| 1 | /* |
|---|
| 2 | * Best 2.2 |
|---|
| 3 | * |
|---|
| 4 | * This file contains the functions |
|---|
| 5 | * for calculating the probability of |
|---|
| 6 | * gene trees given the species tree |
|---|
| 7 | * and the prior probability of the |
|---|
| 8 | * species tree |
|---|
| 9 | * |
|---|
| 10 | * Liang Liu |
|---|
| 11 | * Department of Statistics |
|---|
| 12 | * The Ohio State University |
|---|
| 13 | * Columbus, Ohio |
|---|
| 14 | * |
|---|
| 15 | * liuliang@stat.ohio-state.edu |
|---|
| 16 | */ |
|---|
| 17 | |
|---|
| 18 | #include <assert.h> |
|---|
| 19 | |
|---|
| 20 | #include "best.h" |
|---|
| 21 | #include "command.h" |
|---|
| 22 | #include "globals.h" |
|---|
| 23 | #include "mb.h" |
|---|
| 24 | #include "mbmath.h" |
|---|
| 25 | #include "mcmc.h" |
|---|
| 26 | #include "model.h" |
|---|
| 27 | #include "sumt.h" |
|---|
| 28 | #include "tree.h" |
|---|
| 29 | #include "utils.h" |
|---|
| 30 | |
|---|
| 31 | const char* const svnRevisionBestC="$Rev: 420 $"; /* Revision keyword which is expended/updated by svn on each commit/update*/ |
|---|
| 32 | |
|---|
| 33 | /****************************** Local functions converted by Fredrik from BEST code *****************************/ |
|---|
| 34 | int CompareDepths (const void *x, const void *y); |
|---|
| 35 | int CompareDoubles (const void *x, const void *y); |
|---|
| 36 | int CompareNodes (const void *x, const void *y); |
|---|
| 37 | int CompareNodesByX (const void *x, const void *y); |
|---|
| 38 | int GetSpeciesTreeFromMinDepths (Tree* speciesTree, double *depthMatrix); |
|---|
| 39 | int GetDepthMatrix(Tree * speciesTree, double *depthMatrix); |
|---|
| 40 | int GetMeanDist (Tree *speciesTree, double *depthMatrix, double *mean); |
|---|
| 41 | int GetMinDepthMatrix (Tree **geneTrees, int numGeneTrees, double *depthMatrix); |
|---|
| 42 | void LineagesIn (TreeNode* geneTreeNode, TreeNode* speciesTreeNode); |
|---|
| 43 | double LnPriorProbGeneTree (Tree *geneTree, double mu, Tree *speciesTree, double *popSizePtr); |
|---|
| 44 | double LnProposalProbSpeciesTree (Tree *speciesTree, double *depthMatrix, double expRate); |
|---|
| 45 | void MapGeneTreeToSpeciesTree (Tree *geneTree, Tree *speciesTree); |
|---|
| 46 | int ModifyDepthMatrix (double expRate, double *depthMatrix, SafeLong *seed); |
|---|
| 47 | |
|---|
| 48 | |
|---|
| 49 | /* Global BEST variables */ |
|---|
| 50 | SafeLong **speciesPairSets; |
|---|
| 51 | double *depthMatrix; |
|---|
| 52 | |
|---|
| 53 | |
|---|
| 54 | /* Allocate variables used by best code during mcmc */ |
|---|
| 55 | void AllocateBestChainVariables (void) |
|---|
| 56 | { |
|---|
| 57 | int i, j, index, numUpperTriang, nLongsNeeded; |
|---|
| 58 | |
|---|
| 59 | // Free if by mistake variables are already allocated |
|---|
| 60 | if (memAllocs[ALLOC_BEST] == YES) |
|---|
| 61 | FreeBestChainVariables (); |
|---|
| 62 | |
|---|
| 63 | // Allocate space for upper triangular pair sets |
|---|
| 64 | numUpperTriang = (numSpecies * (numSpecies-1)) / 2; |
|---|
| 65 | nLongsNeeded = ((numSpecies - 1) / nBitsInALong) + 1; |
|---|
| 66 | speciesPairSets = (SafeLong **) SafeCalloc (numUpperTriang, sizeof(SafeLong *)); |
|---|
| 67 | speciesPairSets[0] = (SafeLong *) SafeCalloc (numUpperTriang*nLongsNeeded, sizeof(SafeLong)); |
|---|
| 68 | for (i=1; i<numUpperTriang; i++) |
|---|
| 69 | speciesPairSets[i] = speciesPairSets[0] + i*nLongsNeeded; |
|---|
| 70 | |
|---|
| 71 | // Set upper triangular pair partitions once and for all |
|---|
| 72 | index = 0; |
|---|
| 73 | for (i=0; i<numSpecies; i++) { |
|---|
| 74 | for (j=i+1; j<numSpecies; j++) { |
|---|
| 75 | SetBit(i, speciesPairSets[index]); |
|---|
| 76 | SetBit(j, speciesPairSets[index]); |
|---|
| 77 | index++; |
|---|
| 78 | } |
|---|
| 79 | } |
|---|
| 80 | |
|---|
| 81 | /* allocate species for depthMatrix */ |
|---|
| 82 | depthMatrix = SafeCalloc (numUpperTriang, sizeof(double)); |
|---|
| 83 | |
|---|
| 84 | memAllocs[ALLOC_BEST] = YES; |
|---|
| 85 | } |
|---|
| 86 | |
|---|
| 87 | |
|---|
| 88 | |
|---|
| 89 | |
|---|
| 90 | |
|---|
| 91 | /** Compare function (Depth struct) for qsort */ |
|---|
| 92 | int CompareDepths (const void *x, const void *y) { |
|---|
| 93 | |
|---|
| 94 | if ((*((Depth *)(x))).depth < (*((Depth *)(y))).depth) |
|---|
| 95 | return -1; |
|---|
| 96 | else if ((*((Depth *)(x))).depth > (*((Depth *)(y))).depth) |
|---|
| 97 | return 1; |
|---|
| 98 | else |
|---|
| 99 | return 0; |
|---|
| 100 | } |
|---|
| 101 | |
|---|
| 102 | |
|---|
| 103 | |
|---|
| 104 | |
|---|
| 105 | |
|---|
| 106 | /** Compare function (doubles) for qsort */ |
|---|
| 107 | int CompareDoubles (const void *x, const void *y) { |
|---|
| 108 | |
|---|
| 109 | if (*((double *)(x)) < *((double *)(y))) |
|---|
| 110 | return -1; |
|---|
| 111 | else if (*((double *)(x)) > *((double *)(y))) |
|---|
| 112 | return 1; |
|---|
| 113 | else |
|---|
| 114 | return 0; |
|---|
| 115 | } |
|---|
| 116 | |
|---|
| 117 | |
|---|
| 118 | /** Compare function (TreeNode struct) for qsort */ |
|---|
| 119 | int CompareNodes (const void *x, const void *y) { |
|---|
| 120 | |
|---|
| 121 | if ((*((TreeNode **)(x)))->nodeDepth < (*((TreeNode**)(y)))->nodeDepth) |
|---|
| 122 | return -1; |
|---|
| 123 | else if ((*((TreeNode **)(x)))->nodeDepth > (*((TreeNode**)(y)))->nodeDepth) |
|---|
| 124 | return 1; |
|---|
| 125 | else |
|---|
| 126 | return 0; |
|---|
| 127 | } |
|---|
| 128 | |
|---|
| 129 | |
|---|
| 130 | /** Compare function (TreeNode struct; sort by x, then by nodeDepth) for qsort */ |
|---|
| 131 | int CompareNodesByX (const void *x, const void *y) { |
|---|
| 132 | |
|---|
| 133 | if ((*((TreeNode **)(x)))->x < (*((TreeNode**)(y)))->x) |
|---|
| 134 | return -1; |
|---|
| 135 | else if ((*((TreeNode **)(x)))->x > (*((TreeNode**)(y)))->x) |
|---|
| 136 | return 1; |
|---|
| 137 | else { |
|---|
| 138 | if ((*((TreeNode **)(x)))->nodeDepth < (*((TreeNode**)(y)))->nodeDepth) |
|---|
| 139 | return -1; |
|---|
| 140 | else if ((*((TreeNode **)(x)))->nodeDepth > (*((TreeNode**)(y)))->nodeDepth) |
|---|
| 141 | return 1; |
|---|
| 142 | else |
|---|
| 143 | return 0; |
|---|
| 144 | } |
|---|
| 145 | } |
|---|
| 146 | |
|---|
| 147 | |
|---|
| 148 | |
|---|
| 149 | |
|---|
| 150 | |
|---|
| 151 | /**----------------------------------------------------------------- |
|---|
| 152 | | |
|---|
| 153 | | FillSpeciesTreeParams: Fill in species trees (start value) |
|---|
| 154 | | |
|---|
| 155 | ------------------------------------------------------------------*/ |
|---|
| 156 | int FillSpeciesTreeParams (SafeLong *seed, int fromChain, int toChain) |
|---|
| 157 | |
|---|
| 158 | { |
|---|
| 159 | int i, k, chn, numGeneTrees, freeBestChainVars; |
|---|
| 160 | Param *p; |
|---|
| 161 | Tree *speciesTree, **geneTrees; |
|---|
| 162 | |
|---|
| 163 | // Allocate space for global best model variables used in this function, in case they are not allocated |
|---|
| 164 | if (memAllocs[ALLOC_BEST] == NO) |
|---|
| 165 | { |
|---|
| 166 | freeBestChainVars = YES; |
|---|
| 167 | AllocateBestChainVariables(); |
|---|
| 168 | } |
|---|
| 169 | else |
|---|
| 170 | freeBestChainVars = NO; |
|---|
| 171 | |
|---|
| 172 | // Use global variable numTopologies to calculate number of gene trees |
|---|
| 173 | // There is one topology for the species tree, the other ones are gene trees |
|---|
| 174 | // The number of current divisions is not safe because one gene tree can have |
|---|
| 175 | // several partitions, for instance if we assign the different genes on the |
|---|
| 176 | // mitochondrion different substitution models, or if we assign different rates |
|---|
| 177 | // to the codon site positions in a sequence |
|---|
| 178 | numGeneTrees = numTopologies - 1; |
|---|
| 179 | geneTrees = (Tree **) SafeCalloc (numGeneTrees, sizeof(Tree*)); |
|---|
| 180 | |
|---|
| 181 | // Build species trees for state 0 |
|---|
| 182 | for (chn=fromChain; chn<toChain; chn++) |
|---|
| 183 | { |
|---|
| 184 | for (k=0; k<numParams; k++) |
|---|
| 185 | { |
|---|
| 186 | p = ¶ms[k]; |
|---|
| 187 | if (p->paramType == P_SPECIESTREE) |
|---|
| 188 | { |
|---|
| 189 | // Find species tree and gene trees |
|---|
| 190 | speciesTree = GetTree(p, chn, 0); |
|---|
| 191 | for (i=0; i<p->nSubParams; i++) |
|---|
| 192 | geneTrees[i] = GetTree(p->subParams[i], chn, 0); |
|---|
| 193 | |
|---|
| 194 | // Get minimum depth matrix for species tree |
|---|
| 195 | GetMinDepthMatrix (geneTrees, numGeneTrees, depthMatrix); |
|---|
| 196 | |
|---|
| 197 | // Get a species tree from min depth matrix |
|---|
| 198 | GetSpeciesTreeFromMinDepths(speciesTree, depthMatrix); |
|---|
| 199 | |
|---|
| 200 | assert (IsSpeciesTreeConsistent(speciesTree, chn) == YES); |
|---|
| 201 | |
|---|
| 202 | // Label the tips |
|---|
| 203 | if (LabelTree (speciesTree, speciesNameSets[speciespartitionNum].names) == ERROR) |
|---|
| 204 | { |
|---|
| 205 | FreeBestChainVariables(); |
|---|
| 206 | return (ERROR); |
|---|
| 207 | } |
|---|
| 208 | } |
|---|
| 209 | } |
|---|
| 210 | } |
|---|
| 211 | |
|---|
| 212 | // Free gene trees |
|---|
| 213 | free (geneTrees); |
|---|
| 214 | |
|---|
| 215 | // Free best model variables if appropriate |
|---|
| 216 | if (freeBestChainVars == YES) |
|---|
| 217 | FreeBestChainVariables(); |
|---|
| 218 | |
|---|
| 219 | return (NO_ERROR); |
|---|
| 220 | } |
|---|
| 221 | |
|---|
| 222 | |
|---|
| 223 | |
|---|
| 224 | |
|---|
| 225 | |
|---|
| 226 | /**----------------------------------------------------------------- |
|---|
| 227 | | |
|---|
| 228 | | FreeBestChainVariables: Free best variables used during an mcmc |
|---|
| 229 | | run. |
|---|
| 230 | | |
|---|
| 231 | ------------------------------------------------------------------*/ |
|---|
| 232 | void FreeBestChainVariables(void) |
|---|
| 233 | { |
|---|
| 234 | |
|---|
| 235 | if (memAllocs[ALLOC_BEST] == YES) { |
|---|
| 236 | free (speciesPairSets[0]); |
|---|
| 237 | free (speciesPairSets); |
|---|
| 238 | speciesPairSets = NULL; |
|---|
| 239 | } |
|---|
| 240 | |
|---|
| 241 | free (depthMatrix); |
|---|
| 242 | depthMatrix = NULL; |
|---|
| 243 | |
|---|
| 244 | memAllocs[ALLOC_BEST] = NO; |
|---|
| 245 | } |
|---|
| 246 | |
|---|
| 247 | |
|---|
| 248 | |
|---|
| 249 | |
|---|
| 250 | |
|---|
| 251 | /**--------------------------------------------------------------------- |
|---|
| 252 | | |
|---|
| 253 | | GetDepthMatrix: |
|---|
| 254 | | |
|---|
| 255 | | This algorithm calculates the upper triangular depth matrix for the |
|---|
| 256 | | species tree. Time complexity O(n^2). |
|---|
| 257 | | |
|---|
| 258 | | @param speciesTree The species tree (in) |
|---|
| 259 | | @param depthMatrix The minimum depth matrix, upper triangular array (out) |
|---|
