| 1 | /* |
|---|
| 2 | * MrBayes 3 |
|---|
| 3 | * |
|---|
| 4 | * (c) 2002-2010 |
|---|
| 5 | * |
|---|
| 6 | * John P. Huelsenbeck |
|---|
| 7 | * Dept. Integrative Biology |
|---|
| 8 | * University of California, Berkeley |
|---|
| 9 | * Berkeley, CA 94720-3140 |
|---|
| 10 | * johnh@berkeley.edu |
|---|
| 11 | * |
|---|
| 12 | * Fredrik Ronquist |
|---|
| 13 | * Swedish Museum of Natural History |
|---|
| 14 | * Box 50007 |
|---|
| 15 | * SE-10405 Stockholm, SWEDEN |
|---|
| 16 | * fredrik.ronquist@nrm.se |
|---|
| 17 | * |
|---|
| 18 | * With important contributions by |
|---|
| 19 | * |
|---|
| 20 | * Paul van der Mark (paulvdm@sc.fsu.edu) |
|---|
| 21 | * Maxim Teslenko (maxim.teslenko@nrm.se) |
|---|
| 22 | * |
|---|
| 23 | * and by many users (run 'acknowledgements' to see more info) |
|---|
| 24 | * |
|---|
| 25 | * This program is free software; you can redistribute it and/or |
|---|
| 26 | * modify it under the terms of the GNU General Public License |
|---|
| 27 | * as published by the Free Software Foundation; either version 2 |
|---|
| 28 | * of the License, or (at your option) any later version. |
|---|
| 29 | * |
|---|
| 30 | * This program is distributed in the hope that it will be useful, |
|---|
| 31 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 32 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 33 | * GNU General Public License for more details (www.gnu.org). |
|---|
| 34 | * |
|---|
| 35 | */ |
|---|
| 36 | |
|---|
| 37 | #include <stdio.h> |
|---|
| 38 | #include <stdlib.h> |
|---|
| 39 | #include <time.h> |
|---|
| 40 | #include <math.h> |
|---|
| 41 | #include <string.h> |
|---|
| 42 | #include <ctype.h> |
|---|
| 43 | #include "mb.h" |
|---|
| 44 | #include "globals.h" |
|---|
| 45 | #include "command.h" |
|---|
| 46 | #include "bayes.h" |
|---|
| 47 | #include "sump.h" |
|---|
| 48 | #include "mbmath.h" |
|---|
| 49 | #include "mcmc.h" |
|---|
| 50 | #include "utils.h" |
|---|
| 51 | #if defined(__MWERKS__) |
|---|
| 52 | #include "SIOUX.h" |
|---|
| 53 | #endif |
|---|
| 54 | |
|---|
| 55 | const char* const svnRevisionSumpC="$Rev: 513 $"; /* Revision keyword which is expended/updated by svn on each commit/update*/ |
|---|
| 56 | |
|---|
| 57 | /* local prototypes */ |
|---|
| 58 | int CompareModelProbs (const void *x, const void *y); |
|---|
| 59 | int PrintModelStats (char *fileName, char **headerNames, int nHeaders, ParameterSample *parameterSamples, int nRuns, int nSamples); |
|---|
| 60 | int PrintOverlayPlot (MrBFlt **xVals, MrBFlt **yVals, int nRows, int startingFrom, int nSamples); |
|---|
| 61 | int PrintParamStats (char *fileName, char **headerNames, int nHeaders, ParameterSample *parameterSamples, int nRuns, int nSamples); |
|---|
| 62 | void PrintPlotHeader (void); |
|---|
| 63 | |
|---|
| 64 | |
|---|
| 65 | |
|---|
| 66 | /* AllocateParameterSamples: Allocate space for parameter samples */ |
|---|
| 67 | int AllocateParameterSamples (ParameterSample **parameterSamples, int numRuns, int numRows, int numColumns) |
|---|
| 68 | { |
|---|
| 69 | int i, j; |
|---|
| 70 | |
|---|
| 71 | (*parameterSamples) = (ParameterSample *) SafeCalloc (numColumns, sizeof(ParameterSample)); |
|---|
| 72 | if (!(*parameterSamples)) |
|---|
| 73 | return ERROR; |
|---|
| 74 | (*parameterSamples)[0].values = (MrBFlt **) SafeCalloc (numColumns * numRuns, sizeof (MrBFlt *)); |
|---|
| 75 | if (!((*parameterSamples)[0].values)) |
|---|
| 76 | { |
|---|
| 77 | FreeParameterSamples(*parameterSamples); |
|---|
| 78 | return ERROR; |
|---|
| 79 | } |
|---|
| 80 | (*parameterSamples)[0].values[0] = (MrBFlt *) SafeCalloc (numColumns * numRuns * numRows, sizeof (MrBFlt)); |
|---|
| 81 | for (i=1; i<numColumns; i++) |
|---|
| 82 | (*parameterSamples)[i].values = (*parameterSamples)[0].values + i*numRuns; |
|---|
| 83 | for (i=1; i<numRuns; i++) |
|---|
| 84 | (*parameterSamples)[0].values[i] = (*parameterSamples)[0].values[0] + i*numRows; |
|---|
| 85 | for (i=1; i<numColumns; i++) |
|---|
| 86 | { |
|---|
| 87 | for (j=0; j<numRuns; j++) |
|---|
| 88 | { |
|---|
| 89 | (*parameterSamples)[i].values[j] = (*parameterSamples)[0].values[0] + i*numRuns*numRows + j*numRows; |
|---|
| 90 | } |
|---|
| 91 | } |
|---|
| 92 | |
|---|
| 93 | return NO_ERROR; |
|---|
| 94 | } |
|---|
| 95 | |
|---|
| 96 | |
|---|
| 97 | |
|---|
| 98 | |
|---|
| 99 | |
|---|
| 100 | /** Compare function (ModelProb) for qsort. Note reverse sort order (from larger to smaller probs) */ |
|---|
| 101 | int CompareModelProbs (const void *x, const void *y) { |
|---|
| 102 | |
|---|
| 103 | if ((*((ModelProb *)(x))).prob > (*((ModelProb *)(y))).prob) |
|---|
| 104 | return -1; |
|---|
| 105 | else if ((*((ModelProb *)(x))).prob < (*((ModelProb *)(y))).prob) |
|---|
| 106 | return 1; |
|---|
| 107 | else |
|---|
| 108 | return 0; |
|---|
| 109 | } |
|---|
| 110 | |
|---|
| 111 | |
|---|
| 112 | |
|---|
| 113 | |
|---|
| 114 | |
|---|
| 115 | int DoSump (void) |
|---|
| 116 | |
|---|
| 117 | { |
|---|
| 118 | |
|---|
| 119 | int i, n, nHeaders=0, numRows, numColumns, numRuns, whichIsX, whichIsY, |
|---|
| 120 | unreliable, oneUnreliable, burnin, longestHeader, len; |
|---|
| 121 | MrBFlt mean, harm_mean; |
|---|
| 122 | char **headerNames=NULL, temp[120]; |
|---|
| 123 | SumpFileInfo fileInfo, firstFileInfo; |
|---|
| 124 | ParameterSample *parameterSamples=NULL; |
|---|
| 125 | FILE *fpLstat=NULL; |
|---|
| 126 | |
|---|
| 127 | |
|---|
| 128 | # if defined (MPI_ENABLED) |
|---|
| 129 | if (proc_id != 0) |
|---|
| 130 | return NO_ERROR; |
|---|
| 131 | # endif |
|---|
| 132 | |
|---|
| 133 | |
|---|
| 134 | /* tell user we are ready to go */ |
|---|
| 135 | if (sumpParams.numRuns == 1) |
|---|
| 136 | MrBayesPrint ("%s Summarizing parameters in file %s.p\n", spacer, sumpParams.sumpFileName); |
|---|
| 137 | else if (sumpParams.numRuns == 2) |
|---|
| 138 | MrBayesPrint ("%s Summarizing parameters in files %s.run1.p and %s.run2.p\n", spacer, sumpParams.sumpFileName, sumpParams.sumpFileName); |
|---|
| 139 | else /* if (sumpParams.numRuns > 2) */ |
|---|
| 140 | { |
|---|
| 141 | MrBayesPrint ("%s Summarizing parameters in %d files (%s.run1.p,\n", spacer, sumpParams.numRuns, sumpParams.sumpFileName); |
|---|
| 142 | MrBayesPrint ("%s %s.run2.p, etc)\n", spacer, sumpParams.sumpFileName); |
