| 1 | // ============================================================= // |
|---|
| 2 | // // |
|---|
| 3 | // File : CT_part.cxx // |
|---|
| 4 | // Purpose : // |
|---|
| 5 | // // |
|---|
| 6 | // Institute of Microbiology (Technical University Munich) // |
|---|
| 7 | // http://www.arb-home.de/ // |
|---|
| 8 | // // |
|---|
| 9 | // ============================================================= // |
|---|
| 10 | |
|---|
| 11 | /* This module is designed to organize the data structure partitions |
|---|
| 12 | partitions represent the edges of a tree */ |
|---|
| 13 | // the partitions are implemented as an array of longs |
|---|
| 14 | // Each leaf in a GBT-Tree is represented as one Bit in the Partition |
|---|
| 15 | |
|---|
| 16 | #include "CT_part.hxx" |
|---|
| 17 | #include "CT_common.hxx" |
|---|
| 18 | |
|---|
| 19 | #define BITS_PER_PELEM (sizeof(PELEM)*8) |
|---|
| 20 | |
|---|
| 21 | #if defined(DUMP_PART_INIT) || defined(UNIT_TESTS) |
|---|
| 22 | static const char *readable_cutmask(PELEM mask) { |
|---|
| 23 | static char readable[BITS_PER_PELEM+1]; |
|---|
| 24 | memset(readable, '0', BITS_PER_PELEM); |
|---|
| 25 | readable[BITS_PER_PELEM] = 0; |
|---|
| 26 | |
|---|
| 27 | for (int b = BITS_PER_PELEM-1; b >= 0; --b) { |
|---|
| 28 | if (mask&1) readable[b] = '1'; |
|---|
| 29 | mask = mask>>1; |
|---|
| 30 | } |
|---|
| 31 | return readable; |
|---|
| 32 | } |
|---|
| 33 | #endif |
|---|
| 34 | |
|---|
| 35 | PartitionSize::PartitionSize(const int len) |
|---|
| 36 | : cutmask(0), |
|---|
| 37 | longs((((len + 7) / 8)+sizeof(PELEM)-1) / sizeof(PELEM)), |
|---|
| 38 | bits(len), |
|---|
| 39 | id(0) |
|---|
| 40 | { |
|---|
| 41 | /*! Function to initialize the global variables above |
|---|
| 42 | * @param len number of bits the part should content |
|---|
| 43 | * |
|---|
| 44 | * result: calculate cutmask, longs, plen |
|---|
| 45 | */ |
|---|
| 46 | |
|---|
| 47 | int j = len % BITS_PER_PELEM; |
|---|
| 48 | if (!j) j += BITS_PER_PELEM; |
|---|
| 49 | |
|---|
| 50 | for (int i=0; i<j; i++) { |
|---|
| 51 | cutmask <<= 1; |
|---|
| 52 | cutmask |= 1; |
|---|
| 53 | } |
|---|
| 54 | |
|---|
| 55 | #if defined(DEBUG) |
|---|
| 56 | size_t possible = longs*BITS_PER_PELEM; |
|---|
| 57 | arb_assert((possible-bits)<BITS_PER_PELEM); // longs is too big (wasted space) |
|---|
| 58 | |
|---|
| 59 | #if defined(DUMP_PART_INIT) |
|---|
| 60 | printf("leafs=%i\n", len); |
|---|
| 61 | printf("cutmask='%s'\n", readable_cutmask(cutmask)); |
|---|
| 62 | printf("longs=%i (can hold %zu bits)\n", longs, possible); |
|---|
| 63 | printf("bits=%i\n", bits); |
|---|
| 64 | #endif |
|---|
| 65 | #endif |
|---|
| 66 | } |
|---|
| 67 | |
|---|
| 68 | #if defined(NTREE_DEBUG_FUNCTIONS) |
|---|
| 69 | |
|---|
| 70 | static const CharPtrArray *namesPtr = NULp; |
|---|
| 71 | |
|---|
| 72 | void PART::start_pretty_printing(const CharPtrArray& names) { namesPtr = &names; } |
