1 | /* |
---|
2 | * ml1.c |
---|
3 | * |
---|
4 | * |
---|
5 | * Part of TREE-PUZZLE 5.0 (June 2000) |
---|
6 | * |
---|
7 | * (c) 1999-2000 by Heiko A. Schmidt, Korbinian Strimmer, |
---|
8 | * M. Vingron, and Arndt von Haeseler |
---|
9 | * (c) 1995-1999 by Korbinian Strimmer and Arndt von Haeseler |
---|
10 | * |
---|
11 | * All parts of the source except where indicated are distributed under |
---|
12 | * the GNU public licence. See http://www.opensource.org for details. |
---|
13 | */ |
---|
14 | |
---|
15 | |
---|
16 | /******************************************************************************/ |
---|
17 | /* definitions and prototypes */ |
---|
18 | /******************************************************************************/ |
---|
19 | |
---|
20 | #define EXTERN extern |
---|
21 | |
---|
22 | /* prototypes */ |
---|
23 | #include <stdio.h> |
---|
24 | #include <stdlib.h> |
---|
25 | #include <math.h> |
---|
26 | #include <ctype.h> |
---|
27 | #include "util.h" |
---|
28 | #include "ml.h" |
---|
29 | |
---|
30 | #define STDOUT stdout |
---|
31 | #ifndef PARALLEL /* because printf() runs significantly faster */ |
---|
32 | /* than fprintf(stdout) on an Apple McIntosh */ |
---|
33 | /* (HS) */ |
---|
34 | # define FPRINTF printf |
---|
35 | # define STDOUTFILE |
---|
36 | #else |
---|
37 | # define FPRINTF fprintf |
---|
38 | # define STDOUTFILE STDOUT, |
---|
39 | #endif |
---|
40 | |
---|
41 | |
---|
42 | /******************************************************************************/ |
---|
43 | /* compacting sequence data information */ |
---|
44 | /******************************************************************************/ |
---|
45 | |
---|
46 | |
---|
47 | /***************************** internal functions *****************************/ |
---|
48 | |
---|
49 | |
---|
50 | /* make all frequencies a little different */ |
---|
51 | void convfreq(dvector freqemp) |
---|
52 | { |
---|
53 | int i, j, maxi=0; |
---|
54 | double freq, maxfreq, sum; |
---|
55 | |
---|
56 | |
---|
57 | sum = 0.0; |
---|
58 | maxfreq = 0.0; |
---|
59 | for (i = 0; i < tpmradix; i++) { |
---|
60 | freq = freqemp[i]; |
---|
61 | if (freq < MINFREQ) freqemp[i] = MINFREQ; |
---|
62 | if (freq > maxfreq) { |
---|
63 | maxfreq = freq; |
---|
64 | maxi = i; |
---|
65 | } |
---|
66 | sum += freqemp[i]; |
---|
67 | } |
---|
68 | freqemp[maxi] += 1.0 - sum; |
---|
69 | |
---|
70 | for (i = 0; i < tpmradix - 1; i++) { |
---|
71 | for (j = i + 1; j < tpmradix; j++) { |
---|
72 | if (freqemp[i] == freqemp[j]) { |
---|
73 | freqemp[i] += MINFDIFF/2.0; |
---|
74 | freqemp[j] -= MINFDIFF/2.0; |
---|
75 | } |
---|
76 | } |
---|
77 | } |
---|
78 | } |
---|
79 | |
---|
80 | /* sort site patters of original input data */ |
---|
81 | void a_radixsort(cmatrix seqchar, ivector ali, int maxspc, int maxsite, |
---|
82 | int *numptrn) |
---|
83 | { |
---|
84 | int i, j, k, l, n, pass; |
---|
85 | int *awork; |
---|
86 | int *count; |
---|
87 | |
---|
88 | |
---|
89 | awork = new_ivector(maxsite); |
---|
90 | count = new_ivector(tpmradix+1); |
---|
91 | for (i = 0; i < maxsite; i++) |
---|
92 | ali[i] = i; |
---|
93 | for (pass = maxspc - 1; pass >= 0; pass--) { |
---|
94 | for (j = 0; j < tpmradix+1; j++) |
---|
95 | count[j] = 0; |
---|
96 | for (i = 0; i < maxsite; i++) |
---|
97 | count[(int) seqchar[pass][ali[i]]]++; |
---|
98 | for (j = 1; j < tpmradix+1; j++) |
---|
99 | count[j] += count[j-1]; |
---|
100 | for (i = maxsite-1; i >= 0; i--) |
---|
101 | awork[ --count[(int) seqchar[pass][ali[i]]] ] = ali[i]; |
---|
102 | for (i = 0; i < maxsite; i++) |
---|
103 | ali[i] = awork[i]; |
---|
104 | } |
---|
105 | free_ivector(awork); |
---|
106 | free_ivector(count); |
---|
107 | n = 1; |
---|
108 | for (j = 1; j < maxsite; j++) { |
---|
109 | k = ali[j]; |
---|
110 | l = ali[j-1]; |
---|
111 | for (i = 0; i < maxspc; i++) { |
---|
112 | if (seqchar[i][l] != seqchar[i][k]) { |
---|
113 | n++; |
---|
114 | break; |
---|
115 | } |
---|
116 | } |
---|
117 | } |
---|
118 | *numptrn = n; |
---|
119 | } |
---|
120 | |
---|
121 | |
---|
122 | void condenceseq(cmatrix seqchar, ivector ali, cmatrix seqconint, |
---|
123 | ivector weight, int maxspc, int maxsite, int numptrn) |
---|
124 | { |
---|
125 | int i, j, k, n; |
---|
126 | int agree_flag; /* boolean */ |
---|
127 | |
---|
128 | |
---|
129 | n = 0; |
---|
130 | k = ali[n]; |
---|
131 | for (i = 0; i < maxspc; i++) { |
---|
132 | seqconint[i][n] = seqchar[i][k]; |
---|
133 | } |
---|
134 | weight[n] = 1; |
---|
135 | Alias[k] = 0; |
---|
136 | for (j = 1; j < maxsite; j++) { |
---|
137 | k = ali[j]; |
---|
138 | agree_flag = TRUE; |
---|
139 | for (i = 0; i < maxspc; i++) { |
---|
140 | if (seqconint[i][n] != seqchar[i][k]) { |
---|
141 | agree_flag = FALSE; |
---|
142 | break; |
---|
143 | } |
---|
144 | } |
---|
145 | if (agree_flag == FALSE) { |
---|
146 | n++; |
---|
147 | for (i = 0; i < maxspc; i++) { |
---|
148 | seqconint[i][n] = seqchar[i][k]; |
---|
149 | } |
---|
150 | weight[n] = 1; |
---|
151 | Alias[k] = n; |
---|
152 | } else { |
---|
153 | weight[n]++; |
---|
154 | Alias[k] = n; |
---|
155 | } |
---|
156 | } |
---|
157 | n++; |
---|
158 | if (numptrn != n) { |
---|
159 | /* Problem in condenceseq */ |
---|
160 | FPRINTF(STDOUTFILE "\n\n\nHALT: PLEASE REPORT ERROR A TO DEVELOPERS\n\n\n"); |
---|
161 | exit(1); |
---|
162 | } |
---|
163 | } |
---|
164 | |
---|
165 | void countconstantsites(cmatrix seqpat, ivector weight, int maxspc, int numptrn, |
---|
166 | int *numconst, int *numconstpat) |
---|
167 | { |
---|
168 | int character, s, i, constflag; |
---|
169 | |
---|
170 | *numconst = 0; |
---|
171 | *numconstpat = 0; |
---|
172 | for (s = 0; s < numptrn; s++) { /* check all patterns */ |
---|
173 | constpat[s] = FALSE; |
---|
174 | constflag = TRUE; |
---|
175 | character = seqpat[0][s]; |
---|
176 | for (i = 1; i < maxspc; i++) { |
---|
177 | if (seqpat[i][s] != character) { |
---|
178 | constflag = FALSE; |
---|
179 | break; |
---|
180 | } |
---|
181 | } |
---|
182 | if (character != tpmradix && constflag) { |
---|
183 | (*numconst) = (*numconst) + weight[s]; |
---|
184 | (*numconstpat)++; |
---|
185 | constpat[s] = TRUE; |
---|
186 | } |
---|
187 | } |
---|
188 | } |
---|
189 | |
---|
190 | /***************************** exported functions *****************************/ |
---|
191 | |
---|
192 | |
---|
193 | void evaluateseqs() |
---|
194 | { |
---|
195 | ivector ali; |
---|
196 | |
---|
197 | convfreq(Freqtpm); /* make all frequencies slightly different */ |
---|
198 | ali = new_ivector(Maxsite); |
---|
199 | a_radixsort(Seqchar, ali, Maxspc, Maxsite, &Numptrn); |
---|
200 | Seqpat = new_cmatrix(Maxspc, Numptrn); |
---|
201 | constpat = new_ivector(Numptrn); |
---|
202 | Weight = new_ivector(Numptrn); |
---|
203 | condenceseq(Seqchar, ali, Seqpat, Weight, Maxspc, Maxsite, Numptrn); |
---|
204 | free_ivector(ali); |
---|
205 | countconstantsites(Seqpat, Weight, Maxspc, Numptrn, &Numconst, &Numconstpat); |
---|
206 | fracconstpat = (double) Numconstpat / (double) Numptrn; |
---|
207 | fracconst = (double) Numconst / (double) Maxsite; |
---|
208 | } |
---|
209 | |
---|
210 | |
---|
211 | /******************************************************************************/ |
---|
212 | /* computation of Pij(t) */ |
---|
213 | /******************************************************************************/ |