| 260 | | @returns Returns ERROR or NO_ERROR |
|---|
| 261 | ----------------------------------------------------------------------*/ |
|---|
| 262 | int GetDepthMatrix (Tree *speciesTree, double *depthMatrix) { |
|---|
| 263 | |
|---|
| 264 | int i, left, right, numUpperTriang, index, nLongsNeeded, freeBitsets; |
|---|
| 265 | double maxDepth; |
|---|
| 266 | TreeNode *p; |
|---|
| 267 | |
|---|
| 268 | // Make sure we have bitfields allocated and set |
|---|
| 269 | freeBitsets = NO; |
|---|
| 270 | if (speciesTree->bitsets == NULL) |
|---|
| 271 | { |
|---|
| 272 | AllocateTreePartitions(speciesTree); |
|---|
| 273 | freeBitsets = YES; |
|---|
| 274 | } |
|---|
| 275 | else |
|---|
| 276 | { |
|---|
| 277 | ResetTreePartitions(speciesTree); // just in case |
|---|
| 278 | freeBitsets = NO; |
|---|
| 279 | } |
|---|
| 280 | |
|---|
| 281 | // Calculate number of values in the upper triangular matrix |
|---|
| 282 | numUpperTriang = numSpecies * (numSpecies - 1) / 2; |
|---|
| 283 | |
|---|
| 284 | // Number of longs needed in a bitfield representing a species set |
|---|
| 285 | nLongsNeeded = ((numSpecies -1) / nBitsInALong) + 1; |
|---|
| 286 | |
|---|
| 287 | // Set all cells to max |
|---|
| 288 | maxDepth = speciesTree->root->left->nodeDepth; // root depth |
|---|
| 289 | for (i=0; i<numUpperTriang; i++) |
|---|
| 290 | depthMatrix[i] = maxDepth; |
|---|
| 291 | |
|---|
| 292 | // Loop over interior nodes |
|---|
| 293 | for (i=0; i<speciesTree->nIntNodes; i++) |
|---|
| 294 | { |
|---|
| 295 | p = speciesTree->intDownPass[i]; |
|---|
| 296 | for (left = FirstTaxonInPartition(p->left->partition, nLongsNeeded); left < numSpecies; left = NextTaxonInPartition(left, p->left->partition, nLongsNeeded)) |
|---|
| 297 | { |
|---|
| 298 | for (right = FirstTaxonInPartition(p->right->partition, nLongsNeeded); right < numSpecies; right = NextTaxonInPartition(right, p->right->partition, nLongsNeeded)) |
|---|
| 299 | { |
|---|
| 300 | index = UpperTriangIndex(left, right, numSpecies); |
|---|
| 301 | depthMatrix[index] = p->nodeDepth; |
|---|
| 302 | } |
|---|
| 303 | } |
|---|
| 304 | } |
|---|
| 305 | |
|---|
| 306 | // Free partitions if appropriate |
|---|
| 307 | if (freeBitsets == YES) |
|---|
| 308 | FreeTreePartitions(speciesTree); |
|---|
| 309 | |
|---|
| 310 | return (NO_ERROR); |
|---|
| 311 | } |
|---|
| 312 | |
|---|
| 313 | |
|---|
| 314 | |
|---|
| 315 | |
|---|
| 316 | |
|---|
| 317 | /**--------------------------------------------------------------------- |
|---|
| 318 | | |
|---|
| 319 | | GetMeanDist |
|---|
| 320 | | |
|---|
| 321 | | This algorithm calculates the mean distance between a distance matrix |
|---|
| 322 | | and the minimum depths that define a species tree. |
|---|
| 323 | | |
|---|
| 324 | | @param speciesTree The species tree (in) |
|---|
| 325 | | @param minDepthMatrix The minimum depth matrix, upper triangular array (in) |
|---|
| 326 | | @param mean The mean distance (out) |
|---|
| 327 | | @returns Returns ERROR or NO_ERROR |
|---|
| 328 | ----------------------------------------------------------------------*/ |
|---|
| 329 | int GetMeanDist (Tree *speciesTree, double *minDepthMatrix, double *mean) { |
|---|
| 330 | |
|---|
| 331 | int i, left, right, numUpperTriang, index, nLongsNeeded, freeBitsets; |
|---|
| 332 | double dist, minDist=0.0, distSum; |
|---|
| 333 | TreeNode *p; |
|---|
| 334 | |
|---|
| 335 | // Make sure we have bitfields allocated and set |
|---|
| 336 | freeBitsets = NO; |
|---|
| 337 | if (speciesTree->bitsets == NULL) |
|---|
| 338 | { |
|---|
| 339 | AllocateTreePartitions(speciesTree); |
|---|
| 340 | freeBitsets = YES; |
|---|
| 341 | } |
|---|
| 342 | else |
|---|
| 343 | { |
|---|
| 344 | ResetTreePartitions(speciesTree); // just in case |
|---|
| 345 | freeBitsets = NO; |
|---|
| 346 | } |
|---|
| 347 | |
|---|
| 348 | // Calculate number of values in the upper triangular matrix |
|---|
| 349 | numUpperTriang = numSpecies * (numSpecies - 1) / 2; |
|---|
| 350 | |
|---|
| 351 | // Number of longs needed in a bitfield representing a species set |
|---|
| 352 | nLongsNeeded = ((numSpecies -1) / nBitsInALong) + 1; |
|---|
| 353 | |
|---|
| 354 | // Loop over interior nodes |
|---|
| 355 | distSum = 0.0; |
|---|
| 356 | for (i=0; i<speciesTree->nIntNodes; i++) |
|---|
| 357 | { |
|---|
| 358 | p = speciesTree->intDownPass[i]; |
|---|
| 359 | p->x = 0; |
|---|
| 360 | while ((left=FirstTaxonInPartition(p->left->partition, nLongsNeeded)) < numSpecies) |
|---|
| 361 | { |
|---|
| 362 | while ((right=FirstTaxonInPartition(p->right->partition, nLongsNeeded)) < numSpecies) |
|---|
| 363 | { |
|---|
| 364 | p->x++; |
|---|
| 365 | index = UpperTriangIndex(left, right, numSpecies); |
|---|
| 366 | dist = depthMatrix[index] - p->nodeDepth; |
|---|
| 367 | if (p->x == 1) |
|---|
| 368 | minDist = dist; |
|---|
| 369 | else if (dist < minDist) |
|---|
| 370 | minDist = dist; |
|---|
| 371 | ClearBit(right, p->right->partition); |
|---|
| 372 | } |
|---|
| 373 | ClearBit(left, p->left->partition); |
|---|
| 374 | } |
|---|
| 375 | distSum += minDist; |
|---|
| 376 | } |
|---|
| 377 | |
|---|
| 378 | (*mean) = distSum / speciesTree->nIntNodes; |
|---|
| 379 | |
|---|
| 380 | // Reset partitions that were destroyed above or free partitions, as appropriate |
|---|
| 381 | if (freeBitsets == YES) |
|---|
| 382 | FreeTreePartitions(speciesTree); |
|---|
| 383 | else |
|---|
| 384 | ResetTreePartitions(speciesTree); |
|---|
| 385 | |
|---|
| 386 | return (NO_ERROR); |
|---|
| 387 | } |
|---|
| 388 | |
|---|
| 389 | |
|---|
| 390 | |
|---|
| 391 | |
|---|
| 392 | |
|---|
| 393 | /**--------------------------------------------------------------------- |
|---|
| 394 | | |
|---|
| 395 | | GetMinDepthMatrix: converted from GetMinDists. |
|---|
| 396 | | |
|---|
| 397 | | This algorithm scans the gene trees and calculates the minimum depth |
|---|
| 398 | | (height) separating species across gene trees. The complexity of the |
|---|
| 399 | | original algorithm was O(mn^3), where m is the number of gene trees and |
|---|
| 400 | | n is the number of taxa in each gene tree. I think this algorithm has |
|---|
| 401 | | complexity that is better on average, but the difference is small. |
|---|
| 402 | | |
|---|
| 403 | | I have rewritten the algorithm also to show alternative techniques that |
|---|
| 404 | | could be used in this and other BEST algorithms. |
|---|
| 405 | | |
|---|
| 406 | | @param geneTrees The gene trees (in) |
|---|
| 407 | | @param depthMatrix The minimum depth matrix, upper triangular array (out) |
|---|
| 408 | | @returns Returns ERROR or NO_ERROR |
|---|
| 409 | ----------------------------------------------------------------------*/ |
|---|
| 410 | int GetMinDepthMatrix (Tree **geneTrees, int numGeneTrees, double *depthMatrix) { |
|---|
| 411 | |
|---|
| 412 | int i, j, w, nLongsNeeded, numUpperTriang, index, trace=0; |
|---|
| 413 | double maxDepth; |
|---|
| 414 | TreeNode *p; |
|---|
| 415 | SafeLong **speciesSets; |
|---|
| 416 | |
|---|
| 417 | // Allocate space for species partitions |
|---|
| 418 | nLongsNeeded = ((numSpecies -1) / nBitsInALong) + 1; // number of longs needed in a bitfield representing a species set |
|---|
| 419 | speciesSets = (SafeLong **) SafeCalloc (2*numLocalTaxa-1, sizeof(SafeLong *)); |
|---|
| 420 | speciesSets[0] = (SafeLong *) SafeCalloc ((2*numLocalTaxa-1)*nLongsNeeded, sizeof(int)); |
|---|
| 421 | for (i=1; i<2*numLocalTaxa-1; i++) |
|---|
| 422 | speciesSets[i] = speciesSets[0] + i*nLongsNeeded; |
|---|
| 423 | |
|---|
| 424 | // Set tip species partitions once and for all |
|---|
| 425 | for (i=0; i<numLocalTaxa; i++) |
|---|
| 426 | SetBit(speciespartitionId[i][speciespartitionNum]-1, speciesSets[i]); |
|---|
| 427 | |
|---|
| 428 | // Set initial max depth for upper triangular matrix |
|---|
| 429 | numUpperTriang = (numSpecies * (numSpecies - 1)) / 2; |
|---|
| 430 | maxDepth = geneTrees[0]->root->left->nodeDepth; |
|---|
| 431 | for (i=0; i<numUpperTriang; i++) |
|---|
| 432 | depthMatrix[i] = maxDepth; |
|---|
| 433 | |
|---|
| 434 | // Now we are ready to cycle over gene trees |
|---|
| 435 | for (w=0; w<numGeneTrees; w++) { |
|---|
| 436 | if (trace) { |
|---|
| 437 | printf("\nGene %d\n",w); |
|---|
| 438 | ShowTree(geneTrees[w]); |
|---|
| 439 | } |
|---|
| 440 | |
|---|
| 441 | // Set species sets for interior nodes. O(n) |
|---|
| 442 | for (i=0; i<geneTrees[w]->nIntNodes; i++) { |
|---|
| 443 | p = geneTrees[w]->intDownPass[i]; |
|---|
| 444 | for (j=0; j<nLongsNeeded; j++) |
|---|
| 445 | speciesSets[p->index][j] = speciesSets[p->left->index][j] | speciesSets[p->right->index][j]; |
|---|
| 446 | } |
|---|
| 447 | |
|---|
| 448 | // Now order the interior nodes in terms of node depth. We rely on the fact that the |
|---|
| 449 | // ordered sequence is a valid downpass sequence. O(log n). |
|---|
| 450 | qsort((void *)(geneTrees[w]->intDownPass), (size_t) geneTrees[w]->nIntNodes, sizeof(TreeNode *), CompareNodes); |
|---|
| 451 | |
|---|
| 452 | // Finally find the minimum for each cell in the upper triangular matrix |
|---|
| 453 | // This is the time critical step with complexity O(n^3) in the simplest |
|---|
| 454 | // algorithm version. This algorithm should do a little better in most cases. |
|---|
| 455 | for (i=0; i<numUpperTriang; i++) { |
|---|
| 456 | |
|---|
| 457 | // Find shallowest node that has the pair |
|---|
| 458 | for (j=0; j<geneTrees[w]->nIntNodes; j++) { |
|---|
| 459 | p = geneTrees[w]->intDownPass[j]; |
|---|
| 460 | |
|---|
| 461 | // Because nodes are ordered in time, if this test is true then we cannot beat the minimum |
|---|
| 462 | if (p->nodeDepth > depthMatrix[i]) |
|---|
| 463 | break; |
|---|
| 464 | |
|---|
| 465 | // Check whether the node is a candidate minimum for the species pair |
|---|
| 466 | // If the test is true, we know from the test above that p->nodeDepth is |
|---|
| 467 | // either a tie or the new minimum |
|---|
| 468 | if (IsPartNested(speciesPairSets[i], speciesSets[p->index], nLongsNeeded) == YES) { |
|---|
| 469 | depthMatrix[i] = p->nodeDepth; |
|---|
| 470 | break; |
|---|
| 471 | } |
|---|
| 472 | } |
|---|
| 473 | } |
|---|
| 474 | } // Next gene tree |
|---|
| 475 | |
|---|
| 476 | if(trace) { |
|---|
| 477 | index = 0; |
|---|
| 478 | printf ("Mindepth matrix\n"); |
|---|
| 479 | for(i=0;i<numSpecies;i++) { |
|---|
| 480 | for (j=0; j<i; j++) |
|---|
| 481 | printf(" "); |
|---|
| 482 | for(j=i+1;j<numSpecies;j++) { |
|---|
| 483 | printf("%.6f ",depthMatrix[index]); |
|---|
| 484 | index++; |
|---|
| 485 | } |
|---|
| 486 | printf("\n"); |
|---|
| 487 | } |
|---|
| 488 | printf("\n"); |
|---|
| 489 | } |
|---|
| 490 | |
|---|
| 491 | free (speciesSets[0]); |
|---|