|---|
| 73 | void PART::stop_pretty_printing() { namesPtr = NULp; } |
|---|
| 74 | |
|---|
| 75 | void PART::print() const { |
|---|
| 76 | // ! Testfunction to print a part |
|---|
| 77 | int k = 0; |
|---|
| 78 | const int longs = get_longs(); |
|---|
| 79 | const int plen = info->get_bits(); |
|---|
| 80 | |
|---|
| 81 | if (namesPtr) { |
|---|
| 82 | const CharPtrArray& names = *namesPtr; |
|---|
| 83 | for (int part = 0; part<=1; ++part) { |
|---|
| 84 | // bool first = true; |
|---|
| 85 | for (int i=0; i<longs; i++) { |
|---|
| 86 | PELEM el = 1; |
|---|
| 87 | for (int j=0; k<plen && size_t(j)<sizeof(PELEM)*8; j++, k++) { |
|---|
| 88 | bool bitset = p[i] & el; |
|---|
| 89 | if (bitset == part) { |
|---|
| 90 | const char *name = names[k]; |
|---|
| 91 | #if 1 |
|---|
| 92 | fputc(name[0], stdout); // first char of name |
|---|
| 93 | #else |
|---|
| 94 | if (!first) fputc(',', stdout); |
|---|
| 95 | else first = false; |
|---|
| 96 | fputs(name, stdout); // full name |
|---|
| 97 | #endif |
|---|
| 98 | } |
|---|
| 99 | el <<= 1; |
|---|
| 100 | } |
|---|
| 101 | } |
|---|
| 102 | if (!part) { |
|---|
| 103 | fputs("---", stdout); |
|---|
| 104 | k = 0; |
|---|
| 105 | } |
|---|
| 106 | } |
|---|
| 107 | } |
|---|
| 108 | else { |
|---|
| 109 | for (int i=0; i<longs; i++) { |
|---|
| 110 | PELEM el = 1; |
|---|
| 111 | for (int j=0; k<plen && size_t(j)<sizeof(PELEM)*8; j++, k++) { |
|---|
| 112 | bool bitset = p[i] & el; |
|---|
| 113 | fputc('0'+bitset, stdout); |
|---|
| 114 | el <<= 1; |
|---|
| 115 | } |
|---|
| 116 | } |
|---|
| 117 | } |
|---|
| 118 | |
|---|
| 119 | printf(" len=%.5f prob=%5.1f%% w.len=%.5f leaf=%i dist2center=%i\n", |
|---|
| 120 | len, weight*100.0, get_len(), is_leaf_edge(), distance_to_tree_center()); |
|---|
| 121 | } |
|---|
| 122 | #endif |
|---|
| 123 | |
|---|
| 124 | PART *PartitionSize::create_root() const { |
|---|
| 125 | /*! build a partition that totally consists of 111111...1111 that is needed to |
|---|
| 126 | * build the root of a specific ntree |
|---|
| 127 | */ |
|---|
| 128 | |
|---|
| 129 | PART *p = new PART(this, 1.0); |
|---|
| 130 | p->invert(); |
|---|
| 131 | arb_assert(p->is_valid()); |
|---|
| 132 | return p; |
|---|
| 133 | } |
|---|
| 134 | |
|---|
| 135 | bool PART::overlaps_with(const PART *other) const { |
|---|
| 136 | /*! test if two parts overlap (i.e. share common bits) |
|---|
| 137 | */ |
|---|
| 138 | |
|---|
| 139 | arb_assert(is_valid()); |
|---|
| 140 | arb_assert(other->is_valid()); |
|---|
| 141 | |
|---|
| 142 | const int longs = get_longs(); |
|---|
| 143 | for (int i=0; i<longs; i++) { |
|---|
| 144 | if (p[i] & other->p[i]) return true; |
|---|
| 145 | } |
|---|
| 146 | return false; |
|---|
| 147 | } |
|---|
| 148 | |
|---|
| 149 | void PART::invert() { |
|---|
| 150 | //! invert a part |
|---|
| 151 | // |
|---|
| 152 | // Each edge in a tree connects two subtrees. |
|---|
