1 | // ============================================================= // |
---|
2 | // // |
---|
3 | // File : CT_part.cxx // |
---|
4 | // Purpose : // |
---|
5 | // // |
---|
6 | // Institute of Microbiology (Technical University Munich) // |
---|
7 | // http://www.arb-home.de/ // |
---|
8 | // // |
---|
9 | // ============================================================= // |
---|
10 | |
---|
11 | /* This module is designed to organize the data structure partitions |
---|
12 | partitions represent the edges of a tree */ |
---|
13 | // the partitions are implemented as an array of longs |
---|
14 | // Each leaf in a GBT-Tree is represented as one Bit in the Partition |
---|
15 | |
---|
16 | #include "CT_part.hxx" |
---|
17 | #include "CT_common.hxx" |
---|
18 | |
---|
19 | #define BITS_PER_PELEM (sizeof(PELEM)*8) |
---|
20 | |
---|
21 | #if defined(DUMP_PART_INIT) || defined(UNIT_TESTS) |
---|
22 | static const char *readable_cutmask(PELEM mask) { |
---|
23 | static char readable[BITS_PER_PELEM+1]; |
---|
24 | memset(readable, '0', BITS_PER_PELEM); |
---|
25 | readable[BITS_PER_PELEM] = 0; |
---|
26 | |
---|
27 | for (int b = BITS_PER_PELEM-1; b >= 0; --b) { |
---|
28 | if (mask&1) readable[b] = '1'; |
---|
29 | mask = mask>>1; |
---|
30 | } |
---|
31 | return readable; |
---|
32 | } |
---|
33 | #endif |
---|
34 | |
---|
35 | PartitionSize::PartitionSize(const int len) |
---|
36 | : cutmask(0), |
---|
37 | longs((((len + 7) / 8)+sizeof(PELEM)-1) / sizeof(PELEM)), |
---|
38 | bits(len), |
---|
39 | id(0) |
---|
40 | { |
---|
41 | /*! Function to initialize the global variables above |
---|
42 | * @param len number of bits the part should content |
---|
43 | * |
---|
44 | * result: calculate cutmask, longs, plen |
---|
45 | */ |
---|
46 | |
---|
47 | int j = len % BITS_PER_PELEM; |
---|
48 | if (!j) j += BITS_PER_PELEM; |
---|
49 | |
---|
50 | for (int i=0; i<j; i++) { |
---|
51 | cutmask <<= 1; |
---|
52 | cutmask |= 1; |
---|
53 | } |
---|
54 | |
---|
55 | #if defined(DEBUG) |
---|
56 | size_t possible = longs*BITS_PER_PELEM; |
---|
57 | arb_assert((possible-bits)<BITS_PER_PELEM); // longs is too big (wasted space) |
---|
58 | |
---|
59 | #if defined(DUMP_PART_INIT) |
---|
60 | printf("leafs=%i\n", len); |
---|
61 | printf("cutmask='%s'\n", readable_cutmask(cutmask)); |
---|
62 | printf("longs=%i (can hold %zu bits)\n", longs, possible); |
---|
63 | printf("bits=%i\n", bits); |
---|
64 | #endif |
---|
65 | #endif |
---|
66 | } |
---|
67 | |
---|
68 | #if defined(NTREE_DEBUG_FUNCTIONS) |
---|
69 | |
---|
70 | static const CharPtrArray *namesPtr = NULp; |
---|
71 | |
---|
72 | void PART::start_pretty_printing(const CharPtrArray& names) { namesPtr = &names; } |
---|
73 | void PART::stop_pretty_printing() { namesPtr = NULp; } |
---|
74 | |
---|
75 | void PART::print() const { |
---|
76 | // ! Testfunction to print a part |
---|
77 | int k = 0; |
---|
78 | const int longs = get_longs(); |
---|
79 | const int plen = info->get_bits(); |
---|
80 | |
---|
81 | if (namesPtr) { |
---|
82 | const CharPtrArray& names = *namesPtr; |
---|