|---|
| 143 | } |
|---|
| 144 | MrBayesPrint ("%s Writing summary statistics to file %s.pstat\n", spacer, sumpParams.sumpFileName); |
|---|
| 145 | |
|---|
| 146 | if (chainParams.relativeBurnin == YES) |
|---|
| 147 | MrBayesPrint ("%s Using relative burnin ('relburnin=yes'), discarding the first %.0f %% of samples\n", |
|---|
| 148 | spacer, chainParams.burninFraction*100.0, chainParams.burninFraction); |
|---|
| 149 | else |
|---|
| 150 | MrBayesPrint ("%s Using absolute burnin ('relburnin=no'), discarding the first %d samples\n", |
|---|
| 151 | spacer, chainParams.chainBurnIn, chainParams.chainBurnIn); |
|---|
| 152 | |
|---|
| 153 | /* Initialize to silence warning. */ |
|---|
| 154 | firstFileInfo.numRows = 0; |
|---|
| 155 | firstFileInfo.numColumns = 0; |
|---|
| 156 | |
|---|
| 157 | /* examine input file(s) */ |
|---|
| 158 | for (i=0; i<sumpParams.numRuns; i++) |
|---|
| 159 | { |
|---|
| 160 | if (sumpParams.numRuns == 1) |
|---|
| 161 | sprintf (temp, "%s.p", sumpParams.sumpFileName); |
|---|
| 162 | else |
|---|
| 163 | sprintf (temp, "%s.run%d.p", sumpParams.sumpFileName, i+1); |
|---|
| 164 | |
|---|
| 165 | if (ExamineSumpFile (temp, &fileInfo, &headerNames, &nHeaders) == ERROR) |
|---|
| 166 | goto errorExit; |
|---|
| 167 | |
|---|
| 168 | if (i==0) |
|---|
| 169 | { |
|---|
| 170 | if (fileInfo.numRows == 0 || fileInfo.numColumns == 0) |
|---|
| 171 | { |
|---|
| 172 | MrBayesPrint ("%s The number of rows or columns in file %d is equal to zero\n", spacer, temp); |
|---|
| 173 | goto errorExit; |
|---|
| 174 | } |
|---|
| 175 | firstFileInfo = fileInfo; |
|---|
| 176 | } |
|---|
| 177 | else |
|---|
| 178 | { |
|---|
| 179 | if (firstFileInfo.numRows != fileInfo.numRows || firstFileInfo.numColumns != fileInfo.numColumns) |
|---|
| 180 | { |
|---|
| 181 | MrBayesPrint ("%s First file had %d rows and %d columns while file %s had %d rows and %d columns\n", |
|---|
| 182 | spacer, firstFileInfo.numRows, firstFileInfo.numColumns, temp, fileInfo.numRows, fileInfo.numColumns); |
|---|
| 183 | MrBayesPrint ("%s MrBayes expects the same number of rows and columns in all files\n", spacer); |
|---|
| 184 | goto errorExit; |
|---|
| 185 | } |
|---|
| 186 | } |
|---|
| 187 | } |
|---|
| 188 | |
|---|
| 189 | numRows = fileInfo.numRows; |
|---|
| 190 | numColumns = fileInfo.numColumns; |
|---|
| 191 | numRuns = sumpParams.numRuns; |
|---|
| 192 | |
|---|
| 193 | /* allocate space to hold parameter information */ |
|---|
| 194 | if (AllocateParameterSamples (¶meterSamples, numRuns, numRows, numColumns) == ERROR) |
|---|
| 195 | return ERROR; |
|---|
| 196 | |
|---|
| 197 | /* read samples */ |
|---|
| 198 | for (i=0; i<sumpParams.numRuns; i++) |
|---|
| 199 | { |
|---|
| 200 | /* derive file name */ |
|---|
| 201 | if (sumpParams.numRuns == 1) |
|---|
| 202 | sprintf (temp, "%s.p", sumpParams.sumpFileName); |
|---|
| 203 | else |
|---|
| 204 | sprintf (temp, "%s.run%d.p", sumpParams.sumpFileName, i+1); |
|---|
| 205 | |
|---|
| 206 | /* read samples */ |
|---|
| 207 | if (ReadParamSamples (temp, &fileInfo, parameterSamples, i) == ERROR) |
|---|
| 208 | goto errorExit; |
|---|
| 209 | } |
|---|
| 210 | |
|---|
| 211 | /* get length of longest header */ |
|---|
| 212 | longestHeader = 9; /* 9 is the length of the word "parameter" (for printing table) */ |
|---|
| 213 | for (i=0; i<nHeaders; i++) |
|---|
| 214 | { |
|---|
| 215 | len = (int) strlen(headerNames[i]); |
|---|
| 216 | if (len > longestHeader) |
|---|
| 217 | longestHeader = len; |
|---|
| 218 | } |
|---|
| 219 | |
|---|
| 220 | |
|---|
| 221 | /* Print header */ |
|---|
| 222 | PrintPlotHeader (); |
|---|
| 223 | |
|---|
| 224 | /* Print trace plots */ |
|---|
| 225 | if (FindHeader("Gen", headerNames, nHeaders, &whichIsX) == ERROR) |
|---|
| 226 | { |
|---|
| 227 | MrBayesPrint ("%s Could not find the 'Gen' column\n", spacer); |
|---|
| 228 | return ERROR; |
|---|
| 229 | } |
|---|
| 230 | if (FindHeader("LnL", headerNames, nHeaders, &whichIsY) == ERROR) |
|---|
| 231 | { |
|---|
| 232 | MrBayesPrint ("%s Could not find the 'LnL' column\n", spacer); |
|---|
| 233 | return ERROR; |
|---|
| 234 | } |
|---|
| 235 | |
|---|
| 236 | |
|---|
| 237 | if (sumpParams.numRuns > 1) |
|---|
| 238 | { |
|---|
| 239 | if (sumpParams.allRuns == YES) |
|---|
| 240 | { |
|---|
| 241 | for (i=0; i<sumpParams.numRuns; i++) |
|---|
| 242 | { |
|---|
| 243 | MrBayesPrint ("\n%s Samples from run %d:\n", spacer, i+1); |
|---|
| 244 | if (PrintPlot (parameterSamples[whichIsX].values[i], parameterSamples[whichIsY].values[i], numRows) == ERROR) |
|---|
| 245 | goto errorExit; |
|---|
| 246 | } |
|---|
| 247 | } |
|---|
| 248 | else |
|---|
| 249 | { |
|---|
| 250 | if (PrintOverlayPlot (parameterSamples[whichIsX].values, parameterSamples[whichIsY].values, numRuns, 0, numRows) == ERROR) |
|---|
| 251 | goto errorExit; |
|---|
| 252 | } |
|---|
| 253 | } |
|---|
| 254 | else |
|---|
| 255 | { |
|---|
| 256 | if (PrintPlot (parameterSamples[whichIsX].values[0], parameterSamples[whichIsY].values[0], numRows) == ERROR) |
|---|
| 257 | goto errorExit; |
|---|
| 258 | } |
|---|
| 259 | |
|---|
| 260 | /* calculate arithmetic and harmonic means of likelihoods */ |
|---|
| 261 | |
|---|
| 262 | /* open output file */ |
|---|
| 263 | strncpy (temp, sumpParams.sumpOutfile, 90); |
|---|
| 264 | strcat (temp, ".lstat"); |
|---|
| 265 | fpLstat = OpenNewMBPrintFile (temp); |
|---|
| 266 | if (!fpLstat) |
|---|
| 267 | goto errorExit; |
|---|
| 268 | |
|---|
| 269 | /* print unique identifier to the output file */ |
|---|
| 270 | if (strlen(stamp) > 1) |
|---|
| 271 | fprintf (fpLstat, "[ID: %s]\n", stamp); |
|---|
| 272 | |
|---|
| 273 | /* print header */ |
|---|
| 274 | if (sumpParams.numRuns == 1) |
|---|
| 275 | MrBayesPrintf(fpLstat, "arithmetic_mean\tharmonic_mean\tvalues_discarded\n"); |
|---|
| 276 | else |
|---|
| 277 | MrBayesPrintf(fpLstat, "run\tarithmetic_mean\tharmonic_mean\tvalues_discarded\n"); |
|---|
| 278 | |
|---|
| 279 | oneUnreliable = NO; |
|---|
| 280 | for (n=0; n<sumpParams.numRuns; n++) |
|---|
| 281 | { |
|---|
| 282 | unreliable = NO; |
|---|
| 283 | if (HarmonicArithmeticMeanOnLogs (parameterSamples[whichIsY].values[n], numRows, &mean, &harm_mean) == ERROR) |
|---|
| 284 | { |