| 153 | // These subtrees are represented by inverse partitions |
|---|
| 154 | |
|---|
| 155 | arb_assert(is_valid()); |
|---|
| 156 | |
|---|
| 157 | const int longs = get_longs(); |
|---|
| 158 | for (int i=0; i<longs; i++) { // LOOP_VECTORIZED |
|---|
| 159 | p[i] = ~p[i]; |
|---|
| 160 | } |
|---|
| 161 | p[longs-1] &= get_cutmask(); |
|---|
| 162 | |
|---|
| 163 | members = get_maxsize()-members; |
|---|
| 164 | |
|---|
| 165 | arb_assert(is_valid()); |
|---|
| 166 | } |
|---|
| 167 | |
|---|
| 168 | void PART::invertInSuperset(const PART *superset) { |
|---|
| 169 | arb_assert(is_valid()); |
|---|
| 170 | arb_assert(is_subset_of(superset)); |
|---|
| 171 | |
|---|
| 172 | const int longs = get_longs(); |
|---|
| 173 | for (int i=0; i<longs; i++) { // LOOP_VECTORIZED |
|---|
| 174 | p[i] = p[i] ^ superset->p[i]; |
|---|
| 175 | } |
|---|
| 176 | p[longs-1] &= get_cutmask(); |
|---|
| 177 | |
|---|
| 178 | members = superset->get_members()-members; |
|---|
| 179 | |
|---|
| 180 | arb_assert(is_valid()); |
|---|
| 181 | arb_assert(is_subset_of(superset)); |
|---|
| 182 | } |
|---|
| 183 | |
|---|
| 184 | |
|---|
| 185 | void PART::add_members_from(const PART *source) { |
|---|
| 186 | //! destination = source or destination |
|---|
| 187 | arb_assert(source->is_valid()); |
|---|
| 188 | arb_assert(is_valid()); |
|---|
| 189 | |
|---|
| 190 | bool distinct = disjunct_from(source); |
|---|
| 191 | |
|---|
| 192 | const int longs = get_longs(); |
|---|
| 193 | for (int i=0; i<longs; i++) { // LOOP_VECTORIZED |
|---|
| 194 | p[i] |= source->p[i]; |
|---|
| 195 | } |
|---|
| 196 | |
|---|
| 197 | if (distinct) { |
|---|
| 198 | members += source->members; |
|---|
| 199 | } |
|---|
| 200 | else { |
|---|
| 201 | members = count_members(); |
|---|
| 202 | } |
|---|
| 203 | |
|---|
| 204 | arb_assert(is_valid()); |
|---|
| 205 | } |
|---|
| 206 | |
|---|
| 207 | |
|---|
| 208 | bool PART::equals(const PART *other) const { |
|---|
| 209 | /*! return true if p1 and p2 are equal |
|---|
| 210 | */ |
|---|
| 211 | arb_assert(is_valid()); |
|---|
| 212 | arb_assert(other->is_valid()); |
|---|
| 213 | |
|---|
| 214 | const int longs = get_longs(); |
|---|
| 215 | for (int i=0; i<longs; i++) { |
|---|
| 216 | if (p[i] != other->p[i]) return false; |
|---|
| 217 | } |
|---|
| 218 | return true; |
|---|
| 219 | } |
|---|
| 220 | |
|---|
| 221 | |
|---|
| 222 | unsigned PART::key() const { |
|---|
| 223 | //! calculate a hashkey from part |
|---|
| 224 | arb_assert(is_valid()); |
|---|
| 225 | |
|---|
| 226 | PELEM ph = 0; |
|---|
| 227 | const int longs = get_longs(); |
|---|
| 228 | for (int i=0; i<longs; i++) { // LOOP_VECTORIZED |
|---|
| 229 | ph ^= p[i]; |
|---|
| 230 | } |
|---|
| 231 | |
|---|
| 232 | return ph; |
|---|
| 233 | } |
|---|
| 234 | |
|---|
| 235 | inline uint8_t bytebitcount(uint8_t byte) { |
|---|
| 236 | uint8_t count = 0; |
|---|
| 237 | for (uint8_t b = 0; b<8; ++b) { |
|---|
