125 | } |
---|
1126 | else { |
---|
1127 | if (!marked_right) { |
---|
1128 | at->get_rightson()->mark_subtree(); |
---|
1129 | marked = true; |
---|
1130 | } |
---|
1131 | } |
---|
1132 | } |
---|
1133 | |
---|
1134 | if (marked) { // just marked one of my subtrees |
---|
1135 | absdiff_marked.count_value(abs_diff); |
---|
1136 | reldiff_marked.count_value(rel_diff); |
---|
1137 | } |
---|
1138 | else { |
---|
1139 | marked = marked_left||marked_right; |
---|
1140 | } |
---|
1141 | |
---|
1142 | return min; // use minimal distance for whole subtree |
---|
1143 | } |
---|
1144 | |
---|
1145 | static char *meanDiffs(const ValueCounter<double>& abs, const ValueCounter<double>& rel) { |
---|
1146 | return GBS_global_string_copy( |
---|
1147 | "Mean absolute diff: %s\n" |
---|
1148 | "Mean relative diff: %s", |
---|
1149 | abs.mean_min_max(), |
---|
1150 | rel.mean_min_max_percent()); |
---|
1151 | } |
---|
1152 | |
---|
1153 | public: |
---|
1154 | LongBranchMarker(AP_tree *root, double min_rel_diff_, double min_abs_diff_) |
---|
1155 | : min_rel_diff(min_rel_diff_), |
---|
1156 | min_abs_diff(min_abs_diff_), |
---|
1157 | leafs(0), |
---|
1158 | nonzeroleafs(0), |
---|
1159 | multifurcs(0) |
---|
1160 | { |
---|
1161 | bool dummy; |
---|
1162 | perform_marking(root, dummy); |
---|
1163 | } |
---|
1164 | |
---|
1165 | const char *get_report() const { |
---|
1166 | char *diffs_all = meanDiffs(absdiff, reldiff); |
---|
1167 | char *diffs_marked = meanDiffs(absdiff_marked, reldiff_marked); |
---|
1168 | |
---|
1169 | int nodes = leafs_2_nodes(leafs, UNROOTED); |
---|
1170 | int edges = nodes_2_edges(nodes); |
---|
1171 | int zeroleafs = leafs-nonzeroleafs; |
---|
1172 | int zeroedges = multifurcs+zeroleafs; |
---|
1173 | int realedges = edges-zeroedges; |
---|
1174 | int furcs = nodes-leafs; // = inner nodes |
---|
1175 | int realfurcs = furcs-multifurcs; |
---|
1176 | |
---|
1177 | int node_digits = calc_digits(nodes); |
---|
1178 | |
---|
1179 | ap_assert(zeroleafs<=leafs); |
---|
1180 | ap_assert(zeroedges<=edges); |
---|
1181 | ap_assert(realedges<=edges); |
---|
1182 | ap_assert(multifurcs<=furcs); |
---|
1183 | ap_assert(realfurcs<=furcs); |
---|
1184 | |
---|
1185 | const char *msg = GBS_global_string( |
---|
1186 | "Unrooted tree contains %*i furcations,\n" |
---|
1187 | " of which %*i are multifurcations,\n" |
---|
1188 | " i.e. %*i are \"real\" furcations.\n" |
---|
1189 | "\n" |
---|
1190 | "Unrooted tree contains %*i edges,\n" |
---|
1191 | " of which %*i have a length > zero.\n" |
---|
1192 | "\n" |
---|
1193 | "%s\n" |
---|
1194 | "\n" |
---|
1195 | "%i subtrees have been marked:\n" |
---|
1196 | "%s\n" |
---|
1197 | "\n", |
---|
1198 | node_digits, furcs, |
---|
1199 | node_digits, multifurcs, |
---|
1200 | node_digits, realfurcs, |
---|
1201 | node_digits, edges, |
---|
1202 | node_digits, realedges, |
---|
1203 | diffs_all, |
---|
1204 | absdiff_marked.get_count(), |
---|
1205 | diffs_marked); |
---|
1206 | |
---|
1207 | free(diffs_all); |
---|
1208 | free(diffs_marked); |
---|
1209 | |
---|
1210 | return msg; |
---|
1211 | } |
---|
1212 | |
---|
1213 | double get_max_abs_diff() const { return absdiff.get_max(); } |
---|
1214 | }; |
---|
1215 | |
---|
1216 | struct DepthMarker { |
---|
1217 | // limits (marked if depth and dist are above) |
