| 1 | #include "muscle.h" |
|---|
| 2 | #include "tree.h" |
|---|
| 3 | #include <math.h> |
|---|
| 4 | |
|---|
| 5 | #define TRACE 0 |
|---|
| 6 | |
|---|
| 7 | /*** |
|---|
| 8 | Sequence weights derived from a tree using Gotoh's |
|---|
| 9 | three-way method. |
|---|
| 10 | |
|---|
| 11 | Gotoh (1995) CABIOS 11(5), 543-51. |
|---|
| 12 | |
|---|
| 13 | Each edge e is assigned a weight w(e). |
|---|
| 14 | |
|---|
| 15 | Consider first a tree with three leaves A,B and C |
|---|
| 16 | having branch lengths a, b and c, as follows. |
|---|
| 17 | |
|---|
| 18 | B |
|---|
| 19 | | |
|---|
| 20 | b |
|---|
| 21 | | |
|---|
| 22 | A---a---R---c---C |
|---|
| 23 | |
|---|
| 24 | The internal node is denoted by R. |
|---|
| 25 | |
|---|
| 26 | Define: |
|---|
| 27 | |
|---|
| 28 | S = (ab + ca + ab) |
|---|
| 29 | x = bc(a + b)(a + c) |
|---|
| 30 | y = a(b + c)FS |
|---|
| 31 | |
|---|
| 32 | Here F is a tunable normalization factor which is |
|---|
| 33 | approximately 1.0. Then the edge weight for AR |
|---|
| 34 | is computed as: |
|---|
| 35 | |
|---|
| 36 | w(AR) = sqrt(x/y) |
|---|
| 37 | |
|---|
| 38 | Similar expressions for the other edges follow by |
|---|
| 39 | symmetry. |
|---|
| 40 | |
|---|
| 41 | For a tree with more than three edges, the weight |
|---|
| 42 | of an edge that ends in a leaf is computed from |
|---|
| 43 | the three-way tree that includes the edge and |
|---|
| 44 | its two neighbors. The weight of an internal edge |
|---|
| 45 | is computed as the product of the weights for that |
|---|
| 46 | edge derived from the two three-way subtrees that |
|---|
| 47 | include that edge. |
|---|
| 48 | |
|---|
| 49 | For example, consider the following tree. |
|---|
| 50 | |
|---|
| 51 | B |
|---|
| 52 | | |
|---|
| 53 | A--R--V--C |
|---|
| 54 | | |
|---|
| 55 | D |
|---|
| 56 | |
|---|
| 57 | Here, w(RV) is computed as the product of the |
|---|
| 58 | two values for w(RV) derived from the three-way |
|---|
| 59 | trees with leaves ABV and RCD respectively. |
|---|
| 60 | |
|---|
| 61 | The calculation is done using "Gotoh lengths", |
|---|
| 62 | not the real edge lengths. |
|---|
| 63 | |
|---|
| 64 | The Gotoh length G of a directed edge is calculated |
|---|
| 65 | recursively as: |
|---|
| 66 | |
|---|
| 67 | G = d + LR/(L + R) |
|---|
| 68 | |
|---|
| 69 | where d is the length of the edge, and L and R are |
|---|
| 70 | the Gotoh lengths of the left and right edges adjoining |
|---|
| 71 | the terminal end of the edge. If the edge terminates on |
|---|
| 72 | a leaf, then G=d. |
|---|
| 73 | |
|---|
| 74 | Pairwise sequence weights are computed as the |
|---|
| 75 | product of edge weights on the path that connects |
|---|
| 76 | their leaves. |
|---|
| 77 | |
|---|
| 78 | If the tree is split into two subtrees by deleting |
|---|
| 79 | a given edge e, then the pairwise weights factorize. |
|---|
| 80 | For operations on profiles formed from the two |
|---|
| 81 | subtrees, it is possible to assign a weight to a |