---|
214 | |
---|
215 | |
---|
216 | /***************************** internal functions *****************************/ |
---|
217 | |
---|
218 | |
---|
219 | void elmhes(dmatrix a, ivector ordr, int n) |
---|
220 | { |
---|
221 | int m, j, i; |
---|
222 | double y, x; |
---|
223 | |
---|
224 | |
---|
225 | for (i = 0; i < n; i++) |
---|
226 | ordr[i] = 0; |
---|
227 | for (m = 2; m < n; m++) { |
---|
228 | x = 0.0; |
---|
229 | i = m; |
---|
230 | for (j = m; j <= n; j++) { |
---|
231 | if (fabs(a[j - 1][m - 2]) > fabs(x)) { |
---|
232 | x = a[j - 1][m - 2]; |
---|
233 | i = j; |
---|
234 | } |
---|
235 | } |
---|
236 | ordr[m - 1] = i; /* vector */ |
---|
237 | if (i != m) { |
---|
238 | for (j = m - 2; j < n; j++) { |
---|
239 | y = a[i - 1][j]; |
---|
240 | a[i - 1][j] = a[m - 1][j]; |
---|
241 | a[m - 1][j] = y; |
---|
242 | } |
---|
243 | for (j = 0; j < n; j++) { |
---|
244 | y = a[j][i - 1]; |
---|
245 | a[j][i - 1] = a[j][m - 1]; |
---|
246 | a[j][m - 1] = y; |
---|
247 | } |
---|
248 | } |
---|
249 | if (x != 0.0) { |
---|
250 | for (i = m; i < n; i++) { |
---|
251 | y = a[i][m - 2]; |
---|
252 | if (y != 0.0) { |
---|
253 | y /= x; |
---|
254 | a[i][m - 2] = y; |
---|
255 | for (j = m - 1; j < n; j++) |
---|
256 | a[i][j] -= y * a[m - 1][j]; |
---|
257 | for (j = 0; j < n; j++) |
---|
258 | a[j][m - 1] += y * a[j][i]; |
---|
259 | } |
---|
260 | } |
---|
261 | } |
---|
262 | } |
---|
263 | } |
---|
264 | |
---|
265 | |
---|
266 | void eltran(dmatrix a, dmatrix zz, ivector ordr, int n) |
---|
267 | { |
---|
268 | int i, j, m; |
---|
269 | |
---|
270 | |
---|
271 | for (i = 0; i < n; i++) { |
---|
272 | for (j = i + 1; j < n; j++) { |
---|
273 | zz[i][j] = 0.0; |
---|
274 | zz[j][i] = 0.0; |
---|
275 | } |
---|
276 | zz[i][i] = 1.0; |
---|
277 | } |
---|
278 | if (n <= 2) |
---|
279 | return; |
---|
280 | for (m = n - 1; m >= 2; m--) { |
---|
281 | for (i = m; i < n; i++) |
---|
282 | zz[i][m - 1] = a[i][m - 2]; |
---|
283 | i = ordr[m - 1]; |
---|
284 | if (i != m) { |
---|
285 | for (j = m - 1; j < n; j++) { |
---|
286 | zz[m - 1][j] = zz[i - 1][j]; |
---|
287 | zz[i - 1][j] = 0.0; |
---|
288 | } |
---|
289 | zz[i - 1][m - 1] = 1.0; |
---|
290 | } |
---|
291 | } |
---|
292 | } |
---|
293 | |
---|
294 | |
---|
295 | void mcdiv(double ar, double ai, double br, double bi, |
---|
296 | double *cr, double *ci) |
---|
297 | { |
---|
298 | double s, ars, ais, brs, bis; |
---|
299 | |
---|
300 | |
---|
301 | s = fabs(br) + fabs(bi); |
---|
302 | ars = ar / s; |
---|
303 | ais = ai / s; |
---|
304 | brs = br / s; |
---|
305 | bis = bi / s; |
---|
306 | s = brs * brs + bis * bis; |
---|
307 | *cr = (ars * brs + ais * bis) / s; |
---|
308 | *ci = (ais * brs - ars * bis) / s; |
---|
309 | } |
---|
310 | |
---|
311 | |
---|
312 | void hqr2(int n, int low, int hgh, dmatrix h, |
---|
313 | dmatrix zz, dvector wr, dvector wi) |
---|
314 | { |
---|
315 | int i, j, k, l=0, m, en, na, itn, its; |
---|
316 | double p=0, q=0, r=0, s=0, t, w, x=0, y, ra, sa, vi, vr, z=0, norm, tst1, tst2; |
---|
317 | int notlas; /* boolean */ |
---|
318 | |
---|
319 | |
---|
320 | norm = 0.0; |
---|
321 | k = 1; |
---|
322 | /* store isolated roots and compute matrix norm */ |
---|
323 | for (i = 0; i < n; i++) { |
---|
324 | for (j = k - 1; j < n; j++) |
---|
325 | norm += fabs(h[i][j]); |
---|
326 | k = i + 1; |
---|
327 | if (i + 1 < low || i + 1 > hgh) { |
---|
328 | wr[i] = h[i][i]; |
---|
329 | wi[i] = 0.0; |
---|
330 | } |
---|
331 | } |
---|
332 | en = hgh; |
---|
333 | t = 0.0; |
---|
334 | itn = n * 30; |
---|
335 | while (en >= low) { /* search for next eigenvalues */ |
---|
336 | its = 0; |
---|
337 | na = en - 1; |
---|
338 | while (en >= 1) { |
---|
339 | /* look for single small sub-diagonal element */ |
---|
340 | for (l = en; l > low; l--) { |
---|
341 | s = fabs(h[l - 2][l - 2]) + fabs(h[l - 1][l - 1]); |
---|
342 | if (s == 0.0) |
---|
343 | s = norm; |
---|
344 | tst1 = s; |
---|
345 | tst2 = tst1 + fabs(h[l - 1][l - 2]); |
---|
346 | if (tst2 == tst1) |
---|
347 | goto L100; |
---|
348 | } |
---|
349 | l = low; |
---|
350 | L100: |
---|
351 | x = h[en - 1][en - 1]; /* form shift */ |
---|
352 | if (l == en || l == na) |
---|
353 | break; |
---|
354 | if (itn == 0) { |
---|
355 | /* all eigenvalues have not converged */ |
---|
356 | FPRINTF(STDOUTFILE "\n\n\nHALT: PLEASE REPORT ERROR B TO DEVELOPERS\n\n\n"); |
---|
357 | exit(1); |
---|
358 | } |
---|
359 | y = h[na - 1][na - 1]; |
---|
360 | w = h[en - 1][na - 1] * h[na - 1][en - 1]; |
---|
361 | /* form exceptional shift */ |
---|
362 | if (its == 10 || its == 20) { |
---|
363 | t += x; |
---|
364 | for (i = low - 1; i < en; i++) |
---|
365 | h[i][i] -= x; |
---|
366 | s = fabs(h[en - 1][na - 1]) + fabs(h[na - 1][en - 3]); |
---|
367 | x = 0.75 * s; |
---|
368 | y = x; |
---|
369 | w = -0.4375 * s * s; |
---|
370 | } |
---|
371 | its++; |
---|
372 | itn--; |
---|
373 | /* look for two consecutive small sub-diagonal elements */ |
---|
374 | for (m = en - 2; m >= l; m--) { |
---|
375 | z = h[m - 1][m - 1]; |
---|
376 | r = x - z; |
---|
377 | s = y - z; |
---|
378 | p = (r * s - w) / h[m][m - 1] + h[m - 1][m]; |
---|
379 | q = h[m][m] - z - r - s; |
---|
380 | r = h[m + 1][m]; |
---|
381 | s = fabs(p) + fabs(q) + fabs(r); |
---|
382 | p /= s; |
---|
383 | q /= s; |
---|
384 | r /= s; |
---|
385 | if (m == l) |
---|
386 | break; |
---|
387 | tst1 = fabs(p) * |
---|
388 | (fabs(h[m - 2][m - 2]) + fabs(z) + fabs(h[m][m])); |
---|
389 | tst2 = tst1 + fabs(h[m - 1][m - 2]) * (fabs(q) + fabs(r)); |
---|
390 | if (tst2 == tst1) |
---|
391 | break; |
---|
392 | } |
---|
393 | for (i = m + 2; i <= en; i++) { |
---|
394 | h[i - 1][i - 3] = 0.0; |
---|
395 | if (i != m + 2) |
---|
396 | h[i - 1][i - 4] = 0.0; |
---|
397 | } |
---|
398 | for (k = m; k <= na; k++) { |
---|
399 | notlas = (k != na); |
---|
400 | if (k != m) { |
---|
401 | p = h[k - 1][k - 2]; |
---|
402 | q = h[k][k - 2]; |
---|
403 | r = 0.0; |
---|
404 | if (notlas) |
---|
405 | r = h[k + 1][k - 2]; |
---|
406 | x = fabs(p) + fabs(q) + fabs(r); |
---|
407 | if (x != 0.0) { |
---|
408 | p /= x; |
---|
409 | q /= x; |
---|
410 | r /= x; |
---|
411 | } |
---|
412 | } |
---|
413 | if (x != 0.0) { |
---|
414 | if (p < 0.0) /* sign */ |
---|
415 | s = - sqrt(p * p + q * q + r * r); |
---|
416 | else |
---|
417 | s = sqrt(p * p + q * q + r * r); |
---|
418 | if (k != m) |
---|
419 | h[k - 1][k - 2] = -s * x; |
---|
420 | else { |
---|
421 | if (l != m) |
---|
422 | h[k - 1][k - 2] = -h[k - 1][k - 2]; |
---|
423 | } |
---|
424 | p += s; |
---|
425 | x = p / s; |
---|
426 | y = q / s; |
---|
427 | z = r / s; |
---|
428 | q /= p; |
---|
429 | r /= p; |
---|
430 | if (!notlas) { |
---|
431 | for (j = k - 1; j < n; j++) { /* row modification */ |
---|
432 | p = h[k - 1][j] + q * h[k][j]; |
---|
433 | h[k - 1][j] -= p * x; |
---|
434 | h[k][j] -= p * y; |
---|
435 | } |
---|
436 | j = (en < (k + 3)) ? en : (k + 3); /* min */ |
---|
437 | for (i = 0; i < j; i++) { /* column modification */ |
---|
438 | p = x * h[i][k - 1] + y * h[i][k]; |
---|
439 | h[i][k - 1] -= p; |
---|
440 | h[i][k] -= p * q; |
---|
441 | } |
---|
442 | /* accumulate transformations */ |
---|
443 | for (i = low - 1; i < hgh; i++) { |
---|
444 | p = x * zz[i][k - 1] + y * zz[i][k]; |
---|
445 | zz[i][k - 1] -= p; |
---|
446 | zz[i][k] -= p * q; |
---|
447 | } |
---|
448 | } else { |
