1 | // ========================================================= // |
---|
2 | // // |
---|
3 | // File : NT_syncroot.cxx // |
---|
4 | // Purpose : GUI + tests for root synchronization // |
---|
5 | // // |
---|
6 | // Coded by Ralf Westram (coder@reallysoft.de) in May 20 // |
---|
7 | // http://www.arb-home.de/ // |
---|
8 | // // |
---|
9 | // ========================================================= // |
---|
10 | |
---|
11 | #include <SyncRoot.hxx> |
---|
12 | #include <TreeRead.h> |
---|
13 | |
---|
14 | #include <aw_window.hxx> |
---|
15 | #include <aw_msg.hxx> |
---|
16 | #include <aw_root.hxx> |
---|
17 | #include <aw_select.hxx> |
---|
18 | #include <aw_awar.hxx> |
---|
19 | #include <awt_sel_boxes.hxx> |
---|
20 | |
---|
21 | #include <arb_global_defs.h> |
---|
22 | |
---|
23 | using namespace std; |
---|
24 | |
---|
25 | #define TREE_SYNCROOT_AWAR_BASE "tree/syncroot/" |
---|
26 | #define TREE_SYNCROOT_TEMP_BASE "tmp/" TREE_SYNCROOT_AWAR_BASE |
---|
27 | #define AWAR_TREE_SYNCROOT_SELECTED TREE_SYNCROOT_TEMP_BASE "selected" |
---|
28 | |
---|
29 | static GB_ERROR load_and_add_tree(GBDATA *gb_main, const char *treename, RootSynchronizer& addTo) { |
---|
30 | GB_transaction ta(gb_main); |
---|
31 | SizeAwareTree *satree = DOWNCAST(SizeAwareTree*, GBT_read_tree(gb_main, treename, new SizeAwareRoot)); |
---|
32 | GB_ERROR error = NULp; |
---|
33 | if (!satree) { |
---|
34 | error = GB_await_error(); |
---|
35 | } |
---|
36 | else { |
---|
37 | addTo.add(satree, treename); |
---|
38 | } |
---|
39 | return error; |
---|
40 | } |
---|
41 | |
---|
42 | static ARB_ERROR adjustTreeRoot(ConstSizeAwareTreePtr newRootEdge, RootSynchronizer& rsync, size_t t, GBDATA *gb_main, const char *distInfo, int rt) { |
---|
43 | /*! save tree to DB (if 'bestEdge' not already is the root edge). |
---|
44 | * logs into tree comment + prints info message to gui. |
---|
45 | * |
---|
46 | * @param newRootEdge son node of edge wanted as root edge. |
---|
47 | * @param rsync synchronizer used to find 'bestEdge'. |
---|
48 | * @param t index of tree in 'rsync' (tree has to contain 'bestEdge') |
---|
49 | * @param gb_main the database |
---|
50 | * @param distInfo information about distance. gets added to message and/or log entries. |
---|
51 | * @param rt index of reference tree (or -1 when multiroot optimization is performed) |
---|
52 | * @return error |
---|
53 | */ |
---|
54 | |
---|
55 | ARB_ERROR error; |
---|
56 | SizeAwareTree *resultTree = rsync.take_tree(t); // retrieve tree from RootSynchronizer (takes ownership!) |
---|
57 | const TreeInfo& treeInfo = rsync.get_tree_info(t); |
---|
58 | |
---|
59 | arb_assert(newRootEdge->is_inside(resultTree)); |
---|
60 | if (newRootEdge->is_son_of_root()) { // -> do NOT set root (just drop a note) |
---|
61 | const char *what = rt<0 ? "best found" : "optimal"; |
---|
62 | aw_message(GBS_global_string("%s: root already at %s position (%s)", treeInfo.name(), what, distInfo)); |
---|
63 | } |
---|
64 | else { |
---|
65 | SizeAwareTree *newRootEdge_nc = const_cast<SizeAwareTree*>(&*newRootEdge); // safe ('resultTree' is owned) |
---|
66 | newRootEdge_nc->set_root(); // set root to 'edge' |
---|
67 | |
---|
68 | aw_message(GBS_global_string("%s: set root (%s)", treeInfo.name(), distInfo)); |
---|
69 | |
---|
70 | // store tree in DB: |
---|
71 | { |
---|
72 | GB_transaction ta(gb_main); |
---|
73 | GBDATA *gb_tree = GBT_find_tree(gb_main, treeInfo.name()); |
---|
74 | if (!gb_tree) { |
---|
75 | error = GBS_global_string("no such tree '%s' - cannot overwrite", treeInfo.name()); |
---|
76 | } |
---|
77 | else { |
---|
78 | error = GBT_overwrite_tree(gb_tree, resultTree); |
---|
79 | if (!error) { |
---|
80 | string entry; |
---|
81 | if (rt<0) { // multiroot optimization |
---|
82 | entry = GBS_global_string("Multiroot optimization (%s)", distInfo); |
---|
83 | } |
---|
84 | else { // sync vs ref tree |
---|
85 | entry = GBS_global_string("Adjusted root versus '%s' (%s)", rsync.get_tree_info(rt).name(), distInfo); |
---|
86 | } |
---|
87 | error = GBT_log_to_tree_remark(gb_tree, entry.c_str(), true); |
---|
88 | } |
---|
89 | } |
---|
90 | error = ta.close(error); |
---|
91 | } |
---|
92 | } |
---|
93 | |
---|
94 | return error; |
---|
95 | } |
---|
96 | static ARB_ERROR adjustTreeRoot(ErrorOrSizeAwareTreePtr bestEdge, RootSynchronizer& rsync, size_t t, GBDATA *gb_main, const char *distInfo, int rt) { |
---|
97 | return bestEdge.hasError() |
---|
98 | ? bestEdge.getError() |
---|
99 | : adjustTreeRoot(bestEdge.getValue(), rsync, t, gb_main, distInfo, rt); |
---|
100 | } |
---|
101 | |
---|
102 | static void rootsync_subsetTrees_vs_selected(AW_window *aws, GBDATA *gb_main, AW_selection *tosync_trees_selection) { |
---|
103 | StrArray tosync_tree; |
---|
104 | tosync_trees_selection->get_values(tosync_tree); |
---|
105 | |
---|
106 | if (tosync_tree.empty()) { |
---|
107 | aw_message("List of trees to synchronize is empty (left list). Nothing to do."); |
---|
108 | } |
---|
109 | else { |
---|
110 | AW_root *awr = aws->get_root(); |
---|
111 | const char *ref_tree_name = awr->awar(AWAR_TREE_SYNCROOT_SELECTED)->read_char_pntr(); |
---|
112 | |
---|
113 | if (strcmp(ref_tree_name, NO_TREE_SELECTED) == 0) { |
---|
114 | aw_message("No reference tree selected (in right list)"); |
---|
115 | } |
---|
116 | else { |
---|
117 | arb_progress progress("Adjusting root of tree"); |
---|
118 | progress.subtitle("Loading trees.."); |
---|
119 | |
---|
120 | RootSynchronizer rsync; |
---|
121 | ARB_ERROR error = load_and_add_tree(gb_main, ref_tree_name, rsync); // load reference tree first -> index==0 |
---|
122 | const int REF_IDX = 0; |
---|
123 | |
---|
124 | for (int i = 0; tosync_tree[i] && !error; ++i) { |
---|
125 | if (strcmp(tosync_tree[i], ref_tree_name) == 0) { |
---|
126 | aw_message(GBS_global_string("%s: won't synchronize (same as reference tree)", tosync_tree[i])); |
---|
127 | } |
---|
128 | else { |
---|
129 | error = load_and_add_tree(gb_main, tosync_tree[i], rsync); |