83 | for (int part = 0; part<=1; ++part) { |
---|
84 | // bool first = true; |
---|
85 | for (int i=0; i<longs; i++) { |
---|
86 | PELEM el = 1; |
---|
87 | for (int j=0; k<plen && size_t(j)<sizeof(PELEM)*8; j++, k++) { |
---|
88 | bool bitset = p[i] & el; |
---|
89 | if (bitset == part) { |
---|
90 | const char *name = names[k]; |
---|
91 | #if 1 |
---|
92 | fputc(name[0], stdout); // first char of name |
---|
93 | #else |
---|
94 | if (!first) fputc(',', stdout); |
---|
95 | else first = false; |
---|
96 | fputs(name, stdout); // full name |
---|
97 | #endif |
---|
98 | } |
---|
99 | el <<= 1; |
---|
100 | } |
---|
101 | } |
---|
102 | if (!part) { |
---|
103 | fputs("---", stdout); |
---|
104 | k = 0; |
---|
105 | } |
---|
106 | } |
---|
107 | } |
---|
108 | else { |
---|
109 | for (int i=0; i<longs; i++) { |
---|
110 | PELEM el = 1; |
---|
111 | for (int j=0; k<plen && size_t(j)<sizeof(PELEM)*8; j++, k++) { |
---|
112 | bool bitset = p[i] & el; |
---|
113 | fputc('0'+bitset, stdout); |
---|
114 | el <<= 1; |
---|
115 | } |
---|
116 | } |
---|
117 | } |
---|
118 | |
---|
119 | printf(" len=%.5f prob=%5.1f%% w.len=%.5f leaf=%i dist2center=%i\n", |
---|
120 | len, weight*100.0, get_len(), is_leaf_edge(), distance_to_tree_center()); |
---|
121 | } |
---|
122 | #endif |
---|
123 | |
---|
124 | PART *PartitionSize::create_root() const { |
---|
125 | /*! build a partition that totally consists of 111111...1111 that is needed to |
---|
126 | * build the root of a specific ntree |
---|
127 | */ |
---|
128 | |
---|
129 | PART *p = new PART(this, 1.0); |
---|
130 | p->invert(); |
---|
131 | arb_assert(p->is_valid()); |
---|
132 | return p; |
---|
133 | } |
---|
134 | |
---|
135 | bool PART::overlaps_with(const PART *other) const { |
---|
136 | /*! test if two parts overlap (i.e. share common bits) |
---|
137 | */ |
---|
138 | |
---|
139 | arb_assert(is_valid()); |
---|
140 | arb_assert(other->is_valid()); |
---|
141 | |
---|
142 | const int longs = get_longs(); |
---|
143 | for (int i=0; i<longs; i++) { |
---|
144 | if (p[i] & other->p[i]) return true; |
---|
145 | } |
---|
146 | return false; |
---|
147 | } |
---|
148 | |
---|
149 | void PART::invert() { |
---|
150 | //! invert a part |
---|
151 | // |
---|
152 | // Each edge in a tree connects two subtrees. |
---|
153 | // These subtrees are represented by inverse partitions |
---|
154 | |
---|
155 | arb_assert(is_valid()); |
---|
156 | |
---|
157 | const int longs = get_longs(); |
---|
158 | for (int i=0; i<longs; i++) { // LOOP_VECTORIZED |
---|
159 | p[i] = ~p[i]; |
---|
160 | } |
---|
161 | p[longs-1] &= get_cutmask(); |
---|
162 | |
---|
163 | members = get_maxsize()-members; |
---|
164 | |
---|
165 | arb_assert(is_valid()); |
---|
166 | } |
---|
167 | |
---|
168 | void PART::invertInSuperset(const PART *superset) { |
---|
169 | arb_assert(is_valid()); |
---|
170 | arb_assert(is_subset_of(superset)); |
---|
171 | |
---|
172 | const int longs = get_longs(); |
---|
173 | for (int i=0; i<longs; i++) { // LOOP_VECTORIZED |
---|
174 | p[i] = p[i] ^ superset->p[i]; |
---|
175 | } |
---|