---|
1218 | int min_depth; |
---|
1219 | double min_rootdist; |
---|
1220 | |
---|
1221 | // current values (for recursion) |
---|
1222 | int depth; |
---|
1223 | double dist; |
---|
1224 | |
---|
1225 | // results |
---|
1226 | ValueCounter<int> depths, depths_marked; |
---|
1227 | ValueCounter<double> distances, distances_marked; |
---|
1228 | |
---|
1229 | void perform_marking(AP_tree *at, AP_FLOAT atLen) { |
---|
1230 | int depthInc = atLen == 0.0 ? 0 : 1; // do NOT increase depth at multifurcations |
---|
1231 | |
---|
1232 | depth += depthInc; |
---|
1233 | dist += atLen; |
---|
1234 | |
---|
1235 | if (at->is_leaf()) { |
---|
1236 | depths.count_value(depth); |
---|
1237 | distances.count_value(dist); |
---|
1238 | |
---|
1239 | int mark = depth >= min_depth && dist >= min_rootdist; |
---|
1240 | if (at->gb_node) { |
---|
1241 | GB_write_flag(at->gb_node, mark); |
---|
1242 | if (mark) { |
---|
1243 | depths_marked.count_value(depth); |
---|
1244 | distances_marked.count_value(dist); |
---|
1245 | } |
---|
1246 | } |
---|
1247 | } |
---|
1248 | else { |
---|
1249 | perform_marking(at->get_leftson(), at->leftlen); |
---|
1250 | perform_marking(at->get_rightson(), at->rightlen); |
---|
1251 | } |
---|
1252 | |
---|
1253 | depth -= depthInc; |
---|
1254 | dist -= atLen; |
---|
1255 | } |
---|
1256 | |
---|
1257 | public: |
---|
1258 | DepthMarker(AP_tree *root, int min_depth_, double min_rootdist_) |
---|
1259 | : min_depth(min_depth_), |
---|
1260 | min_rootdist(min_rootdist_), |
---|
1261 | depth(0), |
---|
1262 | dist(0.0) |
---|
1263 | { |
---|
1264 | perform_marking(root, 0.0); |
---|
1265 | } |
---|
1266 | |
---|
1267 | const char *get_report() const { |
---|
1268 | int leafs = depths.get_count(); |
---|
1269 | int marked = depths_marked.get_count(); |
---|
1270 | double balanced_depth = log10(leafs) / log10(2); |
---|
1271 | |
---|
1272 | const char *msg = GBS_global_string( |
---|
1273 | "The optimal mean depth of a tree with %i leafs\n" |
---|
1274 | " would be %.2f\n" |
---|
1275 | "\n" |
---|
1276 | "Your tree:\n" |
---|
1277 | "mean depth: %s\n" |
---|
1278 | "mean distance: %s\n" |
---|
1279 | "\n" |
---|
1280 | "%i species (%.2f%%) have been marked:\n" |
---|
1281 | "mean depth: %s\n" |
---|
1282 | "mean distance: %s\n" |
---|
1283 | , |
---|
1284 | leafs, |
---|
1285 | balanced_depth, |
---|
1286 | depths.mean_min_max(), |
---|
1287 | distances.mean_min_max(), |
---|
1288 | marked, marked/double(leafs)*100.0, |
---|
1289 | depths_marked.mean_min_max(), |
---|
1290 | distances_marked.mean_min_max() |
---|
1291 | ); |
---|
1292 | return msg; |
---|
1293 | } |
---|
1294 | |
---|
1295 | int get_max_depth() const { return depths.get_max(); } |
---|
1296 | double get_max_rootdist() const { return distances.get_max(); } |
---|
1297 | }; |
---|
1298 | |
---|
1299 | const char *AP_tree::mark_long_branches(double min_rel_diff, double min_abs_diff, double& found_max_abs_diff) { |
---|
1300 | // look for asymmetric parts of the tree and mark all species with long branches |
---|
1301 | LongBranchMarker lmarker(this, min_rel_diff, min_abs_diff); |
---|
1302 | found_max_abs_diff = lmarker.get_max_abs_diff(); |
---|
1303 | return lmarker.get_report(); |
---|
1304 | } |
---|