---|
130 | } |
---|
131 | } |
---|
132 | |
---|
133 | if (!error) { |
---|
134 | size_t toSyncCount = rsync.get_tree_count()-1; |
---|
135 | |
---|
136 | if (!toSyncCount) { |
---|
137 | error = "nothing to synchronize"; |
---|
138 | } |
---|
139 | else { |
---|
140 | arb_progress progress2(toSyncCount); |
---|
141 | |
---|
142 | for (size_t t = 1; t<=toSyncCount && !error; ++t) { |
---|
143 | int lowestDist; |
---|
144 | ErrorOrSizeAwareTreePtr bestEdge = rsync.find_best_root_candidate(t, REF_IDX, lowestDist, true); |
---|
145 | string distInfo = lowestDist ? GBS_global_string("distance: %i", lowestDist) : "perfect match"; |
---|
146 | |
---|
147 | error = adjustTreeRoot(bestEdge, rsync, t, gb_main, distInfo.c_str(), REF_IDX); |
---|
148 | |
---|
149 | progress2.inc_and_check_user_abort(error); |
---|
150 | } |
---|
151 | } |
---|
152 | } |
---|
153 | |
---|
154 | aw_message_if(error); |
---|
155 | } |
---|
156 | } |
---|
157 | } |
---|
158 | |
---|
159 | const int MULTIROOT_SEARCH_DEPTH = 1; // 2 already causes far to deep recursion |
---|
160 | |
---|
161 | static void multiroot_sync_subsetTrees(AW_window*, GBDATA *gb_main, AW_selection *tosync_trees_selection) { |
---|
162 | StrArray tosync_tree; |
---|
163 | tosync_trees_selection->get_values(tosync_tree); |
---|
164 | |
---|
165 | if (tosync_tree.size()<2) { |
---|
166 | aw_message("Need at least two trees to synchronize (in left list)."); |
---|
167 | } |
---|
168 | else { |
---|
169 | RootSynchronizer rsync; |
---|
170 | ARB_ERROR error; |
---|
171 | |
---|
172 | for (int i = 0; tosync_tree[i] && !error; ++i) { |
---|
173 | error = load_and_add_tree(gb_main, tosync_tree[i], rsync); |
---|
174 | } |
---|
175 | |
---|
176 | if (!error) { |
---|
177 | error = rsync.deconstruct_all_trees(true); |
---|
178 | } |
---|
179 | |
---|
180 | if (!error) { |
---|
181 | ErrorOrMultirootPtr mrStart_orError = rsync.get_current_roots(); |
---|
182 | if (mrStart_orError.hasError()) { |
---|
183 | error = mrStart_orError.getError(); |
---|
184 | } |
---|
185 | else { |
---|
186 | MultirootPtr mrStart = mrStart_orError.getValue(); |
---|
187 | aw_message(GBS_global_string("Starting at root-combination with distance %i", mrStart->distanceSum(rsync))); |
---|
188 | } |
---|
189 | } |
---|
190 | if (!error) { |
---|
191 | arb_progress progress("Multi root optimize (abort to stop early)"); |
---|
192 | ErrorOrMultirootPtr mroot_orError = rsync.find_good_roots_for_trees(MULTIROOT_SEARCH_DEPTH, &progress); |
---|
193 | if (mroot_orError.hasError()) { |
---|
194 | error = mroot_orError.getError(); |
---|
195 | } |
---|
196 | else { |
---|
197 | MultirootPtr mroot = mroot_orError.getValue(); |
---|
198 | int overallDistSum = mroot->distanceSum(rsync); |
---|
199 | aw_message(GBS_global_string("Found root-combination with distance %i", overallDistSum)); |
---|
200 | if (progress.aborted()) aw_message("[search aborted by user -> using best result so far]"); |
---|
201 | |
---|
202 | for (size_t t = 0; t<rsync.get_tree_count() && !error; ++t) { |
---|
203 | ConstSizeAwareTreePtr newRootEdge = mroot->get_node(t); |
---|
204 | int treeDistSum = mroot->singleTreeDistanceSum(rsync, t); |
---|
205 | string distInfo = GBS_global_string("distance to other trees: %i/%i", treeDistSum, overallDistSum); |
---|
206 | |
---|
207 | error = adjustTreeRoot(newRootEdge, rsync, t, gb_main, distInfo.c_str(), -1); |
---|
208 | } |
---|
209 | } |
---|
210 | } |
---|
211 | |
---|
212 | aw_message_if(error); |
---|
213 | } |
---|
214 | } |
---|
215 | |
---|
216 | static void create_syncroot_awars(AW_root *awr) { |
---|
217 | awr->awar_string(AWAR_TREE_SYNCROOT_SELECTED, NO_TREE_SELECTED, AW_ROOT_DEFAULT); |
---|
218 | } |
---|
219 | |
---|
220 | AW_window *NT_create_syncroot_window(AW_root *awr, GBDATA *gb_main) { |
---|
221 | static AW_window_simple *aws = NULp; |
---|
222 | |
---|
223 | if (!aws) { |
---|
224 | create_syncroot_awars(awr); |
---|
225 | |
---|
226 | aws = new AW_window_simple; |
---|
227 | aws->init(awr, "SYNCROOT", "Adjust roots of trees"); |
---|
228 | aws->load_xfig("syncroot.fig"); |
---|
229 | |
---|
230 | aws->auto_space(10, 10); |
---|
231 | |
---|
232 | aws->callback(AW_POPDOWN); |
---|
233 | aws->at("close"); |
---|
234 | aws->create_button("CLOSE", "CLOSE", "C"); |
---|
235 | |
---|
236 | aws->callback(makeHelpCallback("syncroots.hlp")); |
---|
237 | aws->at("help"); |
---|
238 | aws->create_button("HELP", "HELP", "H"); |
---|
239 | |
---|
240 | aws->at("list"); |
---|
241 | AW_DB_selection *all_trees = awt_create_TREE_selection_list(gb_main, aws, AWAR_TREE_SYNCROOT_SELECTED, true); |
---|
242 | AW_selection *tosync_trees = awt_create_subset_selection_list(aws, all_trees->get_sellist(), "tosync", "add", NULp); |
---|
243 | |
---|
244 | aws->at("all"); |
---|
245 | aws->callback(makeWindowCallback(multiroot_sync_subsetTrees, gb_main, tosync_trees)); |
---|
246 | aws->create_autosize_button("SYNC_ALL_TREES", "to find common optima for all.", "a"); |
---|
247 | |
---|
248 | aws->at("sel"); |
---|
249 | aws->callback(makeWindowCallback(rootsync_subsetTrees_vs_selected, gb_main, tosync_trees)); |
---|
250 | aws->create_autosize_button("SYNC_TO_ONE", "to tree selected in the right list", "r"); |
---|
251 | } |
---|
252 | return aws; |
---|
253 | } |
---|
254 | |
---|
255 | // -------------------------------------------------------------------------------- |
---|
256 | |
---|
257 | #ifdef UNIT_TESTS |
---|
258 | #ifndef TEST_UNIT_H |
---|
259 | #include <test_unit.h> |
---|
260 | #endif |
---|
261 | |
---|
262 | static const char *custom_tree_name(int dir, const char *name) { return GBS_global_string("syncroot/%i/%s.tree", dir, name); } |
---|
263 | |
---|
264 | static SizeAwareTree *loadTree(const char *treefile, GB_ERROR& error) { |
---|
265 | arb_assert(!error); |
---|
266 | |
---|
267 | char *warnings = NULp; |
---|
268 | |
---|
269 | TreeRoot *root = new SizeAwareRoot; |
---|