| 492 | free (speciesSets); |
|---|
| 493 | |
|---|
| 494 | return (NO_ERROR); |
|---|
| 495 | } |
|---|
| 496 | |
|---|
| 497 | |
|---|
| 498 | |
|---|
| 499 | |
|---|
| 500 | |
|---|
| 501 | /**--------------------------------------------------------------------- |
|---|
| 502 | | |
|---|
| 503 | | GetSpeciesTreeFromMinDepths: converted from GetConstraints, Startsptree, |
|---|
| 504 | | and MaximumTree. |
|---|
| 505 | | |
|---|
| 506 | | This is a clustering algorithm based on minimum depths for species pairs. |
|---|
| 507 | | It reduces an n choose 2 upper triangular min depth matrix to an array |
|---|
| 508 | | of n-1 node depths, which fit onto a tree. |
|---|
| 509 | | |
|---|
| 510 | | @param speciesTree The species tree to be filled (out) |
|---|
| 511 | | @param depthMatrix The min depth matrix, upper triangular array (in) |
|---|
| 512 | | @returns Returns NO_ERROR |
|---|
| 513 | ----------------------------------------------------------------------*/ |
|---|
| 514 | int GetSpeciesTreeFromMinDepths (Tree* speciesTree, double *depthMatrix) { |
|---|
| 515 | |
|---|
| 516 | int i, j, numUpperTriang, nLongsNeeded, index, nextNodeIndex; |
|---|
| 517 | Depth *minDepth; |
|---|
| 518 | PolyTree *polyTree; |
|---|
| 519 | PolyNode *p, *q, *r, *u, *qPrev, *rPrev; |
|---|
| 520 | |
|---|
| 521 | nLongsNeeded = ((numSpecies - 1) / nBitsInALong) + 1; |
|---|
| 522 | numUpperTriang = numSpecies*(numSpecies - 1) / 2; |
|---|
| 523 | minDepth = (Depth *) SafeCalloc (numUpperTriang, sizeof(Depth)); |
|---|
| 524 | |
|---|
| 525 | // Convert depthMatrix to an array of Depth structs |
|---|
| 526 | index = 0; |
|---|
| 527 | for(i=0; i<numSpecies; i++) { |
|---|
| 528 | for(j=i+1; j<numSpecies; j++) { |
|---|
| 529 | minDepth[index].depth = depthMatrix[index]; |
|---|
| 530 | minDepth[index].pairSet = speciesPairSets[index]; |
|---|
| 531 | index++; |
|---|
| 532 | } |
|---|
| 533 | } |
|---|
| 534 | |
|---|
| 535 | // Sort the array of distance structs (O(log n^2)) |
|---|
| 536 | qsort((void *)(minDepth), (size_t)(numUpperTriang), sizeof(Depth), CompareDepths); |
|---|
| 537 | |
|---|
| 538 | // The algorithm below reduces the upper triangular matrix (n choose 2) to an n-1 |
|---|
| 539 | // array in O(n^2log(n)) time. We build the tree at the same time, since we can |
|---|
| 540 | // find included pairs in the tree in log(n) time. We use a polytomous tree for this. |
|---|
| 541 | |
|---|
| 542 | // Allocate space for polytomous tree and set up partitions |
|---|
| 543 | polyTree = AllocatePolyTree(numSpecies); |
|---|
| 544 | AllocatePolyTreePartitions(polyTree); |
|---|
| 545 | |
|---|
| 546 | // Build initial tree (a bush) |
|---|
| 547 | polyTree->isRooted = YES; |
|---|
| 548 | polyTree->isClock = YES; |
|---|
| 549 | polyTree->root = &polyTree->nodes[2*numSpecies-2]; |
|---|
| 550 | for (i=0; i<numSpecies; i++) { |
|---|
| 551 | p = &polyTree->nodes[i]; |
|---|
| 552 | p->index = i; |
|---|
| 553 | p->depth = 0.0; |
|---|
| 554 | p->left = NULL; |
|---|
| 555 | if (i<numSpecies-1) |
|---|
| 556 | p->sib = &polyTree->nodes[i+1]; |
|---|
| 557 | else |
|---|
| 558 | p->sib = NULL; |
|---|
| 559 | p->anc = polyTree->root; |
|---|
| 560 | } |
|---|
| 561 | p = polyTree->root; |
|---|
| 562 | p->index = 2*numSpecies - 2; |
|---|
| 563 | p->left = &polyTree->nodes[0]; |
|---|
| 564 | p->sib = NULL; |
|---|
| 565 | p->anc = NULL; |
|---|
| 566 | p->depth = -1.0; |
|---|
| 567 | polyTree->nNodes = numSpecies + 1; |
|---|
| 568 | polyTree->nIntNodes = 1; |
|---|
| 569 | GetPolyDownPass(polyTree); |
|---|
| 570 | ResetPolyTreePartitions(polyTree); /* set bitsets (partitions) for initial tree */ |
|---|
| 571 | |
|---|
| 572 | // Resolve bush using sorted depth structs |
|---|
| 573 | nextNodeIndex = numSpecies; |
|---|
| 574 | for(i=0; i<numUpperTriang; i++) { |
|---|
| 575 | |
|---|
| 576 | // Find tip corresponding to first taxon in pair |
|---|
| 577 | p = &polyTree->nodes[FirstTaxonInPartition(minDepth[i].pairSet, nLongsNeeded)]; |
|---|
| 578 | |
|---|
| 579 | // Descend tree until we find a node within which the pair set is nested |
|---|
| 580 | do { |
|---|
| 581 | p = p->anc; |
|---|
| 582 | } while (!IsPartNested(minDepth[i].pairSet, p->partition, nLongsNeeded)); |
|---|
| 583 | |
|---|
| 584 | if (p->left->sib->sib != NULL) { |
|---|
| 585 | |
|---|
| 586 | // This node is still a polytomy |
|---|
| 587 | |
|---|
| 588 | // Find left and right descendants of new node |
|---|
| 589 | qPrev = NULL; |
|---|
| 590 | for (q=p->left; IsSectionEmpty(q->partition, minDepth[i].pairSet, nLongsNeeded); q=q->sib) |
|---|
| 591 | qPrev = q; |
|---|
| 592 | rPrev = q; |
|---|
| 593 | for (r=q->sib; IsSectionEmpty(r->partition, minDepth[i].pairSet, nLongsNeeded); r=r->sib) |
|---|
| 594 | rPrev = r; |
|---|
| 595 | |
|---|
| 596 | // Introduce the new node |
|---|
| 597 | u = &polyTree->nodes[nextNodeIndex]; |
|---|
| 598 | u->index = nextNodeIndex; |
|---|
| 599 | nextNodeIndex++; |
|---|
| 600 | polyTree->nIntNodes++; |
|---|
| 601 | polyTree->nNodes++; |
|---|
| 602 | u->left = q; |
|---|
| 603 | u->anc = p; |
|---|
| 604 | if (p->left == q) |
|---|
| 605 | p->left = u; |
|---|
| 606 | else |
|---|
| 607 | qPrev->sib = u; |
|---|
| 608 | // former upstream sibling to r should point to r->sib |
|---|
| 609 | if (rPrev == q) |
|---|
| 610 | u->sib = r->sib; |
|---|
| 611 | else |
|---|
| 612 | rPrev->sib = r->sib; |
|---|
| 613 | if (q->sib == r) |
|---|
| 614 | u->sib = r->sib; |
|---|
| 615 | else |
|---|
| 616 | u->sib = q->sib; |
|---|
| 617 | u->depth = minDepth[i].depth; // because minDepth structs are sorted, we know this is the min depth |
|---|
| 618 | |
|---|
| 619 | // Create new taxon set with bitfield operations |
|---|
| 620 | for (j=0; j<nLongsNeeded; j++) |
|---|
| 621 | u->partition[j] = q->partition[j] | r->partition[j]; |
|---|
| 622 | |
|---|
| 623 | // Patch the tree together with the new node added |
|---|
| 624 | q->sib = r; |
|---|
| 625 | r->sib = NULL; |
|---|
| 626 | q->anc = u; |
|---|
| 627 | r->anc = u; |
|---|
| 628 | } |
|---|
| 629 | else if (p == polyTree->root && p->depth < 0.0) { |
|---|
| 630 | |
|---|
| 631 | // This is the first time we hit the root of the tree && it is resolved |
|---|
| 632 | p->depth = minDepth[i].depth; |
|---|
| 633 | |
|---|
| 634 | } |
|---|
| 635 | // other cases should not be added to tree |
|---|
| 636 | } |
|---|
| 637 | |
|---|
| 638 | // Make sure we have a complete species tree |
|---|
| 639 | assert (polyTree->nIntNodes == numSpecies - 1); |
|---|
| 640 | |
|---|
| 641 | // Set traversal sequences |
|---|
| 642 | GetPolyDownPass(polyTree); |
|---|
| 643 | |
|---|
| 644 | // If we have ties, we might have zero-length branches; we ensure a minimum positive length here |
|---|
| 645 | for (i=polyTree->nNodes-2; i>=0; i--) { |
|---|
| 646 | p = polyTree->allDownPass[i]; |
|---|
| 647 | if (p->anc->depth - p->depth < BRLENS_MIN) |
|---|
| 648 | p->depth = p->anc->depth - BRLENS_MIN; |
|---|
| 649 | } |
|---|
| 650 | |
|---|
| 651 | // Set branch lengths from node depths (not done automatically for us) |
|---|
| 652 | for (i=0; i<polyTree->nNodes; i++) { |
|---|
| 653 | p = polyTree->allDownPass[i]; |
|---|
| 654 | if (p->anc == NULL) |
|---|
| 655 | p->length = 0.0; |
|---|
| 656 | else |
|---|
| 657 | p->length = p->anc->depth - p->depth; |
|---|
| 658 | } |
|---|
| 659 | |
|---|
| 660 | // Copy to species tree from polytomous tree |
|---|
| 661 | CopyToSpeciesTreeFromPolyTree (speciesTree, polyTree); |
|---|
| 662 | |
|---|
| 663 | // Free locally allocated variables |
|---|
| 664 | FreePolyTree(polyTree); |
|---|
| 665 | free (minDepth); |
|---|
| 666 | |
|---|
| 667 | return(NO_ERROR); |
|---|
| 668 | } |
|---|
| 669 | |
|---|
| 670 | |
|---|
| 671 | |
|---|
| 672 | |
|---|
| 673 | |
|---|
| 674 | /**--------------------------------------------------------------------------------------- |
|---|
| 675 | | |
|---|
| 676 | | IsSpeciesTreeConsistent: Called when user tries to set a species tree or when |
|---|
| 677 | | attempting to use a species tree from a check point as starting value. |
|---|
| 678 | | |
|---|
| 679 | -----------------------------------------------------------------------------------------*/ |
|---|
| 680 | |
|---|
| 681 | int IsSpeciesTreeConsistent (Tree *speciesTree, int chain) |
|---|
| 682 | { |
|---|
| 683 | int i, answer, numGeneTrees, numUpperTriang, freeBestVars; |
|---|
| 684 | double *speciesTreeDepthMatrix; |
|---|
| 685 | Tree **geneTrees; |
|---|
| 686 | |
|---|
| 687 | answer = NO; |
|---|
| 688 | |
|---|
| 689 | freeBestVars = NO; |
|---|
| 690 | if (memAllocs[ALLOC_BEST] == NO) |
|---|
| 691 | { |
|---|
| 692 | AllocateBestChainVariables(); |
|---|
| 693 | freeBestVars = YES; |
|---|
| 694 | } |
|---|
| 695 | |
|---|
| 696 | numGeneTrees = numTrees - 1; |
|---|
| 697 | geneTrees = (Tree **) SafeCalloc (numGeneTrees, sizeof(Tree *)); |
|---|
| 698 | for (i=0; i<numTrees-1; i++) |
|---|
| 699 | geneTrees[i] = GetTreeFromIndex(i, chain, state[chain]); |
|---|
| 700 | |
|---|
| 701 | numUpperTriang = numSpecies * (numSpecies - 1) / 2; |
|---|
| 702 | speciesTreeDepthMatrix = (double *) SafeCalloc (numUpperTriang, sizeof(double)); |
|---|
| 703 | |
|---|
| 704 | GetMinDepthMatrix(geneTrees, numGeneTrees, depthMatrix); |
|---|
| 705 | GetDepthMatrix(speciesTree, speciesTreeDepthMatrix); |
|---|
| 706 | |
|---|
| 707 | for (i=0; i<numUpperTriang; i++) |
|---|
| 708 | { |
|---|
| 709 | if (depthMatrix[i] < speciesTreeDepthMatrix[i]) |
|---|
| 710 | break; |
|---|
| 711 | } |
|---|
| 712 | |
|---|
| 713 | if (i == numUpperTriang) |
|---|
| 714 | answer = YES; |
|---|
| 715 | else |
|---|
| 716 | answer = NO; |
|---|
| 717 | |
|---|
| 718 | if (answer == NO) |
|---|
| 719 | ShowNodes(speciesTree->root, 0, YES); |
|---|
| 720 | |
|---|
| 721 | if (freeBestVars == YES) |
|---|
| 722 | FreeBestChainVariables(); |
|---|
| 723 | |
|---|
| 724 | free (speciesTreeDepthMatrix); |
|---|
| 725 | free (geneTrees); |
|---|
| 726 | |
|---|
| 727 | return answer; |
|---|
| 728 | } |
|---|
| 729 | |
|---|
| 730 | |
|---|
| 731 | |
|---|
| 732 | |
|---|
| 733 | |
|---|
| 734 | /**--------------------------------------------------------------------------------------- |
|---|
| 735 | | |
|---|
| 736 | | LineagesIn: Recursive function to get number of gene tree lineages coming into each |
|---|
| 737 | | branch of the species tree (in ->x of speciestree nodes). We also assign each gene |
|---|
| 738 | | tree lineage to the corresponding species tree lineage (in ->x of genetree nodes). |
|---|
| 739 | | Finally, number of coalescent events is recorded (in ->y of speciestree nodes). |
|---|
| 740 | | Time complexity is O(n). |
|---|
| 741 | | |
|---|