|---|
| 285 | unreliable = YES; |
|---|
| 286 | oneUnreliable = YES; |
|---|
| 287 | } |
|---|
| 288 | if (sumpParams.numRuns == 1) |
|---|
| 289 | { |
|---|
| 290 | MrBayesPrint ("\n"); |
|---|
| 291 | MrBayesPrint ("%s Estimated marginal likelihoods for run sampled in file \"%s.p\":\n", spacer, sumpParams.sumpFileName); |
|---|
| 292 | MrBayesPrint ("%s (Use the harmonic mean for Bayes factor comparisons of models)\n", spacer, sumpParams.sumpFileName); |
|---|
| 293 | MrBayesPrint ("%s (Values are saved to the file %s.lstat)\n\n", spacer, sumpParams.sumpOutfile); |
|---|
| 294 | MrBayesPrint ("%s Arithmetic mean Harmonic mean\n", spacer); |
|---|
| 295 | MrBayesPrint ("%s --------------------------------\n", spacer); |
|---|
| 296 | if (unreliable == NO) |
|---|
| 297 | MrBayesPrint ("%s %9.2lf %9.2lf\n", spacer, mean, harm_mean); |
|---|
| 298 | else |
|---|
| 299 | MrBayesPrint ("%s %9.2lf * %9.2lf *\n", spacer, mean, harm_mean); |
|---|
| 300 | |
|---|
| 301 | /* print to file */ |
|---|
| 302 | MrBayesPrintf(fpLstat, "%s\t", MbPrintNum(mean)); |
|---|
| 303 | MrBayesPrintf(fpLstat, "%s\t", MbPrintNum(harm_mean)); |
|---|
| 304 | if (unreliable == YES) |
|---|
| 305 | MrBayesPrintf(fpLstat, "yes\n"); |
|---|
| 306 | else |
|---|
| 307 | MrBayesPrintf(fpLstat, "no\n"); |
|---|
| 308 | } |
|---|
| 309 | else |
|---|
| 310 | { |
|---|
| 311 | if (n == 0) |
|---|
| 312 | { |
|---|
| 313 | MrBayesPrint ("\n"); |
|---|
| 314 | MrBayesPrint ("%s Estimated marginal likelihoods for runs sampled in files\n", spacer); |
|---|
| 315 | if (sumpParams.numRuns > 2) |
|---|
| 316 | MrBayesPrint ("%s \"%s.run1.p\", \"%s.run2.p\", etc:\n", spacer, sumpParams.sumpFileName, sumpParams.sumpFileName); |
|---|
| 317 | else /* if (sumpParams.numRuns == 2) */ |
|---|
| 318 | MrBayesPrint ("%s \"%s.run1.p\" and \"%s.run2.p\":\n", spacer, sumpParams.sumpFileName, sumpParams.sumpFileName); |
|---|
| 319 | MrBayesPrint ("%s (Use the harmonic mean for Bayes factor comparisons of models)\n\n", spacer, sumpParams.sumpFileName); |
|---|
| 320 | MrBayesPrint ("%s (Values are saved to the file %s.lstat)\n\n", spacer, sumpParams.sumpOutfile); |
|---|
| 321 | MrBayesPrint ("%s Run Arithmetic mean Harmonic mean\n", spacer); |
|---|
| 322 | MrBayesPrint ("%s --------------------------------------\n", spacer); |
|---|
| 323 | } |
|---|
| 324 | if (unreliable == NO) |
|---|
| 325 | MrBayesPrint ("%s %3d %9.2lf %9.2lf\n", spacer, n+1, mean, harm_mean); |
|---|
| 326 | else |
|---|
| 327 | MrBayesPrint ("%s %3d %9.2lf * %9.2lf *\n", spacer, n+1, mean, harm_mean); |
|---|
| 328 | |
|---|
| 329 | /* print to file */ |
|---|
| 330 | MrBayesPrintf(fpLstat, "%d\t", n+1); |
|---|
| 331 | MrBayesPrintf(fpLstat, "%s\t", MbPrintNum(mean)); |
|---|
| 332 | MrBayesPrintf(fpLstat, "%s\t", MbPrintNum(harm_mean)); |
|---|
| 333 | if (unreliable == YES) |
|---|
| 334 | MrBayesPrintf(fpLstat, "yes\n"); |
|---|
| 335 | else |
|---|
| 336 | MrBayesPrintf(fpLstat, "no\n"); |
|---|
| 337 | } |
|---|
| 338 | } /* next run */ |
|---|
| 339 | if (sumpParams.numRuns == 1) |
|---|
| 340 | { |
|---|
| 341 | MrBayesPrint ("%s --------------------------------\n", spacer); |
|---|
| 342 | } |
|---|
| 343 | else |
|---|
| 344 | { |
|---|
| 345 | if (HarmonicArithmeticMeanOnLogs (parameterSamples[whichIsY].values[0], sumpParams.numRuns*numRows, &mean, &harm_mean) == ERROR) |
|---|
| 346 | { |
|---|
| 347 | unreliable = YES; |
|---|
| 348 | oneUnreliable = YES; |
|---|
| 349 | } |
|---|
| 350 | else |
|---|
| 351 | unreliable = NO; |
|---|
| 352 | MrBayesPrint ("%s --------------------------------------\n", spacer); |
|---|
| 353 | if (unreliable == YES) |
|---|
| 354 | MrBayesPrint ("%s TOTAL %9.2lf * %9.2lf *\n", spacer, mean, harm_mean); |
|---|
| 355 | else |
|---|
| 356 | MrBayesPrint ("%s TOTAL %9.2lf %9.2lf\n", spacer, mean, harm_mean); |
|---|
| 357 | MrBayesPrint ("%s --------------------------------------\n", spacer); |
|---|
| 358 | |
|---|
| 359 | /* print total to file */ |
|---|
| 360 | MrBayesPrintf(fpLstat, "all\t"); |
|---|
| 361 | MrBayesPrintf(fpLstat, "%s\t", MbPrintNum(mean)); |
|---|
| 362 | MrBayesPrintf(fpLstat, "%s\t", MbPrintNum(harm_mean)); |
|---|
| 363 | if (unreliable == YES) |
|---|
| 364 | MrBayesPrintf(fpLstat, "yes\n"); |
|---|
| 365 | else |
|---|
| 366 | MrBayesPrintf(fpLstat, "no\n"); |
|---|
| 367 | } |
|---|
| 368 | if (oneUnreliable == YES) |
|---|
| 369 | { |
|---|
| 370 | MrBayesPrint ("%s * These estimates may be unreliable because \n", spacer); |
|---|
| 371 | MrBayesPrint ("%s some extreme values were excluded\n\n", spacer); |
|---|
| 372 | } |
|---|
| 373 | else |
|---|
| 374 | { |
|---|
| 375 | MrBayesPrint ("\n"); |
|---|
| 376 | } |
|---|
| 377 | SafeFclose(&fpLstat); |
|---|
| 378 | |
|---|
| 379 | /* Calculate burnin */ |
|---|
| 380 | burnin = fileInfo.firstParamLine - fileInfo.headerLine; |
|---|
| 381 | |
|---|
| 382 | /* Print parameter information to screen and to file. */ |
|---|
| 383 | if (sumpParams.numRuns > 1 && sumpParams.allRuns == YES) |
|---|
| 384 | { |
|---|
| 385 | for (i=0; i<sumpParams.numRuns; i++) |
|---|
| 386 | { |
|---|
| 387 | /* print table header */ |
|---|
| 388 | MrBayesPrint ("\n"); |
|---|
| 389 | MrBayesPrint ("%s Model parameter summaries for run sampled in file \"%s.run%d.p\":\n", spacer, sumpParams.sumpFileName, i+1); |
|---|
| 390 | MrBayesPrint ("%s (Based on %d samples out of a total of %d samples from this analysis)\n\n", spacer, numRows, numRows + burnin); |
|---|
| 391 | if (PrintParamStats (sumpParams.sumpOutfile, headerNames, nHeaders, parameterSamples, numRuns, numRows) == ERROR) |
|---|
| 392 | goto errorExit; |
|---|
| 393 | if (PrintModelStats (sumpParams.sumpOutfile, headerNames, nHeaders, parameterSamples, numRuns, numRows) == ERROR) |
|---|
| 394 | goto errorExit; |
|---|
| 395 | } |
|---|
| 396 | } |
|---|
| 397 | |
|---|
| 398 | MrBayesPrint ("\n"); |
|---|
| 399 | if (sumpParams.numRuns == 1) |
|---|
| 400 | MrBayesPrint ("%s Model parameter summaries for run sampled in file \"%s\":\n", spacer, sumpParams.sumpFileName); |
|---|
| 401 | else if (sumpParams.numRuns == 2) |
|---|
| 402 | { |
|---|
| 403 | MrBayesPrint ("%s Model parameter summaries over the runs sampled in files\n", spacer); |
|---|