176 | p[longs-1] &= get_cutmask(); |
---|
177 | |
---|
178 | members = superset->get_members()-members; |
---|
179 | |
---|
180 | arb_assert(is_valid()); |
---|
181 | arb_assert(is_subset_of(superset)); |
---|
182 | } |
---|
183 | |
---|
184 | |
---|
185 | void PART::add_members_from(const PART *source) { |
---|
186 | //! destination = source or destination |
---|
187 | arb_assert(source->is_valid()); |
---|
188 | arb_assert(is_valid()); |
---|
189 | |
---|
190 | bool distinct = disjunct_from(source); |
---|
191 | |
---|
192 | const int longs = get_longs(); |
---|
193 | for (int i=0; i<longs; i++) { // LOOP_VECTORIZED |
---|
194 | p[i] |= source->p[i]; |
---|
195 | } |
---|
196 | |
---|
197 | if (distinct) { |
---|
198 | members += source->members; |
---|
199 | } |
---|
200 | else { |
---|
201 | members = count_members(); |
---|
202 | } |
---|
203 | |
---|
204 | arb_assert(is_valid()); |
---|
205 | } |
---|
206 | |
---|
207 | |
---|
208 | bool PART::equals(const PART *other) const { |
---|
209 | /*! return true if p1 and p2 are equal |
---|
210 | */ |
---|
211 | arb_assert(is_valid()); |
---|
212 | arb_assert(other->is_valid()); |
---|
213 | |
---|
214 | const int longs = get_longs(); |
---|
215 | for (int i=0; i<longs; i++) { |
---|
216 | if (p[i] != other->p[i]) return false; |
---|
217 | } |
---|
218 | return true; |
---|
219 | } |
---|
220 | |
---|
221 | |
---|
222 | unsigned PART::key() const { |
---|
223 | //! calculate a hashkey from part |
---|
224 | arb_assert(is_valid()); |
---|
225 | |
---|
226 | PELEM ph = 0; |
---|
227 | const int longs = get_longs(); |
---|
228 | for (int i=0; i<longs; i++) { // LOOP_VECTORIZED |
---|
229 | ph ^= p[i]; |
---|
230 | } |
---|
231 | |
---|
232 | return ph; |
---|
233 | } |
---|
234 | |
---|
235 | inline uint8_t bytebitcount(uint8_t byte) { |
---|
236 | uint8_t count = 0; |
---|
237 | for (uint8_t b = 0; b<8; ++b) { |
---|
238 | if (byte&1) ++count; |
---|
239 | byte = byte>>1; |
---|
240 | } |
---|
241 | return count; |
---|
242 | } |
---|
243 | struct bitcounter { |
---|
244 | uint8_t bytebits[256]; |
---|
245 | bitcounter() { |
---|
246 | for (unsigned i = 0; i<256; ++i) { |
---|
247 | bytebits[i] = bytebitcount(i); |
---|
248 | } |
---|
249 | } |
---|
250 | }; |
---|
251 | |
---|
252 | inline int bitcount(PELEM e) { |
---|
253 | static bitcounter counted; // static lookup table |
---|
254 | |
---|
255 | int leafs = 0; |
---|
256 | #if defined(DUMP_PART_DISTANCE) |
---|
257 | fprintf(stdout, "bitcount(%04x) = ", e); |
---|
258 | #endif |
---|
259 | for (size_t bi = 0; bi<sizeof(e); ++bi) { |
---|
260 | leafs += counted.bytebits[e&0xff]; |
---|
261 | e = e>>8; |
---|
262 | } |
---|
263 | #if defined(DUMP_PART_DISTANCE) |
---|
264 | fprintf(stdout, "%i\n", leafs); |
---|
265 | #endif |
---|
266 | return leafs; |
---|
267 | } |
---|
268 | |
---|
269 | int PART::count_members() const { |
---|
270 | //! count the number of leafs in partition |
---|
271 | int leafs = 0; |
---|
272 | const int longs = get_longs(); |
---|
273 | for (int i = 0; i<(longs-1); ++i) { |
---|
274 | leafs += bitcount(p[i]); |
---|
