1 | // =============================================================== // |
---|
2 | // // |
---|
3 | // File : AP_tree_edge.cxx // |
---|
4 | // Purpose : // |
---|
5 | // // |
---|
6 | // Coded by Ralf Westram (coder@reallysoft.de) in Summer 1995 // |
---|
7 | // Institute of Microbiology (Technical University Munich) // |
---|
8 | // http://www.arb-home.de/ // |
---|
9 | // // |
---|
10 | // =============================================================== // |
---|
11 | |
---|
12 | #include "ap_tree_nlen.hxx" |
---|
13 | #include "ap_main.hxx" |
---|
14 | |
---|
15 | #include <AP_filter.hxx> |
---|
16 | #include <arb_progress.h> |
---|
17 | |
---|
18 | #include <cmath> |
---|
19 | #include <iomanip> |
---|
20 | |
---|
21 | using namespace std; |
---|
22 | |
---|
23 | long AP_tree_edge::timeStamp = 0; |
---|
24 | |
---|
25 | AP_tree_edge::AP_tree_edge(AP_tree_nlen *node1, AP_tree_nlen *node2) |
---|
26 | : next_in_chain(NULp), |
---|
27 | used(0), |
---|
28 | age(timeStamp++), |
---|
29 | kl_visited(false) |
---|
30 | { |
---|
31 | node[0] = NULp; // => !is_linked() |
---|
32 | relink(node1, node2); // link the nodes (initializes 'node' and 'index') |
---|
33 | } |
---|
34 | |
---|
35 | AP_tree_edge::~AP_tree_edge() { |
---|
36 | if (is_linked()) unlink(); |
---|
37 | } |
---|
38 | |
---|
39 | static void buildSonEdges(AP_tree_nlen *node) { |
---|
40 | /*! Builds edges between a node and his two sons. |
---|
41 | * We assume there is already an edge to node's father and there are |
---|
42 | * no edges to his sons. |
---|
43 | */ |
---|
44 | |
---|
45 | if (!node->is_leaf()) { |
---|
46 | buildSonEdges(node->get_leftson()); |
---|
47 | buildSonEdges(node->get_rightson()); |
---|
48 | |
---|
49 | // to ensure the nodes contain the correct distance to the border |
---|
50 | // we MUST build all son edges before creating the father edge |
---|
51 | |
---|
52 | new AP_tree_edge(node, node->get_leftson()); |
---|
53 | new AP_tree_edge(node, node->get_rightson()); |
---|
54 | } |
---|
55 | } |
---|
56 | |
---|
57 | void AP_tree_edge::initialize(AP_tree_nlen *tree) { |
---|
58 | /*! Builds all edges in the whole tree. |
---|
59 | * The root node is skipped - instead his two sons are connected with an edge |
---|
60 | */ |
---|
61 | while (tree->get_father()) tree = tree->get_father(); // go up to root |
---|
62 | buildSonEdges(tree->get_leftson()); // link left subtree |
---|
63 | buildSonEdges(tree->get_rightson()); // link right subtree |
---|
64 | |
---|
65 | // to ensure the nodes contain the correct distance to the border |
---|
66 | // we MUST build all son edges before creating the root edge |
---|
67 | |
---|
68 | new AP_tree_edge(tree->get_leftson(), tree->get_rightson()); // link brothers |
---|
69 | } |
---|
70 | |
---|
71 | void AP_tree_edge::destroy(AP_tree_nlen *tree) { |
---|
72 | /*! Destroys all edges in the whole tree */ |
---|
73 | AP_tree_edge *edge = tree->nextEdge(NULp); |
---|
74 | if (!edge) { |
---|
75 | ap_assert(tree->is_root_node()); |
---|
76 | edge = tree->get_leftson()->edgeTo(tree->get_rightson()); |
---|
77 | } |
---|
78 | ap_assert(edge); // got no edges? |
---|
79 | |
---|
80 | EdgeChain chain(edge, ANY_EDGE, false); |
---|
81 | while (chain) { |
---|
82 | AP_tree_edge *curr = *chain; |
---|
83 | ++chain; |
---|
84 | delete curr; |
---|
85 | } |
---|
86 | } |
---|
87 | |
---|
88 | AP_tree_edge* AP_tree_edge::unlink() { |
---|
89 | ap_assert(this!=NULp); |
---|
90 | ap_assert(is_linked()); |
---|
91 | |
---|
92 | node[0]->edge[index[0]] = NULp; |
---|
93 | node[1]->edge[index[1]] = NULp; |
---|
94 | |
---|
95 | node[0] = NULp; |
---|
96 | node[1] = NULp; |
---|
97 | |
---|
98 | return this; |
---|
99 | } |
---|
100 | |
---|
101 | void AP_tree_edge::relink(AP_tree_nlen *node1, AP_tree_nlen *node2) { |
---|
102 | ap_assert(!is_linked()); |
---|
103 | |
---|
104 | node[0] = node1; |
---|
105 | node[1] = node2; |
---|
106 | |
---|
107 | node1->edge[index[0] = node1->unusedEdgeIndex()] = this; |
---|
108 | node2->edge[index[1] = node2->unusedEdgeIndex()] = this; |
---|
109 | |
---|
110 | node1->index[index[0]] = 0; |
---|
111 | node2->index[index[1]] = 1; |
---|
112 | } |
---|
113 | |
---|
114 | size_t AP_tree_edge::buildChainInternal(EdgeSpec whichEdges, bool depthFirst, const AP_tree_nlen *skip, AP_tree_edge **&prevNextPtr) { |
---|
115 | size_t added = 0; |
---|
116 | |
---|
117 | ap_assert(prevNextPtr); |
---|
118 | ap_assert(!*prevNextPtr); |
---|
119 | |
---|
120 | bool descend = true; |
---|
121 | bool use = true; |
---|
122 | |
---|
123 | if (use && (whichEdges&SKIP_UNMARKED_EDGES)) { |
---|
124 | use = descend = has_marked(); // Note: root edge is chained if ANY son of root has marked children |
---|
125 | } |
---|
126 | if (use && (whichEdges&SKIP_FOLDED_EDGES)) { |
---|
127 | // do not chain edges leading to root of group |
---|
128 | // (doing an NNI there will swap branches across group-borders) |
---|
129 | use = !next_to_folded_group(); |
---|
130 | } |
---|
131 | if (use && (whichEdges&(SKIP_LEAF_EDGES|SKIP_INNER_EDGES))) { |
---|
132 | use = !(whichEdges&(is_leaf_edge() ? SKIP_LEAF_EDGES : SKIP_INNER_EDGES)); |
---|
133 | } |
---|
134 | |
---|
135 | if (use && !depthFirst) { |
---|
136 | *prevNextPtr = this; |
---|
137 | next_in_chain = NULp; |
---|
138 | prevNextPtr = &next_in_chain; |
---|
139 | added++; |
---|
140 | } |
---|
141 | if (descend) { |
---|
142 | for (int n=0; n<2; n++) { |