|---|
| 82 | sequence as the product of edge weights on a path |
|---|
| 83 | from e to its leaf. |
|---|
| 84 | ***/ |
|---|
| 85 | |
|---|
| 86 | // The xxxUnrooted functions present a rooted tree as |
|---|
| 87 | // if it had been unrooted by deleting the root node. |
|---|
| 88 | static unsigned GetFirstNeighborUnrooted(const Tree &tree, unsigned uNode1, |
|---|
| 89 | unsigned uNode2) |
|---|
| 90 | { |
|---|
| 91 | if (tree.IsRoot(uNode1) || tree.IsRoot(uNode2)) |
|---|
| 92 | Quit("GetFirstNeighborUnrooted, should never be called with root"); |
|---|
| 93 | if (!tree.IsEdge(uNode1, uNode2)) |
|---|
| 94 | { |
|---|
| 95 | if (!tree.IsRoot(tree.GetParent(uNode1)) || |
|---|
| 96 | !tree.IsRoot(tree.GetParent(uNode2))) |
|---|
| 97 | Quit("GetFirstNeighborUnrooted, not edge"); |
|---|
| 98 | const unsigned uRoot = tree.GetRootNodeIndex(); |
|---|
| 99 | return tree.GetFirstNeighbor(uNode1, uRoot); |
|---|
| 100 | } |
|---|
| 101 | |
|---|
| 102 | unsigned uNeighbor = tree.GetFirstNeighbor(uNode1, uNode2); |
|---|
| 103 | if (tree.IsRoot(uNeighbor)) |
|---|
| 104 | return tree.GetFirstNeighbor(uNeighbor, uNode1); |
|---|
| 105 | return uNeighbor; |
|---|
| 106 | } |
|---|
| 107 | |
|---|
| 108 | static unsigned GetSecondNeighborUnrooted(const Tree &tree, unsigned uNode1, |
|---|
| 109 | unsigned uNode2) |
|---|
| 110 | { |
|---|
| 111 | if (tree.IsRoot(uNode1) || tree.IsRoot(uNode2)) |
|---|
| 112 | Quit("GetFirstNeighborUnrooted, should never be called with root"); |
|---|
| 113 | if (!tree.IsEdge(uNode1, uNode2)) |
|---|
| 114 | { |
|---|
| 115 | if (!tree.IsRoot(tree.GetParent(uNode1)) || |
|---|
| 116 | !tree.IsRoot(tree.GetParent(uNode2))) |
|---|
| 117 | Quit("GetFirstNeighborUnrooted, not edge"); |
|---|
| 118 | const unsigned uRoot = tree.GetRootNodeIndex(); |
|---|
| 119 | return tree.GetSecondNeighbor(uNode1, uRoot); |
|---|
| 120 | } |
|---|
| 121 | |
|---|
| 122 | unsigned uNeighbor = tree.GetSecondNeighbor(uNode1, uNode2); |
|---|
| 123 | if (tree.IsRoot(uNeighbor)) |
|---|
| 124 | return tree.GetFirstNeighbor(uNeighbor, uNode1); |
|---|
| 125 | return uNeighbor; |
|---|
| 126 | } |
|---|
| 127 | |
|---|
| 128 | static unsigned GetNeighborUnrooted(const Tree &tree, unsigned uNode1, |
|---|
| 129 | unsigned uSub) |
|---|
| 130 | { |
|---|
| 131 | unsigned uNeighbor = tree.GetNeighbor(uNode1, uSub); |
|---|
| 132 | if (tree.IsRoot(uNeighbor)) |
|---|
| 133 | return tree.GetFirstNeighbor(uNeighbor, uNode1); |
|---|
| 134 | return uNeighbor; |
|---|
| 135 | } |
|---|
| 136 | |
|---|
| 137 | static unsigned GetNeighborSubscriptUnrooted(const Tree &tree, unsigned uNode1, |
|---|
| 138 | unsigned uNode2) |
|---|
| 139 | { |
|---|
| 140 | if (tree.IsEdge(uNode1, uNode2)) |
|---|
| 141 | return tree.GetNeighborSubscript(uNode1, uNode2); |
|---|
| 142 | if (!tree.IsRoot(tree.GetParent(uNode1)) || |
|---|
| 143 | !tree.IsRoot(tree.GetParent(uNode2))) |
|---|
| 144 | Quit("GetNeighborSubscriptUnrooted, not edge"); |