275 | } |
---|
276 | leafs += bitcount(p[longs-1] & get_cutmask()); |
---|
277 | return leafs; |
---|
278 | } |
---|
279 | |
---|
280 | bool PART::is_standardized() const { // @@@ inline |
---|
281 | /*! true if PART is in standard representation. |
---|
282 | * @see standardize() |
---|
283 | */ |
---|
284 | |
---|
285 | // may be any criteria which differs between PART and its inverse |
---|
286 | // if you change the criteria, generated trees will change |
---|
287 | // (because branch-insertion-order is affected) |
---|
288 | |
---|
289 | return bit_is_set(0); |
---|
290 | } |
---|
291 | |
---|
292 | void PART::standardize() { |
---|
293 | /*! standardize the partition |
---|
294 | * |
---|
295 | * Generally two PARTs are equivalent, if one is the inverted version of the other. |
---|
296 | * A standardized PART is equal for equivalent PARTs, i.e. may be used as key (as done in PartRegistry) |
---|
297 | */ |
---|
298 | arb_assert(is_valid()); |
---|
299 | if (!is_standardized()) { |
---|
300 | invert(); |
---|
301 | arb_assert(is_standardized()); |
---|
302 | } |
---|
303 | arb_assert(is_valid()); |
---|
304 | } |
---|
305 | |
---|
306 | int PART::index() const { |
---|
307 | /*! calculate the first bit set in p, |
---|
308 | * |
---|
309 | * this is only useful if only one bit is set, |
---|
310 | * this is used to identify leafs in a ntree |
---|
311 | * |
---|
312 | * ATTENTION: p has to exist |
---|
313 | */ |
---|
314 | arb_assert(is_valid()); |
---|
315 | arb_assert(is_leaf_edge()); |
---|
316 | |
---|
317 | int pos = 0; |
---|
318 | const int longs = get_longs(); |
---|
319 | for (int i=0; i<longs; i++) { |
---|
320 | PELEM p_temp = p[i]; |
---|
321 | pos = i * sizeof(PELEM) * 8; |
---|
322 | if (p_temp) { |
---|
323 | for (; p_temp; p_temp >>= 1, pos++) { |
---|
324 | ; |
---|
325 | } |
---|
326 | break; |
---|
327 | } |
---|
328 | } |
---|
329 | return pos-1; |
---|
330 | } |
---|
331 | |
---|
332 | int PART::insertionOrder_cmp(const PART *other) const { |
---|
333 | // defines order in which edges will be inserted into the consensus tree |
---|
334 | |
---|
335 | if (this == other) return 0; |
---|
336 | |
---|
337 | int cmp = is_leaf_edge() - other->is_leaf_edge(); |
---|
338 | |
---|
339 | if (!cmp) { |
---|
340 | cmp = -double_cmp(weight, other->weight); // insert bigger weight first |
---|
341 | if (!cmp) { |
---|
342 | int centerdist1 = distance_to_tree_center(); |
---|
343 | int centerdist2 = other->distance_to_tree_center(); |
---|
344 | |
---|
345 | cmp = centerdist1-centerdist2; // insert central edges first |
---|
346 | |
---|
347 | if (!cmp) { |
---|
348 | cmp = -double_cmp(get_len(), other->get_len()); // NOW REALLY insert bigger len first |
---|
349 | // (change affected test results: increased in-tree-distance, |
---|
350 | // but reduced parsimony value of result-trees) |
---|
351 | if (!cmp) { |
---|
352 | cmp = id - other->id; // strict by definition |
---|
353 | arb_assert(cmp); |
---|
354 | } |
---|
355 | } |
---|
356 | } |
---|
357 | } |
---|
358 | |
---|
359 | return cmp; |
---|
360 | } |
---|