---|
143 | if (node[n]!=skip && !node[n]->is_leaf()) { |
---|
144 | for (int e=0; e<3; e++) { |
---|
145 | AP_tree_edge * Edge = node[n]->edge[e]; |
---|
146 | if (Edge != this) { |
---|
147 | descend = true; |
---|
148 | if (descend && (whichEdges&SKIP_UNMARKED_EDGES)) descend = Edge->has_marked(); |
---|
149 | if (descend && (whichEdges&SKIP_FOLDED_EDGES)) descend = !Edge->next_to_folded_group(); |
---|
150 | if (descend) { |
---|
151 | added += Edge->buildChainInternal(whichEdges, depthFirst, node[n], prevNextPtr); |
---|
152 | } |
---|
153 | } |
---|
154 | } |
---|
155 | } |
---|
156 | } |
---|
157 | } |
---|
158 | if (use && depthFirst) { |
---|
159 | ap_assert(!*prevNextPtr); |
---|
160 | |
---|
161 | *prevNextPtr = this; |
---|
162 | next_in_chain = NULp; |
---|
163 | prevNextPtr = &next_in_chain; |
---|
164 | added++; |
---|
165 | } |
---|
166 | |
---|
167 | return added; |
---|
168 | } |
---|
169 | |
---|
170 | bool EdgeChain::exists = false; |
---|
171 | |
---|
172 | EdgeChain::EdgeChain(AP_tree_edge *startEgde, EdgeSpec whichEdges, bool depthFirst, const AP_tree_nlen *skip, bool includeStart) |
---|
173 | : start(NULp), |
---|
174 | curr(NULp) |
---|
175 | { |
---|
176 | /*! build a chain of edges for further processing |
---|
177 | * @param startEgde start edge |
---|
178 | * @param whichEdges specifies which edges get chained |
---|
179 | * @param depthFirst true -> insert leafs before inner nodes (but whole son-subtree before other-son-subtree) |
---|
180 | * @param skip previous node (will not recurse beyond) |
---|
181 | * @param includeStart include startEdge in chain? |
---|
182 | */ |
---|
183 | |
---|
184 | #if defined(DEVEL_RALF) |
---|
185 | # if defined(ASSERTION_USED) || defined(UNIT_TESTS) |
---|
186 | if (whichEdges & SKIP_UNMARKED_EDGES) { |
---|
187 | AP_tree_nlen *son = startEgde->sonNode(); |
---|
188 | bool flags_valid = son->has_correct_mark_flags(); |
---|
189 | if (flags_valid && startEgde->is_root_edge()) { |
---|
190 | flags_valid = startEgde->otherNode(son)->has_correct_mark_flags(); |
---|
191 | } |
---|
192 | if (!flags_valid) { |
---|
193 | GBK_terminate("detected invalid flags while building chain"); |
---|
194 | } |
---|
195 | } |
---|
196 | # endif |
---|
197 | #endif |
---|
198 | |
---|
199 | ap_assert(!exists); // only one existing chain is allowed! |
---|
200 | exists = true; |
---|
201 | |
---|
202 | AP_tree_edge **prev = &start; |
---|
203 | |
---|
204 | len = startEgde->buildChainInternal(whichEdges, depthFirst, skip, prev); |
---|
205 | if (!includeStart) { |
---|
206 | if (depthFirst) { |
---|
207 | // startEgde is last of chain (if included) |
---|
208 | if (prev == &startEgde->next_in_chain) { |
---|
209 | if (start == startEgde) { // special case: startEgde is the only edge in chain |
---|
210 | ap_assert(len == 1); |
---|
211 | start = NULp; |
---|
212 | } |
---|
213 | else { |
---|
214 | // NULp all edge-link pointing to startEgde (may belong to current or older chain) |
---|
215 | for (int n = 0; n<=1; ++n) { |
---|
216 | AP_tree_edge *e1 = startEgde->node[n]->nextEdge(startEgde); |
---|
217 | if (e1->next_in_chain == startEgde) e1->next_in_chain = NULp; |
---|
218 | AP_tree_edge *e2 = startEgde->node[n]->nextEdge(e1); |
---|
219 | if (e2->next_in_chain == startEgde) e2->next_in_chain = NULp; |
---|
220 | } |
---|
221 | } |
---|
222 | --len; |
---|
223 | #if defined(ASSERTION_USED) |
---|
224 | { |
---|
225 | size_t count = 0; |
---|
226 | curr = start; |
---|
227 | while (*this) { |
---|
228 | ap_assert(**this != startEgde); |
---|
229 | ++count; |
---|
230 | ++*this; |
---|
231 | } |
---|
232 | ap_assert(len == count); |
---|
233 | } |
---|
234 | #endif |
---|
235 | } |
---|
236 | } |
---|
237 | else { |
---|
238 | // startEgde is first of chain (if included) |
---|
239 | if (start == startEgde) { |
---|
240 | start = start->next_in_chain; |
---|
241 | --len; |
---|
242 | } |
---|
243 | } |
---|
244 | } |
---|
245 | curr = start; |
---|
246 | |
---|
247 | ap_assert(correlated(len, start)); |
---|
248 | } |
---|
249 | |
---|
250 | class MutationsPerSite : virtual Noncopyable { |
---|
251 | char *Data; |
---|
252 | size_t length; |
---|
253 | |
---|
254 | public: |
---|
255 | MutationsPerSite(size_t len) : |
---|
256 | Data(ARB_calloc<char>(len*3)), |
---|
257 | length(len) |
---|
258 | {} |
---|
259 | ~MutationsPerSite() { |
---|
260 | free(Data); |
---|
261 | } |
---|
262 | |
---|
263 | char *data(int block) { |
---|
264 | ap_assert(block >= 0 && block<3); |
---|
265 | return Data+block*length; |
---|
266 | } |
---|
267 | const char *data(int block) const { |
---|
268 | return const_cast<MutationsPerSite*>(this)->data(block); |
---|
269 | } |
---|
270 | }; |
---|
271 | |
---|
272 | static double ap_calc_bootstrap_remark_sub(int seq_len, const char *old, const char *ne) { |
---|
273 | int sum[3] = { 0, 0, 0 }; |
---|
274 | for (int i=0; i<seq_len; i++) { |
---|
275 | int diff = ne[i] - old[i]; |
---|
276 | if (diff > 1 || diff < -1) { |
---|
277 | #if defined(DEBUG) |
---|
278 | fprintf(stderr, "diff by nni at one position not in [-1,1]: %i:%i - %i", diff, old[i], ne[i]); |
---|
279 | #endif // DEBUG |
---|
280 | continue; |
---|
281 | } |
---|
282 | sum[diff+1] ++; |
---|
283 | } |
---|
284 | |
---|
285 | double prob = 0; |
---|
286 | { |
---|
287 | int asum = 0; |
---|
288 | for (int i=0; i<3; i++) asum += sum[i]; |
---|
289 | |
---|
290 | double freq[3]; |