270 | SizeAwareTree *tree = DOWNCAST(SizeAwareTree*, TREE_load(treefile, root, NULp, true, &warnings)); |
---|
271 | |
---|
272 | if (!tree) { |
---|
273 | error = GBS_global_string("Failed to load tree '%s' (Reason: %s)", treefile, GB_await_error()); |
---|
274 | } |
---|
275 | else if (warnings) { |
---|
276 | GB_warningf("while loading tree '%s':\n%s", treefile, warnings); |
---|
277 | free(warnings); |
---|
278 | } |
---|
279 | |
---|
280 | return tree; |
---|
281 | } |
---|
282 | |
---|
283 | static string wayFromTo_internal(const TreeNode *ancestor, const TreeNode *successor) { |
---|
284 | if (successor == ancestor) return ""; |
---|
285 | |
---|
286 | const TreeNode *father = successor->get_father(); |
---|
287 | string wayToFather = wayFromTo_internal(ancestor, father); |
---|
288 | |
---|
289 | return wayToFather+(successor->is_leftson() ? 'l' : 'r'); |
---|
290 | } |
---|
291 | static string wayFromTo(const TreeNode *ancestor, const TreeNode *successor) { |
---|
292 | arb_assert(ancestor); |
---|
293 | arb_assert(successor); |
---|
294 | |
---|
295 | if (successor->is_inside(ancestor)) { |
---|
296 | return wayFromTo_internal(ancestor, successor); |
---|
297 | } |
---|
298 | if (ancestor->get_tree_root() != successor->get_tree_root()) { |
---|
299 | return "<not same tree>"; |
---|
300 | } |
---|
301 | if (ancestor->is_inside(successor)) { |
---|
302 | return "<wrong order>"; |
---|
303 | } |
---|
304 | |
---|
305 | if (ancestor->is_son_of_root()) { |
---|
306 | const TreeNode *brother = ancestor->get_brother(); |
---|
307 | if (successor->is_inside(brother)) { |
---|
308 | return "!"+wayFromTo_internal(brother, successor); |
---|
309 | } |
---|
310 | } |
---|
311 | |
---|
312 | const TreeNode *root = ancestor->get_tree_root()->get_root_node(); |
---|
313 | arb_assert(successor->get_tree_root()->get_root_node() == root); |
---|
314 | |
---|
315 | arb_assert(ancestor->is_inside(root)); |
---|
316 | arb_assert(successor->is_inside(root)); |
---|
317 | |
---|
318 | return wayFromTo_internal(root, ancestor) + "-" + wayFromTo_internal(root, successor); |
---|
319 | } |
---|
320 | |
---|
321 | template<class TREECONT> |
---|
322 | int loadTreeAndAddTo(int dir, const char *name, TREECONT& container) { |
---|
323 | GB_ERROR error = NULp; |
---|
324 | SizeAwareTree *tree = loadTree(custom_tree_name(dir, name), error); |
---|
325 | TEST_EXPECT_NO_ERROR(error); |
---|
326 | TEST_REJECT_NULL(tree); |
---|
327 | return container.add(tree, name); |
---|
328 | } |
---|
329 | |
---|
330 | void TEST_part_node_linkage() { |
---|
331 | GB_ERROR error = NULp; |
---|
332 | |
---|
333 | TreeContainer tc; |
---|
334 | loadTreeAndAddTo(1, "ref", tc); // -> ../UNIT_TESTER/run/syncroot/1/ref.tree |
---|
335 | |
---|
336 | for (int partial = 0; partial<=1; ++partial) { |
---|
337 | TEST_ANNOTATE(GBS_global_string("partial=%i", partial)); |
---|
338 | if (partial == 1) { |
---|
339 | loadTreeAndAddTo(1, "overlap", tc); // may be any tree that introduces additional species into namespace |
---|
340 | } |
---|
341 | |
---|
342 | ConstStrArray names; |
---|
343 | tc.get_species_names(names); |
---|
344 | |
---|
345 | SpeciesSpace specSpace(names); |
---|
346 | DeconstructedTree dtree(specSpace); |
---|
347 | |
---|
348 | const SizeAwareTree *root = tc.get_tree(0); |
---|
349 | |
---|
350 | { |
---|
351 | TreeParts tparts(specSpace, tc); |
---|
352 | error = dtree.deconstruct_weighted(root, tparts.get_tree_PART(0), root->get_leaf_count(), 1.0, false, specSpace.get_allSpecies(), DMODE_ROOTSYNC); |
---|
353 | TEST_EXPECT_NO_ERROR(error); |
---|
354 | } |
---|
355 | |
---|
356 | dtree.start_sorted_retrieval(); |
---|
357 | |
---|
358 | const int LEAFS = 6; |
---|
359 | const int PARTS = leafs_2_edges(LEAFS, UNROOTED); // expect one partition for each edge |
---|
360 | |
---|
361 | TEST_EXPECT_EQUAL(root->get_leaf_count(), LEAFS); |
---|
362 | TEST_EXPECT_EQUAL(dtree.get_part_count(), PARTS); |
---|
363 | |
---|
364 | const PART *rootPART = dtree.find_part(root); |
---|
365 | TEST_EXPECT_NULL(rootPART); // the root node is not attached to any edge -> does not define any partition |
---|
366 | |
---|
367 | const SizeAwareTree *leftRootSon = root->get_leftson(); |
---|
368 | const SizeAwareTree *rightRootSon = root->get_rightson(); |
---|
369 | |
---|
370 | const PART *leftRootPART = dtree.find_part(leftRootSon); |
---|
371 | const PART *rightRootPART = dtree.find_part(rightRootSon); |
---|
372 | |
---|
373 | TEST_REJECT_NULL(leftRootPART); |
---|
374 | TEST_REJECT_NULL(rightRootPART); |
---|
375 | TEST_EXPECT_EQUAL(leftRootPART, rightRootPART); // returns SAME part for both sons of root! |
---|
376 | |
---|
377 | using namespace PART_FWD; |
---|
378 | TEST_EXPECT_EQUAL(get_origin(leftRootPART), leftRootSon); // expect reverse linkage |
---|
379 | TEST_EXPECT_EQUAL(get_origin(rightRootPART), leftRootSon); // reverse linkage not fully consistent at one son of root-edge |
---|
380 | |
---|
381 | // check correct linkage for all other nodes in tree: |
---|
382 | { |
---|
383 | std::vector<const SizeAwareTree*> toTest; |
---|
384 | toTest.push_back(leftRootSon->get_leftson()); |
---|
385 | toTest.push_back(leftRootSon->get_rightson()); |
---|
386 | toTest.push_back(rightRootSon->get_leftson()); |
---|
387 | toTest.push_back(rightRootSon->get_rightson()); |
---|
388 | |
---|
389 | while (!toTest.empty()) { |
---|
390 | const SizeAwareTree *node = toTest.back(); |
---|
391 | toTest.pop_back(); |
---|
392 | |
---|
393 | const PART *nodePART = dtree.find_part(node); |
---|
394 | |
---|
395 | TEST_REJECT_NULL(nodePART); |
---|
396 | TEST_EXPECT_EQUAL(get_origin(nodePART), node); |
---|
397 | |
---|
398 | if (!node->is_leaf()) { // push sons |
---|
399 | toTest.push_back(node->get_leftson()); |
---|
400 | toTest.push_back(node->get_rightson()); |
---|
401 | } |
---|
402 | } |
---|
403 | } |
---|
404 | } |
---|
405 | } |
---|
406 | |
---|
407 | inline const DeconstructedTree& EXPECT_DECONSTRUCTED(ErrorOrDeconstructedTreePtr eodtp) { |
---|