| 238 | if (byte&1) ++count; |
|---|
| 239 | byte = byte>>1; |
|---|
| 240 | } |
|---|
| 241 | return count; |
|---|
| 242 | } |
|---|
| 243 | struct bitcounter { |
|---|
| 244 | uint8_t bytebits[256]; |
|---|
| 245 | bitcounter() { |
|---|
| 246 | for (unsigned i = 0; i<256; ++i) { |
|---|
| 247 | bytebits[i] = bytebitcount(i); |
|---|
| 248 | } |
|---|
| 249 | } |
|---|
| 250 | }; |
|---|
| 251 | |
|---|
| 252 | inline int bitcount(PELEM e) { |
|---|
| 253 | static bitcounter counted; // static lookup table |
|---|
| 254 | |
|---|
| 255 | int leafs = 0; |
|---|
| 256 | #if defined(DUMP_PART_DISTANCE) |
|---|
| 257 | fprintf(stdout, "bitcount(%04x) = ", e); |
|---|
| 258 | #endif |
|---|
| 259 | for (size_t bi = 0; bi<sizeof(e); ++bi) { |
|---|
| 260 | leafs += counted.bytebits[e&0xff]; |
|---|
| 261 | e = e>>8; |
|---|
| 262 | } |
|---|
| 263 | #if defined(DUMP_PART_DISTANCE) |
|---|
| 264 | fprintf(stdout, "%i\n", leafs); |
|---|
| 265 | #endif |
|---|
| 266 | return leafs; |
|---|
| 267 | } |
|---|
| 268 | |
|---|
| 269 | int PART::count_members() const { |
|---|
| 270 | //! count the number of leafs in partition |
|---|
| 271 | int leafs = 0; |
|---|
| 272 | const int longs = get_longs(); |
|---|
| 273 | for (int i = 0; i<(longs-1); ++i) { |
|---|
| 274 | leafs += bitcount(p[i]); |
|---|
| 275 | } |
|---|
| 276 | leafs += bitcount(p[longs-1] & get_cutmask()); |
|---|
| 277 | return leafs; |
|---|
| 278 | } |
|---|
| 279 | |
|---|
| 280 | bool PART::is_standardized() const { // @@@ inline |
|---|
| 281 | /*! true if PART is in standard representation. |
|---|
| 282 | * @see standardize() |
|---|
| 283 | */ |
|---|
| 284 | |
|---|
| 285 | // may be any criteria which differs between PART and its inverse |
|---|
| 286 | // if you change the criteria, generated trees will change |
|---|
| 287 | // (because branch-insertion-order is affected) |
|---|
| 288 | |
|---|
| 289 | return bit_is_set(0); |
|---|
| 290 | } |
|---|
| 291 | |
|---|
| 292 | void PART::standardize() { |
|---|
| 293 | /*! standardize the partition |
|---|
| 294 | * |
|---|
| 295 | * Generally two PARTs are equivalent, if one is the inverted version of the other. |
|---|
| 296 | * A standardized PART is equal for equivalent PARTs, i.e. may be used as key (as done in PartRegistry) |
|---|
| 297 | */ |
|---|
| 298 | arb_assert(is_valid()); |
|---|
| 299 | if (!is_standardized()) { |
|---|
| 300 | invert(); |
|---|
| 301 | arb_assert(is_standardized()); |
|---|
| 302 | } |
|---|
| 303 | arb_assert(is_valid()); |
|---|
| 304 | } |
|---|
| 305 | |
|---|
| 306 | int PART::index() const { |
|---|
| 307 | /*! calculate the first bit set in p, |
|---|
| 308 | * |
|---|
| 309 | * this is only useful if only one bit is set, |
|---|
| 310 | * this is used to identify leafs in a ntree |
|---|
| 311 | * |
|---|
| 312 | * ATTENTION: p has to exist |
|---|
| 313 | */ |
|---|
| 314 | arb_assert(is_valid()); |
|---|