|---|
| 145 | for (unsigned uSub = 0; uSub < 3; ++uSub) |
|---|
| 146 | if (GetNeighborUnrooted(tree, uNode1, uSub) == uNode2) |
|---|
| 147 | return uSub; |
|---|
| 148 | Quit("GetNeighborSubscriptUnrooted, not a neighbor"); |
|---|
| 149 | return NULL_NEIGHBOR; |
|---|
| 150 | } |
|---|
| 151 | |
|---|
| 152 | static double GetEdgeLengthUnrooted(const Tree &tree, unsigned uNode1, |
|---|
| 153 | unsigned uNode2) |
|---|
| 154 | { |
|---|
| 155 | if (tree.IsRoot(uNode1) || tree.IsRoot(uNode2)) |
|---|
| 156 | Quit("GetEdgeLengthUnrooted, should never be called with root"); |
|---|
| 157 | if (!tree.IsEdge(uNode1, uNode2)) |
|---|
| 158 | { |
|---|
| 159 | if (!tree.IsRoot(tree.GetParent(uNode1)) || |
|---|
| 160 | !tree.IsRoot(tree.GetParent(uNode2))) |
|---|
| 161 | Quit("GetEdgeLengthUnrooted, not edge"); |
|---|
| 162 | |
|---|
| 163 | const unsigned uRoot = tree.GetRootNodeIndex(); |
|---|
| 164 | return tree.GetEdgeLength(uNode1, uRoot) + |
|---|
| 165 | tree.GetEdgeLength(uNode2, uRoot); |
|---|
| 166 | } |
|---|
| 167 | return tree.GetEdgeLength(uNode1, uNode2); |
|---|
| 168 | } |
|---|
| 169 | |
|---|
| 170 | double GetGotohLength(const Tree &tree, unsigned R, unsigned A) |
|---|
| 171 | { |
|---|
| 172 | double dThis = GetEdgeLengthUnrooted(tree, R, A); |
|---|
| 173 | |
|---|
| 174 | // Enforce non-negative edge lengths |
|---|
| 175 | if (dThis < 0) |
|---|
| 176 | dThis = 0; |
|---|
| 177 | |
|---|
| 178 | if (tree.IsLeaf(A)) |
|---|
| 179 | return dThis; |
|---|
| 180 | |
|---|
| 181 | const unsigned uFirst = GetFirstNeighborUnrooted(tree, A, R); |
|---|
| 182 | const unsigned uSecond = GetSecondNeighborUnrooted(tree, A, R); |
|---|
| 183 | const double dFirst = GetGotohLength(tree, A, uFirst); |
|---|
| 184 | const double dSecond = GetGotohLength(tree, A, uSecond); |
|---|
| 185 | const double dSum = dFirst + dSecond; |
|---|
| 186 | const double dThird = dSum == 0 ? 0 : (dFirst*dSecond)/dSum; |
|---|
| 187 | return dThis + dThird; |
|---|
| 188 | } |
|---|
| 189 | |
|---|
| 190 | // Return weight of edge A-R in three-way subtree that has |
|---|
| 191 | // leaves A,B,C and internal node R. |
|---|
| 192 | static double GotohWeightThreeWay(const Tree &tree, unsigned A, |
|---|
| 193 | unsigned B, unsigned C, unsigned R) |
|---|
| 194 | { |
|---|
| 195 | const double F = 1.0; |
|---|
| 196 | |
|---|
| 197 | if (tree.IsLeaf(R)) |
|---|
| 198 | Quit("GotohThreeWay: R must be internal node"); |
|---|
| 199 | |
|---|
| 200 | double a = GetGotohLength(tree, R, A); |
|---|
| 201 | double b = GetGotohLength(tree, R, B); |
|---|
| 202 | double c = GetGotohLength(tree, R, C); |
|---|
| 203 | |
|---|
| 204 | double S = b*c + c*a + a*b; |
|---|
| 205 | double x = b*c*(a + b)*(a + c); |
|---|
| 206 | double y = a*(b + c)*F*S; |
|---|
| 207 | |
|---|
| 208 | // y is zero iff all three branch lengths are zero. |
|---|
| 209 | if (y < 0.001) |
|---|
| 210 | return 1.0; |
|---|
| 211 | return sqrt(x/y); |
|---|
| 212 | } |