361 | inline int PELEM_cmp(const PELEM& p1, const PELEM& p2) { |
---|
362 | return p1<p2 ? -1 : (p1>p2 ? 1 : 0); |
---|
363 | } |
---|
364 | |
---|
365 | int PART::topological_cmp(const PART *other) const { |
---|
366 | // define a strict order on topologies defined by edges |
---|
367 | |
---|
368 | if (this == other) return 0; |
---|
369 | |
---|
370 | arb_assert(is_standardized()); |
---|
371 | arb_assert(other->is_standardized()); |
---|
372 | |
---|
373 | int cmp = members - other->members; |
---|
374 | if (!cmp) { |
---|
375 | const int longs = get_longs(); |
---|
376 | for (int i = 0; !cmp && i<longs; ++i) { |
---|
377 | cmp = PELEM_cmp(p[i], other->p[i]); |
---|
378 | } |
---|
379 | } |
---|
380 | |
---|
381 | arb_assert(contradicted(cmp, equals(other))); |
---|
382 | |
---|
383 | return cmp; |
---|
384 | } |
---|
385 | |
---|
386 | #if defined(DUMP_PART_DISTANCE) |
---|
387 | static void dumpbits(const PELEM p) { |
---|
388 | PELEM el = 1; |
---|
389 | for (int j=0; size_t(j)<sizeof(PELEM)*8; j++) { |
---|
390 | bool bitset = p & el; |
---|
391 | fputc("-1"[bitset], stdout); |
---|
392 | el <<= 1; |
---|
393 | } |
---|
394 | } |
---|
395 | #endif |
---|
396 | |
---|
397 | int PART::distanceTo(const PART *other, const PART *this_superset, const PART *other_superset) const { |
---|
398 | /*! calculate the distance between two PARTs. |
---|
399 | * 'this' is the first part to compare |
---|
400 | * @param other second PART to compare |
---|
401 | * @param this_superset whole tree (of which 'this' represents one edge) |
---|
402 | * @param other_superset whole tree (of which 'other' represents one edge) |
---|
403 | * |
---|
404 | * The distance D is calculated as follows: |
---|
405 | * D = O + min(d1, d2) |
---|
406 | * where |
---|
407 | * O := number of species present in one superset only |
---|
408 | * d1 := |union(t0, o0)| - |intersection(t0,o0)| + |union(ti, oi)| - |intersection(ti,oi)| |
---|
409 | * d2 := |union(t0, oi)| - |intersection(t0,oi)| + |union(ti, o0)| - |intersection(ti,o0)| |
---|
410 | * where |
---|
411 | * t0 := 'this' ti := inverse of 'this' in this_superset |
---|
412 | * o0 := 'other' oi := inverse of 'other' in this_superset |
---|
413 | */ |
---|
414 | |
---|
415 | #if defined(DUMP_PART_DISTANCE) |
---|
416 | fputs("this: ", stdout); print(); |
---|
417 | fputs("other: ", stdout); other->print(); |
---|
418 | fputs("this_superset: ", stdout); this_superset->print(); |
---|
419 | fputs("other_superset:", stdout); other_superset->print(); |
---|
420 | #endif |
---|
421 | |
---|
422 | |
---|
423 | #if defined(ASSERTION_USED) |
---|
424 | if (this != this_superset) { // avoid that calls from calcTreeDistance fail here |
---|
425 | if (!is_real_son_of(this_superset)) { // if 'this' is NOT inside tree 'this_superset' ... |
---|
426 | PART *thisInverse = clone(); |
---|
427 | thisInverse->invert(); |
---|
428 | arb_assert(thisInverse->is_real_son_of(this_superset)); // assert inverse of 'this' is inside tree 'this_superset' |
---|
429 | delete thisInverse; |
---|
430 | } |
---|
431 | } |
---|