| 315 | arb_assert(is_leaf_edge()); |
|---|
| 316 | |
|---|
| 317 | int pos = 0; |
|---|
| 318 | const int longs = get_longs(); |
|---|
| 319 | for (int i=0; i<longs; i++) { |
|---|
| 320 | PELEM p_temp = p[i]; |
|---|
| 321 | pos = i * sizeof(PELEM) * 8; |
|---|
| 322 | if (p_temp) { |
|---|
| 323 | for (; p_temp; p_temp >>= 1, pos++) { |
|---|
| 324 | ; |
|---|
| 325 | } |
|---|
| 326 | break; |
|---|
| 327 | } |
|---|
| 328 | } |
|---|
| 329 | return pos-1; |
|---|
| 330 | } |
|---|
| 331 | |
|---|
| 332 | int PART::insertionOrder_cmp(const PART *other) const { |
|---|
| 333 | // defines order in which edges will be inserted into the consensus tree |
|---|
| 334 | |
|---|
| 335 | if (this == other) return 0; |
|---|
| 336 | |
|---|
| 337 | int cmp = is_leaf_edge() - other->is_leaf_edge(); |
|---|
| 338 | |
|---|
| 339 | if (!cmp) { |
|---|
| 340 | cmp = -double_cmp(weight, other->weight); // insert bigger weight first |
|---|
| 341 | if (!cmp) { |
|---|
| 342 | int centerdist1 = distance_to_tree_center(); |
|---|
| 343 | int centerdist2 = other->distance_to_tree_center(); |
|---|
| 344 | |
|---|
| 345 | cmp = centerdist1-centerdist2; // insert central edges first |
|---|
| 346 | |
|---|
| 347 | if (!cmp) { |
|---|
| 348 | cmp = -double_cmp(get_len(), other->get_len()); // NOW REALLY insert bigger len first |
|---|
| 349 | // (change affected test results: increased in-tree-distance, |
|---|
| 350 | // but reduced parsimony value of result-trees) |
|---|
| 351 | if (!cmp) { |
|---|
| 352 | cmp = id - other->id; // strict by definition |
|---|
| 353 | arb_assert(cmp); |
|---|
| 354 | } |
|---|
| 355 | } |
|---|
| 356 | } |
|---|
| 357 | } |
|---|
| 358 | |
|---|
| 359 | return cmp; |
|---|
| 360 | } |
|---|
| 361 | inline int PELEM_cmp(const PELEM& p1, const PELEM& p2) { |
|---|
| 362 | return p1<p2 ? -1 : (p1>p2 ? 1 : 0); |
|---|
| 363 | } |
|---|
| 364 | |
|---|
| 365 | int PART::topological_cmp(const PART *other) const { |
|---|
| 366 | // define a strict order on topologies defined by edges |
|---|
| 367 | |
|---|
| 368 | if (this == other) return 0; |
|---|
| 369 | |
|---|
| 370 | arb_assert(is_standardized()); |
|---|
| 371 | arb_assert(other->is_standardized()); |
|---|
| 372 | |
|---|
| 373 | int cmp = members - other->members; |
|---|
| 374 | if (!cmp) { |
|---|
| 375 | const int longs = get_longs(); |
|---|
| 376 | for (int i = 0; !cmp && i<longs; ++i) { |
|---|
| 377 | cmp = PELEM_cmp(p[i], other->p[i]); |
|---|
| 378 | } |
|---|
| 379 | } |
|---|
| 380 | |
|---|
| 381 | arb_assert(contradicted(cmp, equals(other))); |
|---|
| 382 | |
|---|
| 383 | return cmp; |
|---|
| 384 | } |
|---|
| 385 | |
|---|
| 386 | #if defined(DUMP_PART_DISTANCE) |
|---|
| 387 | static void dumpbits(const PELEM p) { |
|---|
| 388 | PELEM el = 1; |
|---|
| 389 | for (int j=0; size_t(j)<sizeof(PELEM)*8; j++) { |
|---|
| 390 | bool bitset = p & el; |
|---|
| 391 | fputc("-1"[bitset], stdout); |