1305 | const char *AP_tree::mark_deep_leafs(int min_depth, double min_rootdist, int& found_max_depth, double& found_max_rootdist) { |
---|
1306 | // mark all leafs with min_depth and min_rootdist |
---|
1307 | DepthMarker dmarker(this, min_depth, min_rootdist); |
---|
1308 | found_max_depth = dmarker.get_max_depth(); |
---|
1309 | found_max_rootdist = dmarker.get_max_rootdist(); |
---|
1310 | return dmarker.get_report(); |
---|
1311 | } |
---|
1312 | |
---|
1313 | // -------------------------------------------------------------------------------- |
---|
1314 | |
---|
1315 | typedef ValueCounter<double> Distance; |
---|
1316 | |
---|
1317 | class DistanceCounter { |
---|
1318 | Distance min, max, mean; |
---|
1319 | public: |
---|
1320 | |
---|
1321 | void count_distance(const Distance& d) { |
---|
1322 | mean.count_value(d.get_mean()); |
---|
1323 | min.count_value(d.get_min()); |
---|
1324 | max.count_value(d.get_max()); |
---|
1325 | } |
---|
1326 | |
---|
1327 | int get_count() const { return mean.get_count(); } |
---|
1328 | |
---|
1329 | char *get_report() const { |
---|
1330 | return GBS_global_string_copy( |
---|
1331 | "Mean mean distance: %s\n" |
---|
1332 | "Mean min. distance: %s\n" |
---|
1333 | "Mean max. distance: %s", |
---|
1334 | mean.mean_min_max(), |
---|
1335 | min.mean_min_max(), |
---|
1336 | max.mean_min_max() |
---|
1337 | ); |
---|
1338 | } |
---|
1339 | }; |
---|
1340 | |
---|
1341 | class EdgeDistances { |
---|
1342 | typedef map<AP_tree*, Distance> DistanceMap; |
---|
1343 | |
---|
1344 | DistanceMap downdist; // inclusive length of branch itself |
---|
1345 | DistanceMap updist; // inclusive length of branch itself |
---|
1346 | |
---|
1347 | GBT_LEN distSum; // of all distances in tree |
---|
1348 | |
---|
1349 | arb_progress progress; |
---|
1350 | |
---|
1351 | const Distance& calc_downdist(AP_tree *at, AP_FLOAT len) { |
---|
1352 | if (at->is_leaf()) { |
---|
1353 | Distance d; |
---|
1354 | d.count_value(len); |
---|
1355 | downdist[at] = d; |
---|
1356 | |
---|
1357 | progress.inc(); |
---|
1358 | } |
---|
1359 | else { |
---|
1360 | downdist[at] = |
---|
1361 | calc_downdist(at->get_leftson(), at->leftlen) + |
---|
1362 | calc_downdist(at->get_rightson(), at->rightlen) + |
---|
1363 | len; |
---|
1364 | } |
---|
1365 | return downdist[at]; |
---|
1366 | } |
---|
1367 | |
---|
1368 | const Distance& calc_updist(AP_tree *at, AP_FLOAT len) { |
---|
1369 | ap_assert(at->father); // impossible - root has no updist! |
---|
1370 | |
---|
1371 | AP_tree *father = at->get_father(); |
---|
1372 | AP_tree *brother = at->get_brother(); |
---|
1373 | |
---|
1374 | if (father->father) { |
---|
1375 | ap_assert(updist.find(father) != updist.end()); |
---|
1376 | ap_assert(downdist.find(brother) != downdist.end()); |
---|
1377 | |
---|
1378 | updist[at] = updist[father] + downdist[brother] + len; |
---|
1379 | } |
---|
1380 | else { |
---|
1381 | ap_assert(downdist.find(brother) != downdist.end()); |
---|
1382 | |
---|
1383 | updist[at] = downdist[brother]+len; |
---|
1384 | } |
---|
1385 | |
---|
1386 | if (!at->is_leaf()) { |
---|
1387 | calc_updist(at->get_leftson(), at->leftlen); |
---|
1388 | calc_updist(at->get_rightson(), at->rightlen); |
---|
1389 | } |
---|
1390 | else { |
---|
1391 | progress.inc(); |
---|
1392 | } |
---|