432 | if (other != other_superset) { // avoid that calls from calcTreeDistance fail here |
---|
433 | if (!other->is_real_son_of(other_superset)) { // if 'other' is NOT inside tree 'other_superset' ... |
---|
434 | PART *otherInverse = other->clone(); |
---|
435 | otherInverse->invert(); |
---|
436 | arb_assert(otherInverse->is_real_son_of(other_superset)); // assert inverse of 'other' is inside tree 'other_superset' |
---|
437 | delete otherInverse; |
---|
438 | } |
---|
439 | } |
---|
440 | #endif |
---|
441 | |
---|
442 | int dist = 0; |
---|
443 | |
---|
444 | const int longs = get_longs(); |
---|
445 | for (int i = 0; i<longs; ++i) { |
---|
446 | PELEM ts = this_superset->p[i]; |
---|
447 | PELEM os = other_superset->p[i]; |
---|
448 | |
---|
449 | if (i == (longs-1)) { |
---|
450 | const PELEM cutmask = this_superset->get_cutmask(); // should be identical for all involved PARTs |
---|
451 | |
---|
452 | ts = ts & cutmask; |
---|
453 | os = os & cutmask; |
---|
454 | } |
---|
455 | |
---|
456 | const PELEM O = ts ^ os; // calculate superset difference |
---|
457 | const PELEM si = ts & os; // calculate superset intersection |
---|
458 | |
---|
459 | const PELEM t0 = p[i] & si; |
---|
460 | const PELEM o0 = other->p[i] & si; |
---|
461 | |
---|
462 | const PELEM ti = t0 ^ si; // like invertInSuperset, but only performed in superset intersection |
---|
463 | const PELEM oi = o0 ^ si; |
---|
464 | |
---|
465 | // calculate all 4 possible difference-parts: |
---|
466 | const PELEM d00 = t0 ^ o0; // union(t0, o0) - intersection(t0,o0) |
---|
467 | const PELEM d0i = t0 ^ oi; |
---|
468 | const PELEM di0 = ti ^ o0; |
---|
469 | const PELEM dii = ti ^ oi; |
---|
470 | |
---|
471 | const int d1 = bitcount(d00) + bitcount(dii); // calculate absolute values and sum pairwise |
---|
472 | const int d2 = bitcount(d0i) + bitcount(di0); |
---|
473 | |
---|
474 | const int idist = bitcount(O) + std::min(d1, d2); // calculate whole difference (of current PELEM) |
---|
475 | |
---|
476 | #if defined(DUMP_PART_DISTANCE) |
---|
477 | |
---|
478 | #define DUMPBITS(var) do { fprintf(stdout, "%5s = %04x = ", #var, var); dumpbits(var); fputc('\n', stdout); } while(0) |
---|
479 | #define DUMPINT(var) fprintf(stdout, "%5s = %i\n", #var, var) |
---|
480 | |
---|
481 | DUMPINT(i); |
---|
482 | |
---|
483 | DUMPBITS(ts); |
---|
484 | DUMPBITS(os); |
---|
485 | DUMPBITS(t0); |
---|
486 | DUMPBITS(o0); |
---|
487 | DUMPBITS(ti); |
---|
488 | DUMPBITS(oi); |
---|
489 | DUMPBITS(O); |
---|
490 | DUMPBITS(d00); |
---|
491 | DUMPBITS(d0i); |
---|
492 | DUMPBITS(di0); |
---|
493 | DUMPBITS(dii); |
---|
494 | |
---|
495 | DUMPINT(d1); |
---|
496 | DUMPINT(d2); |
---|
497 | DUMPINT(idist); |
---|
498 | #endif |
---|
499 | |
---|
500 | dist += idist; // sum up |
---|
501 | } |
---|
502 | |
---|
503 | #if defined(DUMP_PART_DISTANCE) |
---|
504 | fprintf(stdout, "resulting dist=%i\n", dist); |
---|
505 | #endif |
---|
506 | |
---|
507 | return dist; |
---|
508 | } |
---|
509 | |
---|
510 | int PART_FWD::calcDistance(const PART *e1, const PART *e2, const PART *t1, const PART *t2) { |
---|