|---|
| 392 | el <<= 1; |
|---|
| 393 | } |
|---|
| 394 | } |
|---|
| 395 | #endif |
|---|
| 396 | |
|---|
| 397 | int PART::distanceTo(const PART *other, const PART *this_superset, const PART *other_superset) const { |
|---|
| 398 | /*! calculate the distance between two PARTs. |
|---|
| 399 | * 'this' is the first part to compare |
|---|
| 400 | * @param other second PART to compare |
|---|
| 401 | * @param this_superset whole tree (of which 'this' represents one edge) |
|---|
| 402 | * @param other_superset whole tree (of which 'other' represents one edge) |
|---|
| 403 | * |
|---|
| 404 | * The distance D is calculated as follows: |
|---|
| 405 | * D = O + min(d1, d2) |
|---|
| 406 | * where |
|---|
| 407 | * O := number of species present in one superset only |
|---|
| 408 | * d1 := |union(t0, o0)| - |intersection(t0,o0)| + |union(ti, oi)| - |intersection(ti,oi)| |
|---|
| 409 | * d2 := |union(t0, oi)| - |intersection(t0,oi)| + |union(ti, o0)| - |intersection(ti,o0)| |
|---|
| 410 | * where |
|---|
| 411 | * t0 := 'this' ti := inverse of 'this' in this_superset |
|---|
| 412 | * o0 := 'other' oi := inverse of 'other' in this_superset |
|---|
| 413 | */ |
|---|
| 414 | |
|---|
| 415 | #if defined(DUMP_PART_DISTANCE) |
|---|
| 416 | fputs("this: ", stdout); print(); |
|---|
| 417 | fputs("other: ", stdout); other->print(); |
|---|
| 418 | fputs("this_superset: ", stdout); this_superset->print(); |
|---|
| 419 | fputs("other_superset:", stdout); other_superset->print(); |
|---|
| 420 | #endif |
|---|
| 421 | |
|---|
| 422 | |
|---|
| 423 | #if defined(ASSERTION_USED) |
|---|
| 424 | if (this != this_superset) { // avoid that calls from calcTreeDistance fail here |
|---|
| 425 | if (!is_real_son_of(this_superset)) { // if 'this' is NOT inside tree 'this_superset' ... |
|---|
| 426 | PART *thisInverse = clone(); |
|---|
| 427 | thisInverse->invert(); |
|---|
| 428 | arb_assert(thisInverse->is_real_son_of(this_superset)); // assert inverse of 'this' is inside tree 'this_superset' |
|---|
| 429 | delete thisInverse; |
|---|
| 430 | } |
|---|
| 431 | } |
|---|
| 432 | if (other != other_superset) { // avoid that calls from calcTreeDistance fail here |
|---|
| 433 | if (!other->is_real_son_of(other_superset)) { // if 'other' is NOT inside tree 'other_superset' ... |
|---|
| 434 | PART *otherInverse = other->clone(); |
|---|
| 435 | otherInverse->invert(); |
|---|
| 436 | arb_assert(otherInverse->is_real_son_of(other_superset)); // assert inverse of 'other' is inside tree 'other_superset' |
|---|
| 437 | delete otherInverse; |
|---|
| 438 | } |
|---|
| 439 | } |
|---|
| 440 | #endif |
|---|
| 441 | |
|---|
| 442 | int dist = 0; |
|---|
| 443 | |
|---|
| 444 | const int longs = get_longs(); |
|---|
| 445 | for (int i = 0; i<longs; ++i) { |
|---|
| 446 | PELEM ts = this_superset->p[i]; |
|---|
| 447 | PELEM os = other_superset->p[i]; |
|---|
| 448 | |
|---|
| 449 | if (i == (longs-1)) { |