1393 | |
---|
1394 | return updist[at]; |
---|
1395 | } |
---|
1396 | |
---|
1397 | DistanceCounter alldists, markeddists; |
---|
1398 | |
---|
1399 | void calc_distance_stats(AP_tree *at) { |
---|
1400 | if (at->is_leaf()) { |
---|
1401 | ap_assert(updist.find(at) != updist.end()); |
---|
1402 | |
---|
1403 | const Distance& upwards = updist[at]; |
---|
1404 | |
---|
1405 | alldists.count_distance(upwards); |
---|
1406 | if (at->gb_node && GB_read_flag(at->gb_node)) { |
---|
1407 | markeddists.count_distance(upwards); |
---|
1408 | } |
---|
1409 | |
---|
1410 | progress.inc(); |
---|
1411 | } |
---|
1412 | else { |
---|
1413 | calc_distance_stats(at->get_leftson()); |
---|
1414 | calc_distance_stats(at->get_rightson()); |
---|
1415 | } |
---|
1416 | } |
---|
1417 | |
---|
1418 | public: |
---|
1419 | |
---|
1420 | EdgeDistances(AP_tree *root) |
---|
1421 | : distSum(root->sum_child_lengths()), |
---|
1422 | progress("Analysing distances", root->count_leafs()*3L) |
---|
1423 | { |
---|
1424 | calc_downdist(root->get_leftson(), root->leftlen); |
---|
1425 | calc_downdist(root->get_rightson(), root->rightlen); |
---|
1426 | |
---|
1427 | calc_updist(root->get_leftson(), root->leftlen); |
---|
1428 | calc_updist(root->get_rightson(), root->rightlen); |
---|
1429 | |
---|
1430 | calc_distance_stats(root); |
---|
1431 | } |
---|
1432 | |
---|
1433 | const char *get_report() const { |
---|
1434 | char *alldists_report = alldists.get_report(); |
---|
1435 | char *markeddists_report = markeddists.get_report(); |
---|
1436 | |
---|
1437 | const char *msg = GBS_global_string( |
---|
1438 | "Overall in-tree-distance (ITD): %.3f\n" |
---|
1439 | " per-species-distance (PSD): %.6f\n" |
---|
1440 | "\n" |
---|
1441 | "Distance statistic for %i leafs:\n" |
---|
1442 | "(each leaf to all other leafs)\n" |
---|
1443 | "\n" |
---|
1444 | "%s\n" |
---|
1445 | "\n" |
---|
1446 | "Distance statistic for %i marked leafs:\n" |
---|
1447 | "\n" |
---|
1448 | "%s\n", |
---|
1449 | distSum, |
---|
1450 | distSum / alldists.get_count(), |
---|
1451 | alldists.get_count(), alldists_report, |
---|
1452 | markeddists.get_count(), markeddists_report); |
---|
1453 | |
---|
1454 | free(markeddists_report); |
---|
1455 | free(alldists_report); |
---|
1456 | |
---|
1457 | return msg; |
---|
1458 | } |
---|
1459 | }; |
---|
1460 | |
---|
1461 | const char *AP_tree::analyse_distances() { return EdgeDistances(this).get_report(); } |
---|
1462 | |
---|
1463 | // -------------------------------------------------------------------------------- |
---|
1464 | |
---|
1465 | static int ap_mark_degenerated(AP_tree *at, double degeneration_factor, double& max_degeneration) { |
---|
1466 | // returns number of species in subtree |
---|
1467 | |
---|
1468 | if (at->is_leaf()) return 1; |
---|
1469 | |
---|
1470 | int lSons = ap_mark_degenerated(at->get_leftson(), degeneration_factor, max_degeneration); |
---|
1471 | int rSons = ap_mark_degenerated(at->get_rightson(), degeneration_factor, max_degeneration); |
---|
1472 | |
---|
1473 | double this_degeneration = 0; |
---|
1474 | |
---|
1475 | if (lSons<rSons) { |
---|
1476 | this_degeneration = rSons/double(lSons); |
---|
1477 | if (this_degeneration >= degeneration_factor) { |
---|
1478 | at->get_leftson()->mark_subtree(); |
---|