| 742 | -----------------------------------------------------------------------------------------*/ |
|---|
| 743 | void LineagesIn (TreeNode *geneTreeNode, TreeNode *speciesTreeNode) |
|---|
| 744 | { |
|---|
| 745 | int nLongsNeeded; |
|---|
| 746 | |
|---|
| 747 | if (geneTreeNode->nodeDepth < speciesTreeNode->nodeDepth) { |
|---|
| 748 | // climb up species tree |
|---|
| 749 | if (speciesTreeNode->left == NULL) { |
|---|
| 750 | assert (geneTreeNode->left == NULL); |
|---|
| 751 | speciesTreeNode->x++; |
|---|
| 752 | } |
|---|
| 753 | else { |
|---|
| 754 | nLongsNeeded = (numSpecies - 1) / nBitsInALong + 1; |
|---|
| 755 | speciesTreeNode->x++; |
|---|
| 756 | if (IsPartNested(geneTreeNode->partition, speciesTreeNode->left->partition, nLongsNeeded) == YES) |
|---|
| 757 | LineagesIn (geneTreeNode, speciesTreeNode->left); |
|---|
| 758 | else if (IsPartNested(geneTreeNode->partition, speciesTreeNode->right->partition, nLongsNeeded) == YES) |
|---|
| 759 | LineagesIn (geneTreeNode, speciesTreeNode->right); |
|---|
| 760 | } |
|---|
| 761 | } |
|---|
| 762 | else { |
|---|
| 763 | // climb up gene tree |
|---|
| 764 | if (geneTreeNode->left != NULL) |
|---|
| 765 | LineagesIn(geneTreeNode->left, speciesTreeNode); |
|---|
| 766 | if (geneTreeNode->right != NULL) |
|---|
| 767 | LineagesIn(geneTreeNode->right, speciesTreeNode); |
|---|
| 768 | if (geneTreeNode->left == NULL) { |
|---|
| 769 | speciesTreeNode->x++; |
|---|
| 770 | assert (speciesTreeNode->left == NULL); |
|---|
| 771 | } |
|---|
| 772 | else { |
|---|
| 773 | speciesTreeNode->y++; |
|---|
| 774 | } |
|---|
| 775 | geneTreeNode->x = speciesTreeNode->index; |
|---|
| 776 | } |
|---|
| 777 | } |
|---|
| 778 | |
|---|
| 779 | |
|---|
| 780 | |
|---|
| 781 | |
|---|
| 782 | |
|---|
| 783 | /**----------------------------------------------------------------- |
|---|
| 784 | | |
|---|
| 785 | | LnSpeciesTreeProb: Wrapper for LnJointGeneTreeSpeciesTreePr to |
|---|
| 786 | | free calling functions from retrieving gene and species trees. |
|---|
| 787 | | |
|---|
| 788 | ------------------------------------------------------------------*/ |
|---|
| 789 | double LnSpeciesTreeProb(int chain) |
|---|
| 790 | { |
|---|
| 791 | int i, numGeneTrees; |
|---|
| 792 | double lnProb; |
|---|
| 793 | Tree **geneTrees, *speciesTree; |
|---|
| 794 | ModelInfo *m; |
|---|
| 795 | |
|---|
| 796 | m = &modelSettings[0]; |
|---|
| 797 | |
|---|
| 798 | speciesTree = GetTree(m->speciesTree, chain, state[chain]); |
|---|
| 799 | |
|---|
| 800 | numGeneTrees = m->speciesTree->nSubParams; |
|---|
| 801 | geneTrees = (Tree **) SafeCalloc (numGeneTrees, sizeof(Tree *)); |
|---|
| 802 | |
|---|
| 803 | for (i=0; i<m->speciesTree->nSubParams; i++) |
|---|
| 804 | geneTrees[i] = GetTree(m->speciesTree->subParams[i], chain, state[chain]); |
|---|
| 805 | |
|---|
| 806 | lnProb = LnJointGeneTreeSpeciesTreePr(geneTrees, numGeneTrees, speciesTree, chain); |
|---|
| 807 | |
|---|
| 808 | free (geneTrees); |
|---|
| 809 | |
|---|
| 810 | return lnProb; |
|---|
| 811 | } |
|---|
| 812 | |
|---|
| 813 | |
|---|
| 814 | |
|---|
| 815 | |
|---|
| 816 | |
|---|
| 817 | /**----------------------------------------------------------------- |
|---|
| 818 | | |
|---|
| 819 | | LnJointGeneTreeSpeciesTreePr: Converted from LnJointGenetreePr, |
|---|
| 820 | | SPLogLike, SPLogPrior. |
|---|
| 821 | | |
|---|
| 822 | | In this function we calculate the entire probability of the species |
|---|
| 823 | | tree, including its probability given its priors, and the probability |
|---|
| 824 | | of the gene trees given the species tree. |
|---|
| 825 | | |
|---|
| 826 | ------------------------------------------------------------------*/ |
|---|
| 827 | double LnJointGeneTreeSpeciesTreePr(Tree **geneTrees, int numGeneTrees, Tree *speciesTree, int chain) |
|---|
| 828 | { |
|---|
| 829 | double lnPrior, lnLike, clockRate, mu, *popSizePtr, sR, eR, sF; |
|---|
| 830 | int i; |
|---|
| 831 | ModelInfo *m; |
|---|
| 832 | ModelParams *mp; |
|---|
| 833 | |
|---|
| 834 | // Get model info for species tree |
|---|
| 835 | m = &modelSettings[speciesTree->relParts[0]]; |
|---|
| 836 | |
|---|
| 837 | // Get model params for species tree |
|---|
| 838 | mp = &modelParams[speciesTree->relParts[0]]; |
|---|
| 839 | |
|---|
| 840 | // Get popSize ptr |
|---|
| 841 | popSizePtr = GetParamVals(m->popSize, chain, state[chain]); |
|---|
| 842 | |
|---|
| 843 | // Get clock rate |
|---|
| 844 | if (speciesTree->isCalibrated == YES) |
|---|
| 845 | clockRate = *GetParamVals(m->clockRate, chain, state[chain]); |
|---|
| 846 | else |
|---|
| 847 | clockRate = 1.0; |
|---|
| 848 | |
|---|
| 849 | // Calculate probability of gene trees given species tree |
|---|
| 850 | // ShowNodes(speciesTree->root, 0, YES); |
|---|
| 851 | lnLike = 0.0; |
|---|
| 852 | mu = clockRate; |
|---|
| 853 | for (i=0; i<numGeneTrees; i++) { |
|---|
| 854 | lnLike += LnPriorProbGeneTree(geneTrees[i], mu, speciesTree, popSizePtr); |
|---|
| 855 | } |
|---|
| 856 | |
|---|
| 857 | // Calculate probability of species tree given its priors |
|---|
| 858 | if (strcmp(mp->speciesTreeBrlensPr, "Birthdeath") == 0) { |
|---|
| 859 | sR = *GetParamVals(m->speciationRates, chain, state[chain]); |
|---|
| 860 | eR = *GetParamVals(m->extinctionRates, chain, state[chain]); |
|---|
| 861 | // sS = mp->sampleStrat; |
|---|
| 862 | sF = mp->sampleProb; |
|---|
| 863 | lnPrior = 0.0; |
|---|
| 864 | // LnBirthDeathPriorPr(speciesTree, clockRate, &lnPrior, sR, eR, sS, sF); |
|---|
| 865 | LnBirthDeathPriorPr(speciesTree, clockRate, &lnPrior, sR, eR, mp->sampleStrat, sF); |
|---|
| 866 | } |
|---|
| 867 | else |
|---|
| 868 | lnPrior = 0.0; |
|---|
| 869 | |
|---|
| 870 | // The population size is taken care of elsewhere |
|---|
| 871 | |
|---|
| 872 | return lnLike + lnPrior; |
|---|
| 873 | } |
|---|
| 874 | |
|---|
| 875 | |
|---|
| 876 | |
|---|
| 877 | |
|---|
| 878 | |
|---|
| 879 | /**----------------------------------------------------------------- |
|---|
| 880 | | |
|---|
| 881 | | LnPriorProbGeneTree: Calculate the prior probability of a gene |
|---|
| 882 | | tree. |
|---|
| 883 | | |
|---|
| 884 | ------------------------------------------------------------------*/ |
|---|
| 885 | double LnPriorProbGeneTree (Tree *geneTree, double mu, Tree *speciesTree, double *popSizePtr) |
|---|
| 886 | { |
|---|
| 887 | int i, k, index, nEvents, trace=0; |
|---|
| 888 | double N, lnProb, ploidyFactor, theta, timeInterval; |
|---|
| 889 | TreeNode *p, *q=NULL, *r; |
|---|
| 890 | ModelInfo *m; |
|---|
| 891 | ModelParams *mp; |
|---|
| 892 | |
|---|
| 893 | // Get model info |
|---|
| 894 | m = &modelSettings[speciesTree->relParts[0]]; |
|---|
| 895 | |
|---|
| 896 | // Get model params |
|---|
| 897 | mp = &modelParams[speciesTree->relParts[0]]; |
|---|
| 898 | |
|---|
| 899 | // Find ploidy setting |
|---|
| 900 | if (strcmp(mp->ploidy, "Diploid") == 0) |
|---|
| 901 | ploidyFactor = 4.0; |
|---|
| 902 | else if (strcmp(mp->ploidy, "Haploid") == 0) |
|---|
| 903 | ploidyFactor = 2.0; |
|---|
| 904 | else /* if (strcmp(mp->ploidy, "Zlinked") == 0) */ |
|---|
| 905 | ploidyFactor = 3.0; |
|---|
| 906 | |
|---|
| 907 | // Initialize species tree with theta in d |
|---|
| 908 | for (i=0; i<speciesTree->nNodes-1; i++) { |
|---|
| 909 | p = speciesTree->allDownPass[i]; |
|---|
| 910 | if (strcmp(mp->popVarPr, "Equal") != 0) |
|---|
| 911 | N = popSizePtr[p->index]; |
|---|
| 912 | else |
|---|
| 913 | N = popSizePtr[0]; |
|---|
| 914 | p->d = ploidyFactor * N * mu; |
|---|
| 915 | } |
|---|
| 916 | |
|---|
| 917 | // Map gene tree to species tree |
|---|
| 918 | MapGeneTreeToSpeciesTree(geneTree, speciesTree); |
|---|
| 919 | |
|---|
| 920 | // Sort gene tree interior nodes first by speciestree branch on which they coalesce, then in time order |
|---|
| 921 | qsort((void *)(geneTree->intDownPass), (size_t) geneTree->nIntNodes, sizeof(TreeNode *), CompareNodesByX); |
|---|
| 922 | |
|---|
| 923 | // Debug output of qsort result |
|---|
| 924 | if (trace) { |
|---|
| 925 | printf ("index -- x -- nodeDepth for gene tree\n"); |
|---|
| 926 | for (i=0; i<geneTree->nIntNodes; i++) |
|---|
| 927 | printf ("%d -- %d -- %e\n", geneTree->intDownPass[i]->index, geneTree->intDownPass[i]->x, geneTree->intDownPass[i]->nodeDepth); |
|---|
| 928 | } |
|---|
| 929 | |
|---|
| 930 | // Now calculate probability after making sure species tree nodes appear in index order |
|---|
| 931 | // (the order does not have to be a correct downpass sequence) |
|---|
| 932 | for (i=0; i<speciesTree->memNodes; i++) |
|---|
| 933 | { |
|---|
| 934 | p = &(speciesTree->nodes[i]); |
|---|
| 935 | speciesTree->allDownPass[p->index] = p; |
|---|
| 936 | } |
|---|
| 937 | index = 0; |
|---|
| 938 | lnProb = 0.0; |
|---|
| 939 | for (i=0; i<speciesTree->nNodes-1; i++) { |
|---|
| 940 | |
|---|
| 941 | p = speciesTree->allDownPass[i]; |
|---|
| 942 | |
|---|
| 943 | // Get theta |
|---|
| 944 | theta = p->d; |
|---|
| 945 | |
|---|
| 946 | // Get number of events |
|---|
| 947 | nEvents = p->y; |
|---|
| 948 | |
|---|
| 949 | // Calculate probability |
|---|
| 950 | lnProb += nEvents * log (2.0 / theta); |
|---|
| 951 | |
|---|
| 952 | for (k=p->x; k > p->x - p->y; k--) { |
|---|
| 953 | |
|---|
| 954 | q = geneTree->intDownPass[index]; |
|---|
| 955 | assert (q->x == p->index); |
|---|
| 956 | |
|---|
| 957 | if (k == p->x) |
|---|
| 958 | timeInterval = (q->nodeDepth - p->nodeDepth) / mu; |
|---|
| 959 | else { |
|---|
| 960 | r = geneTree->intDownPass[index-1]; |
|---|
| 961 | timeInterval = (q->nodeDepth - r->nodeDepth) / mu; |
|---|
| 962 | } |
|---|
| 963 | |
|---|
| 964 | lnProb -= (k * (k - 1) * timeInterval) / theta; |
|---|
| 965 | index++; |
|---|
| 966 | } |
|---|
| 967 | |
|---|
| 968 | if (p->x - p->y > 1) { |
|---|
| 969 | |
|---|
| 970 | if (nEvents == 0) |
|---|
| 971 | timeInterval = p->anc->nodeDepth - p->nodeDepth; |
|---|
| 972 | else |
|---|
| 973 | timeInterval = p->anc->nodeDepth - q->nodeDepth; |
|---|
| 974 | |
|---|
| 975 | assert (p->anc->anc != NULL); |
|---|
| 976 | assert(timeInterval > 0.0); |
|---|
| 977 | |
|---|
| 978 | k = p->x - p->y; |
|---|
| 979 | lnProb -= (k * (k - 1) * timeInterval) / theta; |
|---|
| 980 | } |
|---|
| 981 | } |
|---|
| 982 | |
|---|
| 983 | // Restore downpass sequences (probably not necessary for gene tree, but may be if some |
|---|
| 984 | // code relies on intDownPass and allDownPass to be in same order) |
|---|
| 985 | GetDownPass(speciesTree); |
|---|
| 986 | GetDownPass(geneTree); |
|---|
| 987 | |
|---|
| 988 | // Free space |
|---|
| 989 | FreeTreePartitions(speciesTree); |
|---|
| 990 | FreeTreePartitions(geneTree); |
|---|
| 991 | |
|---|
| 992 | return lnProb; |
|---|
| 993 | } |
|---|
| 994 | |
|---|
| 995 | |
|---|