| 404 | MrBayesPrint ("%s \"%s.run1.p\" and \"%s.run2.p\":\n", spacer, sumpParams.sumpFileName, sumpParams.sumpFileName); |
|---|
| 405 | } |
|---|
| 406 | else |
|---|
| 407 | { |
|---|
| 408 | MrBayesPrint ("%s Model parameter summaries over all %d runs sampled in files\n", spacer, sumpParams.numRuns); |
|---|
| 409 | MrBayesPrint ("%s \"%s.run1.p\", \"%s.run2.p\" etc:\n", spacer, sumpParams.sumpFileName, sumpParams.sumpFileName); |
|---|
| 410 | } |
|---|
| 411 | |
|---|
| 412 | if (sumpParams.numRuns == 1) |
|---|
| 413 | { |
|---|
| 414 | MrBayesPrint ("%s Based on a total of %d samples out of a total of %d samples\n", spacer, numRows, numRows + burnin); |
|---|
| 415 | MrBayesPrint ("%s from this analysis.\n", spacer); |
|---|
| 416 | } |
|---|
| 417 | else |
|---|
| 418 | { |
|---|
| 419 | MrBayesPrint ("%s Summaries are based on a total of %d samples from %d runs.\n", spacer, sumpParams.numRuns*numRows, sumpParams.numRuns); |
|---|
| 420 | MrBayesPrint ("%s Each run produced %d samples of which %d samples were included.\n", spacer, numRows + burnin, numRows); |
|---|
| 421 | } |
|---|
| 422 | MrBayesPrint ("%s Parameter summaries saved to file \"%s.pstat\".\n", spacer, sumpParams.sumpOutfile); |
|---|
| 423 | |
|---|
| 424 | if (PrintParamStats (sumpParams.sumpOutfile, headerNames, nHeaders, parameterSamples, numRuns, numRows) == ERROR) |
|---|
| 425 | goto errorExit; |
|---|
| 426 | if (PrintModelStats (sumpParams.sumpOutfile, headerNames, nHeaders, parameterSamples, numRuns, numRows) == ERROR) |
|---|
| 427 | goto errorExit; |
|---|
| 428 | |
|---|
| 429 | /* free memory */ |
|---|
| 430 | FreeParameterSamples(parameterSamples); |
|---|
| 431 | for (i=0; i<nHeaders; i++) |
|---|
| 432 | free (headerNames[i]); |
|---|
| 433 | free (headerNames); |
|---|
| 434 | |
|---|
| 435 | expecting = Expecting(COMMAND); |
|---|
| 436 | strcpy (spacer, ""); |
|---|
| 437 | |
|---|
| 438 | return (NO_ERROR); |
|---|
| 439 | |
|---|
| 440 | errorExit: |
|---|
| 441 | |
|---|
| 442 | /* free memory */ |
|---|
| 443 | FreeParameterSamples (parameterSamples); |
|---|
| 444 | for (i=0; i<nHeaders; i++) |
|---|
| 445 | free (headerNames[i]); |
|---|
| 446 | free (headerNames); |
|---|
| 447 | |
|---|
| 448 | if (fpLstat) |
|---|
| 449 | SafeFclose (&fpLstat); |
|---|
| 450 | |
|---|
| 451 | expecting = Expecting(COMMAND); |
|---|
| 452 | strcpy (spacer, ""); |
|---|
| 453 | |
|---|
| 454 | return (ERROR); |
|---|
| 455 | } |
|---|
| 456 | |
|---|
| 457 | |
|---|
| 458 | |
|---|
| 459 | |
|---|
| 460 | int DoSumSs (void) |
|---|
| 461 | { |
|---|
| 462 | |
|---|
| 463 | int i, nHeaders=0, numRows, numColumns, numRuns, whichIsX, whichIsY, |
|---|
| 464 | longestHeader, len; |
|---|
| 465 | char **headerNames=NULL, temp[120]; |
|---|
| 466 | SumpFileInfo fileInfo, firstFileInfo; |
|---|
| 467 | ParameterSample *parameterSamples=NULL; |
|---|
| 468 | int stepIndexSS,numSamplesInStepSS, stepBeginSS, stepBurnin; |
|---|
| 469 | MrBFlt *lnlp, *nextSteplnlp, *firstlnlp; |
|---|
| 470 | MrBFlt *marginalLnLSS=NULL,stepScalerSS,stepAcumulatorSS, stepLengthSS, tmpMfl; |
|---|
| 471 | int beginPrint, countPrint; |
|---|
| 472 | float tmpf; |
|---|
| 473 | MrBFlt **plotArrayY=NULL,**plotArrayX=NULL; |
|---|
| 474 | int j,k,count,result; |
|---|
| 475 | MrBFlt sum; |
|---|
| 476 | int firstPass = YES; |
|---|
| 477 | |
|---|
| 478 | # if defined (MPI_ENABLED) |
|---|
| 479 | if (proc_id != 0) |
|---|
| 480 | return NO_ERROR; |
|---|
| 481 | # endif |
|---|
| 482 | |
|---|
| 483 | chainParams.isSS=YES; |
|---|
| 484 | |
|---|
| 485 | /* tell user we are ready to go */ |
|---|
| 486 | if (sumssParams.numRuns == 1) |
|---|
| 487 | MrBayesPrint ("%s Summarizing parameters in file %s.p\n", spacer, sumpParams.sumpFileName); |
|---|
| 488 | else if (sumssParams.numRuns == 2) |
|---|
| 489 | MrBayesPrint ("%s Summarizing parameters in files %s.run1.p and %s.run2.p\n", spacer, sumpParams.sumpFileName, sumpParams.sumpFileName); |
|---|
| 490 | else /* if (sumssParams.numRuns > 2) */ |
|---|
| 491 | { |
|---|
| 492 | MrBayesPrint ("%s Summarizing parameters in %d files (%s.run1.p,\n", spacer, sumssParams.numRuns, sumpParams.sumpFileName); |
|---|
| 493 | MrBayesPrint ("%s %s.run2.p, etc)\n", spacer, sumpParams.sumpFileName); |
|---|
| 494 | } |
|---|
| 495 | //MrBayesPrint ("%s Writing summary statistics to file %s.pstat\n", spacer, sumpParams.sumpFileName); |
|---|
| 496 | |
|---|
| 497 | if (chainParams.relativeBurnin == YES) |
|---|
| 498 | MrBayesPrint ("%s Using relative burnin ('relburnin=yes'), discarding the first %.0f %% of samples within each step.\n", |
|---|
| 499 | spacer, chainParams.burninFraction*100.0, chainParams.burninFraction); |
|---|
| 500 | else |
|---|
| 501 | MrBayesPrint ("%s Using absolute burnin ('relburnin=no'), discarding the first %d samples within each step.\n", |
|---|
| 502 | spacer, chainParams.chainBurnIn, chainParams.chainBurnIn); |
|---|
| 503 | |
|---|
| 504 | /* Initialize to silence warning. */ |
|---|
| 505 | firstFileInfo.numRows = 0; |
|---|
| 506 | firstFileInfo.numColumns = 0; |
|---|
| 507 | |
|---|
| 508 | /* examine input file(s) */ |
|---|
| 509 | for (i=0; i<sumssParams.numRuns; i++) |
|---|
| 510 | { |
|---|
| 511 | if (sumssParams.numRuns == 1) |
|---|
| 512 | sprintf (temp, "%s.p", sumpParams.sumpFileName); |
|---|
| 513 | else |
|---|
| 514 | sprintf (temp, "%s.run%d.p", sumpParams.sumpFileName, i+1); |
|---|
| 515 | |
|---|
| 516 | if (ExamineSumpFile (temp, &fileInfo, &headerNames, &nHeaders) == ERROR) |
|---|
| 517 | goto errorExit; |
|---|
| 518 | |
|---|
| 519 | if (i==0) |
|---|
| 520 | { |
|---|
| 521 | if (fileInfo.numRows == 0 || fileInfo.numColumns == 0) |
|---|
| 522 | { |
|---|
| 523 | MrBayesPrint ("%s The number of rows or columns in file %d is equal to zero\n", spacer, temp); |
|---|
| 524 | goto errorExit; |
|---|
| 525 | } |
|---|
| 526 | firstFileInfo = fileInfo; |
|---|
| 527 | } |
|---|
| 528 | else |
|---|
| 529 | { |
|---|
| 530 | if (firstFileInfo.numRows != fileInfo.numRows || firstFileInfo.numColumns != fileInfo.numColumns) |
|---|
| 531 | { |
|---|
| 532 | MrBayesPrint ("%s First file had %d rows and %d columns while file %s had %d rows and %d columns\n", |
|---|
| 533 | spacer, firstFileInfo.numRows, firstFileInfo.numColumns, temp, fileInfo.numRows, fileInfo.numColumns); |