408 | TEST_REJECT(eodtp.hasError()); |
---|
409 | return *eodtp.getValue(); |
---|
410 | } |
---|
411 | |
---|
412 | void TEST_part_distance() { |
---|
413 | RootSynchronizer rs; |
---|
414 | |
---|
415 | const int tosync_idx = loadTreeAndAddTo(1, "tosync", rs); // -> ../UNIT_TESTER/run/syncroot/1/tosync.tree |
---|
416 | const int ref_idx = loadTreeAndAddTo(1, "ref", rs); // -> ../UNIT_TESTER/run/syncroot/1/ref.tree |
---|
417 | const int disj_idx = loadTreeAndAddTo(1, "disjunct", rs); // -> ../UNIT_TESTER/run/syncroot/1/disjunct.tree |
---|
418 | const int over_idx = loadTreeAndAddTo(1, "overlap", rs); // -> ../UNIT_TESTER/run/syncroot/1/overlap.tree |
---|
419 | |
---|
420 | TEST_EXPECT_EQUAL(tosync_idx, 0); |
---|
421 | TEST_EXPECT_EQUAL(ref_idx, 1); |
---|
422 | TEST_EXPECT_EQUAL(disj_idx, 2); |
---|
423 | TEST_EXPECT_EQUAL(over_idx, 3); |
---|
424 | |
---|
425 | rs.beginDeconstructionPhase(); |
---|
426 | |
---|
427 | const SpeciesSpace& specSpace = rs.get_SpeciesSpace(); |
---|
428 | const int SPACE_SIZE = 12; |
---|
429 | TEST_EXPECT_EQUAL(rs.get_species_count(), SPACE_SIZE); // via TreeContainer |
---|
430 | TEST_EXPECT_EQUAL(PART_FWD::get_members(specSpace.get_allSpecies()), SPACE_SIZE); // via SpeciesSpace |
---|
431 | |
---|
432 | const SizeAwareTree *tosync_root = rs.get_tree(tosync_idx); |
---|
433 | const SizeAwareTree *ref_root = rs.get_tree(ref_idx); |
---|
434 | const SizeAwareTree *disj_root = rs.get_tree(disj_idx); |
---|
435 | const SizeAwareTree *over_root = rs.get_tree(over_idx); |
---|
436 | |
---|
437 | TEST_REJECT_NULL(tosync_root); |
---|
438 | TEST_REJECT_NULL(ref_root); |
---|
439 | TEST_REJECT_NULL(disj_root); |
---|
440 | TEST_REJECT_NULL(over_root); |
---|
441 | |
---|
442 | { |
---|
443 | const PART *tosync_wholeTree_PART = rs.get_tree_PART(tosync_idx); |
---|
444 | const PART *ref_wholeTree_PART = rs.get_tree_PART(ref_idx); |
---|
445 | const PART *disj_wholeTree_PART = rs.get_tree_PART(disj_idx); |
---|
446 | const PART *over_wholeTree_PART = rs.get_tree_PART(over_idx); |
---|
447 | |
---|
448 | TEST_EXPECT_EQUAL(PART_FWD::get_members(tosync_wholeTree_PART), 6); |
---|
449 | TEST_EXPECT_EQUAL(PART_FWD::get_members(ref_wholeTree_PART), 6); |
---|
450 | TEST_EXPECT_EQUAL(PART_FWD::get_members(disj_wholeTree_PART), 6); |
---|
451 | TEST_EXPECT_EQUAL(PART_FWD::get_members(over_wholeTree_PART), 6); |
---|
452 | |
---|
453 | const int DISJUNCT_DIST = 12; // =sum of sizes of 2 trees |
---|
454 | |
---|
455 | const DeconstructedTree& tosync_dtree = EXPECT_DECONSTRUCTED(rs.get_DeconstructedTree(tosync_idx)); |
---|
456 | const DeconstructedTree& disj_dtree = EXPECT_DECONSTRUCTED(rs.get_DeconstructedTree(disj_idx)); |
---|
457 | const DeconstructedTree& over_dtree = EXPECT_DECONSTRUCTED(rs.get_DeconstructedTree(over_idx)); |
---|
458 | const DeconstructedTree& ref_dtree = EXPECT_DECONSTRUCTED(rs.get_DeconstructedTree(ref_idx)); |
---|
459 | |
---|
460 | // test single part distances at beginning: |
---|
461 | { |
---|
462 | const SizeAwareTree *tosync_rightson = tosync_root->get_rightson(); TEST_REJECT_NULL(tosync_rightson); |
---|
463 | const PART *tosync_rightson_PART = tosync_dtree.find_part(tosync_rightson); TEST_REJECT_NULL(tosync_rightson_PART); |
---|
464 | |
---|
465 | // compare PART of tosync_rightson with self -> shall report no distance: |
---|
466 | TEST_EXPECT_EQUAL(PART_FWD::calcDistance(tosync_rightson_PART, tosync_rightson_PART, tosync_wholeTree_PART, tosync_wholeTree_PART), 0); |
---|
467 | |
---|
468 | TEST_REJECT(tosync_rightson->is_leaf()); // want to descent further.. |
---|
469 | |
---|
470 | const SizeAwareTree *tosync_grandson = tosync_rightson->get_rightson(); TEST_REJECT_NULL(tosync_grandson); |
---|
471 | const PART *tosync_grandson_PART = tosync_dtree.find_part(tosync_grandson); TEST_REJECT_NULL(tosync_grandson_PART); |
---|
472 | |
---|
473 | int RIGHT_GRAND_DIST = 4; |
---|
474 | // compare PART of tosync_rightson with tosync_grandson -> shall report some distance: |
---|
475 | TEST_EXPECT_EQUAL(PART_FWD::calcDistance(tosync_rightson_PART, tosync_grandson_PART, tosync_wholeTree_PART, tosync_wholeTree_PART), RIGHT_GRAND_DIST); |
---|
476 | |
---|
477 | // test distance does not depend on direction: |
---|
478 | TEST_EXPECT_EQUAL(PART_FWD::calcDistance(tosync_grandson_PART, tosync_rightson_PART, tosync_wholeTree_PART, tosync_wholeTree_PART), RIGHT_GRAND_DIST); |
---|
479 | |
---|
480 | { |
---|
481 | // this subtree changes the partition side (between tosync_rightson_PART and tosync_grandson_PART): |
---|
482 | const SizeAwareTree *tosync_othergrandson = tosync_grandson->get_brother(); TEST_REJECT_NULL(tosync_othergrandson); |
---|
483 | TEST_EXPECT_EQUAL(tosync_othergrandson->get_leaf_count(), RIGHT_GRAND_DIST); // the subtree size is the same as the calculated distance between these PARTS. seems reasonable! :) |
---|
484 | } |
---|
485 | |
---|
486 | |
---|
487 | // test distance to edges from disjunct tree (distance should always be same): |
---|
488 | const SizeAwareTree *disj_leftson = disj_root->get_leftson (); TEST_REJECT_NULL(disj_leftson); |
---|
489 | const SizeAwareTree *disj_grandson = disj_root->get_rightson()->get_leftson(); TEST_REJECT_NULL(disj_grandson); |
---|
490 | |
---|
491 | const PART *disj_leftson_PART = disj_dtree.find_part(disj_leftson); TEST_REJECT_NULL(disj_leftson_PART); |
---|
492 | const PART *disj_grandson_PART = disj_dtree.find_part(disj_grandson); TEST_REJECT_NULL(disj_grandson_PART); |
---|
493 | |
---|
494 | // distance between edges of disjunct trees is the same (for any edge): |
---|
495 | TEST_EXPECT_EQUAL(PART_FWD::calcDistance(tosync_grandson_PART, disj_leftson_PART, tosync_wholeTree_PART, disj_wholeTree_PART), DISJUNCT_DIST); |
---|
496 | TEST_EXPECT_EQUAL(PART_FWD::calcDistance(tosync_grandson_PART, disj_grandson_PART, tosync_wholeTree_PART, disj_wholeTree_PART), DISJUNCT_DIST); |
---|
497 | |
---|