511 | /*! calculate the distance between two PARTs (see distanceTo for details). |
---|
512 | * The result is the number of species that were added, removed and/or moved to the |
---|
513 | * other side of the partition. |
---|
514 | * @param e1 first PART to compare |
---|
515 | * @param e2 second PART to compare |
---|
516 | * @param t1 whole tree (of which e1 represents one edge) |
---|
517 | * @param t2 whole tree (of which e2 represents one edge) |
---|
518 | */ |
---|
519 | |
---|
520 | return e1->distanceTo(e2, t1, t2); |
---|
521 | } |
---|
522 | |
---|
523 | const TreeNode *PART_FWD::get_origin(const PART *part) { |
---|
524 | return part ? part->get_origin() : NULp; |
---|
525 | } |
---|
526 | |
---|
527 | int PART_FWD::get_members(const PART *part) { |
---|
528 | return part->get_members(); |
---|
529 | } |
---|
530 | |
---|
531 | void PART_FWD::destroy_part(PART* part) { |
---|
532 | delete part; |
---|
533 | } |
---|
534 | |
---|
535 | |
---|
536 | // -------------------------------------------------------------------------------- |
---|
537 | |
---|
538 | #ifdef UNIT_TESTS |
---|
539 | #ifndef TEST_UNIT_H |
---|
540 | #include <test_unit.h> |
---|
541 | #endif |
---|
542 | |
---|
543 | void TEST_PartRegistry() { |
---|
544 | { |
---|
545 | PartitionSize reg(0); |
---|
546 | TEST_EXPECT_EQUAL(reg.get_bits(), 0); |
---|
547 | TEST_EXPECT_EQUAL(reg.get_longs(), 0); |
---|
548 | // cutmask doesnt matter |
---|
549 | } |
---|
550 | |
---|
551 | { |
---|
552 | PartitionSize reg(1); |
---|
553 | TEST_EXPECT_EQUAL(reg.get_bits(), 1); |
---|
554 | TEST_EXPECT_EQUAL(reg.get_longs(), 1); |
---|
555 | TEST_EXPECT_EQUAL(readable_cutmask(reg.get_cutmask()), "00000000000000000000000000000001"); |
---|
556 | } |
---|
557 | |
---|
558 | { |
---|
559 | PartitionSize reg(31); |
---|
560 | TEST_EXPECT_EQUAL(reg.get_bits(), 31); |
---|
561 | TEST_EXPECT_EQUAL(reg.get_longs(), 1); |
---|
562 | TEST_EXPECT_EQUAL(readable_cutmask(reg.get_cutmask()), "01111111111111111111111111111111"); |
---|
563 | } |
---|
564 | |
---|
565 | { |
---|
566 | PartitionSize reg(32); |
---|
567 | TEST_EXPECT_EQUAL(reg.get_bits(), 32); |
---|
568 | TEST_EXPECT_EQUAL(reg.get_longs(), 1); |
---|
569 | TEST_EXPECT_EQUAL(readable_cutmask(reg.get_cutmask()), "11111111111111111111111111111111"); |
---|
570 | } |
---|
571 | |
---|
572 | { |
---|
573 | PartitionSize reg(33); |
---|
574 | TEST_EXPECT_EQUAL(reg.get_bits(), 33); |
---|
575 | TEST_EXPECT_EQUAL(reg.get_longs(), 2); |
---|
576 | TEST_EXPECT_EQUAL(readable_cutmask(reg.get_cutmask()), "00000000000000000000000000000001"); |
---|
577 | } |
---|
578 | |
---|
579 | { |
---|
580 | PartitionSize reg(95); |
---|
581 | TEST_EXPECT_EQUAL(reg.get_bits(), 95); |
---|
582 | TEST_EXPECT_EQUAL(reg.get_longs(), 3); |
---|
583 | TEST_EXPECT_EQUAL(readable_cutmask(reg.get_cutmask()), "01111111111111111111111111111111"); |
---|
584 | } |
---|
585 | } |
---|
586 | |
---|
587 | #endif // UNIT_TESTS |
---|
588 | |
---|
589 | // -------------------------------------------------------------------------------- |
---|
590 | |
---|
591 | |
---|