---|
291 | double log_freq[3]; |
---|
292 | for (int i=0; i<3; i++) { |
---|
293 | freq[i] = sum[i] / double(asum); // relative frequencies of -1, 0, 1 |
---|
294 | if (sum[i] >0) { |
---|
295 | log_freq[i] = log(freq[i]); |
---|
296 | } |
---|
297 | else { |
---|
298 | log_freq[i] = -1e100; // minus infinit |
---|
299 | } |
---|
300 | } |
---|
301 | |
---|
302 | int max = seq_len; // bootstrap can select seq_len ones maximum |
---|
303 | double log_fak_seq_len = GB_log_fak(seq_len); |
---|
304 | double log_eps = log(1e-11); |
---|
305 | |
---|
306 | // loop over all delta_mutations, begin in the middle |
---|
307 | for (int tsum_add = 1; tsum_add >= -1; tsum_add -= 2) { |
---|
308 | int tsum = sum[2]-sum[0]; |
---|
309 | if (tsum <= 0) tsum = 1; |
---|
310 | for (; tsum < max && tsum > 0; tsum += tsum_add) { // sum of mutations in bootstrap sample, loop over all possibilities |
---|
311 | if (tsum_add < 0 && tsum == sum[2]-sum[0]) continue; // don't double count tsum |
---|
312 | |
---|
313 | |
---|
314 | |
---|
315 | int max_minus = max; // we need tsum + n_minus ones, we cannot have more than max_minux minus, reduce also |
---|
316 | for (int minus_add = 1; minus_add>=-1; minus_add-=2) { |
---|
317 | int first_minus = 1; |
---|
318 | for (int n_minus = sum[0]; n_minus<max_minus && n_minus>=0; first_minus = 0, n_minus+=minus_add) { |
---|
319 | if (minus_add < 0 && first_minus) continue; // don't double count center |
---|
320 | int n_zeros = seq_len - n_minus * 2 - tsum; // number of minus |
---|
321 | int n_plus = tsum + n_minus; // number of plus ones (n_ones + n_minus + n_zeros = seq_len) |
---|
322 | |
---|
323 | double log_a = |
---|
324 | n_minus * log_freq[0] + |
---|
325 | n_zeros * log_freq[1] + |
---|
326 | n_plus * log_freq[2] + |
---|
327 | log_fak_seq_len - GB_log_fak(n_minus) - GB_log_fak(n_zeros) - GB_log_fak(n_plus); |
---|
328 | |
---|
329 | if (log_a < log_eps) { |
---|
330 | if (first_minus && minus_add>0) goto end; |
---|
331 | break; // cannot go with so many minus, try next |
---|
332 | } |
---|
333 | double a = exp(log_a); |
---|
334 | prob += a; |
---|
335 | } |
---|
336 | } |
---|
337 | } |
---|
338 | end :; |
---|
339 | } |
---|
340 | } |
---|
341 | return prob; |
---|
342 | } |
---|
343 | |
---|
344 | static void ap_calc_bootstrap_remark(AP_tree_nlen *son_node, AP_BL_MODE mode, const MutationsPerSite& mps) { |
---|
345 | if (!son_node->is_leaf()) { |
---|
346 | size_t seq_len = son_node->get_seq()->get_sequence_length(); |
---|
347 | float one = ap_calc_bootstrap_remark_sub(seq_len, mps.data(0), mps.data(1)); |
---|
348 | float two = ap_calc_bootstrap_remark_sub(seq_len, mps.data(0), mps.data(2)); |
---|
349 | |
---|
350 | if ((mode & AP_BL_BOOTSTRAP_ESTIMATE) == AP_BL_BOOTSTRAP_ESTIMATE) { |
---|
351 | one = one * two; // assume independent bootstrap values for both nnis |
---|
352 | } |
---|
353 | else { |
---|
354 | if (two<one) one = two; // dependent bootstrap values, take minimum (safe) |
---|
355 | } |
---|
356 | |
---|
357 | double bootstrap = one<1.0 ? 100.0 * one : 100.0; |
---|
358 | son_node->set_bootstrap(bootstrap); |
---|
359 | son_node->get_brother()->use_as_remark(son_node->get_remark_ptr()); |
---|
360 | } |
---|
361 | } |
---|
362 | |
---|
363 | const GBT_LEN AP_UNDEF_BL = 10.5; |
---|
364 | |
---|
365 | inline void update_undefined_leaf_branchlength(AP_tree_nlen *leaf) { |
---|
366 | if (leaf->is_leaf() && |
---|
367 | leaf->get_branchlength_unrooted() == AP_UNDEF_BL) |
---|
368 | { |
---|
369 | // calculate the branchlength for leafs |
---|
370 | AP_FLOAT Seq_len = leaf->get_seq()->weighted_base_count(); |
---|
371 | if (Seq_len <= 1.0) Seq_len = 1.0; |
---|
372 | |
---|
373 | ap_assert(leaf->is_leaf()); |
---|
374 | |
---|
375 | Mutations parsbest = rootNode()->costs(); |
---|
376 | |
---|
377 | ap_main->remember(); |
---|
378 | leaf->REMOVE(); |
---|
379 | Mutations mutations = parsbest - rootNode()->costs(); // number of min. mutations caused by adding 'leaf' to tree |
---|
380 | ap_main->revert(); |
---|
381 | |
---|
382 | GBT_LEN blen = mutations/Seq_len; // scale with Seq_len (=> max branchlength == 1.0) |
---|
383 | leaf->set_branchlength_unrooted(blen); |
---|
384 | } |
---|
385 | } |
---|
386 | |
---|
387 | void AP_tree_edge::set_inner_branch_length_and_calc_adj_leaf_lengths(AP_FLOAT bcosts) { |
---|
388 | // 'bcosts' is the number of mutations assumed at this edge |
---|
389 | |
---|
390 | ap_assert(!is_leaf_edge()); |
---|
391 | |
---|
392 | AP_tree_nlen *son = sonNode(); |
---|
393 | ap_assert(son->at_root()); // otherwise length calculation is unstable! |
---|
394 | AP_tree_nlen *otherSon = son->get_brother(); |
---|
395 | |
---|
396 | ap_assert(son->get_seq()->hasSequence()); |
---|
397 | ap_assert(otherSon->get_seq()->hasSequence()); |
---|
398 | |
---|
399 | AP_FLOAT seq_len = |
---|
400 | (son ->get_seq()->weighted_base_count() + |
---|
401 | otherSon->get_seq()->weighted_base_count() |
---|
402 | ) * 0.5; |
---|
403 | |
---|
404 | if (seq_len < 0.1) seq_len = 0.1; // avoid that branchlengths gets 'inf' for sequences w/o data |
---|
405 | |
---|
406 | AP_FLOAT blen = bcosts / seq_len; // branchlength := costs per bp |
---|
407 | |
---|
408 | son->set_branchlength_unrooted(blen); |
---|
409 | |
---|
410 | // calculate adjacent leaf branchlengths early |
---|
411 | // (calculating them at end of nni_rec, produces much more combines) |
---|
412 | |
---|