|---|
| 534 | MrBayesPrint ("%s MrBayes expects the same number of rows and columns in all files\n", spacer); |
|---|
| 535 | goto errorExit; |
|---|
| 536 | } |
|---|
| 537 | } |
|---|
| 538 | } |
|---|
| 539 | |
|---|
| 540 | numRows = fileInfo.numRows; |
|---|
| 541 | numColumns = fileInfo.numColumns; |
|---|
| 542 | numRuns = sumssParams.numRuns; |
|---|
| 543 | |
|---|
| 544 | /* allocate space to hold parameter information */ |
|---|
| 545 | if (AllocateParameterSamples (¶meterSamples, numRuns, numRows, numColumns) == ERROR) |
|---|
| 546 | goto errorExit; |
|---|
| 547 | |
|---|
| 548 | /* read samples */ |
|---|
| 549 | for (i=0; i<sumssParams.numRuns; i++) |
|---|
| 550 | { |
|---|
| 551 | /* derive file name */ |
|---|
| 552 | if (sumssParams.numRuns == 1) |
|---|
| 553 | sprintf (temp, "%s.p", sumpParams.sumpFileName); |
|---|
| 554 | else |
|---|
| 555 | sprintf (temp, "%s.run%d.p", sumpParams.sumpFileName, i+1); |
|---|
| 556 | |
|---|
| 557 | /* read samples */ |
|---|
| 558 | if (ReadParamSamples (temp, &fileInfo, parameterSamples, i) == ERROR) |
|---|
| 559 | goto errorExit; |
|---|
| 560 | } |
|---|
| 561 | |
|---|
| 562 | /* get length of longest header */ |
|---|
| 563 | longestHeader = 9; /* 9 is the length of the word "parameter" (for printing table) */ |
|---|
| 564 | for (i=0; i<nHeaders; i++) |
|---|
| 565 | { |
|---|
| 566 | len = (int) strlen(headerNames[i]); |
|---|
| 567 | if (len > longestHeader) |
|---|
| 568 | longestHeader = len; |
|---|
| 569 | } |
|---|
| 570 | |
|---|
| 571 | |
|---|
| 572 | /* Print trace plots */ |
|---|
| 573 | if (FindHeader("Gen", headerNames, nHeaders, &whichIsX) == ERROR) |
|---|
| 574 | { |
|---|
| 575 | MrBayesPrint ("%s Could not find the 'Gen' column\n", spacer); |
|---|
| 576 | goto errorExit; |
|---|
| 577 | } |
|---|
| 578 | if (FindHeader("LnL", headerNames, nHeaders, &whichIsY) == ERROR) |
|---|
| 579 | { |
|---|
| 580 | MrBayesPrint ("%s Could not find the 'LnL' column\n", spacer); |
|---|
| 581 | goto errorExit; |
|---|
| 582 | } |
|---|
| 583 | |
|---|
| 584 | |
|---|
| 585 | |
|---|
| 586 | if(chainParams.burninSS > 0) |
|---|
| 587 | { |
|---|
| 588 | stepBeginSS = chainParams.burninSS + 1; |
|---|
| 589 | } |
|---|
| 590 | else |
|---|
| 591 | { |
|---|
| 592 | numSamplesInStepSS = (numRows-1)/(chainParams.numStepsSS-chainParams.burninSS); |
|---|
| 593 | stepBeginSS = numSamplesInStepSS + 1; |
|---|
| 594 | } |
|---|
| 595 | |
|---|
| 596 | numSamplesInStepSS = (numRows - stepBeginSS)/chainParams.numStepsSS; |
|---|
| 597 | if( (numRows - stepBeginSS)%chainParams.numStepsSS!=0 ) |
|---|
| 598 | { |
|---|
| 599 | MrBayesPrint ("%s Error: Number of samples could not be evenly devided among steps (%d samples among %d steps). \n", spacer,(numRows - stepBeginSS),chainParams.numStepsSS); |
|---|
| 600 | goto errorExit; |
|---|
| 601 | } |
|---|
| 602 | |
|---|
| 603 | |
|---|
| 604 | if( chainParams.relativeBurnin == YES ) |
|---|
| 605 | { |
|---|
| 606 | stepBurnin = (int)(numSamplesInStepSS*chainParams.burninFraction); |
|---|
| 607 | } |
|---|
| 608 | else |
|---|
| 609 | { |
|---|
| 610 | stepBurnin = chainParams.chainBurnIn; |
|---|
| 611 | if(stepBurnin >= numSamplesInStepSS ) |
|---|
| 612 | { |
|---|
| 613 | MrBayesPrint ("%s Error: Burnin in each step(%d) is longer then the step itself(%d). \n", spacer,stepBurnin, numSamplesInStepSS ); |
|---|
| 614 | goto errorExit; |
|---|
| 615 | } |
|---|
| 616 | } |
|---|
| 617 | |
|---|
| 618 | marginalLnLSS = (MrBFlt *) SafeCalloc (sumssParams.numRuns, sizeof(MrBFlt)); |
|---|
| 619 | /*Preparing and printing joined plot.*/ |
|---|
| 620 | plotArrayY = (MrBFlt **) SafeCalloc (sumssParams.numRuns+1, sizeof(MrBFlt*)); |
|---|
| 621 | for(i=0; i<sumssParams.numRuns+1; i++) |
|---|
| 622 | plotArrayY[i] = (MrBFlt *) SafeCalloc (numSamplesInStepSS, sizeof(MrBFlt)); |
|---|
| 623 | |
|---|
| 624 | plotArrayX = (MrBFlt **) SafeCalloc (sumssParams.numRuns, sizeof(MrBFlt*)); |
|---|
| 625 | for(i=0; i<sumssParams.numRuns; i++) |
|---|
| 626 | { |
|---|
| 627 | plotArrayX[i] = (MrBFlt *) SafeCalloc (numSamplesInStepSS, sizeof(MrBFlt)); |
|---|
| 628 | for(j=0; j<numSamplesInStepSS; j++) |
|---|
| 629 | plotArrayX[i][j]=j+1; |
|---|
| 630 | } |
|---|
| 631 | |
|---|
| 632 | MrBayesPrint ("%s In total %d sampls are red from .p files.\n", spacer, numRows ); |
|---|
| 633 | MrBayesPrint ("\n"); |
|---|
| 634 | MrBayesPrint ("%s Marginal likelihood (in natural log units) is estimated using stepping-stone sampling\n", spacer ); |
|---|
| 635 | MrBayesPrint ("%s based on %d steps with %d samples within each step. \n", spacer, chainParams.numStepsSS, numSamplesInStepSS ); |
|---|
| 636 | MrBayesPrint ("%s First %d samples (including generation 0) are discarded as initial burn-in.\n", spacer, stepBeginSS); |
|---|
| 637 | if(chainParams.startFromPriorSS==YES) |
|---|
| 638 | MrBayesPrint ("%s Sampling is assumed have being done from prior to posterior.\n", spacer); |
|---|
| 639 | else |
|---|
| 640 | { |
|---|
| 641 | MrBayesPrint ("%s Sampling is assumed have being done from posterior to prior.\n", spacer); |
|---|
| 642 | } |
|---|
| 643 | |
|---|
| 644 | sumssTable: |
|---|
| 645 | |
|---|
| 646 | MrBayesPrint ("\n\n%s Step contribution table.\n\n",spacer); |
|---|
| 647 | MrBayesPrint (" Columns in the table: \n"); |
|---|
| 648 | MrBayesPrint (" Step -- Index of the step \n"); |
|---|
| 649 | MrBayesPrint (" runX -- Contribution to the marginal log likelihood of run X, i.e. marginal \n"); |
|---|
| 650 | MrBayesPrint (" log likelihood for run X is the sum across all steps in column runX.\n\n"); |
|---|
| 651 | |
|---|
| 652 | if( firstPass == YES && chainParams.relativeBurnin == YES ) |
|---|
| 653 | MrBayesPrint ("%s The table entrances are based on samples excluding burn-in %d samples (%d%%) \n", spacer, stepBurnin,(int)(100*chainParams.burninFraction) ); |
|---|
| 654 | else |
|---|
| 655 | MrBayesPrint ("%s The table entrances are based on samples excluding burn-in %d samples \n", spacer, stepBurnin); |
|---|
| 656 | MrBayesPrint ("%s discarded at the begining of each step. \n\n", spacer); |
|---|
| 657 | |
|---|
| 658 | //MrBayesPrint ("%s Run Marginal likelihood (ln)\n",spacer); |
|---|