---|
449 | for (j = k - 1; j < n; j++) { /* row modification */ |
---|
450 | p = h[k - 1][j] + q * h[k][j] + r * h[k + 1][j]; |
---|
451 | h[k - 1][j] -= p * x; |
---|
452 | h[k][j] -= p * y; |
---|
453 | h[k + 1][j] -= p * z; |
---|
454 | } |
---|
455 | j = (en < (k + 3)) ? en : (k + 3); /* min */ |
---|
456 | for (i = 0; i < j; i++) { /* column modification */ |
---|
457 | p = x * h[i][k - 1] + y * h[i][k] + z * h[i][k + 1]; |
---|
458 | h[i][k - 1] -= p; |
---|
459 | h[i][k] -= p * q; |
---|
460 | h[i][k + 1] -= p * r; |
---|
461 | } |
---|
462 | /* accumulate transformations */ |
---|
463 | for (i = low - 1; i < hgh; i++) { |
---|
464 | p = x * zz[i][k - 1] + y * zz[i][k] + |
---|
465 | z * zz[i][k + 1]; |
---|
466 | zz[i][k - 1] -= p; |
---|
467 | zz[i][k] -= p * q; |
---|
468 | zz[i][k + 1] -= p * r; |
---|
469 | } |
---|
470 | } |
---|
471 | } |
---|
472 | } /* for k */ |
---|
473 | } /* while infinite loop */ |
---|
474 | if (l == en) { /* one root found */ |
---|
475 | h[en - 1][en - 1] = x + t; |
---|
476 | wr[en - 1] = h[en - 1][en - 1]; |
---|
477 | wi[en - 1] = 0.0; |
---|
478 | en = na; |
---|
479 | continue; |
---|
480 | } |
---|
481 | y = h[na - 1][na - 1]; |
---|
482 | w = h[en - 1][na - 1] * h[na - 1][en - 1]; |
---|
483 | p = (y - x) / 2.0; |
---|
484 | q = p * p + w; |
---|
485 | z = sqrt(fabs(q)); |
---|
486 | h[en - 1][en - 1] = x + t; |
---|
487 | x = h[en - 1][en - 1]; |
---|
488 | h[na - 1][na - 1] = y + t; |
---|
489 | if (q >= 0.0) { /* real pair */ |
---|
490 | if (p < 0.0) /* sign */ |
---|
491 | z = p - fabs(z); |
---|
492 | else |
---|
493 | z = p + fabs(z); |
---|
494 | wr[na - 1] = x + z; |
---|
495 | wr[en - 1] = wr[na - 1]; |
---|
496 | if (z != 0.0) |
---|
497 | wr[en - 1] = x - w / z; |
---|
498 | wi[na - 1] = 0.0; |
---|
499 | wi[en - 1] = 0.0; |
---|
500 | x = h[en - 1][na - 1]; |
---|
501 | s = fabs(x) + fabs(z); |
---|
502 | p = x / s; |
---|
503 | q = z / s; |
---|
504 | r = sqrt(p * p + q * q); |
---|
505 | p /= r; |
---|
506 | q /= r; |
---|
507 | for (j = na - 1; j < n; j++) { /* row modification */ |
---|
508 | z = h[na - 1][j]; |
---|
509 | h[na - 1][j] = q * z + p * h[en - 1][j]; |
---|
510 | h[en - 1][j] = q * h[en - 1][j] - p * z; |
---|
511 | } |
---|
512 | for (i = 0; i < en; i++) { /* column modification */ |
---|
513 | z = h[i][na - 1]; |
---|
514 | h[i][na - 1] = q * z + p * h[i][en - 1]; |
---|
515 | h[i][en - 1] = q * h[i][en - 1] - p * z; |
---|
516 | } |
---|
517 | /* accumulate transformations */ |
---|
518 | for (i = low - 1; i < hgh; i++) { |
---|
519 | z = zz[i][na - 1]; |
---|
520 | zz[i][na - 1] = q * z + p * zz[i][en - 1]; |
---|
521 | zz[i][en - 1] = q * zz[i][en - 1] - p * z; |
---|
522 | } |
---|
523 | } else { /* complex pair */ |
---|
524 | wr[na - 1] = x + p; |
---|
525 | wr[en - 1] = x + p; |
---|
526 | wi[na - 1] = z; |
---|
527 | wi[en - 1] = -z; |
---|
528 | } |
---|
529 | en -= 2; |
---|
530 | } /* while en >= low */ |
---|
531 | /* backsubstitute to find vectors of upper triangular form */ |
---|
532 | if (norm != 0.0) { |
---|
533 | for (en = n; en >= 1; en--) { |
---|
534 | p = wr[en - 1]; |
---|
535 | q = wi[en - 1]; |
---|
536 | na = en - 1; |
---|
537 | if (q == 0.0) {/* real vector */ |
---|
538 | m = en; |
---|
539 | h[en - 1][en - 1] = 1.0; |
---|
540 | if (na != 0) { |
---|
541 | for (i = en - 2; i >= 0; i--) { |
---|
542 | w = h[i][i] - p; |
---|
543 | r = 0.0; |
---|
544 | for (j = m - 1; j < en; j++) |
---|
545 | r += h[i][j] * h[j][en - 1]; |
---|
546 | if (wi[i] < 0.0) { |
---|
547 | z = w; |
---|
548 | s = r; |
---|
549 | } else { |
---|
550 | m = i + 1; |
---|
551 | if (wi[i] == 0.0) { |
---|
552 | t = w; |
---|
553 | if (t == 0.0) { |
---|
554 | tst1 = norm; |
---|
555 | t = tst1; |
---|
556 | do { |
---|
557 | t = 0.01 * t; |
---|
558 | tst2 = norm + t; |
---|
559 | } while (tst2 > tst1); |
---|
560 | } |
---|
561 | h[i][en - 1] = -(r / t); |
---|
562 | } else { /* solve real equations */ |
---|
563 | x = h[i][i + 1]; |
---|
564 | y = h[i + 1][i]; |
---|
565 | q = (wr[i] - p) * (wr[i] - p) + wi[i] * wi[i]; |
---|
566 | t = (x * s - z * r) / q; |
---|
567 | h[i][en - 1] = t; |
---|
568 | if (fabs(x) > fabs(z)) |
---|
569 | h[i + 1][en - 1] = (-r - w * t) / x; |
---|
570 | else |
---|
571 | h[i + 1][en - 1] = (-s - y * t) / z; |
---|
572 | } |
---|
573 | /* overflow control */ |
---|
574 | t = fabs(h[i][en - 1]); |
---|
575 | if (t != 0.0) { |
---|
576 | tst1 = t; |
---|
577 | tst2 = tst1 + 1.0 / tst1; |
---|
578 | if (tst2 <= tst1) { |
---|
579 | for (j = i; j < en; j++) |
---|
580 | h[j][en - 1] /= t; |
---|
581 | } |
---|
582 | } |
---|
583 | } |
---|
584 | } |
---|
585 | } |
---|
586 | } else if (q > 0.0) { |
---|
587 | m = na; |
---|
588 | if (fabs(h[en - 1][na - 1]) > fabs(h[na - 1][en - 1])) { |
---|
589 | h[na - 1][na - 1] = q / h[en - 1][na - 1]; |
---|
590 | h[na - 1][en - 1] = (p - h[en - 1][en - 1]) / |
---|
591 | h[en - 1][na - 1]; |
---|
592 | } else |
---|
593 | mcdiv(0.0, -h[na - 1][en - 1], h[na - 1][na - 1] - p, q, |
---|
594 | &h[na - 1][na - 1], &h[na - 1][en - 1]); |
---|
595 | h[en - 1][na - 1] = 0.0; |
---|
596 | h[en - 1][en - 1] = 1.0; |
---|
597 | if (en != 2) { |
---|
598 | for (i = en - 3; i >= 0; i--) { |
---|
599 | w = h[i][i] - p; |
---|
600 | ra = 0.0; |
---|
601 | sa = 0.0; |
---|
602 | for (j = m - 1; j < en; j++) { |
---|
603 | ra += h[i][j] * h[j][na - 1]; |
---|
604 | sa += h[i][j] * h[j][en - 1]; |
---|
605 | } |
---|
606 | if (wi[i] < 0.0) { |
---|
607 | z = w; |
---|
608 | r = ra; |
---|
609 | s = sa; |
---|
610 | } else { |
---|
611 | m = i + 1; |
---|
612 | if (wi[i] == 0.0) |
---|
613 | mcdiv(-ra, -sa, w, q, &h[i][na - 1], |
---|
614 | &h[i][en - 1]); |
---|
615 | else { /* solve complex equations */ |
---|
616 | x = h[i][i + 1]; |
---|
617 | y = h[i + 1][i]; |
---|
618 | vr = (wr[i] - p) * (wr[i] - p); |
---|
619 | vr = vr + wi[i] * wi[i] - q * q; |
---|
620 | vi = (wr[i] - p) * 2.0 * q; |
---|
621 | if (vr == 0.0 && vi == 0.0) { |
---|
622 | tst1 = norm * (fabs(w) + fabs(q) + fabs(x) + |
---|
623 | fabs(y) + fabs(z)); |
---|
624 | vr = tst1; |
---|
625 | do { |
---|
626 | vr = 0.01 * vr; |
---|
627 | tst2 = tst1 + vr; |
---|
628 | } while (tst2 > tst1); |
---|
629 | } |
---|
630 | mcdiv(x * r - z * ra + q * sa, |
---|
631 | x * s - z * sa - q * ra, vr, vi, |
---|
632 | &h[i][na - 1], &h[i][en - 1]); |
---|
633 | if (fabs(x) > fabs(z) + fabs(q)) { |
---|
634 | h[i + 1] |
---|
635 | [na - 1] = (q * h[i][en - 1] - |
---|
636 | w * h[i][na - 1] - ra) / x; |
---|
637 | h[i + 1][en - 1] = (-sa - w * h[i][en - 1] - |
---|
638 | q * h[i][na - 1]) / x; |
---|
639 | } else |
---|
640 | mcdiv(-r - y * h[i][na - 1], |
---|
641 | -s - y * h[i][en - 1], z, q, |
---|
642 | &h[i + 1][na - 1], &h[i + 1][en - 1]); |
---|
643 | } |
---|
644 | /* overflow control */ |
---|
645 | t = (fabs(h[i][na - 1]) > fabs(h[i][en - 1])) ? |
---|
646 | fabs(h[i][na - 1]) : fabs(h[i][en - 1]); |
---|
647 | if (t != 0.0) { |
---|
648 | tst1 = t; |
---|
649 | tst2 = tst1 + 1.0 / tst1; |
---|
650 | if (tst2 <= tst1) { |
---|
651 | for (j = i; j < en; j++) { |
---|
652 | h[j][na - 1] /= t; |
---|
653 | h[j][en - 1] /= t; |
---|
654 | } |
---|
655 | } |
---|
656 | } |
---|
657 | } |
---|
658 | } |
---|
659 | } |
---|
660 | } |
---|
661 | } |
---|
662 | /* end back substitution. vectors of isolated roots */ |
---|
663 | for (i = 0; i < n; i++) { |