413 | update_undefined_leaf_branchlength(son->get_leftson()); |
---|
414 | update_undefined_leaf_branchlength(son->get_rightson()); |
---|
415 | update_undefined_leaf_branchlength(otherSon->get_leftson()); |
---|
416 | update_undefined_leaf_branchlength(otherSon->get_rightson()); |
---|
417 | } |
---|
418 | |
---|
419 | #if defined(ASSERTION_USED) || defined(UNIT_TESTS) |
---|
420 | bool allBranchlengthsAreDefined(AP_tree_nlen *tree) { |
---|
421 | if (tree->father) { |
---|
422 | if (tree->get_branchlength_unrooted() == AP_UNDEF_BL) return false; |
---|
423 | } |
---|
424 | if (tree->is_leaf()) return true; |
---|
425 | return |
---|
426 | allBranchlengthsAreDefined(tree->get_leftson()) && |
---|
427 | allBranchlengthsAreDefined(tree->get_rightson()); |
---|
428 | } |
---|
429 | #endif |
---|
430 | |
---|
431 | inline void undefine_branchlengths(AP_tree_nlen *node) { |
---|
432 | // undefine branchlengths of node (triggers recalculation) |
---|
433 | ap_main->push_node(node, STRUCTURE); // store branchlengths for revert |
---|
434 | node->leftlen = AP_UNDEF_BL; |
---|
435 | node->rightlen = AP_UNDEF_BL; |
---|
436 | } |
---|
437 | |
---|
438 | Mutations AP_tree_edge::nni_rec(EdgeSpec whichEdges, AP_BL_MODE mode, AP_tree_nlen *skipNode, bool includeStartEdge) { |
---|
439 | if (!rootNode()) return Mutations(0); |
---|
440 | if (rootNode()->is_leaf()) return rootNode()->costs(); |
---|
441 | |
---|
442 | AP_tree_edge *oldRootEdge = rootEdge(); |
---|
443 | |
---|
444 | Mutations old_parsimony = rootNode()->costs(); |
---|
445 | Mutations new_parsimony = old_parsimony; |
---|
446 | |
---|
447 | ap_assert(allBranchlengthsAreDefined(rootNode())); |
---|
448 | |
---|
449 | bool recalc_lengths = mode & AP_BL_BL_ONLY; |
---|
450 | if (recalc_lengths) { |
---|
451 | ap_assert(whichEdges == ANY_EDGE); |
---|
452 | } |
---|
453 | else { // skip leaf edges when not calculating lengths |
---|
454 | whichEdges = EdgeSpec(whichEdges|SKIP_LEAF_EDGES); |
---|
455 | } |
---|
456 | |
---|
457 | ap_assert(implicated(includeStartEdge, this == rootEdge())); // non-subtree-NNI shall always be called with rootEdge (afaik) |
---|
458 | |
---|
459 | EdgeChain chain(this, whichEdges, !recalc_lengths, skipNode, includeStartEdge); |
---|
460 | arb_progress progress(chain.size()); |
---|
461 | |
---|
462 | if (recalc_lengths) { // set all branchlengths to undef |
---|
463 | ap_main->push_node(rootNode(), STRUCTURE); |
---|
464 | while (chain) { |
---|
465 | AP_tree_edge *edge = *chain; ++chain; |
---|
466 | undefine_branchlengths(edge->node[0]); |
---|
467 | undefine_branchlengths(edge->node[1]); |
---|
468 | undefine_branchlengths(edge->node[0]->get_father()); |
---|
469 | } |
---|
470 | rootNode()->leftlen = AP_UNDEF_BL *.5; |
---|
471 | rootNode()->rightlen = AP_UNDEF_BL *.5; |
---|
472 | } |
---|
473 | |
---|
474 | chain.restart(); |
---|
475 | while (chain && (recalc_lengths || !progress.aborted())) { // never abort while calculating branchlengths |
---|
476 | AP_tree_edge *edge = *chain; ++chain; |
---|
477 | |
---|
478 | if (!edge->is_leaf_edge()) { |
---|
479 | AP_tree_nlen *son = edge->sonNode(); |
---|
480 | son->set_root(); |
---|
481 | if (mode & AP_BL_BOOTSTRAP_LIMIT) { |
---|
482 | MutationsPerSite mps(son->get_seq()->get_sequence_length()); |
---|
483 | new_parsimony = edge->nni_mutPerSite(new_parsimony, mode, &mps); |
---|
484 | ap_calc_bootstrap_remark(son, mode, mps); |
---|
485 | } |
---|
486 | else { |
---|
487 | new_parsimony = edge->nni_mutPerSite(new_parsimony, mode, NULp); |
---|
488 | } |
---|
489 | // ap_assert(rootNode()->costs() == new_parsimony); // does not fail (but changes number of combines performed in tests) |
---|
490 | } |
---|
491 | progress.inc(); |
---|
492 | } |
---|
493 | |
---|
494 | ap_assert(allBranchlengthsAreDefined(rootNode())); |
---|
495 | |
---|
496 | oldRootEdge->set_root(); |
---|
497 | new_parsimony = rootNode()->costs(); |
---|
498 | |
---|
499 | return new_parsimony; |
---|
500 | } |
---|
501 | |
---|
502 | Mutations AP_tree_edge::nni_mutPerSite(Mutations pars_one, AP_BL_MODE mode, MutationsPerSite *mps) { |
---|
503 | ap_assert(!is_leaf_edge()); // avoid useless calls |
---|
504 | |
---|
505 | AP_tree_nlen *root = rootNode(); |
---|
506 | Mutations parsbest = pars_one; |
---|
507 | AP_tree_nlen *son = sonNode(); |
---|
508 | |
---|
509 | { // ******** original tree |
---|
510 | if ((mode & AP_BL_BOOTSTRAP_LIMIT)) { |
---|
511 | root->costs(); |
---|
512 | son->unhash_sequence(); |
---|
513 | son->get_father()->unhash_sequence(); |
---|
514 | ap_assert(son->is_son_of_root()); |
---|
515 | AP_tree_nlen *brother = son->get_brother(); |
---|
516 | brother->unhash_sequence(); |
---|
517 | |
---|
518 | ap_assert(mps); |
---|
519 | pars_one = root->costs(mps->data(0)); |
---|
520 | } |
---|
521 | #if defined(ASSERTION_USED) |
---|
522 | else { |
---|
523 | ap_assert(pars_one != 0.0); |
---|
524 | } |
---|
525 | #endif |
---|
526 | } |
---|
527 | |
---|
528 | Mutations pars_two; |
---|
529 | { // ********* first nni |
---|
530 | ap_main->remember(); |
---|
531 | son->swap_assymetric(AP_LEFT); |
---|
532 | pars_two = root->costs(mps ? mps->data(1) : NULp); |
---|
533 | |
---|
534 | if (pars_two <= parsbest) { |
---|
535 | ap_main->accept_if(mode & AP_BL_NNI_ONLY); |
---|
536 | parsbest = pars_two; |
---|
537 | } |
---|
538 | else { |
---|
539 | ap_main->revert(); |
---|
540 | } |
---|
541 | } |
---|
542 | |