1479 | } |
---|
1480 | |
---|
1481 | } |
---|
1482 | else if (rSons<lSons) { |
---|
1483 | this_degeneration = lSons/double(rSons); |
---|
1484 | if (this_degeneration >= degeneration_factor) { |
---|
1485 | at->get_rightson()->mark_subtree(); |
---|
1486 | } |
---|
1487 | } |
---|
1488 | |
---|
1489 | if (this_degeneration >= max_degeneration) { |
---|
1490 | max_degeneration = this_degeneration; |
---|
1491 | } |
---|
1492 | |
---|
1493 | return lSons+rSons; |
---|
1494 | } |
---|
1495 | |
---|
1496 | double AP_tree::mark_degenerated_branches(double degeneration_factor) { |
---|
1497 | // marks all species in degenerated branches. |
---|
1498 | // For all nodes, where one branch contains 'degeneration_factor' more species than the |
---|
1499 | // other branch, the smaller branch is considered degenerated. |
---|
1500 | |
---|
1501 | double max_degeneration = 0; |
---|
1502 | ap_mark_degenerated(this, degeneration_factor, max_degeneration); |
---|
1503 | return max_degeneration; |
---|
1504 | } |
---|
1505 | |
---|
1506 | static int ap_mark_duplicates_rek(AP_tree *at, GB_HASH *seen_species) { |
---|
1507 | if (at->is_leaf()) { |
---|
1508 | if (at->name) { |
---|
1509 | if (GBS_read_hash(seen_species, at->name)) { // already seen -> mark species |
---|
1510 | if (at->gb_node) { |
---|
1511 | GB_write_flag(at->gb_node, 1); |
---|
1512 | } |
---|
1513 | else { // duplicated zombie |
---|
1514 | return 1; |
---|
1515 | } |
---|
1516 | } |
---|
1517 | else { // first occurrence |
---|
1518 | GBS_write_hash(seen_species, at->name, 1); |
---|
1519 | } |
---|
1520 | } |
---|
1521 | } |
---|
1522 | else { |
---|
1523 | return |
---|
1524 | ap_mark_duplicates_rek(at->get_leftson(), seen_species) + |
---|
1525 | ap_mark_duplicates_rek(at->get_rightson(), seen_species); |
---|
1526 | } |
---|
1527 | return 0; |
---|
1528 | } |
---|
1529 | |
---|
1530 | void AP_tree::mark_duplicates() { |
---|
1531 | GB_HASH *seen_species = GBS_create_hash(gr.leaf_sum, GB_IGNORE_CASE); |
---|
1532 | |
---|
1533 | int dup_zombies = ap_mark_duplicates_rek(this, seen_species); |
---|
1534 | if (dup_zombies) { |
---|
1535 | aw_message(GBS_global_string("Warning: Detected %i duplicated zombies (can't mark them)", dup_zombies)); |
---|
1536 | } |
---|
1537 | GBS_free_hash(seen_species); |
---|
1538 | } |
---|
1539 | |
---|
1540 | static double ap_just_tree_rek(AP_tree *at) { |
---|
1541 | if (at->is_leaf()) { |
---|
1542 | return 0.0; |
---|
1543 | } |
---|
1544 | else { |
---|
1545 | double bl = ap_just_tree_rek(at->get_leftson()); |
---|
1546 | double br = ap_just_tree_rek(at->get_rightson()); |
---|
1547 | |
---|
1548 | double l = at->leftlen + at->rightlen; |
---|
1549 | double diff = fabs(bl - br); |
---|
1550 | if (l < diff * 1.1) l = diff * 1.1; |
---|
1551 | double go = (bl + br + l) * .5; |
---|
1552 | at->leftlen = go - bl; |
---|
1553 | at->rightlen = go - br; |
---|
1554 | return go; |
---|
1555 | } |
---|
1556 | } |
---|
1557 | |
---|
1558 | |
---|
1559 | void AP_tree::justify_branch_lenghs(GBDATA *gb_main) { |
---|
1560 | // shift branches to create a symmetric looking tree |
---|
1561 | GB_transaction ta(gb_main); |
---|
1562 | ap_just_tree_rek(this); |
---|
1563 | } |
---|
1564 | |
---|