| 996 | |
|---|
| 997 | |
|---|
| 998 | |
|---|
| 999 | /**--------------------------------------------------------------------- |
|---|
| 1000 | | |
|---|
| 1001 | | LnProposalProbSpeciesTree: |
|---|
| 1002 | | |
|---|
| 1003 | | This algorithm calculates the probability of proposing a particular |
|---|
| 1004 | | species tree given a distance matrix modified using a scheme based on |
|---|
| 1005 | | truncated exponential distributions with rate expRate. |
|---|
| 1006 | | |
|---|
| 1007 | | @param speciesTree The species tree (in) |
|---|
| 1008 | | @param depthMatrix The minimum depth matrix, upper triangular array (in) |
|---|
| 1009 | | @param expRate Rate of truncated exponential distribution |
|---|
| 1010 | | @returns Returns probability of proposing the species tree |
|---|
| 1011 | ----------------------------------------------------------------------*/ |
|---|
| 1012 | double LnProposalProbSpeciesTree (Tree *speciesTree, double *depthMatrix, double expRate) { |
|---|
| 1013 | |
|---|
| 1014 | int i, left, right, numUpperTriang, index, nLongsNeeded, freeBitsets; |
|---|
| 1015 | double dist, normConst, negLambdaX, eNegLambdaX, density, prob, |
|---|
| 1016 | sumDensRatio, prodProb, lnProb; |
|---|
| 1017 | TreeNode *p; |
|---|
| 1018 | |
|---|
| 1019 | // Make sure we have bitfields allocated and set |
|---|
| 1020 | freeBitsets = NO; |
|---|
| 1021 | if (speciesTree->bitsets == NULL) |
|---|
| 1022 | freeBitsets = YES; |
|---|
| 1023 | else |
|---|
| 1024 | freeBitsets = NO; |
|---|
| 1025 | AllocateTreePartitions(speciesTree); |
|---|
| 1026 | |
|---|
| 1027 | // Calculate number of values in the upper triangular matrix |
|---|
| 1028 | numUpperTriang = numSpecies * (numSpecies - 1) / 2; |
|---|
| 1029 | |
|---|
| 1030 | // Number of longs needed in a bitfield representing a species set |
|---|
| 1031 | nLongsNeeded = ((numSpecies -1) / nBitsInALong) + 1; |
|---|
| 1032 | |
|---|
| 1033 | // Loop over interior nodes |
|---|
| 1034 | lnProb = 0.0; |
|---|
| 1035 | for (i=0; i<speciesTree->nIntNodes; i++) |
|---|
| 1036 | { |
|---|
| 1037 | p = speciesTree->intDownPass[i]; |
|---|
| 1038 | p->x = 0; |
|---|
| 1039 | sumDensRatio = 0.0; |
|---|
| 1040 | prodProb = 1.0; |
|---|
| 1041 | for (left = FirstTaxonInPartition(p->left->partition, nLongsNeeded); left < numSpecies; left = NextTaxonInPartition(left, p->left->partition, nLongsNeeded)) |
|---|
| 1042 | { |
|---|
| 1043 | for (right = FirstTaxonInPartition(p->right->partition, nLongsNeeded); right < numSpecies; right = NextTaxonInPartition(right, p->right->partition, nLongsNeeded)) |
|---|
| 1044 | { |
|---|
| 1045 | p->x++; |
|---|
| 1046 | index = UpperTriangIndex(left, right, numSpecies); |
|---|
| 1047 | assert (index < numUpperTriang); |
|---|
| 1048 | dist = depthMatrix[index] - p->nodeDepth; // distance between depth matrix entry and actual species-tree node |
|---|
| 1049 | normConst = 1.0 - exp(-expRate * depthMatrix[index]); // normalization constant because of truncation of exp distribution |
|---|
| 1050 | negLambdaX = - expRate * dist; |
|---|
| 1051 | eNegLambdaX = exp(negLambdaX); |
|---|
| 1052 | density = expRate * eNegLambdaX / normConst; // density for x == dist, f(dist) |
|---|
| 1053 | prob = 1.0 - eNegLambdaX / normConst; // cumulative prob for x <= dist, F(dist) |
|---|
| 1054 | sumDensRatio += density / prob; |
|---|
| 1055 | prodProb *= prob; |
|---|
| 1056 | } |
|---|
| 1057 | } |
|---|
| 1058 | if (p->x == 1) |
|---|
| 1059 | lnProb += log(expRate) + negLambdaX - log(normConst); |
|---|
| 1060 | else |
|---|
| 1061 | lnProb += log (sumDensRatio * prodProb); |
|---|
| 1062 | } |
|---|
| 1063 | |
|---|
| 1064 | // Free partitions if appropriate |
|---|
| 1065 | if (freeBitsets == YES) |
|---|
| 1066 | FreeTreePartitions(speciesTree); |
|---|
| 1067 | |
|---|
| 1068 | return (NO_ERROR); |
|---|
| 1069 | } |
|---|
| 1070 | |
|---|
| 1071 | |
|---|
| 1072 | |
|---|
| 1073 | |
|---|
| 1074 | |
|---|
| 1075 | /**----------------------------------------------------------------- |
|---|
| 1076 | | |
|---|
| 1077 | | MapGeneTreeToSpeciesTree: Fold gene tree into species tree. We |
|---|
| 1078 | | are going to use ->x of gene tree to give index of the |
|---|
| 1079 | | corresponding node in the species tree. ->x in the species |
|---|
| 1080 | | tree will give the number of lineages into the corresponding |
|---|
| 1081 | | branch, and ->y will give the number of coalescent events on |
|---|
| 1082 | | that branch. |
|---|
| 1083 | | |
|---|
| 1084 | ------------------------------------------------------------------*/ |
|---|
| 1085 | void MapGeneTreeToSpeciesTree (Tree *geneTree, Tree *speciesTree) |
|---|
| 1086 | { |
|---|
| 1087 | int i, j, nLongsNeeded, trace=0; |
|---|
| 1088 | TreeNode *p; |
|---|
| 1089 | |
|---|
| 1090 | // Initialize species partitions for both gene tree and species tree |
|---|
| 1091 | // This will set the partitions to reflect the partitions in the tree itself, |
|---|
| 1092 | // which is OK for the species tree, but we want the gene tree partitions to |
|---|
| 1093 | // reflect the species partitions and not the gene partitions, so we need to |
|---|
| 1094 | // set them here |
|---|
| 1095 | AllocateTreePartitions(geneTree); |
|---|
| 1096 | AllocateTreePartitions(speciesTree); |
|---|
| 1097 | nLongsNeeded = (numSpecies - 1) / nBitsInALong + 1; |
|---|
| 1098 | for (i=0; i<geneTree->nNodes-1; i++) { |
|---|
| 1099 | p = geneTree->allDownPass[i]; |
|---|
| 1100 | ClearBits(p->partition, nLongsNeeded); |
|---|
| 1101 | if (p->left == NULL) |
|---|
| 1102 | SetBit(speciespartitionId[p->index][speciespartitionNum]-1, p->partition); |
|---|
| 1103 | else { |
|---|
| 1104 | for (j=0; j<nLongsNeeded; j++) |
|---|
| 1105 | p->partition[j] = p->left->partition[j] | p->right->partition[j]; |
|---|
| 1106 | } |
|---|
| 1107 | } |
|---|
| 1108 | // Species tree partitions already set by call to AllocateTreePartitions |
|---|
| 1109 | |
|---|
| 1110 | // Reset ->x and ->y of species tree (->x of gene tree does not need to be initialized) |
|---|
| 1111 | for (i=0; i<speciesTree->nNodes; i++) |
|---|
| 1112 | { |
|---|
| 1113 | p = speciesTree->allDownPass[i]; |
|---|
| 1114 | p->x = 0; |
|---|
| 1115 | p->y = 0; |
|---|
| 1116 | } |
|---|
| 1117 | |
|---|
| 1118 | // Call recursive function to match gene tree and species tree |
|---|
| 1119 | LineagesIn(geneTree->root->left, speciesTree->root->left); |
|---|
| 1120 | |
|---|
| 1121 | if (trace) { |
|---|
| 1122 | printf ("index -- x -- y for species tree\n"); |
|---|
| 1123 | for (i=0; i<speciesTree->nNodes-1; i++) |
|---|
| 1124 | printf ("%-2d -- %d -- %d\n", speciesTree->allDownPass[i]->index, speciesTree->allDownPass[i]->x, speciesTree->allDownPass[i]->y); |
|---|
| 1125 | } |
|---|
| 1126 | |
|---|
| 1127 | if (trace) { |
|---|
| 1128 | printf ("index -- x -- nodeDepth for gene tree\n"); |
|---|
| 1129 | for (i=0; i<geneTree->nIntNodes; i++) |
|---|
| 1130 | printf ("%-2d -- %d -- %e\n", geneTree->intDownPass[i]->index, geneTree->intDownPass[i]->x, geneTree->intDownPass[i]->nodeDepth); |
|---|
| 1131 | } |
|---|
| 1132 | |
|---|
| 1133 | // Free space |
|---|
| 1134 | FreeTreePartitions(speciesTree); |
|---|
| 1135 | FreeTreePartitions(geneTree); |
|---|
| 1136 | } |
|---|
| 1137 | |
|---|
| 1138 | |
|---|
| 1139 | |
|---|
| 1140 | |
|---|
| 1141 | |
|---|
| 1142 | /**--------------------------------------------------------------------- |
|---|
| 1143 | | |
|---|
| 1144 | | ModifyDepthMatrix: |
|---|
| 1145 | | |
|---|
| 1146 | | This algorithm uses a truncated exponential distribution to modify |
|---|
| 1147 | | a depth matrix. |
|---|
| 1148 | | |
|---|
| 1149 | | @param expRate The rate of the exponential distribution (in) |
|---|
| 1150 | | @param depthMatrix The minimum depth matrix to be modified, upper triangular array (in/out) |
|---|
| 1151 | | @param seed Pointer to seed for random number generator (in/ut) |
|---|
| 1152 | | @returns Returns ERROR or NO_ERROR |
|---|
| 1153 | ----------------------------------------------------------------------*/ |
|---|
| 1154 | int ModifyDepthMatrix (double expRate, double *depthMatrix, SafeLong *seed) |
|---|
| 1155 | { |
|---|
| 1156 | int i, numUpperTriang; |
|---|
| 1157 | double u, interval, delta; |
|---|
| 1158 | |
|---|
| 1159 | numUpperTriang = numSpecies * (numSpecies - 1) / 2; |
|---|
| 1160 | for (i=0; i<numUpperTriang; i++) |
|---|
| 1161 | { |
|---|
| 1162 | interval = depthMatrix[i]; |
|---|
| 1163 | u = RandomNumber (seed); |
|---|
| 1164 | delta = log (1.0 - u*(1.0 - exp(-expRate*interval))) / (-expRate); |
|---|
| 1165 | assert (delta <= interval); |
|---|
| 1166 | depthMatrix[i] -= delta; |
|---|
| 1167 | } |
|---|
| 1168 | |
|---|
| 1169 | return (NO_ERROR); |
|---|
| 1170 | } |
|---|
| 1171 | |
|---|
| 1172 | |
|---|
| 1173 | |
|---|
| 1174 | |
|---|
| 1175 | /**----------------------------------------------------------------- |
|---|
| 1176 | | |
|---|
| 1177 | | Move_GeneTree1: Propose a new gene tree using ExtSPRClock |
|---|
| 1178 | | |
|---|
| 1179 | | @param param The parameter (gene tree) to change |
|---|
| 1180 | | @param chain The chain number |
|---|
| 1181 | | @param seed Pointer to the seed of the random number gen. |
|---|
| 1182 | | @param lnPriorRatio Pointer to the log prior ratio (out) |
|---|
| 1183 | | @param lnProposalRatio Pointer to the log proposal (Hastings) ratio (out) |
|---|
| 1184 | | @param mvp Pointer to tuning parameter(s) |
|---|
| 1185 | ------------------------------------------------------------------*/ |
|---|
| 1186 | int Move_GeneTree1 (Param *param, int chain, SafeLong *seed, MrBFlt *lnPriorRatio, MrBFlt *lnProposalRatio, MrBFlt *mvp) |
|---|
| 1187 | |
|---|
| 1188 | { |
|---|
| 1189 | int i, numGeneTrees, numUpperTriang; |
|---|
| 1190 | double newLnProb, oldLnProb, backwardLnProposalProb, forwardLnProposalProb, |
|---|
| 1191 | *oldMinDepths, *modMinDepths, forwardLambda, backwardLambda, mean; |
|---|
| 1192 | Tree *newSpeciesTree, *oldSpeciesTree, **geneTrees; |
|---|
| 1193 | ModelInfo *m; |
|---|
| 1194 | ModelParams *mp; |
|---|
| 1195 | |
|---|
| 1196 | // Calculate number of gene trees |
|---|
| 1197 | numGeneTrees = numTopologies - 1; |
|---|
| 1198 | |
|---|
| 1199 | // Get model params |
|---|
| 1200 | mp = &modelParams[param->relParts[0]]; |
|---|
| 1201 | |
|---|
| 1202 | // Get model settings |
|---|
| 1203 | m = &modelSettings[param->relParts[0]]; |
|---|
| 1204 | |
|---|
| 1205 | // Get species tree (this trick is possible because we always copy tree params) |
|---|
| 1206 | newSpeciesTree = GetTree (m->speciesTree, chain, state[chain]); |
|---|
| 1207 | oldSpeciesTree = GetTree (m->speciesTree, chain, state[chain] ^ 1); |
|---|
| 1208 | |
|---|
| 1209 | // Get gene trees |