| 659 | //MrBayesPrint ("%s ------------------------------\n",spacer); |
|---|
| 660 | MrBayesPrint (" Step"); |
|---|
| 661 | for (j=0; j<sumssParams.numRuns ; j++) |
|---|
| 662 | { |
|---|
| 663 | if(j<9) |
|---|
| 664 | MrBayesPrint (" "); |
|---|
| 665 | MrBayesPrint (" run%d", j+1); |
|---|
| 666 | } |
|---|
| 667 | MrBayesPrint ("\n"); |
|---|
| 668 | for(i=0; i<sumssParams.numRuns; i++) |
|---|
| 669 | { |
|---|
| 670 | marginalLnLSS[i] = 0.0; |
|---|
| 671 | } |
|---|
| 672 | for(stepIndexSS = chainParams.numStepsSS-1; stepIndexSS>=0; stepIndexSS--) |
|---|
| 673 | { |
|---|
| 674 | if(chainParams.startFromPriorSS==YES) |
|---|
| 675 | { |
|---|
| 676 | stepLengthSS = BetaQuantile( chainParams.alphaSS, 1.0, (MrBFlt)(chainParams.numStepsSS-stepIndexSS)/(MrBFlt)chainParams.numStepsSS)-BetaQuantile( chainParams.alphaSS, 1.0, (MrBFlt)(chainParams.numStepsSS-1-stepIndexSS)/(MrBFlt)chainParams.numStepsSS); |
|---|
| 677 | } |
|---|
| 678 | else |
|---|
| 679 | { |
|---|
| 680 | stepLengthSS = BetaQuantile ( chainParams.alphaSS, 1.0, (MrBFlt)(stepIndexSS+1)/(MrBFlt)chainParams.numStepsSS) - BetaQuantile ( chainParams.alphaSS, 1.0, (MrBFlt)stepIndexSS/(MrBFlt)chainParams.numStepsSS); |
|---|
| 681 | } |
|---|
| 682 | MrBayesPrint (" %3d ", chainParams.numStepsSS-stepIndexSS); |
|---|
| 683 | for(i=0; i<sumssParams.numRuns; i++) |
|---|
| 684 | { |
|---|
| 685 | lnlp = parameterSamples[whichIsY].values[i] + stepBeginSS + (chainParams.numStepsSS-stepIndexSS-1)*numSamplesInStepSS; |
|---|
| 686 | nextSteplnlp = lnlp+numSamplesInStepSS; |
|---|
| 687 | lnlp+= stepBurnin; |
|---|
| 688 | stepAcumulatorSS = 0.0; |
|---|
| 689 | stepScalerSS = *lnlp*stepLengthSS; |
|---|
| 690 | while( lnlp<nextSteplnlp ) |
|---|
| 691 | { |
|---|
| 692 | if( *lnlp*stepLengthSS > stepScalerSS + 200.0 ) |
|---|
| 693 | { |
|---|
| 694 | // adjust scaler; |
|---|
| 695 | stepAcumulatorSS /= exp( *lnlp*stepLengthSS - 100.0 - stepScalerSS ); |
|---|
| 696 | stepScalerSS= *lnlp*stepLengthSS - 100.0; |
|---|
| 697 | } |
|---|
| 698 | stepAcumulatorSS += exp( *lnlp*stepLengthSS - stepScalerSS ); |
|---|
| 699 | lnlp++; |
|---|
| 700 | } |
|---|
| 701 | tmpMfl = (log( stepAcumulatorSS/(numSamplesInStepSS-stepBurnin) ) + stepScalerSS); |
|---|
| 702 | MrBayesPrint (" %10.3lf", tmpMfl); |
|---|
| 703 | marginalLnLSS[i] += tmpMfl; |
|---|
| 704 | } |
|---|
| 705 | MrBayesPrint ("\n"); |
|---|
| 706 | //MrBayesPrint ("%s %3d %9.2f \n", spacer, i+1, marginalLnLSS ); |
|---|
| 707 | } |
|---|
| 708 | MrBayesPrint (" "); |
|---|
| 709 | for (j=0; j<sumssParams.numRuns ; j++) |
|---|
| 710 | { |
|---|
| 711 | if(j<9) |
|---|
| 712 | MrBayesPrint ("-"); |
|---|
| 713 | MrBayesPrint ("----------"); |
|---|
| 714 | } |
|---|
| 715 | MrBayesPrint ("\n"); |
|---|
| 716 | MrBayesPrint (" Sum: "); |
|---|
| 717 | for (j=0; j<sumssParams.numRuns ; j++) |
|---|
| 718 | MrBayesPrint (" %10.3lf", marginalLnLSS[j]); |
|---|
| 719 | |
|---|
| 720 | MrBayesPrint ("\n"); |
|---|
| 721 | /* |
|---|
| 722 | if (sumssParams.numRuns > 1) |
|---|
| 723 | { |
|---|
| 724 | MrBayesPrint ("%s Below are rough plots of the generations (x-axis) during burn in \n", spacer); |
|---|
| 725 | MrBayesPrint ("%s phase versus the log probability of observing the data (y-axis). \n", spacer); |
|---|
| 726 | MrBayesPrint ("%s You can use these graphs to determine if the burn in for your SS \n", spacer); |
|---|
| 727 | MrBayesPrint ("%s analysis was sufficiant. The log probability suppose to plateau \n", spacer); |
|---|
| 728 | MrBayesPrint ("%s indicating that you may be at stationarity by the time you finish \n", spacer); |
|---|
| 729 | MrBayesPrint ("%s burn in phase. This burn in, unlike burn in within each step, is \n", spacer); |
|---|
| 730 | MrBayesPrint ("%s fixed and can not be changed. \n", spacer); |
|---|
| 731 | } |
|---|
| 732 | else |
|---|
| 733 | { |
|---|
| 734 | MrBayesPrint ("%s Below is a rough plot of the generations (x-axis) during burn in \n", spacer); |
|---|
| 735 | MrBayesPrint ("%s phase versus the log probability of observing the data (y-axis). \n", spacer); |
|---|
| 736 | MrBayesPrint ("%s You can use these graph to determine if the burn in for your SS \n", spacer); |
|---|
| 737 | MrBayesPrint ("%s analysis was sufficiant. The log probability suppose to plateau \n", spacer); |
|---|
| 738 | MrBayesPrint ("%s indicating that you may be at stationarity by the time you finish \n", spacer); |
|---|
| 739 | MrBayesPrint ("%s burn in phase. This burn in, unlike burn in within each step, is \n", spacer); |
|---|
| 740 | MrBayesPrint ("%s fixed and can not be changed. \n", spacer); |
|---|
| 741 | } |
|---|
| 742 | */ |
|---|
| 743 | |
|---|
| 744 | if( firstPass == NO ) |
|---|
| 745 | goto sumssExitOptions; |
|---|
| 746 | |
|---|
| 747 | sumssStepPlot: |
|---|
| 748 | |
|---|
| 749 | MrBayesPrint ("\n\n%s Step plot(s).\n",spacer); |
|---|
| 750 | while(1) |
|---|
| 751 | { |
|---|
| 752 | MrBayesPrint ("\n"); |
|---|
| 753 | if( sumssParams.stepToPlot == 0 ) |
|---|
| 754 | { |
|---|
| 755 | beginPrint=(int)(sumssParams.discardFraction*stepBeginSS); |
|---|
| 756 | countPrint=stepBeginSS-beginPrint; |
|---|
| 757 | MrBayesPrint ("%s Ploting step 0, i.e initial burn-in phase consisting of %d samples.\n", spacer,stepBeginSS); |
|---|
| 758 | MrBayesPrint ("%s According to 'Discardfrac=%.2f', first %d samples are not ploted.\n", spacer,sumssParams.discardFraction,beginPrint); |
|---|
| 759 | } |
|---|
| 760 | else |
|---|
| 761 | { |
|---|
| 762 | if( sumssParams.stepToPlot > chainParams.numStepsSS ) |
|---|
| 763 | { |
|---|
| 764 | MrBayesPrint ("%s Chosen index of step to print %d is out of range of step indices[0,...,%d].\n", spacer,sumssParams.stepToPlot,chainParams.numStepsSS); |
|---|
| 765 | goto errorExit; |
|---|
| 766 | } |
|---|
| 767 | beginPrint=stepBeginSS+(sumssParams.stepToPlot-1)*numSamplesInStepSS + (int)(sumssParams.discardFraction*numSamplesInStepSS); |
|---|
| 768 | countPrint=numSamplesInStepSS-(int)(sumssParams.discardFraction*numSamplesInStepSS); |
|---|
| 769 | MrBayesPrint ("%s Ploting step %d consisting of %d samples.\n", spacer,sumssParams.stepToPlot,numSamplesInStepSS); |
|---|
| 770 | MrBayesPrint ("%s According to 'Discardfrac=%.2f', first %d samples are not ploted.\n", spacer,sumssParams.discardFraction,(int)(sumssParams.discardFraction*numSamplesInStepSS)); |