---|
664 | if (i + 1 < low || i + 1 > hgh) { |
---|
665 | for (j = i; j < n; j++) |
---|
666 | zz[i][j] = h[i][j]; |
---|
667 | } |
---|
668 | } |
---|
669 | /* multiply by transformation matrix to give vectors of |
---|
670 | * original full matrix. */ |
---|
671 | for (j = n - 1; j >= low - 1; j--) { |
---|
672 | m = ((j + 1) < hgh) ? (j + 1) : hgh; /* min */ |
---|
673 | for (i = low - 1; i < hgh; i++) { |
---|
674 | z = 0.0; |
---|
675 | for (k = low - 1; k < m; k++) |
---|
676 | z += zz[i][k] * h[k][j]; |
---|
677 | zz[i][j] = z; |
---|
678 | } |
---|
679 | } |
---|
680 | } |
---|
681 | return; |
---|
682 | } |
---|
683 | |
---|
684 | |
---|
685 | /* make rate matrix with 0.01 expected substitutions per unit time */ |
---|
686 | void onepamratematrix(dmatrix a) |
---|
687 | { |
---|
688 | int i, j; |
---|
689 | double delta, temp, sum; |
---|
690 | dvector m; |
---|
691 | |
---|
692 | for (i = 0; i < tpmradix; i++) |
---|
693 | { |
---|
694 | for (j = 0; j < tpmradix; j++) |
---|
695 | { |
---|
696 | a[i][j] = Freqtpm[j]*a[i][j]; |
---|
697 | } |
---|
698 | } |
---|
699 | |
---|
700 | m = new_dvector(tpmradix); |
---|
701 | for (i = 0, sum = 0.0; i < tpmradix; i++) |
---|
702 | { |
---|
703 | for (j = 0, temp = 0.0; j < tpmradix; j++) |
---|
704 | temp += a[i][j]; |
---|
705 | m[i] = temp; /* row sum */ |
---|
706 | sum += temp*Freqtpm[i]; /* exp. rate */ |
---|
707 | } |
---|
708 | delta = 0.01 / sum; /* 0.01 subst. per unit time */ |
---|
709 | for (i = 0; i < tpmradix; i++) { |
---|
710 | for (j = 0; j < tpmradix; j++) { |
---|
711 | if (i != j) |
---|
712 | a[i][j] = delta * a[i][j]; |
---|
713 | else |
---|
714 | a[i][j] = delta * (-m[i]); |
---|
715 | } |
---|
716 | } |
---|
717 | free_dvector(m); |
---|
718 | } |
---|
719 | |
---|
720 | |
---|
721 | void eigensystem(dvector eval, dmatrix evec) |
---|
722 | { |
---|
723 | dvector evali, forg; |
---|
724 | dmatrix a, b; |
---|
725 | ivector ordr; |
---|
726 | int i, j, k, error; |
---|
727 | double zero; |
---|
728 | |
---|
729 | |
---|
730 | ordr = new_ivector(tpmradix); |
---|
731 | evali = new_dvector(tpmradix); |
---|
732 | forg = new_dvector(tpmradix); |
---|
733 | a = new_dmatrix(tpmradix,tpmradix); |
---|
734 | b = new_dmatrix(tpmradix,tpmradix); |
---|
735 | |
---|
736 | rtfdata(a, forg); /* get relative transition matrix and frequencies */ |
---|
737 | |
---|
738 | onepamratematrix(a); /* make 1 PAM rate matrix */ |
---|
739 | |
---|
740 | /* copy a to b */ |
---|
741 | for (i = 0; i < tpmradix; i++) |
---|
742 | for (j = 0; j < tpmradix; j++) |
---|
743 | b[i][j] = a[i][j]; |
---|
744 | |
---|
745 | elmhes(a, ordr, tpmradix); /* compute eigenvalues and eigenvectors */ |
---|
746 | eltran(a, evec, ordr, tpmradix); |
---|
747 | hqr2(tpmradix, 1, tpmradix, a, evec, eval, evali); |
---|
748 | |
---|
749 | /* check eigenvalue equation */ |
---|
750 | error = FALSE; |
---|
751 | for (j = 0; j < tpmradix; j++) { |
---|
752 | for (i = 0, zero = 0.0; i < tpmradix; i++) { |
---|
753 | for (k = 0; k < tpmradix; k++) zero += b[i][k] * evec[k][j]; |
---|
754 | zero -= eval[j] * evec[i][j]; |
---|
755 | if (fabs(zero) > 1.0e-5) |
---|
756 | error = TRUE; |
---|
757 | } |
---|
758 | } |
---|
759 | if (error) |
---|
760 | FPRINTF(STDOUTFILE "\nWARNING: Eigensystem doesn't satisfy eigenvalue equation!\n"); |
---|
761 | |
---|
762 | free_ivector(ordr); |
---|
763 | free_dvector(evali); |
---|
764 | free_dvector(forg); |
---|
765 | free_dmatrix(a); |
---|
766 | free_dmatrix(b); |
---|
767 | } |
---|
768 | |
---|
769 | |
---|
770 | void luinverse(dmatrix inmat, dmatrix imtrx, int size) |
---|
771 | { |
---|
772 | double eps = 1.0e-20; /* ! */ |
---|
773 | int i, j, k, l, maxi=0, idx, ix, jx; |
---|
774 | double sum, tmp, maxb, aw; |
---|
775 | ivector index; |
---|
776 | double *wk; |
---|
777 | dmatrix omtrx; |
---|
778 | |
---|
779 | |
---|
780 | index = new_ivector(tpmradix); |
---|
781 | omtrx = new_dmatrix(tpmradix,tpmradix); |
---|
782 | |
---|
783 | /* copy inmat to omtrx */ |
---|
784 | for (i = 0; i < tpmradix; i++) |
---|
785 | for (j = 0; j < tpmradix; j++) |
---|
786 | omtrx[i][j] = inmat[i][j]; |
---|
787 | |
---|
788 | wk = (double *) malloc((unsigned)size * sizeof(double)); |
---|
789 | aw = 1.0; |
---|
790 | for (i = 0; i < size; i++) { |
---|
791 | maxb = 0.0; |
---|
792 | for (j = 0; j < size; j++) { |
---|
793 | if (fabs(omtrx[i][j]) > maxb) |
---|
794 | maxb = fabs(omtrx[i][j]); |
---|
795 | } |
---|
796 | if (maxb == 0.0) { |
---|
797 | /* Singular matrix */ |
---|
798 | FPRINTF(STDOUTFILE "\n\n\nHALT: PLEASE REPORT ERROR C TO DEVELOPERS\n\n\n"); |
---|
799 | exit(1); |
---|
800 | } |
---|
801 | wk[i] = 1.0 / maxb; |
---|
802 | } |
---|
803 | for (j = 0; j < size; j++) { |
---|
804 | for (i = 0; i < j; i++) { |
---|
805 | sum = omtrx[i][j]; |
---|
806 | for (k = 0; k < i; k++) |
---|
807 | sum -= omtrx[i][k] * omtrx[k][j]; |
---|
808 | omtrx[i][j] = sum; |
---|
809 | } |
---|
810 | maxb = 0.0; |
---|
811 | for (i = j; i < size; i++) { |
---|
812 | sum = omtrx[i][j]; |
---|
813 | for (k = 0; k < j; k++) |
---|
814 | sum -= omtrx[i][k] * omtrx[k][j]; |
---|
815 | omtrx[i][j] = sum; |
---|
816 | tmp = wk[i] * fabs(sum); |
---|
817 | if (tmp >= maxb) { |
---|
818 | maxb = tmp; |
---|
819 | maxi = i; |
---|
820 | } |
---|
821 | } |
---|
822 | if (j != maxi) { |
---|
823 | for (k = 0; k < size; k++) { |
---|
824 | tmp = omtrx[maxi][k]; |
---|
825 | omtrx[maxi][k] = omtrx[j][k]; |
---|
826 | omtrx[j][k] = tmp; |
---|
827 | } |
---|
828 | aw = -aw; |
---|
829 | wk[maxi] = wk[j]; |
---|
830 | } |
---|
831 | index[j] = maxi; |
---|
832 | if (omtrx[j][j] == 0.0) |
---|
833 | omtrx[j][j] = eps; |
---|
834 | if (j != size - 1) { |
---|
835 | tmp = 1.0 / omtrx[j][j]; |
---|
836 | for (i = j + 1; i < size; i++) |
---|
837 | omtrx[i][j] *= tmp; |
---|
838 | } |
---|
839 | } |
---|
840 | for (jx = 0; jx < size; jx++) { |
---|
841 | for (ix = 0; ix < size; ix++) |
---|
842 | wk[ix] = 0.0; |
---|
843 | wk[jx] = 1.0; |
---|
844 | l = -1; |
---|
845 | for (i = 0; i < size; i++) { |
---|
846 | idx = index[i]; |
---|
847 | sum = wk[idx]; |
---|
848 | wk[idx] = wk[i]; |
---|
849 | if (l != -1) { |
---|
850 | for (j = l; j < i; j++) |
---|
851 | sum -= omtrx[i][j] * wk[j]; |
---|
852 | } else if (sum != 0.0) |
---|
853 | l = i; |
---|
854 | wk[i] = sum; |
---|
855 | } |
---|
856 | for (i = size - 1; i >= 0; i--) { |
---|
857 | sum = wk[i]; |
---|
858 | for (j = i + 1; j < size; j++) |
---|
859 | sum -= omtrx[i][j] * wk[j]; |
---|
860 | wk[i] = sum / omtrx[i][i]; |
---|
861 | } |
---|
862 | for (ix = 0; ix < size; ix++) |
---|
863 | imtrx[ix][jx] = wk[ix]; |
---|
864 | } |
---|
865 | free((char *)wk); |
---|
866 | wk = NULL; |
---|
867 | free_ivector(index); |
---|
868 | free_dmatrix(omtrx); |
---|
869 | } |
---|
870 | |
---|
871 | |
---|
872 | void checkevector(dmatrix evec, dmatrix ivec, int nn) |
---|
873 | { |
---|
874 | int i, j, ia, ib, ic, error; |
---|
875 | dmatrix matx; |
---|
876 | double sum; |
---|
877 | |
---|
878 | |
---|
879 | matx = new_dmatrix(nn, nn); |
---|
880 | /* multiply matrix of eigenvectors and its inverse */ |
---|
881 | for (ia = 0; ia < nn; ia++) { |
---|
882 | for (ic = 0; ic < nn; ic++) { |
---|
883 | sum = 0.0; |
---|
884 | for (ib = 0; ib < nn; ib++) sum += evec[ia][ib] * ivec[ib][ic]; |
---|
885 | matx[ia][ic] = sum; |
---|
886 | } |
---|