|---|
| 450 | const PELEM cutmask = this_superset->get_cutmask(); // should be identical for all involved PARTs |
|---|
| 451 | |
|---|
| 452 | ts = ts & cutmask; |
|---|
| 453 | os = os & cutmask; |
|---|
| 454 | } |
|---|
| 455 | |
|---|
| 456 | const PELEM O = ts ^ os; // calculate superset difference |
|---|
| 457 | const PELEM si = ts & os; // calculate superset intersection |
|---|
| 458 | |
|---|
| 459 | const PELEM t0 = p[i] & si; |
|---|
| 460 | const PELEM o0 = other->p[i] & si; |
|---|
| 461 | |
|---|
| 462 | const PELEM ti = t0 ^ si; // like invertInSuperset, but only performed in superset intersection |
|---|
| 463 | const PELEM oi = o0 ^ si; |
|---|
| 464 | |
|---|
| 465 | // calculate all 4 possible difference-parts: |
|---|
| 466 | const PELEM d00 = t0 ^ o0; // union(t0, o0) - intersection(t0,o0) |
|---|
| 467 | const PELEM d0i = t0 ^ oi; |
|---|
| 468 | const PELEM di0 = ti ^ o0; |
|---|
| 469 | const PELEM dii = ti ^ oi; |
|---|
| 470 | |
|---|
| 471 | const int d1 = bitcount(d00) + bitcount(dii); // calculate absolute values and sum pairwise |
|---|
| 472 | const int d2 = bitcount(d0i) + bitcount(di0); |
|---|
| 473 | |
|---|
| 474 | const int idist = bitcount(O) + std::min(d1, d2); // calculate whole difference (of current PELEM) |
|---|
| 475 | |
|---|
| 476 | #if defined(DUMP_PART_DISTANCE) |
|---|
| 477 | |
|---|
| 478 | #define DUMPBITS(var) do { fprintf(stdout, "%5s = %04x = ", #var, var); dumpbits(var); fputc('\n', stdout); } while(0) |
|---|
| 479 | #define DUMPINT(var) fprintf(stdout, "%5s = %i\n", #var, var) |
|---|
| 480 | |
|---|
| 481 | DUMPINT(i); |
|---|
| 482 | |
|---|
| 483 | DUMPBITS(ts); |
|---|
| 484 | DUMPBITS(os); |
|---|
| 485 | DUMPBITS(t0); |
|---|
| 486 | DUMPBITS(o0); |
|---|
| 487 | DUMPBITS(ti); |
|---|
| 488 | DUMPBITS(oi); |
|---|
| 489 | DUMPBITS(O); |
|---|
| 490 | DUMPBITS(d00); |
|---|
| 491 | DUMPBITS(d0i); |
|---|
| 492 | DUMPBITS(di0); |
|---|
| 493 | DUMPBITS(dii); |
|---|
| 494 | |
|---|
| 495 | DUMPINT(d1); |
|---|
| 496 | DUMPINT(d2); |
|---|
| 497 | DUMPINT(idist); |
|---|
| 498 | #endif |
|---|
| 499 | |
|---|
| 500 | dist += idist; // sum up |
|---|
| 501 | } |
|---|
| 502 | |
|---|
| 503 | #if defined(DUMP_PART_DISTANCE) |
|---|
| 504 | fprintf(stdout, "resulting dist=%i\n", dist); |
|---|
| 505 | #endif |
|---|
| 506 | |
|---|
| 507 | return dist; |
|---|
| 508 | } |
|---|
| 509 | |
|---|
| 510 | int PART_FWD::calcDistance(const PART *e1, const PART *e2, const PART *t1, const PART *t2) { |
|---|
| 511 | /*! calculate the distance between two PARTs (see distanceTo for details). |
|---|
| 512 | * The result is the number of species that were added, removed and/or moved to the |
|---|
| 513 | * other side of the partition. |
|---|
| 514 | * @param e1 first PART to compare |
|---|
| 515 | * @param e2 second PART to compare |
|---|
| 516 | * @param t1 whole tree (of which e1 represents one edge) |
|---|