|---|
| 1210 | geneTrees = (Tree **) SafeCalloc (2*numGeneTrees, sizeof(Tree *)); |
|---|
| 1211 | for (i=0; i<m->speciesTree->nSubParams; i++) { |
|---|
| 1212 | geneTrees[i] = GetTree(m->speciesTree->subParams[i], chain, state[chain]); |
|---|
| 1213 | } |
|---|
| 1214 | |
|---|
| 1215 | // Allocate space for depth matrix copy |
|---|
| 1216 | numUpperTriang = numSpecies * (numSpecies - 1) / 2; |
|---|
| 1217 | oldMinDepths = (double *) SafeCalloc (2*numUpperTriang, sizeof(double)); |
|---|
| 1218 | modMinDepths = oldMinDepths + numUpperTriang; |
|---|
| 1219 | |
|---|
| 1220 | // Get min depth matrix for old gene trees |
|---|
| 1221 | GetMinDepthMatrix(geneTrees, numTopologies-1, depthMatrix); |
|---|
| 1222 | |
|---|
| 1223 | // Save a copy |
|---|
| 1224 | for (i=0; i<numUpperTriang; i++) |
|---|
| 1225 | oldMinDepths[i] = depthMatrix[i]; |
|---|
| 1226 | |
|---|
| 1227 | // Get forward lambda |
|---|
| 1228 | GetMeanDist(oldSpeciesTree, depthMatrix, &mean); |
|---|
| 1229 | forwardLambda = 1.0 / mean; |
|---|
| 1230 | |
|---|
| 1231 | // Calculate joint probability of old gene trees and old species tree |
|---|
| 1232 | oldLnProb = LnJointGeneTreeSpeciesTreePr(geneTrees, numGeneTrees, oldSpeciesTree, chain); |
|---|
| 1233 | |
|---|
| 1234 | // Modify the picked gene tree using code from a regular MrBayes move |
|---|
| 1235 | Move_ExtSPRClock(param, chain, seed, lnPriorRatio, lnProposalRatio, mvp); |
|---|
| 1236 | |
|---|
| 1237 | // Update the min depth matrix |
|---|
| 1238 | GetMinDepthMatrix(geneTrees, numTopologies-1, depthMatrix); |
|---|
| 1239 | |
|---|
| 1240 | // Copy the min depth matrix |
|---|
| 1241 | for (i=0; i<numUpperTriang; i++) |
|---|
| 1242 | modMinDepths[i] = depthMatrix[i]; |
|---|
| 1243 | |
|---|
| 1244 | // Modify the min depth matrix |
|---|
| 1245 | ModifyDepthMatrix (forwardLambda, modMinDepths, seed); |
|---|
| 1246 | |
|---|
| 1247 | // Get a new species tree |
|---|
| 1248 | GetSpeciesTreeFromMinDepths (newSpeciesTree, modMinDepths); |
|---|
| 1249 | |
|---|
| 1250 | // Calculate joint probability of new gene trees and new species tree |
|---|
| 1251 | newLnProb = LnJointGeneTreeSpeciesTreePr(geneTrees, numGeneTrees, newSpeciesTree, chain); |
|---|
| 1252 | |
|---|
| 1253 | // Get backward lambda |
|---|
| 1254 | GetMeanDist(newSpeciesTree, depthMatrix, &mean); |
|---|
| 1255 | backwardLambda = 1.0 / mean; |
|---|
| 1256 | |
|---|
| 1257 | // Get proposal probability of old species tree |
|---|
| 1258 | backwardLnProposalProb = LnProposalProbSpeciesTree (oldSpeciesTree, oldMinDepths, backwardLambda); |
|---|
| 1259 | |
|---|
| 1260 | // Get proposal probability of new species tree |
|---|
| 1261 | forwardLnProposalProb = LnProposalProbSpeciesTree (newSpeciesTree, depthMatrix, forwardLambda); |
|---|
| 1262 | |
|---|
| 1263 | // Update prior ratio taking species tree into account |
|---|
| 1264 | (*lnPriorRatio) += (newLnProb - oldLnProb); |
|---|
| 1265 | |
|---|
| 1266 | // Update proposal ratio based on this move |
|---|
| 1267 | (*lnProposalRatio) += (backwardLnProposalProb - forwardLnProposalProb); |
|---|
| 1268 | |
|---|
| 1269 | // Free allocated memory |
|---|
| 1270 | free (geneTrees); |
|---|
| 1271 | free (oldMinDepths); |
|---|
| 1272 | |
|---|
| 1273 | return (NO_ERROR); |
|---|
| 1274 | } |
|---|
| 1275 | |
|---|
| 1276 | |
|---|
| 1277 | |
|---|
| 1278 | |
|---|
| 1279 | |
|---|
| 1280 | /**----------------------------------------------------------------- |
|---|
| 1281 | | |
|---|
| 1282 | | Move_GeneTree2: Propose a new gene tree using NNIClock |
|---|
| 1283 | | |
|---|
| 1284 | | @param param The parameter to change |
|---|
| 1285 | | @param chain The chain number |
|---|
| 1286 | | @param seed Pointer to the seed of the random number gen. |
|---|
| 1287 | | @param lnPriorRatio Pointer to the log prior ratio (out) |
|---|
| 1288 | | @param lnProposalRatio Pointer to the log proposal (Hastings) ratio (out) |
|---|
| 1289 | | @param mvp Pointer to tuning parameter(s) |
|---|
| 1290 | ------------------------------------------------------------------*/ |
|---|
| 1291 | int Move_GeneTree2 (Param *param, int chain, SafeLong *seed, MrBFlt *lnPriorRatio, MrBFlt *lnProposalRatio, MrBFlt *mvp) |
|---|
| 1292 | |
|---|
| 1293 | { |
|---|
| 1294 | int i, numGeneTrees, numUpperTriang; |
|---|
| 1295 | double newLnProb, oldLnProb, backwardLnProposalProb, forwardLnProposalProb, |
|---|
| 1296 | *oldMinDepths, *modMinDepths, forwardLambda, backwardLambda, mean; |
|---|
| 1297 | Tree *newSpeciesTree, *oldSpeciesTree, **geneTrees; |
|---|
| 1298 | ModelInfo *m; |
|---|
| 1299 | ModelParams *mp; |
|---|
| 1300 | |
|---|
| 1301 | // Calculate number of gene trees |
|---|
| 1302 | numGeneTrees = numTopologies - 1; |
|---|
| 1303 | |
|---|
| 1304 | // Get model params |
|---|
| 1305 | mp = &modelParams[param->relParts[0]]; |
|---|
| 1306 | |
|---|
| 1307 | // Get model settings |
|---|
| 1308 | m = &modelSettings[param->relParts[0]]; |
|---|
| 1309 | |
|---|
| 1310 | // Get species tree (this trick is possible because we always copy tree params) |
|---|
| 1311 | newSpeciesTree = GetTree (m->speciesTree, chain, state[chain]); |
|---|
| 1312 | oldSpeciesTree = GetTree (m->speciesTree, chain, state[chain] ^ 1); |
|---|
| 1313 | |
|---|
| 1314 | // Get gene trees |
|---|
| 1315 | geneTrees = (Tree **) SafeCalloc (2*numGeneTrees, sizeof(Tree *)); |
|---|
| 1316 | for (i=0; i<m->speciesTree->nSubParams; i++) { |
|---|
| 1317 | geneTrees[i] = GetTree(m->speciesTree->subParams[i], chain, state[chain]); |
|---|
| 1318 | } |
|---|
| 1319 | |
|---|
| 1320 | // Allocate space for depth matrix copy |
|---|
| 1321 | numUpperTriang = numSpecies * (numSpecies - 1) / 2; |
|---|
| 1322 | oldMinDepths = (double *) SafeCalloc (2*numUpperTriang, sizeof(double)); |
|---|
| 1323 | modMinDepths = oldMinDepths + numUpperTriang; |
|---|
| 1324 | |
|---|
| 1325 | // Get min depth matrix for old gene trees |
|---|
| 1326 | GetMinDepthMatrix(geneTrees, numTopologies-1, depthMatrix); |
|---|
| 1327 | |
|---|
| 1328 | // Save a copy |
|---|
| 1329 | for (i=0; i<numUpperTriang; i++) |
|---|
| 1330 | oldMinDepths[i] = depthMatrix[i]; |
|---|
| 1331 | |
|---|
| 1332 | // Get forward lambda |
|---|
| 1333 | GetMeanDist(oldSpeciesTree, depthMatrix, &mean); |
|---|
| 1334 | forwardLambda = 1.0 / mean; |
|---|
| 1335 | |
|---|
| 1336 | // Calculate joint probability of old gene trees and old species tree |
|---|
| 1337 | oldLnProb = LnJointGeneTreeSpeciesTreePr(geneTrees, numGeneTrees, oldSpeciesTree, chain); |
|---|
| 1338 | |
|---|
| 1339 | // Modify the picked gene tree using code from a regular MrBayes move (no tuning parameter, so passing on mvp is OK) |
|---|
| 1340 | Move_NNIClock(param, chain, seed, lnPriorRatio, lnProposalRatio, mvp); |
|---|
| 1341 | |
|---|
| 1342 | // Update the min depth matrix |
|---|
| 1343 | GetMinDepthMatrix(geneTrees, numTopologies-1, depthMatrix); |
|---|
| 1344 | |
|---|
| 1345 | // Copy the min depth matrix |
|---|
| 1346 | for (i=0; i<numUpperTriang; i++) |
|---|
| 1347 | modMinDepths[i] = depthMatrix[i]; |
|---|
| 1348 | |
|---|
| 1349 | // Modify the min depth matrix |
|---|
| 1350 | ModifyDepthMatrix (forwardLambda, modMinDepths, seed); |
|---|
| 1351 | |
|---|
| 1352 | // Get a new species tree |
|---|
| 1353 | GetSpeciesTreeFromMinDepths (newSpeciesTree, modMinDepths); |
|---|
| 1354 | |
|---|
| 1355 | // Calculate joint probability of new gene trees and new species tree |
|---|
| 1356 | newLnProb = LnJointGeneTreeSpeciesTreePr(geneTrees, numGeneTrees, newSpeciesTree, chain); |
|---|
| 1357 | |
|---|
| 1358 | // Get backward lambda |
|---|
| 1359 | GetMeanDist(newSpeciesTree, depthMatrix, &mean); |
|---|
| 1360 | backwardLambda = 1.0 / mean; |
|---|
| 1361 | |
|---|
| 1362 | // Get proposal probability of old species tree |
|---|
| 1363 | backwardLnProposalProb = LnProposalProbSpeciesTree (oldSpeciesTree, oldMinDepths, backwardLambda); |
|---|
| 1364 | |
|---|
| 1365 | // Get proposal probability of new species tree |
|---|
| 1366 | forwardLnProposalProb = LnProposalProbSpeciesTree (newSpeciesTree, depthMatrix, forwardLambda); |
|---|
| 1367 | |
|---|
| 1368 | // Update prior ratio taking species tree into account |
|---|
| 1369 | (*lnPriorRatio) += (newLnProb - oldLnProb); |
|---|
| 1370 | |
|---|
| 1371 | // Update proposal ratio based on this move |
|---|
| 1372 | (*lnProposalRatio) += (backwardLnProposalProb - forwardLnProposalProb); |
|---|
| 1373 | |
|---|
| 1374 | // Free allocated memory |
|---|
| 1375 | free (geneTrees); |
|---|
| 1376 | free (oldMinDepths); |
|---|
| 1377 | |
|---|
| 1378 | return (NO_ERROR); |
|---|
| 1379 | } |
|---|
| 1380 | |
|---|
| 1381 | |
|---|
| 1382 | |
|---|
| 1383 | |
|---|
| 1384 | |
|---|
| 1385 | /**----------------------------------------------------------------- |
|---|
| 1386 | | |
|---|
| 1387 | | Move_GeneTree3: Propose a new gene tree using ParsSPRClock |
|---|
| 1388 | | |
|---|
| 1389 | | @param param The parameter to change |
|---|
| 1390 | | @param chain The chain number |
|---|
| 1391 | | @param seed Pointer to the seed of the random number gen. |
|---|
| 1392 | | @param lnPriorRatio Pointer to the log prior ratio (out) |
|---|
| 1393 | | @param lnProposalRatio Pointer to the log proposal (Hastings) ratio (out) |
|---|
| 1394 | | @param mvp Pointer to tuning parameter(s) |
|---|
| 1395 | ------------------------------------------------------------------*/ |
|---|
| 1396 | int Move_GeneTree3 (Param *param, int chain, SafeLong *seed, MrBFlt *lnPriorRatio, MrBFlt *lnProposalRatio, MrBFlt *mvp) |
|---|
| 1397 | |
|---|
| 1398 | { |
|---|
| 1399 | int i, numGeneTrees, numUpperTriang; |
|---|
| 1400 | double newLnProb, oldLnProb, backwardLnProposalProb, forwardLnProposalProb, |
|---|
| 1401 | *oldMinDepths, *modMinDepths, forwardLambda, backwardLambda, mean; |
|---|
| 1402 | Tree *newSpeciesTree, *oldSpeciesTree, **geneTrees; |
|---|
| 1403 | ModelInfo *m; |
|---|
| 1404 | ModelParams *mp; |
|---|
| 1405 | |
|---|
| 1406 | // Calculate number of gene trees |
|---|
| 1407 | numGeneTrees = numTopologies - 1; |
|---|
| 1408 | |
|---|
| 1409 | // Get model params |
|---|
| 1410 | mp = &modelParams[param->relParts[0]]; |
|---|
| 1411 | |
|---|
| 1412 | // Get model settings |
|---|
| 1413 | m = &modelSettings[param->relParts[0]]; |
|---|
| 1414 | |
|---|
| 1415 | // Get species tree (this trick is possible because we always copy tree params) |
|---|
| 1416 | newSpeciesTree = GetTree (m->speciesTree, chain, state[chain]); |
|---|
| 1417 | oldSpeciesTree = GetTree (m->speciesTree, chain, state[chain] ^ 1); |
|---|
| 1418 | |
|---|
| 1419 | // Get gene trees |
|---|
| 1420 | geneTrees = (Tree **) SafeCalloc (2*numGeneTrees, sizeof(Tree *)); |
|---|