1565 | static void relink_tree_rek(AP_tree *node, void (*relinker)(GBDATA *&ref_gb_node, char *&ref_name, GB_HASH *organism_hash), GB_HASH *organism_hash) { |
---|
1566 | if (node->is_leaf()) { |
---|
1567 | relinker(node->gb_node, node->name, organism_hash); |
---|
1568 | } |
---|
1569 | else { |
---|
1570 | relink_tree_rek(node->get_leftson(), relinker, organism_hash); |
---|
1571 | relink_tree_rek(node->get_rightson(), relinker, organism_hash); |
---|
1572 | } |
---|
1573 | } |
---|
1574 | |
---|
1575 | void AP_tree::relink_tree(GBDATA *gb_main, void (*relinker)(GBDATA *&ref_gb_node, char *&ref_name, GB_HASH *organism_hash), GB_HASH *organism_hash) { |
---|
1576 | // relinks the tree using a relinker-function |
---|
1577 | // every node in tree is passed to relinker, relinker might modify |
---|
1578 | // these values (ref_gb_node and ref_name) and the modified values are written back into tree |
---|
1579 | |
---|
1580 | GB_transaction ta(gb_main); |
---|
1581 | relink_tree_rek(this, relinker, organism_hash); |
---|
1582 | } |
---|
1583 | |
---|
1584 | |
---|
1585 | void AP_tree::reset_child_angles() { |
---|
1586 | if (!is_leaf()) { |
---|
1587 | gr.reset_both_child_angles(); |
---|
1588 | get_leftson()->reset_child_angles(); |
---|
1589 | get_rightson()->reset_child_angles(); |
---|
1590 | } |
---|
1591 | } |
---|
1592 | |
---|
1593 | void AP_tree::reset_child_linewidths() { |
---|
1594 | if (!is_leaf()) { |
---|
1595 | gr.reset_both_child_linewidths(); |
---|
1596 | get_leftson()->reset_child_linewidths(); |
---|
1597 | get_rightson()->reset_child_linewidths(); |
---|
1598 | } |
---|
1599 | } |
---|
1600 | |
---|
1601 | void AP_tree::set_linewidth_recursive(int width) { |
---|
1602 | set_linewidth(width); |
---|
1603 | if (!is_leaf()) { |
---|
1604 | get_leftson()->set_linewidth_recursive(width); |
---|
1605 | get_rightson()->set_linewidth_recursive(width); |
---|
1606 | } |
---|
1607 | } |
---|
1608 | |
---|
1609 | void AP_tree::reset_child_layout() { |
---|
1610 | if (!is_leaf()) { |
---|
1611 | gr.reset_child_spread(); |
---|
1612 | gr.reset_both_child_angles(); |
---|
1613 | gr.reset_both_child_linewidths(); |
---|
1614 | get_leftson()->reset_child_layout(); |
---|
1615 | get_rightson()->reset_child_layout(); |
---|
1616 | } |
---|
1617 | } |
---|
1618 | |
---|
1619 | void AP_tree::reset_subtree_spreads() { |
---|
1620 | gr.reset_child_spread(); |
---|
1621 | if (!is_leaf()) { |
---|
1622 | get_leftson()->reset_subtree_spreads(); |
---|
1623 | get_rightson()->reset_subtree_spreads(); |
---|
1624 | } |
---|
1625 | } |
---|
1626 | void AP_tree::reset_subtree_angles() { |
---|
1627 | reset_angle(); |
---|
1628 | if (!is_leaf()) reset_child_angles(); |
---|
1629 | } |
---|
1630 | void AP_tree::reset_subtree_linewidths() { |
---|
1631 | reset_linewidth(); |
---|
1632 | if (!is_leaf()) reset_child_linewidths(); |
---|
1633 | } |
---|
1634 | void AP_tree::reset_subtree_layout() { |
---|
1635 | reset_linewidth(); |
---|
1636 | reset_angle(); |
---|
1637 | if (!is_leaf()) reset_child_layout(); |
---|
1638 | } |
---|
1639 | |
---|
1640 | bool AP_tree::is_inside_folded_group() const { |
---|
1641 | if (!is_leaf() && is_folded_group()) return true; |
---|
1642 | if (!father) return false; |
---|
1643 | return get_father()->is_inside_folded_group(); |
---|
1644 | } |
---|
1645 | |
---|