887 | } |
---|
888 | /* check whether the unitary matrix is obtained */ |
---|
889 | error = FALSE; |
---|
890 | for (i = 0; i < nn; i++) { |
---|
891 | for (j = 0; j < nn; j++) { |
---|
892 | if (i == j) { |
---|
893 | if (fabs(matx[i][j] - 1.0) > 1.0e-5) |
---|
894 | error = TRUE; |
---|
895 | } else { |
---|
896 | if (fabs(matx[i][j]) > 1.0e-5) |
---|
897 | error = TRUE; |
---|
898 | } |
---|
899 | } |
---|
900 | } |
---|
901 | if (error) { |
---|
902 | FPRINTF(STDOUTFILE "\nWARNING: Inversion of eigenvector matrix not perfect!\n"); |
---|
903 | } |
---|
904 | free_dmatrix(matx); |
---|
905 | } |
---|
906 | |
---|
907 | |
---|
908 | /***************************** exported functions *****************************/ |
---|
909 | |
---|
910 | |
---|
911 | /* compute 1 PAM rate matrix, its eigensystem, and the inverse matrix thereof */ |
---|
912 | void tranprobmat() |
---|
913 | { |
---|
914 | eigensystem(Eval, Evec); /* eigensystem of 1 PAM rate matrix */ |
---|
915 | luinverse(Evec, Ievc, tpmradix); /* inverse eigenvectors are in Ievc */ |
---|
916 | checkevector(Evec, Ievc, tpmradix); /* check whether inversion was OK */ |
---|
917 | } |
---|
918 | |
---|
919 | |
---|
920 | /* compute P(t) */ |
---|
921 | void tprobmtrx(double arc, dmatrix tpr) |
---|
922 | { |
---|
923 | register int i, j, k; |
---|
924 | register double temp; |
---|
925 | |
---|
926 | |
---|
927 | for (k = 0; k < tpmradix; k++) { |
---|
928 | temp = exp(arc * Eval[k]); |
---|
929 | for (j = 0; j < tpmradix; j++) |
---|
930 | iexp[k][j] = Ievc[k][j] * temp; |
---|
931 | } |
---|
932 | for (i = 0; i < tpmradix; i++) { |
---|
933 | for (j = 0; j < tpmradix; j++) { |
---|
934 | temp = 0.0; |
---|
935 | for (k = 0; k < tpmradix; k++) |
---|
936 | temp += Evec[i][k] * iexp[k][j]; |
---|
937 | tpr[i][j] = fabs(temp); |
---|
938 | } |
---|
939 | } |
---|
940 | } |
---|
941 | |
---|
942 | |
---|
943 | /******************************************************************************/ |
---|
944 | /* estimation of maximum likelihood distances */ |
---|
945 | /******************************************************************************/ |
---|
946 | |
---|
947 | /* compute total log-likelihood |
---|
948 | input: likelihoods for each site and non-zero rate |
---|
949 | output: total log-likelihood (incl. zero rate category) */ |
---|
950 | double comptotloglkl(dmatrix cdl) |
---|
951 | { |
---|
952 | int k, r; |
---|
953 | double loglkl, fv, fv2, sitelkl; |
---|
954 | |
---|
955 | loglkl = 0.0; |
---|
956 | fv = 1.0-fracinv; |
---|
957 | fv2 = (1.0-fracinv)/(double) numcats; |
---|
958 | |
---|
959 | if (numcats == 1) { |
---|
960 | |
---|
961 | for (k = 0; k < Numptrn; k++) { |
---|
962 | |
---|
963 | /* compute likelihood for pattern k */ |
---|
964 | sitelkl = cdl[0][k]*fv; |
---|
965 | if (constpat[k] == TRUE) |
---|
966 | sitelkl += fracinv*Freqtpm[(int) Seqpat[0][k]]; |
---|
967 | |
---|
968 | /* total log-likelihood */ |
---|
969 | loglkl += log(sitelkl)*Weight[k]; |
---|
970 | |
---|
971 | } |
---|
972 | |
---|
973 | } else { |
---|
974 | |
---|
975 | for (k = 0; k < Numptrn; k++) { |
---|
976 | |
---|
977 | /* this general routine works always but it's better |
---|
978 | to run it only when it's really necessary */ |
---|
979 | |
---|
980 | /* compute likelihood for pattern k */ |
---|
981 | sitelkl = 0.0; |
---|
982 | for (r = 0; r < numcats; r++) |
---|
983 | sitelkl += cdl[r][k]; |
---|
984 | sitelkl = fv2*sitelkl; |
---|
985 | if (constpat[k] == TRUE) |
---|
986 | sitelkl += fracinv*Freqtpm[(int) Seqpat[0][k]]; |
---|
987 | |
---|
988 | /* total log-likelihood */ |
---|
989 | loglkl += log(sitelkl)*Weight[k]; |
---|
990 | |
---|
991 | } |
---|
992 | |
---|
993 | } |
---|
994 | |
---|
995 | return loglkl; |
---|
996 | } |
---|
997 | |
---|
998 | |
---|
999 | /* computes the site log-likelihoods |
---|
1000 | input: likelihoods for each site and non-zero rate |
---|
1001 | output: log-likelihood for each site */ |
---|
1002 | void allsitelkl(dmatrix cdl, dvector aslkl) |
---|
1003 | { |
---|
1004 | int k, r; |
---|
1005 | double fv, fv2, sitelkl; |
---|
1006 | |
---|
1007 | fv = 1.0-fracinv; |
---|
1008 | fv2 = (1.0-fracinv)/(double) numcats; |
---|
1009 | |
---|
1010 | if (numcats == 1) { |
---|
1011 | |
---|
1012 | for (k = 0; k < Numptrn; k++) { |
---|
1013 | |
---|
1014 | /* compute likelihood for pattern k */ |
---|
1015 | sitelkl = cdl[0][k]*fv; |
---|
1016 | if (constpat[k] == TRUE) |
---|
1017 | sitelkl += fracinv*Freqtpm[(int) Seqpat[0][k]]; |
---|
1018 | |
---|
1019 | /* site log-likelihood */ |
---|
1020 | aslkl[k] = log(sitelkl); |
---|
1021 | } |
---|
1022 | |
---|
1023 | } else { |
---|
1024 | |
---|
1025 | for (k = 0; k < Numptrn; k++) { |
---|
1026 | |
---|
1027 | /* this general routine works always but it's better |
---|
1028 | to run it only when it's really necessary */ |
---|
1029 | |
---|
1030 | /* compute likelihood for pattern k */ |
---|
1031 | sitelkl = 0.0; |
---|
1032 | for (r = 0; r < numcats; r++) |
---|
1033 | sitelkl += cdl[r][k]; |
---|
1034 | sitelkl = fv2*sitelkl; |
---|
1035 | if (constpat[k] == TRUE) |
---|
1036 | sitelkl += fracinv*Freqtpm[(int) Seqpat[0][k]]; |
---|
1037 | |
---|
1038 | /* total log-likelihood */ |
---|
1039 | aslkl[k] = log(sitelkl); |
---|
1040 | |
---|
1041 | } |
---|
1042 | } |
---|
1043 | } |
---|
1044 | |
---|
1045 | |
---|
1046 | /***************************** internal functions *****************************/ |
---|
1047 | |
---|
1048 | /* compute negative log-likelihood of distance arc between sequences seqchi/j */ |
---|
1049 | double pairlkl(double arc) |
---|
1050 | { |
---|
1051 | int k, r, ci, cj; |
---|
1052 | double loglkl, fv, sitelkl; |
---|
1053 | |
---|
1054 | |
---|
1055 | /* compute tpms */ |
---|
1056 | for (r = 0; r < numcats; r++) |
---|
1057 | /* compute tpm for rate category r */ |
---|
1058 | tprobmtrx(arc*Rates[r], ltprobr[r]); |
---|
1059 | |
---|
1060 | loglkl = 0.0; |
---|
1061 | fv = 1.0-fracinv; |
---|
1062 | |
---|
1063 | if (numcats == 1) { |
---|
1064 | |
---|
1065 | for (k = 0; k < Numptrn; k++) { |
---|
1066 | |
---|
1067 | /* compute likelihood for site k */ |
---|
1068 | ci = seqchi[k]; |
---|
1069 | cj = seqchj[k]; |
---|
1070 | if (ci != tpmradix && cj != tpmradix) |
---|
1071 | sitelkl = ltprobr[0][ci][cj]*fv; |
---|
1072 | else |
---|
1073 | sitelkl = fv; |
---|
1074 | if (ci == cj && ci != tpmradix) |
---|
1075 | sitelkl += fracinv*Freqtpm[ci]; |
---|
1076 | |
---|
1077 | /* total log-likelihood */ |
---|
1078 | loglkl += log(sitelkl)*Weight[k]; |
---|
1079 | |
---|
1080 | } |
---|
1081 | |
---|
1082 | } else { |
---|
1083 | |
---|
1084 | for (k = 0; k < Numptrn; k++) { |
---|
1085 | |
---|
1086 | /* this general routine works always but it's better |
---|
1087 | to run it only when it's really necessary */ |
---|
1088 | |
---|
1089 | /* compute likelihood for site k */ |
---|
1090 | ci = seqchi[k]; |
---|
1091 | cj = seqchj[k]; |
---|
1092 | if (ci != tpmradix && cj != tpmradix) { |
---|
1093 | sitelkl = 0.0; |
---|
1094 | for (r = 0; r < numcats; r++) |
---|
1095 | sitelkl += ltprobr[r][ci][cj]; |
---|
1096 | sitelkl = fv*sitelkl/(double) numcats; |
---|
1097 | } else |
---|
1098 | sitelkl = fv; |
---|
1099 | if (ci == cj && ci != tpmradix) |
---|
1100 | sitelkl += fracinv*Freqtpm[ci]; |
---|
1101 | |
---|
1102 | /* total log-likelihood */ |
---|