| 1421 | for (i=0; i<m->speciesTree->nSubParams; i++) { |
|---|
| 1422 | geneTrees[i] = GetTree(m->speciesTree->subParams[i], chain, state[chain]); |
|---|
| 1423 | } |
|---|
| 1424 | |
|---|
| 1425 | // Allocate space for depth matrix copy |
|---|
| 1426 | numUpperTriang = numSpecies * (numSpecies - 1) / 2; |
|---|
| 1427 | oldMinDepths = (double *) SafeCalloc (2*numUpperTriang, sizeof(double)); |
|---|
| 1428 | modMinDepths = oldMinDepths + numUpperTriang; |
|---|
| 1429 | |
|---|
| 1430 | // Get min depth matrix for old gene trees |
|---|
| 1431 | GetMinDepthMatrix(geneTrees, numTopologies-1, depthMatrix); |
|---|
| 1432 | |
|---|
| 1433 | // Save a copy |
|---|
| 1434 | for (i=0; i<numUpperTriang; i++) |
|---|
| 1435 | oldMinDepths[i] = depthMatrix[i]; |
|---|
| 1436 | |
|---|
| 1437 | // Get forward lambda |
|---|
| 1438 | GetMeanDist(oldSpeciesTree, depthMatrix, &mean); |
|---|
| 1439 | forwardLambda = 1.0 / mean; |
|---|
| 1440 | |
|---|
| 1441 | // Calculate joint probability of old gene trees and old species tree |
|---|
| 1442 | oldLnProb = LnJointGeneTreeSpeciesTreePr(geneTrees, numGeneTrees, oldSpeciesTree, chain); |
|---|
| 1443 | |
|---|
| 1444 | // Modify the picked gene tree using code from a regular MrBayes move (no tuning parameter here, so passing on mvp is OK) |
|---|
| 1445 | Move_ParsSPRClock(param, chain, seed, lnPriorRatio, lnProposalRatio, mvp); |
|---|
| 1446 | |
|---|
| 1447 | // Update the min depth matrix |
|---|
| 1448 | GetMinDepthMatrix(geneTrees, numTopologies-1, depthMatrix); |
|---|
| 1449 | |
|---|
| 1450 | // Copy the min depth matrix |
|---|
| 1451 | for (i=0; i<numUpperTriang; i++) |
|---|
| 1452 | modMinDepths[i] = depthMatrix[i]; |
|---|
| 1453 | |
|---|
| 1454 | // Modify the min depth matrix |
|---|
| 1455 | ModifyDepthMatrix (forwardLambda, modMinDepths, seed); |
|---|
| 1456 | |
|---|
| 1457 | // Get a new species tree |
|---|
| 1458 | GetSpeciesTreeFromMinDepths (newSpeciesTree, modMinDepths); |
|---|
| 1459 | |
|---|
| 1460 | // Calculate joint probability of new gene trees and new species tree |
|---|
| 1461 | newLnProb = LnJointGeneTreeSpeciesTreePr(geneTrees, numGeneTrees, newSpeciesTree, chain); |
|---|
| 1462 | |
|---|
| 1463 | // Get backward lambda |
|---|
| 1464 | GetMeanDist(newSpeciesTree, depthMatrix, &mean); |
|---|
| 1465 | backwardLambda = 1.0 / mean; |
|---|
| 1466 | |
|---|
| 1467 | // Get proposal probability of old species tree |
|---|
| 1468 | backwardLnProposalProb = LnProposalProbSpeciesTree (oldSpeciesTree, oldMinDepths, backwardLambda); |
|---|
| 1469 | |
|---|
| 1470 | // Get proposal probability of new species tree |
|---|
| 1471 | forwardLnProposalProb = LnProposalProbSpeciesTree (newSpeciesTree, depthMatrix, forwardLambda); |
|---|
| 1472 | |
|---|
| 1473 | // Update prior ratio taking species tree into account |
|---|
| 1474 | (*lnPriorRatio) += (newLnProb - oldLnProb); |
|---|
| 1475 | |
|---|
| 1476 | // Update proposal ratio based on this move |
|---|
| 1477 | (*lnProposalRatio) += (backwardLnProposalProb - forwardLnProposalProb); |
|---|
| 1478 | |
|---|
| 1479 | // Free allocated memory |
|---|
| 1480 | free (geneTrees); |
|---|
| 1481 | free (oldMinDepths); |
|---|
| 1482 | |
|---|
| 1483 | return (NO_ERROR); |
|---|
| 1484 | } |
|---|
| 1485 | |
|---|
| 1486 | |
|---|
| 1487 | |
|---|
| 1488 | |
|---|
| 1489 | |
|---|
| 1490 | /*----------------------------------------------------------------------------------- |
|---|
| 1491 | | |
|---|
| 1492 | | Move_NodeSliderGeneTree: Move the position of one (root or nonroot) node in a |
|---|
| 1493 | | gene tree inside a species tree. |
|---|
| 1494 | | |
|---|
| 1495 | -------------------------------------------------------------------------------------*/ |
|---|
| 1496 | |
|---|
| 1497 | int Move_NodeSliderGeneTree (Param *param, int chain, SafeLong *seed, MrBFlt *lnPriorRatio, MrBFlt *lnProposalRatio, MrBFlt *mvp) |
|---|
| 1498 | |
|---|
| 1499 | { |
|---|
| 1500 | int i, *nEvents; |
|---|
| 1501 | MrBFlt window, minDepth, maxDepth, oldDepth, newDepth, |
|---|
| 1502 | oldLeftLength=0.0, oldRightLength=0.0, clockRate, |
|---|
| 1503 | oldPLength=0.0, lambda=0.0, nu=0.0, igrvar=0.0, |
|---|
| 1504 | *brlens=NULL, *tk02Rate=NULL, *igrRate=NULL, *popSizePtr; |
|---|
| 1505 | TreeNode *p, *q; |
|---|
| 1506 | ModelParams *mp; |
|---|
| 1507 | ModelInfo *m; |
|---|
| 1508 | Tree *geneTree, *speciesTree; |
|---|
| 1509 | Param *subParm; |
|---|
| 1510 | |
|---|
| 1511 | window = mvp[0]; /* window size */ |
|---|
| 1512 | |
|---|
| 1513 | m = &modelSettings[param->relParts[0]]; |
|---|
| 1514 | mp = &modelParams[param->relParts[0]]; |
|---|
| 1515 | |
|---|
| 1516 | /* get gene tree and species tree */ |
|---|
| 1517 | geneTree = GetTree (param, chain, state[chain]); |
|---|
| 1518 | speciesTree = GetTree (m->speciesTree, chain, state[chain]); |
|---|
| 1519 | |
|---|
| 1520 | /* get population size(s) */ |
|---|
| 1521 | popSizePtr = GetParamVals(m->popSize, chain, state[chain]); |
|---|
| 1522 | |
|---|
| 1523 | /* get clock rate */ |
|---|
| 1524 | if (m->clockRate == NULL) |
|---|
| 1525 | clockRate = 1.0; |
|---|
| 1526 | else |
|---|
| 1527 | clockRate = *GetParamVals(m->clockRate, chain, state[chain]); |
|---|
| 1528 | |
|---|
| 1529 | /* pick a node to be changed */ |
|---|
| 1530 | p = geneTree->intDownPass[(int)(RandomNumber(seed)*geneTree->nIntNodes)]; |
|---|
| 1531 | |
|---|
| 1532 | #if defined (DEBUG_CSLIDER) |
|---|
| 1533 | printf ("Before node slider (gene tree):\n"); |
|---|
| 1534 | printf ("Picked branch with index %d and depth %f\n", p->index, p->nodeDepth); |
|---|
| 1535 | if (p->anc->anc == NULL) |
|---|
| 1536 | printf ("Old clock rate: %f\n", clockRate); |
|---|
| 1537 | ShowNodes (t->root, 0, t->isRooted); |
|---|
| 1538 | getchar(); |
|---|
| 1539 | #endif |
|---|
| 1540 | |
|---|
| 1541 | /* get gene tree prior prob before move */ |
|---|
| 1542 | (*lnPriorRatio) -= LnPriorProbGeneTree(geneTree, clockRate, speciesTree, popSizePtr); |
|---|
| 1543 | |
|---|
| 1544 | /* store values needed later for prior calculation (relaxed clocks) */ |
|---|
| 1545 | oldPLength = p->length; |
|---|
| 1546 | if (p->left != NULL) |
|---|
| 1547 | { |
|---|
| 1548 | oldLeftLength = p->left->length; |
|---|
| 1549 | oldRightLength = p->right->length; |
|---|
| 1550 | } |
|---|
| 1551 | else |
|---|
| 1552 | oldLeftLength = oldRightLength = 0.0; |
|---|
| 1553 | |
|---|
| 1554 | /* find species tree branch to which the gene tree node belongs */ |
|---|
| 1555 | MapGeneTreeToSpeciesTree(geneTree, speciesTree); |
|---|
| 1556 | q = NULL; |
|---|
| 1557 | for (i=0; i<speciesTree->nNodes-1; i++) |
|---|
| 1558 | { |
|---|
| 1559 | q = speciesTree->allDownPass[i]; |
|---|
| 1560 | if (p->x == q->index) |
|---|
| 1561 | break; |
|---|
| 1562 | } |
|---|
| 1563 | assert (q != NULL && p->x == q->index); |
|---|
| 1564 | |
|---|
| 1565 | /* determine lower and upper bound */ |
|---|
| 1566 | minDepth = p->left->nodeDepth + POS_MIN; |
|---|
| 1567 | if (p->right->nodeDepth + POS_MIN > minDepth) |
|---|
| 1568 | minDepth = p->right->nodeDepth + POS_MIN; |
|---|
| 1569 | if (q->nodeDepth + POS_MIN > minDepth) |
|---|
| 1570 | minDepth = q->nodeDepth + POS_MIN; |
|---|
| 1571 | if (p->anc->anc == NULL) |
|---|
| 1572 | maxDepth = TREEHEIGHT_MAX; |
|---|
| 1573 | else |
|---|
| 1574 | maxDepth = p->anc->nodeDepth - POS_MIN; |
|---|
| 1575 | |
|---|
| 1576 | /* abort if impossible */ |
|---|
| 1577 | if (minDepth >= maxDepth) |
|---|
| 1578 | { |
|---|
| 1579 | abortMove = YES; |
|---|
| 1580 | return (NO_ERROR); |
|---|
| 1581 | } |
|---|
| 1582 | |
|---|
| 1583 | if( maxDepth-minDepth < window ) |
|---|
| 1584 | { |
|---|
| 1585 | window = maxDepth-minDepth; |
|---|
| 1586 | } |
|---|
| 1587 | |
|---|
| 1588 | /* pick the new node depth */ |
|---|
| 1589 | oldDepth = p->nodeDepth; |
|---|
| 1590 | newDepth = oldDepth + (RandomNumber (seed) - 0.5) * window; |
|---|
| 1591 | |
|---|
| 1592 | /* reflect the new node depth */ |
|---|
| 1593 | while (newDepth < minDepth || newDepth > maxDepth) |
|---|
| 1594 | { |
|---|
| 1595 | if (newDepth < minDepth) |
|---|
| 1596 | newDepth = 2.0 * minDepth - newDepth; |
|---|
| 1597 | if (newDepth > maxDepth) |
|---|
| 1598 | newDepth = 2.0 * maxDepth - newDepth; |
|---|
| 1599 | } |
|---|
| 1600 | p->nodeDepth = newDepth; |
|---|
| 1601 | |
|---|
| 1602 | /* determine new branch lengths around p and set update of transition probabilities */ |
|---|
| 1603 | if (p->left != NULL) |
|---|
| 1604 | { |
|---|
| 1605 | p->left->length = p->nodeDepth - p->left->nodeDepth; |
|---|
| 1606 | assert (p->left->length >= POS_MIN); |
|---|
| 1607 | p->left->upDateTi = YES; |
|---|
| 1608 | p->right->length = p->nodeDepth - p->right->nodeDepth; |
|---|
| 1609 | assert (p->right->length >= POS_MIN); |
|---|
| 1610 | p->right->upDateTi = YES; |
|---|
| 1611 | } |
|---|
| 1612 | if (p->anc->anc != NULL) |
|---|
| 1613 | { |
|---|
| 1614 | p->length = p->anc->nodeDepth - p->nodeDepth; |
|---|
| 1615 | assert (p->length >= POS_MIN); |
|---|
| 1616 | p->upDateTi = YES; |
|---|
| 1617 | } |
|---|
| 1618 | |
|---|
| 1619 | /* set flags for update of cond likes from p and down to root */ |
|---|
| 1620 | q = p; |
|---|
| 1621 | while (q->anc != NULL) |
|---|
| 1622 | { |
|---|
| 1623 | q->upDateCl = YES; |
|---|
| 1624 | q = q->anc; |
|---|
| 1625 | } |
|---|
| 1626 | |
|---|
| 1627 | /* calculate proposal ratio */ |
|---|
| 1628 | (*lnProposalRatio) = 0.0; |
|---|
| 1629 | |
|---|
| 1630 | /* calculate prior ratio */ |
|---|
| 1631 | (*lnPriorRatio) += LnPriorProbGeneTree (geneTree, clockRate, speciesTree, popSizePtr); |
|---|
| 1632 | |
|---|
| 1633 | /* adjust proposal and prior ratio for relaxed clock models */ |
|---|
| 1634 | for (i=0; i<param->nSubParams; i++) |
|---|
| 1635 | { |
|---|
| 1636 | subParm = param->subParams[i]; |
|---|
| 1637 | if (subParm->paramType == P_CPPEVENTS) |
|---|
| 1638 | { |
|---|
| 1639 | nEvents = subParm->nEvents[2*chain+state[chain]]; |
|---|
| 1640 | lambda = *GetParamVals (modelSettings[subParm->relParts[0]].cppRate, chain, state[chain]); |
|---|
| 1641 | |
|---|
| 1642 | /* proposal ratio */ |
|---|
| 1643 | if (p->left != NULL) |
|---|
| 1644 | { |
|---|
| 1645 | (*lnProposalRatio) += nEvents[p->left->index ] * log (p->left->length / oldLeftLength); |
|---|
| 1646 | (*lnProposalRatio) += nEvents[p->right->index] * log (p->right->length / oldRightLength); |
|---|
| 1647 | } |
|---|
| 1648 | if (p->anc->anc != NULL) |
|---|
| 1649 | (*lnProposalRatio) += nEvents[p->index] * log (p->length / oldPLength); |
|---|
| 1650 | |
|---|
| 1651 | /* prior ratio */ |
|---|
| 1652 | if (p->anc->anc == NULL) // two branches changed in same direction |
|---|
| 1653 | (*lnPriorRatio) += lambda * (2.0 * (oldDepth - newDepth)); |