---|
543 | Mutations pars_three; |
---|
544 | { // ********** second nni |
---|
545 | ap_main->remember(); |
---|
546 | son->swap_assymetric(AP_RIGHT); |
---|
547 | pars_three = root->costs(mps ? mps->data(2) : NULp); |
---|
548 | |
---|
549 | if (pars_three <= parsbest) { |
---|
550 | ap_main->accept_if(mode & AP_BL_NNI_ONLY); |
---|
551 | parsbest = pars_three; |
---|
552 | } |
---|
553 | else { |
---|
554 | ap_main->revert(); |
---|
555 | } |
---|
556 | } |
---|
557 | |
---|
558 | if (mode & AP_BL_BL_ONLY) { // ************* calculate branch lengths ************** |
---|
559 | GBT_LEN bcosts = (pars_one + pars_two + pars_three) - (3.0 * parsbest); |
---|
560 | if (bcosts <0) bcosts = 0; |
---|
561 | |
---|
562 | root->costs(); |
---|
563 | set_inner_branch_length_and_calc_adj_leaf_lengths(bcosts); |
---|
564 | } |
---|
565 | |
---|
566 | return |
---|
567 | mode & AP_BL_NNI_ONLY |
---|
568 | ? parsbest // in this case, the best topology was accepted above |
---|
569 | : pars_one; // and in this case it has been reverted |
---|
570 | } |
---|
571 | |
---|
572 | ostream& operator<<(ostream& out, const AP_tree_edge *e) { |
---|
573 | static int notTooDeep; |
---|
574 | |
---|
575 | out << ' '; |
---|
576 | |
---|
577 | if (notTooDeep || !e) { |
---|
578 | out << ((void*)e); |
---|
579 | } |
---|
580 | else { |
---|
581 | notTooDeep = 1; |
---|
582 | out << "AP_tree_edge(" << ((void*)e) |
---|
583 | << ", node[0]=" << e->node[0] |
---|
584 | << ", node[1]=" << e->node[1] |
---|
585 | << ")"; |
---|
586 | notTooDeep = 0; // cppcheck-suppress redundantAssignment |
---|
587 | } |
---|
588 | |
---|
589 | return out << ' '; |
---|
590 | } |
---|
591 | |
---|
592 | void AP_tree_edge::mixTree(int repeat, int percent, EdgeSpec whichEdges) { |
---|
593 | EdgeChain chain(this, EdgeSpec(SKIP_LEAF_EDGES|whichEdges), false); |
---|
594 | long edges = chain.size(); |
---|
595 | |
---|
596 | arb_progress progress(repeat*edges); |
---|
597 | while (repeat-- && !progress.aborted()) { |
---|
598 | chain.restart(); |
---|
599 | while (chain) { |
---|
600 | AP_tree_nlen *son = (*chain)->sonNode(); |
---|
601 | ap_assert(!son->is_leaf()); |
---|
602 | if (percent>=100 || GB_random(100)<percent) { |
---|
603 | son->swap_assymetric(GB_random(2) ? AP_LEFT : AP_RIGHT); |
---|
604 | } |
---|
605 | ++chain; |
---|
606 | ++progress; |
---|
607 | } |
---|
608 | } |
---|
609 | } |
---|
610 | |
---|
611 | // -------------------------------------------------------------------------------- |
---|
612 | |
---|
613 | #ifdef UNIT_TESTS |
---|
614 | #include <arb_defs.h> |
---|
615 | #include "pars_main.hxx" |
---|
616 | #include <AP_seq_dna.hxx> |
---|
617 | #ifndef TEST_UNIT_H |
---|
618 | #include <test_unit.h> |
---|
619 | #endif |
---|
620 | #include <test_env.h> |
---|
621 | |
---|
622 | void TEST_edgeChain() { |
---|
623 | PARSIMONY_testenv<AP_sequence_parsimony> env("TEST_trees.arb"); |
---|
624 | TEST_EXPECT_NO_ERROR(env.load_tree("tree_test")); |
---|
625 | |
---|
626 | AP_tree_edge *root = rootEdge(); |
---|
627 | AP_tree_nlen *rootN = root->sonNode()->get_father(); |
---|
628 | |
---|
629 | ap_assert(!rootN->father); |
---|
630 | AP_tree_nlen *leftSon = rootN->get_leftson(); |
---|
631 | AP_tree_nlen *rightSon = rootN->get_rightson(); |
---|
632 | |
---|
633 | const size_t ALL_EDGES = 27; |
---|
634 | const size_t LEAF_EDGES = 15; |
---|
635 | |
---|
636 | TEST_EXPECT_EQUAL(EdgeChain(root, ANY_EDGE, true).size(), ALL_EDGES); |
---|
637 | TEST_EXPECT_EQUAL(EdgeChain(root, EdgeSpec(ANY_EDGE|SKIP_INNER_EDGES), true).size(), LEAF_EDGES); // 15 leafs |
---|
638 | TEST_EXPECT_EQUAL(EdgeChain(root, EdgeSpec(SKIP_FOLDED_EDGES|SKIP_INNER_EDGES), true).size(), LEAF_EDGES-4); // 4 leafs are inside folded group |
---|
639 | TEST_EXPECT_EQUAL(EdgeChain(root, EdgeSpec(ANY_EDGE|SKIP_LEAF_EDGES), true).size(), ALL_EDGES-LEAF_EDGES); |
---|
640 | |
---|
641 | // skip left/right subtree |
---|
642 | TEST_EXPECT_EQUAL(EdgeChain(root, ANY_EDGE, true, leftSon) .size(), 9); // right subtree plus rootEdge (=lower subtree) |
---|
643 | TEST_EXPECT_EQUAL(EdgeChain(root, ANY_EDGE, true, rightSon).size(), 19); // left subtree plus rootEdge (=upper subtree) |
---|
644 | |
---|
645 | const size_t MV_RIGHT = 8; |
---|
646 | const size_t MV_LEFT = 6; |
---|
647 | const size_t MARKED_VIS = MV_RIGHT + MV_LEFT - 1; // root-edge only once |
---|
648 | |
---|
649 | const EdgeSpec MARKED_VISIBLE_EDGES = EdgeSpec(SKIP_UNMARKED_EDGES|SKIP_FOLDED_EDGES); |
---|
650 | |
---|
651 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true, leftSon) .size(), MV_RIGHT); // one leaf edge is unmarked |
---|
652 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true, rightSon).size(), MV_LEFT); |
---|
653 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true) .size(), MARKED_VIS); |
---|
654 | |
---|
655 | TEST_EXPECT_EQUAL(EdgeChain(root, EdgeSpec(MARKED_VISIBLE_EDGES|SKIP_INNER_EDGES), true).size(), 6); // 6 marked leafs |
---|
656 | TEST_EXPECT_EQUAL(EdgeChain(root, EdgeSpec(MARKED_VISIBLE_EDGES|SKIP_LEAF_EDGES), true).size(), MARKED_VIS-6); |
---|
657 | |
---|
658 | const size_t V_RIGHT = 9; |
---|
659 | const size_t V_LEFT = 12; |
---|
660 | const size_t VISIBLE = V_RIGHT + V_LEFT -1; // root-edge only once |
---|
661 | |
---|
662 | TEST_EXPECT_EQUAL(EdgeChain(root, SKIP_FOLDED_EDGES, true) .size(), VISIBLE); |
---|
663 | TEST_EXPECT_EQUAL(EdgeChain(root, SKIP_FOLDED_EDGES, true, leftSon) .size(), V_RIGHT); |