|---|
| 771 | } |
|---|
| 772 | |
|---|
| 773 | |
|---|
| 774 | if (sumssParams.numRuns > 1) |
|---|
| 775 | { |
|---|
| 776 | if (sumpParams.allRuns == YES) |
|---|
| 777 | { |
|---|
| 778 | for (i=0; i<sumssParams.numRuns; i++) |
|---|
| 779 | { |
|---|
| 780 | MrBayesPrint ("\n%s Samples from run %d:\n", spacer, i+1); |
|---|
| 781 | if (PrintPlot (parameterSamples[whichIsX].values[i]+beginPrint, parameterSamples[whichIsY].values[i]+beginPrint, countPrint) == ERROR) |
|---|
| 782 | goto errorExit; |
|---|
| 783 | } |
|---|
| 784 | } |
|---|
| 785 | else |
|---|
| 786 | { |
|---|
| 787 | if (PrintOverlayPlot (parameterSamples[whichIsX].values, parameterSamples[whichIsY].values, numRuns, beginPrint, countPrint) == ERROR) |
|---|
| 788 | goto errorExit; |
|---|
| 789 | } |
|---|
| 790 | } |
|---|
| 791 | else |
|---|
| 792 | { |
|---|
| 793 | if (PrintPlot (parameterSamples[whichIsX].values[0]+beginPrint, parameterSamples[whichIsY].values[0]+beginPrint, countPrint) == ERROR) |
|---|
| 794 | goto errorExit; |
|---|
| 795 | } |
|---|
| 796 | |
|---|
| 797 | if( sumssParams.askForMorePlots == NO || firstPass == YES ) |
|---|
| 798 | break; |
|---|
| 799 | |
|---|
| 800 | MrBayesPrint (" You can choose to print new step plots for different steps or discard fractions.\n"); |
|---|
| 801 | MrBayesPrint (" Allowed range of 'Steptoplot' are from 0 to %d.\n", chainParams.numStepsSS); |
|---|
| 802 | MrBayesPrint (" If the next entered value is negative, 'sumss' will stop printing step plots.\n"); |
|---|
| 803 | MrBayesPrint (" If the next entered value is positive, but out of range, you will be offered\n"); |
|---|
| 804 | MrBayesPrint (" to change paramiter 'Discardfrac' of 'sumss'.\n"); |
|---|
| 805 | MrBayesPrint (" Enter new step number 'Steptoplot':"); |
|---|
| 806 | result=scanf("%d",&j); |
|---|
| 807 | if(j < 0 ) |
|---|
| 808 | break; |
|---|
| 809 | if(j > chainParams.numStepsSS) |
|---|
| 810 | { |
|---|
| 811 | do |
|---|
| 812 | { |
|---|
| 813 | MrBayesPrint (" Enter new value for 'Discardfrac', should be in range 0.0 to 1.0:"); |
|---|
| 814 | result=scanf("%f",&tmpf); |
|---|
| 815 | sumssParams.discardFraction = (MrBFlt)tmpf; |
|---|
| 816 | } |
|---|
| 817 | while(sumssParams.discardFraction < 0.0 || sumssParams.discardFraction > 1.0); |
|---|
| 818 | } |
|---|
| 819 | else |
|---|
| 820 | sumssParams.stepToPlot=j; |
|---|
| 821 | } |
|---|
| 822 | |
|---|
| 823 | if( firstPass == NO ) |
|---|
| 824 | goto sumssExitOptions; |
|---|
| 825 | |
|---|
| 826 | sumssJoinedPlot: |
|---|
| 827 | |
|---|
| 828 | MrBayesPrint ("\n\n%s Joined plot(s).\n",spacer); |
|---|
| 829 | while(1) |
|---|
| 830 | { |
|---|
| 831 | MrBayesPrint ("\n"); |
|---|
| 832 | MrBayesPrint ("%s Joined plot of %d samples of all steps together. 'smoothing' is set to:%d\n", spacer,numSamplesInStepSS,sumssParams.smoothing); |
|---|
| 833 | MrBayesPrint ("%s According to step burn-in, first %d samples are not ploted.\n", spacer,stepBurnin); |
|---|
| 834 | |
|---|
| 835 | for(i=0; i<sumssParams.numRuns; i++) |
|---|
| 836 | { |
|---|
| 837 | for(j=stepBurnin;j<numSamplesInStepSS;j++) |
|---|
| 838 | plotArrayY[sumssParams.numRuns][j]=0.0; |
|---|
| 839 | lnlp= parameterSamples[whichIsY].values[i] + stepBeginSS; |
|---|
| 840 | nextSteplnlp=lnlp; |
|---|
| 841 | for(stepIndexSS = chainParams.numStepsSS-1; stepIndexSS>0; stepIndexSS--) |
|---|
| 842 | { |
|---|
| 843 | firstlnlp=plotArrayY[sumssParams.numRuns] + stepBurnin; |
|---|
| 844 | lnlp+=stepBurnin; |
|---|
| 845 | nextSteplnlp += numSamplesInStepSS; |
|---|
| 846 | while( lnlp<nextSteplnlp ) |
|---|
| 847 | { |
|---|
| 848 | *firstlnlp+=*lnlp; |
|---|
| 849 | firstlnlp++; |
|---|
| 850 | lnlp++; |
|---|
| 851 | } |
|---|
| 852 | } |
|---|
| 853 | for(j=stepBurnin;j<numSamplesInStepSS;j++) |
|---|
| 854 | { |
|---|
| 855 | sum=0.0; |
|---|
| 856 | count=0; |
|---|
| 857 | for(k=j-sumssParams.smoothing;k<=j+sumssParams.smoothing;k++) |
|---|
| 858 | { |
|---|
| 859 | if(k>=stepBurnin && k<numSamplesInStepSS) |
|---|
| 860 | { |
|---|
| 861 | sum += plotArrayY[sumssParams.numRuns][k]; |
|---|
| 862 | count++; |
|---|
| 863 | } |
|---|
| 864 | } |
|---|
| 865 | plotArrayY[i][j] = sum/count; |
|---|
| 866 | /* |
|---|
| 867 | if( max < plotArrayY[i][j]) |
|---|
| 868 | max=plotArrayY[i][j]; |
|---|
| 869 | */ |
|---|
| 870 | } |
|---|
| 871 | /* for(j=stepBurnin;j<numSamplesInStepSS;j++) |
|---|
| 872 | { |
|---|
| 873 | plotArrayY[i][j] /= max; |
|---|
| 874 | }*/ |
|---|
| 875 | } |
|---|
| 876 | |
|---|
| 877 | beginPrint=stepBurnin; |
|---|
| 878 | countPrint=numSamplesInStepSS-stepBurnin; |
|---|
| 879 | |
|---|
| 880 | if (sumssParams.numRuns > 1) |
|---|
| 881 | { |
|---|
| 882 | if (sumpParams.allRuns == YES) |
|---|
| 883 | { |
|---|
| 884 | for (i=0; i<sumssParams.numRuns; i++) |
|---|
| 885 | { |
|---|
| 886 | MrBayesPrint ("\n%s Samples from run %d:\n", spacer, i+1); |
|---|
| 887 | if (PrintPlot (plotArrayX[i]+beginPrint, plotArrayY[i]+beginPrint, countPrint) == ERROR) |
|---|
| 888 | goto errorExit; |
|---|
| 889 | } |
|---|
| 890 | } |
|---|
| 891 | else |
|---|
| 892 | { |
|---|
| 893 | if (PrintOverlayPlot (plotArrayX, plotArrayY, numRuns, beginPrint, countPrint) == ERROR) |
|---|
| 894 | goto errorExit; |
|---|
| 895 | } |
|---|
| 896 | } |
|---|
| 897 | else |
|---|
| 898 | { |
|---|
| 899 | if (PrintPlot (plotArrayX[0]+beginPrint, plotArrayY[0]+beginPrint, countPrint) == ERROR) |
|---|
| 900 | goto errorExit; |
|---|
| 901 | } |
|---|
| 902 | |
|---|
| 903 | if( sumssParams.askForMorePlots == NO || firstPass == YES ) |
|---|
| 904 | break; |
|---|
| 905 | |
|---|
| 906 | MrBayesPrint (" You can choose to print new joined plots with different step burn-in or smoothing.\n"); |
|---|
| 907 | MrBayesPrint (" Allowed range of step burn-in values are from 0 to %d.\n", numSamplesInStepSS-1); |
|---|
| 908 | MrBayesPrint (" If the next entered value is negative, 'sumss' will stop printing joined plots.\n"); |
|---|
| 909 | MrBayesPrint (" If the next entered value is positive, but out of range, you will be offered\n"); |
|---|
| 910 | MrBayesPrint (" to change 'Smoothimg'.\n"); |
|---|
| 911 | MrBayesPrint (" Enter new step burn-in:"); |