|---|
| 213 | |
|---|
| 214 | static double GotohWeightEdge(const Tree &tree, unsigned uNodeIndex1, |
|---|
| 215 | unsigned uNodeIndex2) |
|---|
| 216 | { |
|---|
| 217 | double w1 = 1.0; |
|---|
| 218 | double w2 = 1.0; |
|---|
| 219 | if (!tree.IsLeaf(uNodeIndex1)) |
|---|
| 220 | { |
|---|
| 221 | unsigned R = uNodeIndex1; |
|---|
| 222 | unsigned A = uNodeIndex2; |
|---|
| 223 | unsigned B = GetFirstNeighborUnrooted(tree, R, A); |
|---|
| 224 | unsigned C = GetSecondNeighborUnrooted(tree, R, A); |
|---|
| 225 | w1 = GotohWeightThreeWay(tree, A, B, C, R); |
|---|
| 226 | } |
|---|
| 227 | if (!tree.IsLeaf(uNodeIndex2)) |
|---|
| 228 | { |
|---|
| 229 | unsigned R = uNodeIndex2; |
|---|
| 230 | unsigned A = uNodeIndex1; |
|---|
| 231 | unsigned B = GetFirstNeighborUnrooted(tree, R, A); |
|---|
| 232 | unsigned C = GetSecondNeighborUnrooted(tree, R, A); |
|---|
| 233 | w2 = GotohWeightThreeWay(tree, A, B, C, R); |
|---|
| 234 | } |
|---|
| 235 | return w1*w2; |
|---|
| 236 | } |
|---|
| 237 | |
|---|
| 238 | void CalcThreeWayEdgeWeights(const Tree &tree, WEIGHT **EdgeWeights) |
|---|
| 239 | { |
|---|
| 240 | const unsigned uNodeCount = tree.GetNodeCount(); |
|---|
| 241 | for (unsigned uNodeIndex1 = 0; uNodeIndex1 < uNodeCount; ++uNodeIndex1) |
|---|
| 242 | { |
|---|
| 243 | if (tree.IsRoot(uNodeIndex1)) |
|---|
| 244 | continue; |
|---|
| 245 | for (unsigned uSub1 = 0; uSub1 < 3; ++uSub1) |
|---|
| 246 | { |
|---|
| 247 | const unsigned uNodeIndex2 = GetNeighborUnrooted(tree, uNodeIndex1, uSub1); |
|---|
| 248 | if (NULL_NEIGHBOR == uNodeIndex2) |
|---|
| 249 | continue; |
|---|
| 250 | |
|---|
| 251 | // Avoid computing same edge twice in reversed order |
|---|
| 252 | if (uNodeIndex2 < uNodeIndex1) |
|---|
| 253 | continue; |
|---|
| 254 | |
|---|
| 255 | const WEIGHT w = (WEIGHT) GotohWeightEdge(tree, uNodeIndex1, uNodeIndex2); |
|---|
| 256 | const unsigned uSub2 = GetNeighborSubscriptUnrooted(tree, uNodeIndex2, uNodeIndex1); |
|---|
| 257 | #if DEBUG |
|---|
| 258 | { |
|---|
| 259 | assert(uNodeIndex2 == GetNeighborUnrooted(tree, uNodeIndex1, uSub1)); |
|---|
| 260 | assert(uNodeIndex1 == GetNeighborUnrooted(tree, uNodeIndex2, uSub2)); |
|---|
| 261 | const WEIGHT wRev = (WEIGHT) GotohWeightEdge(tree, uNodeIndex2, uNodeIndex1); |
|---|
| 262 | if (!BTEq(w, wRev)) |
|---|
| 263 | Quit("CalcThreeWayWeights: rev check failed %g %g", |
|---|
| 264 | w, wRev); |
|---|
| 265 | } |
|---|
| 266 | #endif |
|---|
| 267 | EdgeWeights[uNodeIndex1][uSub1] = w; |
|---|
| 268 | EdgeWeights[uNodeIndex2][uSub2] = w; |
|---|
| 269 | } |
|---|
| 270 | } |
|---|
| 271 | } |
|---|
| 272 | |
|---|
| 273 | static void SetSeqWeights(const Tree &tree, unsigned uNode1, unsigned uNode2, |
|---|
| 274 | double dPathWeight, WEIGHT *Weights) |
|---|
| 275 | { |
|---|
| 276 | if (tree.IsRoot(uNode1) || tree.IsRoot(uNode2)) |
|---|
| 277 | Quit("SetSeqWeights, should never be called with root"); |
|---|
| 278 | |
|---|