498 | TEST_EXPECT_EQUAL(PART_FWD::calcDistance(disj_leftson_PART, disj_grandson_PART, disj_wholeTree_PART, disj_wholeTree_PART), 2); // shows that different edges (used from tree 'disjunct') actually differ |
---|
499 | |
---|
500 | |
---|
501 | // test distance between partly overlapping trees: |
---|
502 | const SizeAwareTree *over_leftson = over_root->get_leftson(); TEST_REJECT_NULL(over_leftson); |
---|
503 | const PART *over_leftson_PART = over_dtree.find_part(over_leftson); TEST_REJECT_NULL(over_leftson_PART); |
---|
504 | |
---|
505 | TEST_EXPECT_EQUAL(PART_FWD::calcDistance(over_leftson_PART, tosync_grandson_PART, over_wholeTree_PART, tosync_wholeTree_PART), 6); // no distance in overlapping region -> only counts disjunct parts |
---|
506 | |
---|
507 | const SizeAwareTree *over_somenode = over_leftson->get_leftson(); TEST_REJECT_NULL(over_somenode); |
---|
508 | const PART *over_somenode_PART = over_dtree.find_part (over_somenode); TEST_REJECT_NULL(over_somenode_PART); |
---|
509 | |
---|
510 | TEST_EXPECT_EQUAL(PART_FWD::calcDistance(over_somenode_PART, tosync_grandson_PART, over_wholeTree_PART, tosync_wholeTree_PART), 8); |
---|
511 | } |
---|
512 | |
---|
513 | // The trees 'ref' and 'tosync' have same topology - only root position differs. |
---|
514 | // => each branch in one tree should perfectly match another branch in other tree. |
---|
515 | |
---|
516 | bool reverseSearchFound_identicalIndex = false; |
---|
517 | bool reverseSearchFound_duplicateIndex = false; |
---|
518 | bool selfSearchFound_identicalIndex = false; |
---|
519 | bool selfSearchFound_duplicateIndex = false; |
---|
520 | |
---|
521 | for (size_t pr = 0; pr<ref_dtree.get_part_count(); ++pr) { |
---|
522 | const PART *ref_PART = ref_dtree.peek_part(pr); |
---|
523 | TEST_REJECT_NULL(ref_PART); |
---|
524 | |
---|
525 | if (!represents_existing_edge(ref_PART)) continue; |
---|
526 | |
---|
527 | int best_dist; |
---|
528 | int best_idx; |
---|
529 | |
---|
530 | RootSynchronizer::find_best_matching_PART_in(best_dist, best_idx, ref_PART, tosync_dtree, ref_wholeTree_PART, tosync_wholeTree_PART, false); |
---|
531 | |
---|
532 | TEST_REJECT(best_idx == -1); // expect some PART is "best match" |
---|
533 | TEST_EXPECT_EQUAL(best_dist, 0); // should find a perfect match for each branch! |
---|
534 | |
---|
535 | // perform reverse search |
---|
536 | { |
---|
537 | const PART *tosync_PART = tosync_dtree.peek_part(best_idx); |
---|
538 | TEST_REJECT_NULL(tosync_PART); |
---|
539 | |
---|
540 | arb_assert(represents_existing_edge(tosync_PART)); |
---|
541 | |
---|
542 | RootSynchronizer::find_best_matching_PART_in(best_dist, best_idx, tosync_PART, ref_dtree, tosync_wholeTree_PART, ref_wholeTree_PART, false); |
---|
543 | |
---|
544 | TEST_REJECT(best_idx == -1); // expect some PART is "best match" |
---|
545 | TEST_EXPECT_EQUAL(best_dist, 0); // should find a perfect match for each branch! |
---|
546 | |
---|
547 | // expect reverse search matches original PART: |
---|
548 | TEST_EXPECT_EQUAL(PART_FWD::get_origin(ref_dtree.peek_part(best_idx)), PART_FWD::get_origin(ref_PART)); |
---|
549 | TEST_EXPECT_EQUAL(ref_dtree.peek_part(best_idx), ref_PART); |
---|
550 | TEST_EXPECT_EQUAL(best_idx, pr); |
---|
551 | if (size_t(best_idx) == pr) reverseSearchFound_identicalIndex = true; |
---|
552 | else reverseSearchFound_duplicateIndex = true; |
---|
553 | } |
---|
554 | |
---|
555 | // search self: |
---|
556 | RootSynchronizer::find_best_matching_PART_in(best_dist, best_idx, ref_PART, ref_dtree, ref_wholeTree_PART, ref_wholeTree_PART, false); |
---|
557 | |
---|
558 | // each PART should perfectly match to itself: |
---|
559 | TEST_EXPECT_EQUAL(PART_FWD::get_origin(ref_dtree.peek_part(best_idx)), PART_FWD::get_origin(ref_PART)); |
---|
560 | TEST_EXPECT_EQUAL(ref_dtree.peek_part(best_idx), ref_PART); // each PART should perfectly match to itself |
---|
561 | TEST_EXPECT_EQUAL(best_idx, pr); |
---|
562 | if (size_t(best_idx) == pr) selfSearchFound_identicalIndex = true; |
---|
563 | else selfSearchFound_duplicateIndex = true; |
---|
564 | } |
---|
565 | |
---|
566 | TEST_EXPECT(reverseSearchFound_identicalIndex); |
---|
567 | TEST_REJECT(reverseSearchFound_duplicateIndex); |
---|
568 | TEST_EXPECT(selfSearchFound_identicalIndex); |
---|
569 | TEST_REJECT(selfSearchFound_duplicateIndex); |
---|
570 | |
---|
571 | // compare PARTs of disjunct trees: |
---|
572 | // - all distances are expected to be the same ("comparing apples and oranges") |
---|
573 | |
---|
574 | for (size_t pd = 0; pd<disj_dtree.get_part_count(); ++pd) { |
---|
575 | const PART *disj_PART = disj_dtree.peek_part(pd); |
---|
576 | TEST_REJECT_NULL(disj_PART); |
---|
577 | |
---|
578 | if (!represents_existing_edge(disj_PART)) continue; |
---|
579 | |
---|
580 | for (size_t pr = 0; pr<ref_dtree.get_part_count(); ++pr) { |
---|
581 | const PART *ref_PART = ref_dtree.peek_part(pr); |
---|
582 | TEST_REJECT_NULL(ref_PART); |
---|
583 | |
---|
584 | if (!represents_existing_edge(ref_PART)) continue; |
---|
585 | |
---|
586 | TEST_EXPECT_EQUAL(PART_FWD::calcDistance(ref_PART, disj_PART, ref_wholeTree_PART, disj_wholeTree_PART), DISJUNCT_DIST); |
---|
587 | } |
---|
588 | } |
---|
589 | |
---|
590 | // compare PARTs of overlap tree with other trees: |
---|
591 | for (size_t po = 0; po<over_dtree.get_part_count(); ++po) { |
---|
592 | const PART *over_PART = over_dtree.peek_part(po); |
---|
593 | TEST_REJECT_NULL(over_PART); |
---|
594 | |
---|
595 | if (!represents_existing_edge(over_PART)) continue; |
---|
596 | |
---|
597 | int best_dist, best_idx; |
---|
598 | int worst_dist, worst_idx; |
---|
599 | |
---|
600 | // compare with tosync: |
---|
601 | RootSynchronizer::find_best_matching_PART_in(best_dist, best_idx, over_PART, tosync_dtree, over_wholeTree_PART, tosync_wholeTree_PART, false); |
---|
602 | TEST_REJECT(best_idx == -1); // expect some PART is "best match" |
---|
603 | TEST_EXPECT_EQUAL(best_dist, 6); // 6 = perfect match in overlap + 2*3 not overlapping parts |
---|
604 | |
---|