1103 | loglkl += log(sitelkl)*Weight[k]; |
---|
1104 | |
---|
1105 | } |
---|
1106 | |
---|
1107 | } |
---|
1108 | |
---|
1109 | /* return negative log-likelihood as we use a minimizing procedure */ |
---|
1110 | return -loglkl; |
---|
1111 | } |
---|
1112 | |
---|
1113 | |
---|
1114 | /***************************** exported functions *****************************/ |
---|
1115 | |
---|
1116 | |
---|
1117 | /* maximum likelihood distance between sequence i and j */ |
---|
1118 | double mldistance(int i, int j) |
---|
1119 | { |
---|
1120 | double dist, fx, f2x; |
---|
1121 | |
---|
1122 | if (i == j) return 0.0; |
---|
1123 | |
---|
1124 | /* use old distance as start value */ |
---|
1125 | dist = Distanmat[i][j]; |
---|
1126 | |
---|
1127 | if (dist == 0.0) return 0.0; |
---|
1128 | |
---|
1129 | seqchi = Seqpat[i]; |
---|
1130 | seqchj = Seqpat[j]; |
---|
1131 | |
---|
1132 | if (dist <= MINARC) dist = MINARC+1.0; |
---|
1133 | if (dist >= MAXARC) dist = MAXARC-1.0; |
---|
1134 | |
---|
1135 | dist = onedimenmin(MINARC, dist, MAXARC, pairlkl, EPSILON, &fx, &f2x); |
---|
1136 | |
---|
1137 | return dist; |
---|
1138 | } |
---|
1139 | |
---|
1140 | |
---|
1141 | /* initialize distance matrix */ |
---|
1142 | void initdistan() |
---|
1143 | { |
---|
1144 | int i, j, k, diff, x, y; |
---|
1145 | double obs, temp; |
---|
1146 | |
---|
1147 | for (i = 0; i < Maxspc; i++) { |
---|
1148 | Distanmat[i][i] = 0.0; |
---|
1149 | for (j = i + 1; j < Maxspc; j++) { |
---|
1150 | seqchi = Seqpat[i]; |
---|
1151 | seqchj = Seqpat[j]; |
---|
1152 | |
---|
1153 | /* count observed differences */ |
---|
1154 | diff = 0; |
---|
1155 | for (k = 0; k < Numptrn; k++) { |
---|
1156 | x = seqchi[k]; |
---|
1157 | y = seqchj[k]; |
---|
1158 | if (x != y && |
---|
1159 | x != tpmradix && |
---|
1160 | y != tpmradix) |
---|
1161 | diff += Weight[k]; |
---|
1162 | } |
---|
1163 | if (diff == 0) |
---|
1164 | Distanmat[i][j] = 0.0; |
---|
1165 | else { |
---|
1166 | /* use generalized JC correction to get first estimate |
---|
1167 | (for the SH model the observed distance is used) */ |
---|
1168 | /* observed distance */ |
---|
1169 | obs = (double) diff / (double) Maxsite; |
---|
1170 | temp = 1.0 - (double) obs*tpmradix/(tpmradix-1.0); |
---|
1171 | if (temp > 0.0 && !(data_optn == 0 && SH_optn)) |
---|
1172 | /* use JC corrected distance */ |
---|
1173 | Distanmat[i][j] = -100.0*(tpmradix-1.0)/tpmradix * log(temp); |
---|
1174 | else |
---|
1175 | /* use observed distance */ |
---|
1176 | Distanmat[i][j] = obs * 100.0; |
---|
1177 | if (Distanmat[i][j] < MINARC) Distanmat[i][j] = MINARC; |
---|
1178 | if (Distanmat[i][j] > MAXARC) Distanmat[i][j] = MAXARC; |
---|
1179 | } |
---|
1180 | Distanmat[j][i] = Distanmat[i][j]; |
---|
1181 | } |
---|
1182 | } |
---|
1183 | } |
---|
1184 | |
---|
1185 | /* compute distance matrix */ |
---|
1186 | void computedistan() |
---|
1187 | { |
---|
1188 | int i, j; |
---|
1189 | |
---|
1190 | for (i = 0; i < Maxspc; i++) |
---|
1191 | for (j = i; j < Maxspc; j++) { |
---|
1192 | Distanmat[i][j] = mldistance(i, j); |
---|
1193 | Distanmat[j][i] = Distanmat[i][j]; |
---|
1194 | } |
---|
1195 | } |
---|
1196 | |
---|
1197 | |
---|
1198 | /******************************************************************************/ |
---|
1199 | /* computation of maximum likelihood edge lengths for a given tree */ |
---|
1200 | /******************************************************************************/ |
---|
1201 | |
---|
1202 | |
---|
1203 | /***************************** internal functions *****************************/ |
---|
1204 | |
---|
1205 | |
---|
1206 | /* multiply partial likelihoods */ |
---|
1207 | void productpartials(Node *op) |
---|
1208 | { |
---|
1209 | Node *cp; |
---|
1210 | int i, j, r; |
---|
1211 | dcube opc, cpc; |
---|
1212 | |
---|
1213 | cp = op; |
---|
1214 | opc = op->partials; |
---|
1215 | while (cp->isop->isop != op) { |
---|
1216 | cp = cp->isop; |
---|
1217 | cpc = cp->partials; |
---|
1218 | for (r = 0; r < numcats; r++) |
---|
1219 | for (i = 0; i < Numptrn; i++) |
---|
1220 | for (j = 0; j < tpmradix; j++) |
---|
1221 | opc[r][i][j] *= cpc[r][i][j]; |
---|
1222 | } |
---|
1223 | } |
---|
1224 | |
---|
1225 | |
---|
1226 | /* compute internal partial likelihoods */ |
---|
1227 | void partialsinternal(Node *op) |
---|
1228 | { |
---|
1229 | int i, j, k, r; |
---|
1230 | double sum; |
---|
1231 | dcube oprob, cprob; |
---|
1232 | |
---|
1233 | if (clockmode == 1) { /* clocklike branch lengths */ |
---|
1234 | for (r = 0; r < numcats; r++) { |
---|
1235 | tprobmtrx((op->lengthc)*Rates[r], ltprobr[r]); |
---|
1236 | } |
---|
1237 | } else { /* non-clocklike branch lengths */ |
---|
1238 | for (r = 0; r < numcats; r++) { |
---|
1239 | tprobmtrx((op->length)*Rates[r], ltprobr[r]); |
---|
1240 | } |
---|
1241 | } |
---|
1242 | |
---|
1243 | oprob = op->partials; |
---|
1244 | cprob = op->kinp->isop->partials; |
---|
1245 | for (r = 0; r < numcats; r++) { |
---|
1246 | for (k = 0; k < Numptrn; k++) { |
---|
1247 | for (i = 0; i < tpmradix; i++) { |
---|
1248 | sum = 0.0; |
---|
1249 | for (j = 0; j < tpmradix; j++) |
---|
1250 | sum += ltprobr[r][i][j] * cprob[r][k][j]; |
---|
1251 | oprob[r][k][i] = sum; |
---|
1252 | } |
---|
1253 | } |
---|
1254 | } |
---|
1255 | } |
---|
1256 | |
---|
1257 | |
---|
1258 | /* compute external partial likelihoods */ |
---|
1259 | void partialsexternal(Node *op) |
---|
1260 | { |
---|
1261 | int i, j, k, r; |
---|
1262 | dcube oprob; |
---|
1263 | cvector dseqi; |
---|
1264 | |
---|
1265 | if (clockmode == 1) { /* clocklike branch lengths */ |
---|
1266 | for (r = 0; r < numcats; r++) { |
---|
1267 | tprobmtrx((op->lengthc)*Rates[r], ltprobr[r]); |
---|
1268 | } |
---|
1269 | } else { /* nonclocklike branch lengths */ |
---|
1270 | for (r = 0; r < numcats; r++) { |
---|
1271 | tprobmtrx((op->length)*Rates[r], ltprobr[r]); |
---|
1272 | } |
---|
1273 | } |
---|
1274 | |
---|
1275 | oprob = op->partials; |
---|
1276 | dseqi = op->kinp->eprob; |
---|
1277 | for (r = 0; r < numcats; r++) { |
---|
1278 | for (k = 0; k < Numptrn; k++) { |
---|
1279 | if ((j = dseqi[k]) == tpmradix) { |
---|
1280 | for (i = 0; i < tpmradix; i++) |
---|
1281 | oprob[r][k][i] = 1.0; |
---|
1282 | } else { |
---|
1283 | for (i = 0; i < tpmradix; i++) |
---|
1284 | oprob[r][k][i] = ltprobr[r][i][j]; |
---|
1285 | } |
---|
1286 | } |
---|
1287 | } |
---|
1288 | } |
---|
1289 | |
---|
1290 | |
---|
1291 | /* compute all partial likelihoods */ |
---|
1292 | void initpartials(Tree *tr) |
---|
1293 | { |
---|
1294 | Node *cp, *rp; |
---|
1295 | |
---|
1296 | cp = rp = tr->rootp; |
---|
1297 | do { |
---|
1298 | cp = cp->isop->kinp; |
---|
1299 | if (cp->isop == NULL) { /* external node */ |
---|
1300 | cp = cp->kinp; /* not descen */ |
---|
1301 | partialsexternal(cp); |
---|
1302 | } else { /* internal node */ |
---|
1303 | if (!cp->descen) { |
---|
1304 | productpartials(cp->kinp->isop); |
---|
1305 | partialsinternal(cp); |
---|
1306 | } |
---|
1307 | } |
---|
1308 | } while (cp != rp); |
---|
1309 | } |
---|
1310 | |
---|
1311 | |
---|
1312 | /* compute log-likelihood given internal branch with length arc |
---|
1313 | between partials partiali and partials partialj */ |
---|
1314 | double intlkl(double arc) |
---|
1315 | { |
---|
1316 | double sumlk, slk; |
---|
1317 | int r, s, i, j; |
---|
1318 | dmatrix cdl; |
---|
1319 | |