| 517 | * @param t2 whole tree (of which e2 represents one edge) |
|---|
| 518 | */ |
|---|
| 519 | |
|---|
| 520 | return e1->distanceTo(e2, t1, t2); |
|---|
| 521 | } |
|---|
| 522 | |
|---|
| 523 | const TreeNode *PART_FWD::get_origin(const PART *part) { |
|---|
| 524 | return part ? part->get_origin() : NULp; |
|---|
| 525 | } |
|---|
| 526 | |
|---|
| 527 | int PART_FWD::get_members(const PART *part) { |
|---|
| 528 | return part->get_members(); |
|---|
| 529 | } |
|---|
| 530 | |
|---|
| 531 | void PART_FWD::destroy_part(PART* part) { |
|---|
| 532 | delete part; |
|---|
| 533 | } |
|---|
| 534 | |
|---|
| 535 | |
|---|
| 536 | // -------------------------------------------------------------------------------- |
|---|
| 537 | |
|---|
| 538 | #ifdef UNIT_TESTS |
|---|
| 539 | #ifndef TEST_UNIT_H |
|---|
| 540 | #include <test_unit.h> |
|---|
| 541 | #endif |
|---|
| 542 | |
|---|
| 543 | void TEST_PartRegistry() { |
|---|
| 544 | { |
|---|
| 545 | PartitionSize reg(0); |
|---|
| 546 | TEST_EXPECT_EQUAL(reg.get_bits(), 0); |
|---|
| 547 | TEST_EXPECT_EQUAL(reg.get_longs(), 0); |
|---|
| 548 | // cutmask doesnt matter |
|---|
| 549 | } |
|---|
| 550 | |
|---|
| 551 | { |
|---|
| 552 | PartitionSize reg(1); |
|---|
| 553 | TEST_EXPECT_EQUAL(reg.get_bits(), 1); |
|---|
| 554 | TEST_EXPECT_EQUAL(reg.get_longs(), 1); |
|---|
| 555 | TEST_EXPECT_EQUAL(readable_cutmask(reg.get_cutmask()), "00000000000000000000000000000001"); |
|---|
| 556 | } |
|---|
| 557 | |
|---|
| 558 | { |
|---|
| 559 | PartitionSize reg(31); |
|---|
| 560 | TEST_EXPECT_EQUAL(reg.get_bits(), 31); |
|---|
| 561 | TEST_EXPECT_EQUAL(reg.get_longs(), 1); |
|---|
| 562 | TEST_EXPECT_EQUAL(readable_cutmask(reg.get_cutmask()), "01111111111111111111111111111111"); |
|---|
| 563 | } |
|---|
| 564 | |
|---|
| 565 | { |
|---|
| 566 | PartitionSize reg(32); |
|---|
| 567 | TEST_EXPECT_EQUAL(reg.get_bits(), 32); |
|---|
| 568 | TEST_EXPECT_EQUAL(reg.get_longs(), 1); |
|---|
| 569 | TEST_EXPECT_EQUAL(readable_cutmask(reg.get_cutmask()), "11111111111111111111111111111111"); |
|---|
| 570 | } |
|---|
| 571 | |
|---|
| 572 | { |
|---|
| 573 | PartitionSize reg(33); |
|---|
| 574 | TEST_EXPECT_EQUAL(reg.get_bits(), 33); |
|---|
| 575 | TEST_EXPECT_EQUAL(reg.get_longs(), 2); |
|---|
| 576 | TEST_EXPECT_EQUAL(readable_cutmask(reg.get_cutmask()), "00000000000000000000000000000001"); |
|---|
| 577 | } |
|---|
| 578 | |
|---|
| 579 | { |
|---|
| 580 | PartitionSize reg(95); |
|---|
| 581 | TEST_EXPECT_EQUAL(reg.get_bits(), 95); |
|---|
| 582 | TEST_EXPECT_EQUAL(reg.get_longs(), 3); |
|---|
| 583 | TEST_EXPECT_EQUAL(readable_cutmask(reg.get_cutmask()), "01111111111111111111111111111111"); |
|---|
| 584 | } |
|---|
| 585 | } |
|---|
| 586 | |
|---|
| 587 | #endif // UNIT_TESTS |
|---|
| 588 | |
|---|
| 589 | // -------------------------------------------------------------------------------- |
|---|
| 590 | |
|---|
| 591 | |
|---|