605 | RootSynchronizer::find_worst_matching_PART_in(worst_dist, worst_idx, over_PART, tosync_dtree, over_wholeTree_PART, tosync_wholeTree_PART); |
---|
606 | TEST_REJECT(worst_idx == -1); // expect some PART is "worst match" |
---|
607 | TEST_EXPECT_EQUAL(worst_dist, 8); // 8 = worst match in overlap (=2) + 2*3 not overlapping parts; 3 diffs in overlap not possible (would use inverse) |
---|
608 | |
---|
609 | // compare with disjunct: |
---|
610 | RootSynchronizer::find_best_matching_PART_in(best_dist, best_idx, over_PART, disj_dtree, over_wholeTree_PART, disj_wholeTree_PART, false); |
---|
611 | TEST_REJECT(best_idx == -1); // expect some PART is "best match" |
---|
612 | TEST_EXPECT_EQUAL(best_dist, 6); // see above |
---|
613 | |
---|
614 | RootSynchronizer::find_worst_matching_PART_in(worst_dist, worst_idx, over_PART, disj_dtree, over_wholeTree_PART, disj_wholeTree_PART); |
---|
615 | TEST_REJECT(worst_idx == -1); // expect some PART is "worst match" |
---|
616 | TEST_EXPECT_EQUAL(worst_dist, 8); // see above |
---|
617 | } |
---|
618 | } |
---|
619 | } |
---|
620 | |
---|
621 | const int DEPTH = 0; // 0 means: perform 1 move per tree only |
---|
622 | |
---|
623 | void TEST_RootSynchronizer() { |
---|
624 | RootSynchronizer rsync1; |
---|
625 | |
---|
626 | int tosync_idx = loadTreeAndAddTo(1, "tosync", rsync1); // -> ../UNIT_TESTER/run/syncroot/1/tosync.tree |
---|
627 | int ref_idx = loadTreeAndAddTo(1, "ref", rsync1); // -> ../UNIT_TESTER/run/syncroot/1/ref.tree |
---|
628 | |
---|
629 | ConstSizeAwareTreePtr newRoot = NULp; |
---|
630 | int foundDist; |
---|
631 | |
---|
632 | // access invalid idx => test error is reported: |
---|
633 | { |
---|
634 | ErrorOrSizeAwareTreePtr erc = rsync1.find_best_root_candidate(tosync_idx, 7, foundDist, false); |
---|
635 | TEST_EXPECT(erc.hasError()); |
---|
636 | TEST_EXPECT_CONTAINS(erc.getError().deliver(), "invalid tree index 7"); |
---|
637 | } |
---|
638 | |
---|
639 | // test finding best candidate for root in 'tosync': |
---|
640 | { |
---|
641 | ErrorOrSizeAwareTreePtr erc1 = rsync1.find_best_root_candidate(tosync_idx, ref_idx, foundDist, false); |
---|
642 | TEST_REJECT(erc1.hasError()); |
---|
643 | |
---|
644 | newRoot = erc1.getValue(); |
---|
645 | TEST_EXPECT_EQUAL(wayFromTo(rsync1.get_tree(tosync_idx), newRoot), "rlr"); |
---|
646 | TEST_EXPECT_EQUAL(wayFromTo(rsync1.get_tree(ref_idx), newRoot), "<not same tree>"); // (newRoot is not member of 'ref') |
---|
647 | |
---|
648 | TEST_EXPECT_EQUAL(foundDist, 0); // =exact match |
---|
649 | |
---|
650 | TEST_EXPECT_EQUAL(rsync1.calcTreeDistance(ref_idx, tosync_idx), 0); |
---|
651 | TEST_EXPECT_EQUAL(rsync1.minDistanceSum(), 0); |
---|
652 | } |
---|
653 | |
---|
654 | // test opposite detection: |
---|
655 | { |
---|
656 | ErrorOrSizeAwareTreePtr erc2 = rsync1.find_best_root_candidate(ref_idx, tosync_idx, foundDist, false); |
---|
657 | TEST_REJECT(erc2.hasError()); |
---|
658 | |
---|
659 | ConstSizeAwareTreePtr newRoot2 = erc2.getValue(); |
---|
660 | TEST_EXPECT_EQUAL(wayFromTo(rsync1.get_tree(tosync_idx), newRoot2), "<not same tree>"); // (newRoot2 is not member of 'tosync') |
---|
661 | TEST_EXPECT_EQUAL(wayFromTo(rsync1.get_tree(ref_idx), newRoot2), "rrl"); |
---|
662 | |
---|
663 | TEST_EXPECT_EQUAL(foundDist, 0); // =exact match |
---|
664 | } |
---|
665 | |
---|
666 | // test basics of synchronizing multiple roots: |
---|
667 | { |
---|
668 | ErrorOrMultirootPtr emr0 = rsync1.get_current_roots(); |
---|
669 | TEST_REJECT(emr0.hasError()); |
---|
670 | |
---|
671 | MultirootPtr mr0 = emr0.getValue(); |
---|
672 | TEST_EXPECT(mr0.isSet()); |
---|
673 | TEST_EXPECT_EQUAL(mr0->size(), 2); |
---|
674 | |
---|
675 | // access nodes: |
---|
676 | { |
---|
677 | ConstSizeAwareTreePtr r1 = mr0->get_node(0); |
---|
678 | TEST_REJECT_NULL(r1.plain_pointer()); |
---|
679 | |
---|
680 | ConstSizeAwareTreePtr r2 = mr0->get_node(1); |
---|
681 | TEST_REJECT_NULL(r2.plain_pointer()); |
---|
682 | |
---|
683 | ConstSizeAwareTreePtr r3 = mr0->get_node(2); // should not exist |
---|
684 | TEST_EXPECT_NULL(r3.plain_pointer()); |
---|
685 | } |
---|
686 | |
---|
687 | const int distSum0 = mr0->distanceSum(rsync1); |
---|
688 | const int distCenter0 = mr0->distanceToCenterSum(rsync1); |
---|
689 | TEST_EXPECT_EQUAL(distSum0, 4); |
---|
690 | TEST_EXPECT_EQUAL(distCenter0, 2); |
---|
691 | |
---|
692 | { |
---|
693 | MultirootPtr mr2 = new Multiroot(*mr0); // clone .. |
---|
694 | TEST_EXPECT_EQUAL(mr2->distanceSum(rsync1), distSum0); // .. reports same distance as original .. |
---|
695 | TEST_EXPECT_EQUAL(mr2->distanceToCenterSum(rsync1), distCenter0); // .. and same distance to center |
---|
696 | |
---|
697 | const int idx = 1; |
---|
698 | |
---|
699 | // replacing a node with its son should (normally) change distance and center-distance: |
---|
700 | ConstSizeAwareTreePtr node = mr2->get_node(idx); |
---|
701 | ConstSizeAwareTreePtr newNode = node->get_rightson(); |
---|
702 | arb_assert(newNode); |
---|
703 | mr2->replace_node(idx, newNode); |
---|
704 | |
---|
705 | { |
---|
706 | int distSum2 = mr2->distanceSum(rsync1); |
---|
707 | int distCenter2 = mr2->distanceToCenterSum(rsync1); |
---|
708 | |
---|
709 | TEST_EXPECT_DIFFERENT(distSum2, distSum0); TEST_EXPECT_EQUAL(distSum2, 6); |
---|
710 | TEST_EXPECT_DIFFERENT(distCenter2, distCenter0); TEST_EXPECT_EQUAL(distCenter2, 3); |
---|
711 | } |
---|
712 | |
---|
713 | newNode = node->get_leftson(); |
---|
714 | arb_assert(newNode); |
---|
715 | mr2->replace_node(idx, newNode); |
---|
716 | |
---|
717 | { |
---|
718 | int distSum2 = mr2->distanceSum(rsync1); |
---|
719 | int distCenter2 = mr2->distanceToCenterSum(rsync1); |
---|
720 | |
---|
721 | TEST_EXPECT_EQUAL(distSum2, distSum0); // no difference for leftson (not normal, but obviously possible. assuming its a special case) |
---|
722 | TEST_EXPECT_DIFFERENT(distCenter2, distCenter0); // nevertheless we got different distance to center |
---|
723 | TEST_EXPECT_EQUAL(distCenter2, 4); |
---|
724 | } |
---|