|---|
| 1654 | else if (p->left != NULL) // two branches changed in one direction, one branch in the other direction |
|---|
| 1655 | (*lnPriorRatio) += lambda * (oldDepth - newDepth); |
|---|
| 1656 | else /* if (p->left == NULL) */ // one branch changed |
|---|
| 1657 | (*lnPriorRatio) += lambda * (newDepth - oldDepth); |
|---|
| 1658 | |
|---|
| 1659 | /* update effective evolutionary lengths */ |
|---|
| 1660 | if (UpdateCppEvolLengths (subParm, p, chain) == ERROR) |
|---|
| 1661 | { |
|---|
| 1662 | abortMove = YES; |
|---|
| 1663 | return (NO_ERROR); |
|---|
| 1664 | } |
|---|
| 1665 | } |
|---|
| 1666 | else if (subParm->paramType == P_TK02BRANCHRATES) |
|---|
| 1667 | { |
|---|
| 1668 | nu = *GetParamVals (modelSettings[subParm->relParts[0]].tk02var, chain, state[chain]); |
|---|
| 1669 | tk02Rate = GetParamVals (subParm, chain, state[chain]); |
|---|
| 1670 | brlens = GetParamSubVals (subParm, chain, state[chain]); |
|---|
| 1671 | |
|---|
| 1672 | /* no proposal ratio effect */ |
|---|
| 1673 | |
|---|
| 1674 | /* prior ratio */ |
|---|
| 1675 | if (p->left != NULL) |
|---|
| 1676 | { |
|---|
| 1677 | (*lnPriorRatio) -= LnProbTK02LogNormal (tk02Rate[p->index], nu*oldLeftLength, tk02Rate[p->left->index]); |
|---|
| 1678 | (*lnPriorRatio) -= LnProbTK02LogNormal (tk02Rate[p->index], nu*oldRightLength, tk02Rate[p->right->index]); |
|---|
| 1679 | (*lnPriorRatio) += LnProbTK02LogNormal (tk02Rate[p->index], nu*p->left->length, tk02Rate[p->left->index]); |
|---|
| 1680 | (*lnPriorRatio) += LnProbTK02LogNormal (tk02Rate[p->index], nu*p->right->length, tk02Rate[p->right->index]); |
|---|
| 1681 | } |
|---|
| 1682 | if (p->anc->anc != NULL) |
|---|
| 1683 | { |
|---|
| 1684 | (*lnPriorRatio) -= LnProbTK02LogNormal (tk02Rate[p->anc->index], nu*oldPLength, tk02Rate[p->index]); |
|---|
| 1685 | (*lnPriorRatio) += LnProbTK02LogNormal (tk02Rate[p->anc->index], nu*p->length, tk02Rate[p->index]); |
|---|
| 1686 | } |
|---|
| 1687 | |
|---|
| 1688 | /* update effective evolutionary lengths */ |
|---|
| 1689 | if (p->left != NULL) |
|---|
| 1690 | { |
|---|
| 1691 | brlens[p->left->index] = p->left->length * (tk02Rate[p->left->index]+tk02Rate[p->index])/2.0; |
|---|
| 1692 | brlens[p->right->index] = p->right->length * (tk02Rate[p->right->index]+tk02Rate[p->index])/2.0; |
|---|
| 1693 | } |
|---|
| 1694 | if (p->anc->anc != NULL) |
|---|
| 1695 | brlens[p->index] = p->length * (tk02Rate[p->index]+tk02Rate[p->anc->index])/2.0; |
|---|
| 1696 | } |
|---|
| 1697 | else if (subParm->paramType == P_IGRBRANCHLENS) |
|---|
| 1698 | { |
|---|
| 1699 | igrvar = *GetParamVals (modelSettings[subParm->relParts[0]].igrvar, chain, state[chain]); |
|---|
| 1700 | igrRate = GetParamVals (subParm, chain, state[chain]); |
|---|
| 1701 | brlens = GetParamSubVals (subParm, chain, state[chain]); |
|---|
| 1702 | |
|---|
| 1703 | if (p->left != NULL) |
|---|
| 1704 | { |
|---|
| 1705 | (*lnPriorRatio) -= LnProbGamma (oldLeftLength /igrvar, 1.0/igrvar, brlens[p->left->index ]); |
|---|
| 1706 | (*lnPriorRatio) -= LnProbGamma (oldRightLength /igrvar, 1.0/igrvar, brlens[p->right->index]); |
|---|
| 1707 | } |
|---|
| 1708 | if (p->anc->anc != NULL) |
|---|
| 1709 | (*lnPriorRatio) -= LnProbGamma (oldPLength/igrvar, 1.0/igrvar, brlens[p->index]); |
|---|
| 1710 | |
|---|
| 1711 | if (p->left != NULL) |
|---|
| 1712 | { |
|---|
| 1713 | brlens[p->left->index ] = igrRate[p->left->index ] * p->left->length; |
|---|
| 1714 | brlens[p->right->index] = igrRate[p->right->index] * p->right->length; |
|---|
| 1715 | if (brlens[p->left->index] <= 0.0 || brlens[p->right->index] <= 0.0) |
|---|
| 1716 | { |
|---|
| 1717 | abortMove = YES; |
|---|
| 1718 | return (NO_ERROR); |
|---|
| 1719 | } |
|---|
| 1720 | (*lnProposalRatio) += log(p->left->length / oldLeftLength); |
|---|
| 1721 | (*lnProposalRatio) += log(p->right->length / oldRightLength); |
|---|
| 1722 | } |
|---|
| 1723 | if (p->anc->anc != NULL) |
|---|
| 1724 | { |
|---|
| 1725 | brlens[p->index] = igrRate[p->index] * p->length; |
|---|
| 1726 | if (brlens[p->index] <= 0.0) |
|---|
| 1727 | { |
|---|
| 1728 | abortMove = YES; |
|---|
| 1729 | return (NO_ERROR); |
|---|
| 1730 | } |
|---|
| 1731 | (*lnProposalRatio) += log(p->length / oldPLength); |
|---|
| 1732 | } |
|---|
| 1733 | |
|---|
| 1734 | if (p->left != NULL) |
|---|
| 1735 | { |
|---|
| 1736 | (*lnPriorRatio) += LnProbGamma (p->left->length /igrvar, 1.0/igrvar, brlens[p->left->index ]); |
|---|
| 1737 | (*lnPriorRatio) += LnProbGamma (p->right->length/igrvar, 1.0/igrvar, brlens[p->right->index]); |
|---|
| 1738 | } |
|---|
| 1739 | if (p->anc->anc != NULL) |
|---|
| 1740 | (*lnPriorRatio) += LnProbGamma (p->length /igrvar, 1.0/igrvar, brlens[p->index]); |
|---|
| 1741 | } |
|---|
| 1742 | } |
|---|
| 1743 | |
|---|
| 1744 | #if defined (DEBUG_CSLIDER) |
|---|
| 1745 | printf ("After node slider (gene tree):\n"); |
|---|
| 1746 | printf ("Old depth: %f -- New depth: %f -- LnPriorRatio %f -- LnProposalRatio %f\n", |
|---|
| 1747 | oldDepth, newDepth, (*lnPriorRatio), (*lnProposalRatio)); |
|---|
| 1748 | ShowNodes (t->root, 0, t->isRooted); |
|---|
| 1749 | getchar(); |
|---|
| 1750 | #endif |
|---|
| 1751 | |
|---|
| 1752 | return (NO_ERROR); |
|---|
| 1753 | |
|---|
| 1754 | } |
|---|
| 1755 | |
|---|
| 1756 | |
|---|
| 1757 | |
|---|
| 1758 | |
|---|
| 1759 | |
|---|
| 1760 | /*------------------------------------------------------------------ |
|---|
| 1761 | | |
|---|
| 1762 | | Move_SpeciesTree: Propose a new species tree |
|---|
| 1763 | | |
|---|
| 1764 | ------------------------------------------------------------------*/ |
|---|
| 1765 | int Move_SpeciesTree (Param *param, int chain, SafeLong *seed, MrBFlt *lnPriorRatio, MrBFlt *lnProposalRatio, MrBFlt *mvp) |
|---|
| 1766 | { |
|---|
| 1767 | int i, numGeneTrees, numUpperTriang; |
|---|
| 1768 | double newLnProb, oldLnProb, backwardLnProposalProb, forwardLnProposalProb, *modMinDepths, |
|---|
| 1769 | forwardLambda, backwardLambda, lambdaDiv, mean; |
|---|
| 1770 | Tree *newSpeciesTree, *oldSpeciesTree, **geneTrees; |
|---|
| 1771 | ModelInfo *m; |
|---|
| 1772 | ModelParams *mp; |
|---|
| 1773 | |
|---|
| 1774 | /* get tuning parameter (lambda divider) */ |
|---|
| 1775 | lambdaDiv = mvp[0]; |
|---|
| 1776 | |
|---|
| 1777 | /* calculate number of gene trees */ |
|---|
| 1778 | numGeneTrees = param->nSubParams; |
|---|
| 1779 | |
|---|
| 1780 | /* get model params */ |
|---|
| 1781 | mp = &modelParams[param->relParts[0]]; |
|---|
| 1782 | |
|---|
| 1783 | /* get model settings */ |
|---|
| 1784 | m = &modelSettings[param->relParts[0]]; |
|---|
| 1785 | |
|---|
| 1786 | /* get new and old species trees */ |
|---|
| 1787 | newSpeciesTree = GetTree (m->speciesTree, chain, state[chain]); |
|---|
| 1788 | oldSpeciesTree = GetTree (m->speciesTree, chain, state[chain] ^ 1); |
|---|
| 1789 | |
|---|
| 1790 | /* get gene trees */ |
|---|
| 1791 | geneTrees = (Tree **) SafeCalloc (numGeneTrees, sizeof(Tree*)); |
|---|
| 1792 | for (i=0; i<param->nSubParams; i++) |
|---|
| 1793 | geneTrees[i] = GetTree(param->subParams[i], chain, state[chain]); |
|---|
| 1794 | |
|---|
| 1795 | /* get minimum depth matrix */ |
|---|
| 1796 | GetMinDepthMatrix(geneTrees, numGeneTrees, depthMatrix); |
|---|
| 1797 | |
|---|
| 1798 | /* get forward lambda */ |
|---|
| 1799 | GetMeanDist(oldSpeciesTree, depthMatrix, &mean); |
|---|
| 1800 | forwardLambda = 1.0 / (mean * lambdaDiv); |
|---|
| 1801 | |
|---|
| 1802 | /* make a copy for modification */ |
|---|
| 1803 | numUpperTriang = numSpecies * (numSpecies - 1) / 2; |
|---|
| 1804 | modMinDepths = (double *) SafeCalloc (numUpperTriang, sizeof(double)); |
|---|
| 1805 | for (i=0; i<numUpperTriang; i++) |
|---|
| 1806 | modMinDepths[i] = depthMatrix[i]; |
|---|
| 1807 | |
|---|
| 1808 | /* modify minimum depth matrix */ |
|---|
| 1809 | ModifyDepthMatrix (forwardLambda, modMinDepths, seed); |
|---|
| 1810 | |
|---|
| 1811 | /* construct a new species tree from the modified constraints */ |
|---|
| 1812 | GetSpeciesTreeFromMinDepths(newSpeciesTree, modMinDepths); |
|---|
| 1813 | |
|---|
| 1814 | /* get lambda for back move */ |
|---|
| 1815 | GetMeanDist(newSpeciesTree, depthMatrix, &mean); |
|---|
| 1816 | backwardLambda = 1.0 / (mean * lambdaDiv); |
|---|
| 1817 | |
|---|
| 1818 | /* calculate proposal ratio */ |
|---|
| 1819 | backwardLnProposalProb = LnProposalProbSpeciesTree (oldSpeciesTree, depthMatrix, backwardLambda); |
|---|
| 1820 | forwardLnProposalProb = LnProposalProbSpeciesTree (newSpeciesTree, depthMatrix, forwardLambda ); |
|---|
| 1821 | (*lnProposalRatio) = backwardLnProposalProb - forwardLnProposalProb; |
|---|
| 1822 | |
|---|
| 1823 | #if defined (BEST_MPI_ENABLED) |
|---|
| 1824 | // Broadcast the proposed species tree to all processors if MPI version |
|---|
| 1825 | #endif |
|---|
| 1826 | |
|---|
| 1827 | #if defined (BEST_MPI_ENABLED) |
|---|
| 1828 | // Let each processor calculate the ln probability ratio of its current gene tree(s) |
|---|
| 1829 | // given the new and old species tree in the MPI version |
|---|
| 1830 | |
|---|
| 1831 | // Assemble the ln probability ratios across the processors and to lnPriorRatio |
|---|
| 1832 | #else |
|---|
| 1833 | /* calculate the ln probability ratio of the current gene trees |
|---|
| 1834 | given the new and old species trees */ |
|---|
| 1835 | newLnProb = LnJointGeneTreeSpeciesTreePr(geneTrees, numGeneTrees, newSpeciesTree, chain); |
|---|
| 1836 | oldLnProb = LnJointGeneTreeSpeciesTreePr(geneTrees, numGeneTrees, oldSpeciesTree, chain); |
|---|
| 1837 | #endif |
|---|
| 1838 | |
|---|
| 1839 | /* set (*lnPriorRatio) to ln probability ratio */ |
|---|
| 1840 | (*lnPriorRatio) = (newLnProb - oldLnProb); |
|---|
| 1841 | |
|---|
| 1842 | /* free allocated space */ |
|---|
| 1843 | free (modMinDepths); |
|---|
| 1844 | free (geneTrees); |
|---|
| 1845 | |
|---|
| 1846 | return (NO_ERROR); |
|---|
| 1847 | } |
|---|
| 1848 | |
|---|
| 1849 | |
|---|
| 1850 | |
|---|
| 1851 | |
|---|
| 1852 | |
|---|
| 1853 | /** Show upper triangular matrix */ |
|---|
| 1854 | void ShowUpperTriangMatrix (double *values, int squareSize) |
|---|
| 1855 | { |
|---|
| 1856 | int i, j, index; |
|---|
| 1857 | |
|---|
| 1858 | index = 0; |
|---|
| 1859 | printf ("Upper triang matrix:\n"); |
|---|
| 1860 | for(i=0; i<squareSize; i++) { |
|---|
| 1861 | for (j=0; j<i; j++) |
|---|
| 1862 | printf(" "); |
|---|
| 1863 | for(j=i+1; j<squareSize; j++) { |
|---|
| 1864 | printf("%.6f ", values[index]); |
|---|
| 1865 | index++; |
|---|
| 1866 | } |
|---|
| 1867 | printf("\n"); |
|---|
| 1868 | } |
|---|
| 1869 | printf("\n"); |
|---|
| 1870 | } |
|---|
| 1871 | |
|---|
| 1872 | |
|---|
| 1873 | |
|---|
| 1874 | |
|---|
| 1875 | |
|---|