---|
664 | TEST_EXPECT_EQUAL(EdgeChain(root, SKIP_FOLDED_EDGES, true, rightSon).size(), V_LEFT); |
---|
665 | |
---|
666 | // test subtree-EdgeChains |
---|
667 | { |
---|
668 | AP_tree_edge *subtreeEdge = rightSon->edgeTo(rightSon->get_leftson()); // subtree containing CorAquat, CurCitre, CorGluta and CelBiazo |
---|
669 | AP_tree_nlen *stFather = subtreeEdge->notSonNode(); |
---|
670 | |
---|
671 | // collecting subtree-edges (by skipping father of start-edge) includes the startEdge |
---|
672 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, ANY_EDGE, true, stFather).size(), 7); |
---|
673 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, SKIP_LEAF_EDGES, true, stFather).size(), 3); |
---|
674 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, SKIP_INNER_EDGES, true, stFather).size(), 4); |
---|
675 | |
---|
676 | // collecting subtree-edges w/o startEdge |
---|
677 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, ANY_EDGE, true, stFather, false).size(), 6); |
---|
678 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, SKIP_LEAF_EDGES, true, stFather, false).size(), 2); |
---|
679 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, SKIP_INNER_EDGES, true, stFather, false).size(), 4); |
---|
680 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, ANY_EDGE, false, stFather, false).size(), 6); |
---|
681 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, SKIP_LEAF_EDGES, false, stFather, false).size(), 2); |
---|
682 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, SKIP_INNER_EDGES, false, stFather, false).size(), 4); |
---|
683 | |
---|
684 | subtreeEdge = leftSon->edgeTo(leftSon->get_leftson()); // subtree containing group 'test', CloInnoc and CloBifer |
---|
685 | stFather = subtreeEdge->notSonNode(); |
---|
686 | |
---|
687 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, ANY_EDGE, true, stFather, false).size(), 10); |
---|
688 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, MARKED_VISIBLE_EDGES, false, stFather, false).size(), 0); |
---|
689 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, SKIP_FOLDED_EDGES, true, stFather, false).size(), 3); |
---|
690 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, ANY_EDGE, false, stFather, true).size (), 11); |
---|
691 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, MARKED_VISIBLE_EDGES, true, stFather, true).size (), 0); |
---|
692 | TEST_EXPECT_EQUAL(EdgeChain(subtreeEdge, SKIP_FOLDED_EDGES, false, stFather, true).size (), 4); |
---|
693 | } |
---|
694 | |
---|
695 | // test group-folding at sons of root |
---|
696 | { |
---|
697 | // fold left subtree |
---|
698 | leftSon->gr.grouped = true; |
---|
699 | |
---|
700 | TEST_EXPECT_EQUAL(EdgeChain(root, ANY_EDGE, true) .size(), ALL_EDGES); // all edges |
---|
701 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true) .size(), MV_RIGHT-1); // skips left subtree AND rootedge |
---|
702 | TEST_EXPECT_EQUAL(EdgeChain(root, SKIP_FOLDED_EDGES, true) .size(), V_RIGHT-1); // skips left subtree AND rootedge |
---|
703 | |
---|
704 | // fold bold subtrees |
---|
705 | rightSon->gr.grouped = true; |
---|
706 | |
---|
707 | TEST_EXPECT_EQUAL(EdgeChain(root, ANY_EDGE, true) .size(), ALL_EDGES); // all edges |
---|
708 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true) .size(), 0); // root edge not included (is adjacent to group) |
---|
709 | TEST_EXPECT_EQUAL(EdgeChain(root, SKIP_FOLDED_EDGES, true) .size(), 0); // root edge not included (is adjacent to group) |
---|
710 | |
---|
711 | // fold right subtree only |
---|
712 | leftSon->gr.grouped = false; |
---|
713 | |
---|
714 | TEST_EXPECT_EQUAL(EdgeChain(root, ANY_EDGE, true) .size(), ALL_EDGES); // all edges |
---|
715 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true) .size(), MV_LEFT-1); // skips right subtree AND rootedge |
---|
716 | TEST_EXPECT_EQUAL(EdgeChain(root, SKIP_FOLDED_EDGES, true) .size(), V_LEFT-1); // skips right subtree AND rootedge |
---|
717 | |
---|
718 | // restore previous folding |
---|
719 | rightSon->gr.grouped = false; |
---|
720 | } |
---|
721 | |
---|
722 | |
---|
723 | // mark only two species: CorGluta (unfolded) + CloTyro2 (folded) |
---|
724 | { |
---|
725 | GB_transaction ta(env.gbmain()); |
---|
726 | GBT_restore_marked_species(env.gbmain(), "CloTyro2;CorGluta"); |
---|
727 | env.compute_tree(); // species marks affect node-chain |
---|
728 | } |
---|
729 | |
---|
730 | TEST_EXPECT_EQUAL(EdgeChain(root, ANY_EDGE, true) .size(), ALL_EDGES); |
---|
731 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true) .size(), 6); |
---|
732 | TEST_EXPECT_EQUAL(EdgeChain(root, EdgeSpec(MARKED_VISIBLE_EDGES|SKIP_INNER_EDGES), true) .size(), 1); // one visible marked leaf (the other is hidden) |
---|
733 | TEST_EXPECT_EQUAL(EdgeChain(root, EdgeSpec(MARKED_VISIBLE_EDGES|SKIP_LEAF_EDGES), true) .size(), 6-1); |
---|
734 | TEST_EXPECT_EQUAL(EdgeChain(root, EdgeSpec(SKIP_UNMARKED_EDGES|SKIP_INNER_EDGES), true) .size(), 2); // two marked leafs |
---|
735 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true, rightSon).size(), 3); |
---|
736 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true, leftSon) .size(), 4); |
---|
737 | |
---|
738 | // test trees with marks in ONE subtree (of root) only |
---|
739 | { |
---|
740 | GB_transaction ta(env.gbmain()); |
---|
741 | GBT_restore_marked_species(env.gbmain(), "CloTyro2"); |
---|