| 279 | const double dThisLength = GetEdgeLengthUnrooted(tree, uNode1, uNode2); |
|---|
| 280 | if (tree.IsLeaf(uNode2)) |
|---|
| 281 | { |
|---|
| 282 | const unsigned Id = tree.GetLeafId(uNode2); |
|---|
| 283 | Weights[Id] = (WEIGHT) (dPathWeight + dThisLength); |
|---|
| 284 | return; |
|---|
| 285 | } |
|---|
| 286 | const unsigned uFirst = GetFirstNeighborUnrooted(tree, uNode2, uNode1); |
|---|
| 287 | const unsigned uSecond = GetSecondNeighborUnrooted(tree, uNode2, uNode1); |
|---|
| 288 | dPathWeight *= dThisLength; |
|---|
| 289 | SetSeqWeights(tree, uNode2, uFirst, dPathWeight, Weights); |
|---|
| 290 | SetSeqWeights(tree, uNode2, uSecond, dPathWeight, Weights); |
|---|
| 291 | } |
|---|
| 292 | |
|---|
| 293 | void CalcThreeWayWeights(const Tree &tree, unsigned uNode1, unsigned uNode2, |
|---|
| 294 | WEIGHT *Weights) |
|---|
| 295 | { |
|---|
| 296 | #if TRACE |
|---|
| 297 | Log("CalcThreeWayEdgeWeights\n"); |
|---|
| 298 | tree.LogMe(); |
|---|
| 299 | #endif |
|---|
| 300 | |
|---|
| 301 | if (tree.IsRoot(uNode1)) |
|---|
| 302 | uNode1 = tree.GetFirstNeighbor(uNode1, uNode2); |
|---|
| 303 | else if (tree.IsRoot(uNode2)) |
|---|
| 304 | uNode2 = tree.GetFirstNeighbor(uNode2, uNode1); |
|---|
| 305 | const unsigned uNodeCount = tree.GetNodeCount(); |
|---|
| 306 | WEIGHT **EdgeWeights = new WEIGHT *[uNodeCount]; |
|---|
| 307 | for (unsigned uNodeIndex = 0; uNodeIndex < uNodeCount; ++uNodeIndex) |
|---|
| 308 | EdgeWeights[uNodeIndex] = new WEIGHT[3]; |
|---|
| 309 | |
|---|
| 310 | CalcThreeWayEdgeWeights(tree, EdgeWeights); |
|---|
| 311 | |
|---|
| 312 | #if TRACE |
|---|
| 313 | { |
|---|
| 314 | Log("Node1 Node2 Length Gotoh EdgeWt\n"); |
|---|
| 315 | Log("----- ----- ------ ------ ------\n"); |
|---|
| 316 | for (unsigned uNodeIndex1 = 0; uNodeIndex1 < uNodeCount; ++uNodeIndex1) |
|---|
| 317 | { |
|---|
| 318 | if (tree.IsRoot(uNodeIndex1)) |
|---|
| 319 | continue; |
|---|
| 320 | for (unsigned uSub1 = 0; uSub1 < 3; ++uSub1) |
|---|
| 321 | { |
|---|
| 322 | const unsigned uNodeIndex2 = GetNeighborUnrooted(tree, uNodeIndex1, uSub1); |
|---|
| 323 | if (NULL_NEIGHBOR == uNodeIndex2) |
|---|
| 324 | continue; |
|---|
| 325 | if (uNodeIndex2 < uNodeIndex1) |
|---|
| 326 | continue; |
|---|
| 327 | const WEIGHT ew = EdgeWeights[uNodeIndex1][uSub1]; |
|---|
| 328 | const double d = GetEdgeLengthUnrooted(tree, uNodeIndex1, uNodeIndex2); |
|---|
| 329 | const double g = GetGotohLength(tree, uNodeIndex1, uNodeIndex2); |
|---|
| 330 | Log("%5u %5u %6.3f %6.3f %6.3f\n", uNodeIndex1, uNodeIndex2, d, g, ew); |
|---|
| 331 | } |
|---|
| 332 | } |
|---|
| 333 | } |
|---|
| 334 | #endif |
|---|
| 335 | |
|---|
| 336 | SetSeqWeights(tree, uNode1, uNode2, 0.0, Weights); |
|---|
| 337 | SetSeqWeights(tree, uNode2, uNode1, 0.0, Weights); |
|---|
| 338 | |
|---|
| 339 | for (unsigned uNodeIndex = 0; uNodeIndex < uNodeCount; ++uNodeIndex) |
|---|
| 340 | delete[] EdgeWeights[uNodeIndex]; |
|---|
| 341 | delete[] EdgeWeights; |
|---|
| 342 | } |
|---|