725 | } |
---|
726 | |
---|
727 | // find optimal roots for all trees: |
---|
728 | { |
---|
729 | ErrorOrMultirootPtr emr1 = rsync1.find_good_roots_for_trees(DEPTH); |
---|
730 | TEST_REJECT(emr1.hasError()); |
---|
731 | |
---|
732 | MultirootPtr mr1 = emr1.getValue(); |
---|
733 | TEST_EXPECT(mr1.isSet()); |
---|
734 | TEST_EXPECT_EQUAL(mr1->size(), 2); |
---|
735 | |
---|
736 | TEST_EXPECT_EQUAL(mr1->distanceSum(rsync1), 0); |
---|
737 | TEST_EXPECT_EQUAL(mr1->distanceToCenterSum(rsync1), 0); |
---|
738 | |
---|
739 | // test positions of resulting root-nodes in original trees (shows how roots will move): |
---|
740 | TEST_EXPECT_EQUAL(wayFromTo(rsync1.get_tree(ref_idx), mr1->get_node(ref_idx)), "l"); |
---|
741 | TEST_EXPECT_EQUAL(wayFromTo(rsync1.get_tree(tosync_idx), mr1->get_node(tosync_idx)), "rlr"); |
---|
742 | } |
---|
743 | } |
---|
744 | |
---|
745 | { |
---|
746 | // test releasing a tree: |
---|
747 | SizeAwareTree *tosync_released = rsync1.take_tree(tosync_idx); |
---|
748 | |
---|
749 | // attempt to use a "released tree" should fail: |
---|
750 | { |
---|
751 | ErrorOrSizeAwareTreePtr erc2 = rsync1.find_best_root_candidate(tosync_idx, ref_idx, foundDist, false); |
---|
752 | TEST_EXPECT(erc2.hasError()); |
---|
753 | TEST_EXPECT_ERROR_CONTAINS(erc2.getError(), "tree at index #0 vanished"); |
---|
754 | |
---|
755 | TEST_EXPECT_EQUAL(foundDist, INT_MAX); // =no match |
---|
756 | } |
---|
757 | |
---|
758 | // change root of 'tosync_released' to 'newRoot': |
---|
759 | { |
---|
760 | arb_assert(newRoot->is_inside(tosync_released)); // when newRoot is member of tosync_released .. |
---|
761 | SizeAwareTree *newRoot_nc = const_cast<SizeAwareTree*>(&*newRoot); // .. casting away const is ok (because we own the tree atm) |
---|
762 | |
---|
763 | arb_assert(newRoot_nc != tosync_released); |
---|
764 | arb_assert(tosync_released->is_root_node()); |
---|
765 | newRoot_nc->set_root(); // set new root |
---|
766 | arb_assert(tosync_released->is_root_node()); // virtual root node remains valid (it is moved to new root) |
---|
767 | } |
---|
768 | { |
---|
769 | // create new RootSynchronizer and add tree with changed root: |
---|
770 | RootSynchronizer rsync2; |
---|
771 | tosync_idx = rsync2.add(tosync_released, "tosync"); |
---|
772 | |
---|
773 | // also move "ref" tree from 'rsync1' -> 'rsync2': |
---|
774 | { |
---|
775 | SizeAwareTree *ref_released = rsync1.take_tree(ref_idx); |
---|
776 | ref_idx = rsync2.add(ref_released, "ref"); |
---|
777 | } |
---|
778 | |
---|
779 | // test find_best_root_candidate with these trees (root should be same -> should report son-of-root as best match) |
---|
780 | { |
---|
781 | int tr_dist, rt_dist; |
---|
782 | ErrorOrSizeAwareTreePtr tosync_erc = rsync2.find_best_root_candidate(tosync_idx, ref_idx, tr_dist, false); |
---|
783 | ErrorOrSizeAwareTreePtr ref_erc = rsync2.find_best_root_candidate(ref_idx, tosync_idx, rt_dist, false); |
---|
784 | |
---|
785 | TEST_REJECT(tosync_erc.hasError()); |
---|
786 | TEST_REJECT(ref_erc.hasError()); |
---|
787 | |
---|
788 | TEST_EXPECT_EQUAL(rsync2.calcTreeDistance(ref_idx, tosync_idx), 0); |
---|
789 | TEST_EXPECT_EQUAL(rsync2.minDistanceSum(), 0); |
---|
790 | |
---|
791 | TEST_EXPECT_EQUAL(tr_dist, 0); // =exact match |
---|
792 | TEST_EXPECT_EQUAL(rt_dist, 0); // =exact match |
---|
793 | |
---|
794 | ConstSizeAwareTreePtr tosync_rc = tosync_erc.getValue(); |
---|
795 | ConstSizeAwareTreePtr ref_rc = ref_erc.getValue(); |
---|
796 | |
---|
797 | TEST_EXPECT(tosync_rc->is_son_of_root()); |
---|
798 | TEST_EXPECT(ref_rc->is_son_of_root()); |
---|
799 | |
---|
800 | TEST_EXPECT_EQUAL(wayFromTo(rsync2.get_tree(tosync_idx), tosync_rc), "l"); |
---|
801 | TEST_EXPECT_EQUAL(wayFromTo(rsync2.get_tree(ref_idx), ref_rc), "l"); |
---|
802 | } |
---|
803 | } |
---|
804 | } |
---|
805 | |
---|
806 | // test some error cases: |
---|
807 | { |
---|
808 | RootSynchronizer rsync3; |
---|
809 | loadTreeAndAddTo(1, "tosync", rsync3); // -> ../UNIT_TESTER/run/syncroot/1/tosync.tree |
---|
810 | |
---|
811 | ErrorOrMultirootPtr emr2 = rsync3.find_good_roots_for_trees(DEPTH); |
---|
812 | TEST_EXPECT(emr2.hasError()); |
---|
813 | TEST_EXPECT_ERROR_CONTAINS(emr2.getError().deliver(), "Need at least two trees"); |
---|
814 | } |
---|
815 | } |
---|
816 | |
---|
817 | void TEST_sync_more_trees() { |
---|
818 | { |
---|
819 | RootSynchronizer rsync; |
---|
820 | |
---|
821 | const int ref_idx = loadTreeAndAddTo(1, "ref", rsync); // -> ../UNIT_TESTER/run/syncroot/1/ref.tree |
---|
822 | const int disjunct_idx = loadTreeAndAddTo(1, "disjunct", rsync); // -> ../UNIT_TESTER/run/syncroot/1/disjunct.tree |
---|
823 | |
---|
824 | ErrorOrMultirootPtr startOrErr = rsync.get_current_roots(); TEST_REJECT(startOrErr.hasError()); |
---|
825 | ErrorOrMultirootPtr syncedOrErr = rsync.find_good_roots_for_trees(DEPTH); TEST_REJECT(syncedOrErr.hasError()); |
---|
826 | |
---|
827 | MultirootPtr innermost = rsync.get_innermost_edges(); TEST_REJECT(innermost.isNull()); |
---|
828 | MultirootPtr start = startOrErr.getValue (); TEST_REJECT(start.isNull()); |
---|
829 | MultirootPtr synced = syncedOrErr.getValue(); TEST_REJECT(synced.isNull()); |
---|
830 | |
---|
831 | // Note: find_good_roots_for_trees keeps status quo here (did not find better root-combination for disjunct trees): |
---|
832 | const int DISTSUM = 12; |
---|
833 | TEST_EXPECT_EQUAL(start->distanceSum (rsync), DISTSUM); |
---|
834 | TEST_EXPECT_EQUAL(synced->distanceSum(rsync), DISTSUM); |
---|
835 | TEST_EXPECT_EQUAL(start->distanceToCenterSum (rsync), 8); |
---|
836 | TEST_EXPECT_EQUAL(synced->distanceToCenterSum(rsync), 5); // synced roots are nearer to center (of species set). |
---|
837 | TEST_EXPECT_EQUAL(innermost->distanceToCenterSum(rsync), 5); // [did not understand that value] |
---|
838 | |
---|
839 | TEST_EXPECT_EQUAL(rsync.calcTreeDistance(ref_idx, disjunct_idx), DISTSUM); |
---|
840 | TEST_EXPECT_EQUAL(rsync.minDistanceSum(), DISTSUM); |
---|