---|
1320 | cdl = Ctree->condlkl; |
---|
1321 | for (r = 0; r < numcats; r++) { |
---|
1322 | tprobmtrx(arc*Rates[r], ltprobr[r]); |
---|
1323 | } |
---|
1324 | for (r = 0; r < numcats; r++) { |
---|
1325 | for (s = 0; s < Numptrn; s++) { |
---|
1326 | sumlk = 0.0; |
---|
1327 | for (i = 0; i < tpmradix; i++) { |
---|
1328 | slk = 0.0; |
---|
1329 | for (j = 0; j < tpmradix; j++) |
---|
1330 | slk += partialj[r][s][j] * ltprobr[r][i][j]; |
---|
1331 | sumlk += Freqtpm[i] * partiali[r][s][i] * slk; |
---|
1332 | } |
---|
1333 | cdl[r][s] = sumlk; |
---|
1334 | } |
---|
1335 | } |
---|
1336 | |
---|
1337 | /* compute total log-likelihood for current tree */ |
---|
1338 | Ctree->lklhd = comptotloglkl(cdl); |
---|
1339 | |
---|
1340 | return -(Ctree->lklhd); /* we use a minimizing procedure */ |
---|
1341 | } |
---|
1342 | |
---|
1343 | |
---|
1344 | /* optimize internal branch */ |
---|
1345 | void optinternalbranch(Node *op) |
---|
1346 | { |
---|
1347 | double arc, fx, f2x; |
---|
1348 | |
---|
1349 | partiali = op->isop->partials; |
---|
1350 | partialj = op->kinp->isop->partials; |
---|
1351 | arc = op->length; /* nonclocklike branch lengths */ |
---|
1352 | if (arc <= MINARC) arc = MINARC+1.0; |
---|
1353 | if (arc >= MAXARC) arc = MAXARC-1.0; |
---|
1354 | arc = onedimenmin(MINARC, arc, MAXARC, intlkl, EPSILON, &fx, &f2x); |
---|
1355 | op->kinp->length = arc; |
---|
1356 | op->length = arc; |
---|
1357 | |
---|
1358 | /* variance of branch length */ |
---|
1359 | f2x = fabs(f2x); |
---|
1360 | if (1.0/(MAXARC*MAXARC) < f2x) |
---|
1361 | op->varlen = 1.0/f2x; |
---|
1362 | else |
---|
1363 | op->varlen = MAXARC*MAXARC; |
---|
1364 | } |
---|
1365 | |
---|
1366 | |
---|
1367 | /* compute log-likelihood given external branch with length arc |
---|
1368 | between partials partiali and sequence seqchi */ |
---|
1369 | double extlkl(double arc) |
---|
1370 | { |
---|
1371 | double sumlk; |
---|
1372 | int r, s, i, j; |
---|
1373 | dvector opb; |
---|
1374 | dmatrix cdl; |
---|
1375 | |
---|
1376 | cdl = Ctree->condlkl; |
---|
1377 | for (r = 0; r < numcats; r++) { |
---|
1378 | tprobmtrx(arc*Rates[r], ltprobr[r]); |
---|
1379 | } |
---|
1380 | for (r = 0; r < numcats; r++) { |
---|
1381 | for (s = 0; s < Numptrn; s++) { |
---|
1382 | opb = partiali[r][s]; |
---|
1383 | sumlk = 0.0; |
---|
1384 | if ((j = seqchi[s]) != tpmradix) { |
---|
1385 | for (i = 0; i < tpmradix; i++) |
---|
1386 | sumlk += (Freqtpm[i] * (opb[i] * ltprobr[r][i][j])); |
---|
1387 | } else { |
---|
1388 | for (i = 0; i < tpmradix; i++) |
---|
1389 | sumlk += Freqtpm[i] * opb[i]; |
---|
1390 | } |
---|
1391 | cdl[r][s] = sumlk; |
---|
1392 | } |
---|
1393 | } |
---|
1394 | |
---|
1395 | /* compute total log-likelihood for current tree */ |
---|
1396 | Ctree->lklhd = comptotloglkl(cdl); |
---|
1397 | |
---|
1398 | return -(Ctree->lklhd); /* we use a minimizing procedure */ |
---|
1399 | } |
---|
1400 | |
---|
1401 | /* optimize external branch */ |
---|
1402 | void optexternalbranch(Node *op) |
---|
1403 | { |
---|
1404 | double arc, fx, f2x; |
---|
1405 | |
---|
1406 | partiali = op->isop->partials; |
---|
1407 | seqchi = op->kinp->eprob; |
---|
1408 | arc = op->length; /* nonclocklike branch lengths */ |
---|
1409 | if (arc <= MINARC) arc = MINARC+1.0; |
---|
1410 | if (arc >= MAXARC) arc = MAXARC-1.0; |
---|
1411 | arc = onedimenmin(MINARC, arc, MAXARC, extlkl, EPSILON, &fx, &f2x); |
---|
1412 | op->kinp->length = arc; |
---|
1413 | op->length = arc; |
---|
1414 | |
---|
1415 | /* variance of branch length */ |
---|
1416 | f2x = fabs(f2x); |
---|
1417 | if (1.0/(MAXARC*MAXARC) < f2x) |
---|
1418 | op->varlen = 1.0/f2x; |
---|
1419 | else |
---|
1420 | op->varlen = MAXARC*MAXARC; |
---|
1421 | } |
---|
1422 | |
---|
1423 | |
---|
1424 | /* finish likelihoods for each rate and site */ |
---|
1425 | void finishlkl(Node *op) |
---|
1426 | { |
---|
1427 | int r, k, i, j; |
---|
1428 | double arc, sumlk, slk; |
---|
1429 | dmatrix cdl; |
---|
1430 | |
---|
1431 | partiali = op->isop->partials; |
---|
1432 | partialj = op->kinp->isop->partials; |
---|
1433 | cdl = Ctree->condlkl; |
---|
1434 | arc = op->length; /* nonclocklike branch lengths */ |
---|
1435 | for (r = 0; r < numcats; r++) { |
---|
1436 | tprobmtrx(arc*Rates[r], ltprobr[r]); |
---|
1437 | } |
---|
1438 | for (r = 0; r < numcats; r++) { |
---|
1439 | for (k = 0; k < Numptrn; k++) { |
---|
1440 | sumlk = 0.0; |
---|
1441 | for (i = 0; i < tpmradix; i++) { |
---|
1442 | slk = 0.0; |
---|
1443 | for (j = 0; j < tpmradix; j++) |
---|
1444 | slk += partialj[r][k][j] * ltprobr[r][i][j]; |
---|
1445 | sumlk += Freqtpm[i] * partiali[r][k][i] * slk; |
---|
1446 | } |
---|
1447 | cdl[r][k] = sumlk; |
---|
1448 | } |
---|
1449 | } |
---|
1450 | } |
---|
1451 | |
---|
1452 | |
---|
1453 | /***************************** exported functions *****************************/ |
---|
1454 | |
---|
1455 | |
---|
1456 | /* optimize branch lengths to get maximum likelihood (nonclocklike branchs) */ |
---|
1457 | double optlkl(Tree *tr) |
---|
1458 | { |
---|
1459 | Node *cp, *rp; |
---|
1460 | int nconv; |
---|
1461 | double lendiff; |
---|
1462 | |
---|
1463 | clockmode = 0; /* nonclocklike branch lengths */ |
---|
1464 | nconv = 0; |
---|
1465 | Converg = FALSE; |
---|
1466 | initpartials(tr); |
---|
1467 | for (Numit = 1; (Numit <= MAXIT) && (!Converg); Numit++) { |
---|
1468 | |
---|
1469 | cp = rp = tr->rootp; |
---|
1470 | do { |
---|
1471 | cp = cp->isop->kinp; |
---|
1472 | productpartials(cp->kinp->isop); |
---|
1473 | if (cp->isop == NULL) { /* external node */ |
---|
1474 | cp = cp->kinp; /* not descen */ |
---|
1475 | |
---|
1476 | lendiff = cp->length; |
---|
1477 | optexternalbranch(cp); |
---|
1478 | lendiff = fabs(lendiff - cp->length); |
---|
1479 | if (lendiff < EPSILON) nconv++; |
---|
1480 | else nconv = 0; |
---|
1481 | |
---|
1482 | partialsexternal(cp); |
---|
1483 | } else { /* internal node */ |
---|
1484 | if (cp->descen) { |
---|
1485 | partialsinternal(cp); |
---|
1486 | } else { |
---|
1487 | |
---|
1488 | lendiff = cp->length; |
---|
1489 | optinternalbranch(cp); |
---|
1490 | lendiff = fabs(lendiff - cp->length); |
---|
1491 | if (lendiff < EPSILON) nconv++; |
---|
1492 | else nconv = 0; |
---|
1493 | |
---|
1494 | /* eventually compute likelihoods for each site */ |
---|
1495 | if ((cp->number == Numibrnch-1 && lendiff < EPSILON) || |
---|
1496 | Numit == MAXIT-1) finishlkl(cp); |
---|
1497 | |
---|
1498 | partialsinternal(cp); |
---|
1499 | } |
---|
1500 | } |
---|
1501 | if (nconv >= Numbrnch) { /* convergence */ |
---|
1502 | Converg = TRUE; |
---|
1503 | cp = rp; /* get out of here */ |
---|
1504 | } |
---|
1505 | } while (cp != rp); |
---|
1506 | } |
---|
1507 | |
---|
1508 | /* compute total log-likelihood for current tree */ |
---|
1509 | return comptotloglkl(tr->condlkl); |
---|
1510 | } |
---|
1511 | |
---|
1512 | |
---|
1513 | /* compute likelihood of tree for given branch lengths */ |
---|
1514 | double treelkl(Tree *tr) |
---|
1515 | { |
---|
1516 | int i, k, r; |
---|
1517 | Node *cp; |
---|
1518 | dmatrix cdl; |
---|
1519 | dcube prob1, prob2; |
---|
1520 | double sumlk; |
---|
1521 | |
---|
1522 | /* compute for each site and rate log-likelihoods */ |
---|
1523 | initpartials(tr); |
---|
1524 | cp = tr->rootp; |
---|
1525 | productpartials(cp->isop); |
---|
1526 | prob1 = cp->partials; |