742 | env.compute_tree(); // species marks affect node-chain |
---|
743 | } |
---|
744 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true) .size(), 3); |
---|
745 | TEST_EXPECT_EQUAL(EdgeChain(root, EdgeSpec(MARKED_VISIBLE_EDGES|SKIP_INNER_EDGES), true) .size(), 0); // the only marked leaf is folded |
---|
746 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true, rightSon).size(), 3); |
---|
747 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true, leftSon) .size(), 1); |
---|
748 | |
---|
749 | { |
---|
750 | GB_transaction ta(env.gbmain()); |
---|
751 | GBT_restore_marked_species(env.gbmain(), "CorGluta"); |
---|
752 | env.compute_tree(); // species marks affect node-chain |
---|
753 | } |
---|
754 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true) .size(), 4); |
---|
755 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true, rightSon) .size(), 1); // only root-edge |
---|
756 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, false, rightSon, false).size(), 0); // skips start-edge |
---|
757 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true, rightSon, false).size(), 0); // skips start-edge |
---|
758 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true, leftSon) .size(), 4); |
---|
759 | |
---|
760 | // unmark all |
---|
761 | { |
---|
762 | GB_transaction ta(env.gbmain()); |
---|
763 | GBT_mark_all(env.gbmain(), 0); |
---|
764 | env.compute_tree(); // species marks affect node-chain |
---|
765 | } |
---|
766 | TEST_EXPECT_EQUAL(EdgeChain(root, MARKED_VISIBLE_EDGES, true).size(), 0); |
---|
767 | } |
---|
768 | |
---|
769 | void TEST_tree_flags_needed_by_EdgeChain() { |
---|
770 | // EdgeChain depends on correctly set marked flags in AP_tree |
---|
771 | // (i.e. on gr.mark_sum) |
---|
772 | // |
---|
773 | // These flags get destroyed by tree operations |
---|
774 | // -> chains created after tree modifications are wrong |
---|
775 | // -> optimization operates on wrong part of the tree |
---|
776 | // (esp. add+NNI and NNI/KL) |
---|
777 | |
---|
778 | PARSIMONY_testenv<AP_sequence_parsimony> env("TEST_trees.arb"); |
---|
779 | TEST_EXPECT_NO_ERROR(env.load_tree("tree_test")); |
---|
780 | |
---|
781 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
782 | TEST_EXPECT(rootNode()->has_valid_root_remarks()); |
---|
783 | |
---|
784 | // mark only two species: CorGluta (unfolded) + CloTyro2 (folded) |
---|
785 | { |
---|
786 | GB_transaction ta(env.gbmain()); |
---|
787 | GBT_restore_marked_species(env.gbmain(), "CloTyro2;CorGluta"); |
---|
788 | env.compute_tree(); // species marks affect order of node-chain (used in nni_rec) |
---|
789 | } |
---|
790 | |
---|
791 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
792 | |
---|
793 | AP_tree_nlen *CorGluta = rootNode()->findLeafNamed("CorGluta"); // marked |
---|
794 | AP_tree_nlen *CelBiazo = rootNode()->findLeafNamed("CelBiazo"); // not marked (marked parent, marked brother) |
---|
795 | AP_tree_nlen *CurCitre = rootNode()->findLeafNamed("CurCitre"); // not marked (unmarked parent, unmarked brother) |
---|
796 | AP_tree_nlen *CloTyro2 = rootNode()->findLeafNamed("CloTyro2"); // marked, inside folded group! |
---|
797 | AP_tree_nlen *CloCarni = rootNode()->findLeafNamed("CloCarni"); // in the mid of unmarked subtree of 4 |
---|
798 | |
---|
799 | AP_tree_nlen *CurCitre_father = CurCitre->get_father(); |
---|
800 | AP_tree_nlen *CurCitre_grandfather = CurCitre_father->get_father(); |
---|
801 | |
---|
802 | // test moving root |
---|
803 | { |
---|
804 | env.push(); |
---|
805 | |
---|
806 | CorGluta->set_root(); |
---|
807 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
808 | |
---|
809 | CelBiazo->set_root(); |
---|
810 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
811 | |
---|
812 | CloTyro2->set_root(); |
---|
813 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
814 | |
---|
815 | // CurCitre and its brother form an unmarked subtree |
---|
816 | CurCitre->set_root(); |
---|
817 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
818 | |
---|
819 | CurCitre_father->set_root(); |
---|
820 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
821 | |
---|
822 | CurCitre_grandfather->set_root(); // grandfather has 1 marked child |
---|
823 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
824 | |
---|
825 | env.pop(); |
---|
826 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
827 | } |
---|
828 | |
---|
829 | TEST_EXPECT(rootNode()->has_valid_root_remarks()); |
---|
830 | |
---|
831 | // test moving nodes/subtrees |
---|
832 | // wontfix; acceptable because only used while adding species -> see PARS_main.cxx@flags_broken_by_moveNextTo |
---|
833 | { |
---|
834 | env.push(); |
---|
835 | |
---|
836 | // move marked node into unmarked subtree of 2 species: |
---|
837 | CorGluta->moveNextTo(CurCitre, 0.5); |
---|
838 | TEST_EXPECT__BROKEN(rootNode()->has_correct_mark_flags()); |
---|
839 | |
---|
840 | env.pop(); env.push(); TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
841 | |
---|
842 | // move unmarked subtree of two species (brother is marked) |
---|
843 | CurCitre_father->moveNextTo(CelBiazo, 0.5); // move to unmarked uncle of brother |
---|
844 | TEST_EXPECT__BROKEN(rootNode()->has_correct_mark_flags()); |
---|
845 | |
---|
846 | env.pop(); env.push(); TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
847 | |
---|
848 | // move same subtree into unmarked subtree |
---|