841 | |
---|
842 | // compare 'start' with 'synced' (did nodes change?): |
---|
843 | TEST_EXPECT_EQUAL(wayFromTo(start->get_node(ref_idx), synced->get_node(ref_idx)), ""); // node of ref-tree was not really modified |
---|
844 | TEST_EXPECT_EQUAL(wayFromTo(start->get_node(disjunct_idx), synced->get_node(disjunct_idx)), "!l"); // node of disjunct-tree now slightly modified (acceptable) |
---|
845 | } |
---|
846 | |
---|
847 | // test 3 trees: |
---|
848 | { |
---|
849 | RootSynchronizer rsync; |
---|
850 | |
---|
851 | const int tosync_idx = loadTreeAndAddTo(1, "tosync", rsync); // -> ../UNIT_TESTER/run/syncroot/1/tosync.tree |
---|
852 | const int disjunct_idx = loadTreeAndAddTo(1, "disjunct", rsync); // -> ../UNIT_TESTER/run/syncroot/1/disjunct.tree |
---|
853 | const int overa_idx = loadTreeAndAddTo(1, "overlap_A", rsync); // -> ../UNIT_TESTER/run/syncroot/1/overlap_A.tree |
---|
854 | |
---|
855 | ErrorOrMultirootPtr startOrErr = rsync.get_current_roots(); TEST_REJECT(startOrErr.hasError()); |
---|
856 | ErrorOrMultirootPtr syncedOrErr = rsync.find_good_roots_for_trees(1); TEST_REJECT(syncedOrErr.hasError()); // need depth higher than 0 to reach optimum here |
---|
857 | |
---|
858 | MultirootPtr innermost = rsync.get_innermost_edges(); TEST_REJECT(innermost.isNull()); |
---|
859 | MultirootPtr start = startOrErr.getValue(); TEST_REJECT(start.isNull()); |
---|
860 | MultirootPtr synced = syncedOrErr.getValue(); TEST_REJECT(synced.isNull()); |
---|
861 | |
---|
862 | const int OPTIMAL_DIST = 24; |
---|
863 | |
---|
864 | TEST_EXPECT_EQUAL(start->distanceSum (rsync), 28); |
---|
865 | TEST_EXPECT_EQUAL(synced->distanceSum(rsync), OPTIMAL_DIST); // 24 is possible (and wanted) optimum for these 3 trees (12 between disjunct+tosync; 6 between the other 2 pairings) |
---|
866 | TEST_EXPECT_EQUAL(start->distanceToCenterSum (rsync), 15); |
---|
867 | TEST_EXPECT_EQUAL(synced->distanceToCenterSum(rsync), 8); |
---|
868 | TEST_EXPECT_EQUAL(innermost->distanceToCenterSum(rsync), 6); // [did not understand that value] |
---|
869 | |
---|
870 | TEST_EXPECT_EQUAL(rsync.calcTreeDistance(tosync_idx, disjunct_idx), 12); |
---|
871 | TEST_EXPECT_EQUAL(rsync.calcTreeDistance(overa_idx, disjunct_idx), 6); |
---|
872 | TEST_EXPECT_EQUAL(rsync.calcTreeDistance(overa_idx, tosync_idx), 6); |
---|
873 | TEST_EXPECT_EQUAL(rsync.minDistanceSum(), OPTIMAL_DIST); |
---|
874 | |
---|
875 | // compare 'start' with 'synced' (did nodes change?): |
---|
876 | TEST_EXPECT_EQUAL(wayFromTo(start->get_node(tosync_idx), synced->get_node(tosync_idx)), "!l"); // '!' indicates: start node at one son of root + resulting node inside other son |
---|
877 | TEST_EXPECT_EQUAL(wayFromTo(start->get_node(disjunct_idx), synced->get_node(disjunct_idx)), "!l"); |
---|
878 | TEST_EXPECT_EQUAL(wayFromTo(start->get_node(overa_idx), synced->get_node(overa_idx)), "!lrr"); |
---|
879 | } |
---|
880 | |
---|
881 | // test 4 trees: |
---|
882 | { |
---|
883 | RootSynchronizer rsync; |
---|
884 | |
---|
885 | const int tosync_idx = loadTreeAndAddTo(1, "tosync", rsync); // -> ../UNIT_TESTER/run/syncroot/1/tosync.tree |
---|
886 | const int ref_idx = loadTreeAndAddTo(1, "ref", rsync); // -> ../UNIT_TESTER/run/syncroot/1/ref.tree |
---|
887 | const int over_idx = loadTreeAndAddTo(1, "overlap", rsync); // -> ../UNIT_TESTER/run/syncroot/1/overlap.tree |
---|
888 | const int overa_idx = loadTreeAndAddTo(1, "overlap_A", rsync); // -> ../UNIT_TESTER/run/syncroot/1/overlap_A.tree |
---|
889 | |
---|
890 | ErrorOrMultirootPtr startOrErr = rsync.get_current_roots(); TEST_REJECT(startOrErr.hasError()); |
---|
891 | ErrorOrMultirootPtr syncedOrErr = rsync.find_good_roots_for_trees(DEPTH); TEST_REJECT(syncedOrErr.hasError()); |
---|
892 | |
---|
893 | MultirootPtr innermost = rsync.get_innermost_edges(); TEST_REJECT(innermost.isNull()); |
---|
894 | MultirootPtr start = startOrErr.getValue (); TEST_REJECT(start.isNull()); |
---|
895 | MultirootPtr synced = syncedOrErr.getValue(); TEST_REJECT(synced.isNull()); |
---|
896 | |
---|
897 | const int OPTIMAL_DIST = 24; |
---|
898 | |
---|
899 | TEST_EXPECT_EQUAL(start->distanceSum (rsync), 36); |
---|
900 | TEST_EXPECT_EQUAL(synced->distanceSum(rsync), OPTIMAL_DIST); // 24 is possible optimum for these 4 trees (0 between tosync+ref and overlap+overlap_A; 6 between any of the other 4 pairings) |
---|
901 | TEST_EXPECT_EQUAL(start->distanceToCenterSum (rsync), 9); |
---|
902 | TEST_EXPECT_EQUAL(synced->distanceToCenterSum(rsync), 5); // center distance now gets reduced. |
---|
903 | TEST_EXPECT_EQUAL(innermost->distanceToCenterSum(rsync), 3); // [did not understand that value] |
---|
904 | |
---|
905 | TEST_EXPECT_EQUAL(rsync.calcTreeDistance(tosync_idx, ref_idx), 0); |
---|
906 | TEST_EXPECT_EQUAL(rsync.calcTreeDistance(tosync_idx, over_idx), 6); |
---|
907 | TEST_EXPECT_EQUAL(rsync.calcTreeDistance(tosync_idx, overa_idx), 6); |
---|
908 | TEST_EXPECT_EQUAL(rsync.calcTreeDistance(ref_idx, over_idx), 6); |
---|
909 | TEST_EXPECT_EQUAL(rsync.calcTreeDistance(ref_idx, overa_idx), 6); |
---|
910 | TEST_EXPECT_EQUAL(rsync.calcTreeDistance(over_idx, overa_idx), 0); |
---|
911 | TEST_EXPECT_EQUAL(rsync.minDistanceSum(), OPTIMAL_DIST); |
---|
912 | |
---|
913 | // compare 'start' with 'synced' (did nodes change?): |
---|
914 | TEST_EXPECT_EQUAL(wayFromTo(start->get_node(tosync_idx), synced->get_node(tosync_idx)), "!lr"); // '!' indicates: start node at one son of root + resulting node inside other son |
---|
915 | TEST_EXPECT_EQUAL(wayFromTo(start->get_node(ref_idx), synced->get_node(ref_idx)), ""); |
---|
916 | TEST_EXPECT_EQUAL(wayFromTo(start->get_node(over_idx), synced->get_node(over_idx)), ""); |
---|
917 | TEST_EXPECT_EQUAL(wayFromTo(start->get_node(overa_idx), synced->get_node(overa_idx)), "!lr"); |
---|
918 | } |
---|
919 | } |
---|
920 | |
---|
921 | #endif // UNIT_TESTS |
---|
922 | |
---|
923 | // -------------------------------------------------------------------------------- |
---|
924 | |
---|