---|
1527 | prob2 = cp->isop->partials; |
---|
1528 | cdl = tr->condlkl; |
---|
1529 | for (r = 0; r < numcats; r++) { |
---|
1530 | for (k = 0; k < Numptrn; k++) { |
---|
1531 | sumlk = 0.0; |
---|
1532 | for (i = 0; i < tpmradix; i++) |
---|
1533 | sumlk += Freqtpm[i] * (prob1[r][k][i] * prob2[r][k][i]); |
---|
1534 | cdl[r][k] = sumlk; |
---|
1535 | } |
---|
1536 | } |
---|
1537 | |
---|
1538 | /* return total log-likelihood for current tree */ |
---|
1539 | return comptotloglkl(cdl); |
---|
1540 | } |
---|
1541 | |
---|
1542 | |
---|
1543 | /******************************************************************************/ |
---|
1544 | /* least-squares estimate of branch lengths */ |
---|
1545 | /******************************************************************************/ |
---|
1546 | |
---|
1547 | |
---|
1548 | /***************************** internal functions *****************************/ |
---|
1549 | |
---|
1550 | |
---|
1551 | void luequation(dmatrix amat, dvector yvec, int size) |
---|
1552 | { |
---|
1553 | double eps = 1.0e-20; /* ! */ |
---|
1554 | int i, j, k, l, maxi=0, idx; |
---|
1555 | double sum, tmp, maxb, aw; |
---|
1556 | dvector wk; |
---|
1557 | ivector index; |
---|
1558 | |
---|
1559 | |
---|
1560 | wk = new_dvector(size); |
---|
1561 | index = new_ivector(size); |
---|
1562 | aw = 1.0; |
---|
1563 | for (i = 0; i < size; i++) { |
---|
1564 | maxb = 0.0; |
---|
1565 | for (j = 0; j < size; j++) { |
---|
1566 | if (fabs(amat[i][j]) > maxb) |
---|
1567 | maxb = fabs(amat[i][j]); |
---|
1568 | } |
---|
1569 | if (maxb == 0.0) { |
---|
1570 | /* Singular matrix */ |
---|
1571 | FPRINTF(STDOUTFILE "\n\n\nHALT: PLEASE REPORT ERROR D TO DEVELOPERS\n\n\n"); |
---|
1572 | exit(1); |
---|
1573 | } |
---|
1574 | wk[i] = 1.0 / maxb; |
---|
1575 | } |
---|
1576 | for (j = 0; j < size; j++) { |
---|
1577 | for (i = 0; i < j; i++) { |
---|
1578 | sum = amat[i][j]; |
---|
1579 | for (k = 0; k < i; k++) |
---|
1580 | sum -= amat[i][k] * amat[k][j]; |
---|
1581 | amat[i][j] = sum; |
---|
1582 | } |
---|
1583 | maxb = 0.0; |
---|
1584 | for (i = j; i < size; i++) { |
---|
1585 | sum = amat[i][j]; |
---|
1586 | for (k = 0; k < j; k++) |
---|
1587 | sum -= amat[i][k] * amat[k][j]; |
---|
1588 | amat[i][j] = sum; |
---|
1589 | tmp = wk[i] * fabs(sum); |
---|
1590 | if (tmp >= maxb) { |
---|
1591 | maxb = tmp; |
---|
1592 | maxi = i; |
---|
1593 | } |
---|
1594 | } |
---|
1595 | if (j != maxi) { |
---|
1596 | for (k = 0; k < size; k++) { |
---|
1597 | tmp = amat[maxi][k]; |
---|
1598 | amat[maxi][k] = amat[j][k]; |
---|
1599 | amat[j][k] = tmp; |
---|
1600 | } |
---|
1601 | aw = -aw; |
---|
1602 | wk[maxi] = wk[j]; |
---|
1603 | } |
---|
1604 | index[j] = maxi; |
---|
1605 | if (amat[j][j] == 0.0) |
---|
1606 | amat[j][j] = eps; |
---|
1607 | if (j != size - 1) { |
---|
1608 | tmp = 1.0 / amat[j][j]; |
---|
1609 | for (i = j + 1; i < size; i++) |
---|
1610 | amat[i][j] *= tmp; |
---|
1611 | } |
---|
1612 | } |
---|
1613 | l = -1; |
---|
1614 | for (i = 0; i < size; i++) { |
---|
1615 | idx = index[i]; |
---|
1616 | sum = yvec[idx]; |
---|
1617 | yvec[idx] = yvec[i]; |
---|
1618 | if (l != -1) { |
---|
1619 | for (j = l; j < i; j++) |
---|
1620 | sum -= amat[i][j] * yvec[j]; |
---|
1621 | } else if (sum != 0.0) |
---|
1622 | l = i; |
---|
1623 | yvec[i] = sum; |
---|
1624 | } |
---|
1625 | for (i = size - 1; i >= 0; i--) { |
---|
1626 | sum = yvec[i]; |
---|
1627 | for (j = i + 1; j < size; j++) |
---|
1628 | sum -= amat[i][j] * yvec[j]; |
---|
1629 | yvec[i] = sum / amat[i][i]; |
---|
1630 | } |
---|
1631 | free_ivector(index); |
---|
1632 | free_dvector(wk); |
---|
1633 | } |
---|
1634 | |
---|
1635 | |
---|
1636 | /* least square estimation of branch lengths |
---|
1637 | used for the approximate ML and as starting point |
---|
1638 | in the calculation of the exact value of the ML */ |
---|
1639 | void lslength(Tree *tr, dvector distanvec, int numspc, int numibrnch, dvector Brnlength) |
---|
1640 | { |
---|
1641 | int i, i1, j, j1, j2, k, numbrnch, numpair; |
---|
1642 | double sum, leng, alllen, rss; |
---|
1643 | ivector pths; |
---|
1644 | dmatrix atmt, atamt; |
---|
1645 | Node **ebp, **ibp; |
---|
1646 | |
---|
1647 | numbrnch = numspc + numibrnch; |
---|
1648 | numpair = (numspc * (numspc - 1)) / 2; |
---|
1649 | atmt = new_dmatrix(numbrnch, numpair); |
---|
1650 | atamt = new_dmatrix(numbrnch, numbrnch); |
---|
1651 | ebp = tr->ebrnchp; |
---|
1652 | ibp = tr->ibrnchp; |
---|
1653 | for (i = 0; i < numspc; i++) { |
---|
1654 | for (j1 = 1, j = 0; j1 < numspc; j1++) { |
---|
1655 | if (j1 == i) { |
---|
1656 | for (j2 = 0; j2 < j1; j2++, j++) { |
---|
1657 | atmt[i][j] = 1.0; |
---|
1658 | } |
---|
1659 | } else { |
---|
1660 | for (j2 = 0; j2 < j1; j2++, j++) { |
---|
1661 | if (j2 == i) |
---|
1662 | atmt[i][j] = 1.0; |
---|
1663 | else |
---|
1664 | atmt[i][j] = 0.0; |
---|
1665 | } |
---|
1666 | } |
---|
1667 | } |
---|
1668 | } |
---|
1669 | for (i1 = 0, i = numspc; i1 < numibrnch; i1++, i++) { |
---|
1670 | pths = ibp[i1]->paths; |
---|
1671 | for (j1 = 1, j = 0; j1 < numspc; j1++) { |
---|
1672 | for (j2 = 0; j2 < j1; j2++, j++) { |
---|
1673 | if (pths[j1] != pths[j2]) |
---|
1674 | atmt[i][j] = 1.0; |
---|
1675 | else |
---|
1676 | atmt[i][j] = 0.0; |
---|
1677 | } |
---|
1678 | } |
---|
1679 | } |
---|
1680 | for (i = 0; i < numbrnch; i++) { |
---|
1681 | for (j = 0; j <= i; j++) { |
---|
1682 | for (k = 0, sum = 0.0; k < numpair; k++) |
---|
1683 | sum += atmt[i][k] * atmt[j][k]; |
---|
1684 | atamt[i][j] = sum; |
---|
1685 | atamt[j][i] = sum; |
---|
1686 | } |
---|
1687 | } |
---|
1688 | for (i = 0; i < numbrnch; i++) { |
---|
1689 | for (k = 0, sum = 0.0; k < numpair; k++) |
---|
1690 | sum += atmt[i][k] * distanvec[k]; |
---|
1691 | Brnlength[i] = sum; |
---|
1692 | } |
---|
1693 | luequation(atamt, Brnlength, numbrnch); |
---|
1694 | for (i = 0, rss = 0.0; i < numpair; i++) { |
---|
1695 | sum = distanvec[i]; |
---|
1696 | for (j = 0; j < numbrnch; j++) { |
---|
1697 | if (atmt[j][i] == 1.0 && Brnlength[j] > 0.0) |
---|
1698 | sum -= Brnlength[j]; |
---|
1699 | } |
---|
1700 | rss += sum * sum; |
---|
1701 | } |
---|
1702 | tr->rssleast = sqrt(rss); |
---|
1703 | alllen = 0.0; |
---|
1704 | for (i = 0; i < numspc; i++) { |
---|
1705 | leng = Brnlength[i]; |
---|
1706 | alllen += leng; |
---|
1707 | if (leng < MINARC) leng = MINARC; |
---|
1708 | if (leng > MAXARC) leng = MAXARC; |
---|
1709 | if (clockmode) { /* clock */ |
---|
1710 | ebp[i]->lengthc = leng; |
---|
1711 | ebp[i]->kinp->lengthc = leng; |
---|
1712 | } else { /* no clock */ |
---|
1713 | ebp[i]->length = leng; |
---|
1714 | ebp[i]->kinp->length = leng; |
---|
1715 | } |
---|
1716 | Brnlength[i] = leng; |
---|
1717 | } |
---|
1718 | for (i = 0, j = numspc; i < numibrnch; i++, j++) { |
---|
1719 | leng = Brnlength[j]; |
---|
1720 | alllen += leng; |
---|
1721 | if (leng < MINARC) leng = MINARC; |
---|
1722 | if (leng > MAXARC) leng = MAXARC; |
---|
1723 | if (clockmode) { /* clock */ |
---|
1724 | ibp[i]->lengthc = leng; |
---|
1725 | ibp[i]->kinp->lengthc = leng; |
---|
1726 | } else { /* no clock */ |
---|
1727 | ibp[i]->length = leng; |
---|
1728 | ibp[i]->kinp->length = leng; |
---|
1729 | } |
---|
1730 | Brnlength[j] = leng; |
---|
1731 | } |
---|
1732 | free_dmatrix(atmt); |
---|
1733 | free_dmatrix(atamt); |
---|
1734 | } |
---|