849 | CurCitre_father->moveNextTo(CloCarni, 0.5); |
---|
850 | TEST_EXPECT__BROKEN(rootNode()->has_correct_mark_flags()); |
---|
851 | |
---|
852 | env.pop(); env.push(); TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
853 | |
---|
854 | // move unmarked -> unmarked (both parents are unmarked as well) |
---|
855 | CurCitre->moveNextTo(CloCarni, 0.5); |
---|
856 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); // works (but moving CurCitre_father doesnt) |
---|
857 | |
---|
858 | env.pop(); env.push(); TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
859 | |
---|
860 | // move marked -> marked |
---|
861 | CorGluta->moveNextTo(CloTyro2, 0.5); |
---|
862 | TEST_EXPECT__BROKEN(rootNode()->has_correct_mark_flags()); // subtree losts the only marked species (should unmark up to root) |
---|
863 | |
---|
864 | // -------------------------------------------------------------------------------- |
---|
865 | // now mark flags are broken -> test whether revert restores them |
---|
866 | ap_assert(!rootNode()->has_correct_mark_flags()); |
---|
867 | rootNode()->compute_tree(); // fixes the flags (i.e. changes hidded AND marked flags) |
---|
868 | |
---|
869 | env.pop(); TEST_EXPECT(rootNode()->has_correct_mark_flags()); // shows that flags are correctly restored |
---|
870 | |
---|
871 | rootNode()->compute_tree(); // fix flags again |
---|
872 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
873 | } |
---|
874 | |
---|
875 | // test swap_assymetric |
---|
876 | { |
---|
877 | env.push(); |
---|
878 | |
---|
879 | rootNode()->get_leftson()->swap_assymetric(AP_LEFT); |
---|
880 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
881 | |
---|
882 | env.pop(); env.push(); TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
883 | |
---|
884 | CorGluta->get_father()->swap_assymetric(AP_RIGHT); |
---|
885 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
886 | |
---|
887 | env.pop(); env.push(); TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
888 | |
---|
889 | CorGluta->get_father()->swap_assymetric(AP_LEFT); |
---|
890 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); // (maybe swaps two unmarked subtrees?!) |
---|
891 | |
---|
892 | env.pop(); env.push(); TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
893 | |
---|
894 | { |
---|
895 | // swap inside folded group |
---|
896 | AP_tree_nlen *CloTyro2_father = CloTyro2->get_father(); |
---|
897 | |
---|
898 | CloTyro2_father->swap_assymetric(AP_LEFT); |
---|
899 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
900 | |
---|
901 | env.pop(); env.push(); TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
902 | |
---|
903 | AP_tree_nlen *CloTyro2_grandfather = CloTyro2_father->get_father(); |
---|
904 | ap_assert(CloTyro2_grandfather->gr.grouped); // this is the group-root |
---|
905 | |
---|
906 | CloTyro2_grandfather->swap_assymetric(AP_LEFT); |
---|
907 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
908 | |
---|
909 | env.pop(); env.push(); TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
910 | |
---|
911 | CloTyro2_grandfather->swap_assymetric(AP_RIGHT); // (i guess) this swaps CloTyrob <-> CloInnoc (both unmarked) |
---|
912 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
913 | } |
---|
914 | |
---|
915 | env.pop(); env.push(); TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
916 | |
---|
917 | // swap in unmarked subtree |
---|
918 | CloCarni->get_father()->swap_assymetric(AP_LEFT); |
---|
919 | TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
920 | |
---|
921 | env.pop(); TEST_EXPECT(rootNode()->has_correct_mark_flags()); |
---|
922 | } |
---|
923 | |
---|
924 | TEST_EXPECT(rootNode()->has_valid_root_remarks()); |
---|
925 | } |
---|
926 | |
---|
927 | void TEST_undefined_branchlength() { |
---|
928 | PARSIMONY_testenv<AP_sequence_parsimony> env("TEST_trees.arb"); |
---|
929 | TEST_EXPECT_NO_ERROR(env.load_tree("tree_test")); |
---|
930 | |
---|
931 | AP_tree_nlen *root = env.root_node(); |
---|
932 | AP_tree_nlen *CorAquat = root->findLeafNamed("CorAquat"); |
---|
933 | AP_tree_nlen *inner = CorAquat->get_father()->get_father(); |
---|
934 | |
---|
935 | AP_tree_nlen *sonOfRoot = root->get_leftson(); |
---|
936 | ap_assert(!sonOfRoot->is_leaf()); |
---|
937 | |
---|
938 | TEST_EXPECT(root && CorAquat && inner); |
---|
939 | |
---|
940 | GBT_LEN length[] = { |
---|
941 | 0.0, |
---|
942 | 0.8, |
---|
943 | AP_UNDEF_BL, |
---|
944 | }; |
---|
945 | AP_tree_nlen *nodes[] = { |
---|
946 | sonOfRoot, |
---|
947 | CorAquat, |
---|
948 | inner, |
---|
949 | }; |
---|
950 | |
---|
951 | for (size_t i = 0; i<ARRAY_ELEMS(length); ++i) { |
---|
952 | GBT_LEN testLen = length[i]; |
---|
953 | for (size_t n = 0; n<ARRAY_ELEMS(nodes); ++n) { |
---|
954 | TEST_ANNOTATE(GBS_global_string("length=%.2f node=%zu", testLen, n)); |
---|
955 | |
---|
956 | AP_tree_nlen *node = nodes[n]; |
---|
957 | GBT_LEN oldLen = node->get_branchlength_unrooted(); |
---|
958 | |
---|
959 | node->set_branchlength_unrooted(testLen); |
---|
960 | TEST_EXPECT_EQUAL(node->get_branchlength_unrooted(), testLen); |
---|
961 | |
---|
962 | node->set_branchlength_unrooted(oldLen); |
---|
963 | TEST_EXPECT(node->get_branchlength_unrooted() == oldLen); |
---|
964 | } |
---|
965 | } |
---|
966 | } |
---|
967 | |
---|
968 | #endif // UNIT_TESTS |
---|
969 | |
---|
970 | // -------------------------------------------------------------------------------- |
---|