|---|
| 912 | result=scanf("%d",&j); |
|---|
| 913 | if(j < 0 ) |
|---|
| 914 | break; |
|---|
| 915 | if(j >= numSamplesInStepSS) |
|---|
| 916 | { |
|---|
| 917 | MrBayesPrint (" Enter new value for 'Smoothing':"); |
|---|
| 918 | result=scanf("%d",&j); |
|---|
| 919 | sumssParams.smoothing = abs(j); |
|---|
| 920 | } |
|---|
| 921 | else |
|---|
| 922 | stepBurnin=j; |
|---|
| 923 | } |
|---|
| 924 | |
|---|
| 925 | firstPass = NO; |
|---|
| 926 | sumssExitOptions: |
|---|
| 927 | if(sumssParams.askForMorePlots == YES ) |
|---|
| 928 | { |
|---|
| 929 | MrBayesPrint ("\n"); |
|---|
| 930 | MrBayesPrint (" Sumss is interactive, because of paramiter 'Askmore=YES' setting. \n"); |
|---|
| 931 | MrBayesPrint (" What would you like to do next?\n"); |
|---|
| 932 | MrBayesPrint (" 1) Print updated table according to new step burn-in.\n"); |
|---|
| 933 | MrBayesPrint (" 2) Print Step plot(s).\n"); |
|---|
| 934 | MrBayesPrint (" 3) Print Joined plot(s).\n"); |
|---|
| 935 | MrBayesPrint (" 4) Exit 'sumss'.\n"); |
|---|
| 936 | MrBayesPrint (" Enter a number that corresponds to one of the options:"); |
|---|
| 937 | do |
|---|
| 938 | { |
|---|
| 939 | result=scanf("%d",&j); |
|---|
| 940 | }while(j<1 || j>4); |
|---|
| 941 | |
|---|
| 942 | if(j == 1) |
|---|
| 943 | { |
|---|
| 944 | MrBayesPrint (" Allowed range of step burn-in values are from 0 to %d\n", numSamplesInStepSS-1); |
|---|
| 945 | MrBayesPrint (" Current step burn-in value is:%d\n", stepBurnin); |
|---|
| 946 | MrBayesPrint (" Enter new step burn-in:"); |
|---|
| 947 | do |
|---|
| 948 | { |
|---|
| 949 | result=scanf("%d",&stepBurnin); |
|---|
| 950 | } |
|---|
| 951 | while(stepBurnin < 0 || stepBurnin > numSamplesInStepSS-1); |
|---|
| 952 | MrBayesPrint ("\n"); |
|---|
| 953 | goto sumssTable; |
|---|
| 954 | } |
|---|
| 955 | else if(j == 2) |
|---|
| 956 | { |
|---|
| 957 | goto sumssStepPlot; |
|---|
| 958 | } |
|---|
| 959 | else if(j == 3) |
|---|
| 960 | goto sumssJoinedPlot; |
|---|
| 961 | |
|---|
| 962 | } |
|---|
| 963 | |
|---|
| 964 | /* free memory */ |
|---|
| 965 | FreeParameterSamples(parameterSamples); |
|---|
| 966 | for (i=0; i<nHeaders; i++) |
|---|
| 967 | free (headerNames[i]); |
|---|
| 968 | free (headerNames); |
|---|
| 969 | |
|---|
| 970 | expecting = Expecting(COMMAND); |
|---|
| 971 | strcpy (spacer, ""); |
|---|
| 972 | chainParams.isSS=NO; |
|---|
| 973 | for(i=0; i<sumssParams.numRuns+1; i++) |
|---|
| 974 | free(plotArrayY[i]); |
|---|
| 975 | free(plotArrayY); |
|---|
| 976 | for(i=0; i<sumssParams.numRuns; i++) |
|---|
| 977 | free(plotArrayX[i]); |
|---|
| 978 | free(plotArrayX); |
|---|
| 979 | free(marginalLnLSS); |
|---|
| 980 | |
|---|
| 981 | return (NO_ERROR); |
|---|
| 982 | |
|---|
| 983 | errorExit: |
|---|
| 984 | |
|---|
| 985 | /* free memory */ |
|---|
| 986 | FreeParameterSamples (parameterSamples); |
|---|
| 987 | if( headerNames!=NULL ) |
|---|
| 988 | for (i=0; i<nHeaders; i++) |
|---|
| 989 | free (headerNames[i]); |
|---|
| 990 | free (headerNames); |
|---|
| 991 | |
|---|
| 992 | expecting = Expecting(COMMAND); |
|---|
| 993 | strcpy (spacer, ""); |
|---|
| 994 | chainParams.isSS=NO; |
|---|
| 995 | if( plotArrayY!=NULL ) |
|---|
| 996 | for(i=0; i<sumssParams.numRuns+1; i++) |
|---|
| 997 | free(plotArrayY[i]); |
|---|
| 998 | free(plotArrayY); |
|---|
| 999 | if( plotArrayX!=NULL ) |
|---|
| 1000 | for(i=0; i<sumssParams.numRuns; i++) |
|---|
| 1001 | free(plotArrayX[i]); |
|---|
| 1002 | free(plotArrayX); |
|---|
| 1003 | free(marginalLnLSS); |
|---|
| 1004 | |
|---|
| 1005 | return (ERROR); |
|---|
| 1006 | } |
|---|
| 1007 | |
|---|
| 1008 | |
|---|
| 1009 | |
|---|
| 1010 | |
|---|
| 1011 | |
|---|
| 1012 | int DoSumpParm (char *parmName, char *tkn) |
|---|
| 1013 | |
|---|
| 1014 | { |
|---|
| 1015 | |
|---|
| 1016 | int tempI; |
|---|
| 1017 | MrBFlt tempD; |
|---|
| 1018 | char tempStr[100]; |
|---|
| 1019 | |
|---|
| 1020 | if (expecting == Expecting(PARAMETER)) |
|---|
| 1021 | { |
|---|
| 1022 | expecting = Expecting(EQUALSIGN); |
|---|
| 1023 | } |
|---|
| 1024 | else |
|---|
| 1025 | { |
|---|
| 1026 | if (!strcmp(parmName, "Xxxxxxxxxx")) |
|---|
| 1027 | { |
|---|
| 1028 | expecting = Expecting(PARAMETER); |
|---|
| 1029 | expecting |= Expecting(SEMICOLON); |
|---|
| 1030 | } |
|---|
| 1031 | /* set Filename (sumpParams.sumpFileName) ***************************************************/ |
|---|
| 1032 | else if (!strcmp(parmName, "Filename")) |
|---|
| 1033 | { |
|---|
| 1034 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1035 | { |
|---|
| 1036 | expecting = Expecting(ALPHA); |
|---|
| 1037 | readWord = YES; |
|---|
| 1038 | } |
|---|
| 1039 | else if (expecting == Expecting(ALPHA)) |
|---|
| 1040 | { |
|---|
| 1041 | if(strlen(tkn)>99 && (strchr(tkn,' ')-tkn) > 99 ) |
|---|
| 1042 | { |
|---|
| 1043 | MrBayesPrint ("%s Maximum allowed length of file name is 99 characters. The given name:\n", spacer); |
|---|
| 1044 | MrBayesPrint ("%s '%s'\n", spacer,tkn); |
|---|
| 1045 | return (ERROR); |
|---|
| 1046 | } |
|---|
| 1047 | sscanf (tkn, "%s", tempStr); |
|---|
| 1048 | strcpy (sumpParams.sumpFileName, tempStr); |
|---|
| 1049 | strcpy (sumpParams.sumpOutfile, tempStr); |
|---|
| 1050 | MrBayesPrint ("%s Setting sump filename and output file name to %s\n", spacer, sumpParams.sumpFileName); |
|---|
| 1051 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1052 | } |
|---|
| 1053 | else |
|---|
| 1054 | return (ERROR); |
|---|
| 1055 | } |
|---|
| 1056 | /* set Outputname (sumpParams.sumpOutfile) *******************************************************/ |
|---|
| 1057 | else if (!strcmp(parmName, "Outputname")) |
|---|
| 1058 | { |
|---|
| 1059 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1060 | { |
|---|
| 1061 | expecting = Expecting(ALPHA); |
|---|
| 1062 | readWord = YES; |
|---|
| 1063 | } |
|---|
| 1064 | else if (expecting == Expecting(ALPHA)) |
|---|
| 1065 | { |
|---|
| 1066 | if(strlen(tkn)>99 && (strchr(tkn,' ')-tkn) > 99 ) |
|---|
| 1067 | { |
|---|
| 1068 | MrBayesPrint ("%s Maximum allowed length of file name is 99 characters. The given name:\n", spacer); |
|---|
| 1069 | MrBayesPrint ("%s '%s'\n", spacer,tkn); |
|---|
| 1070 | return (ERROR); |
|---|
| 1071 | } |
|---|
| 1072 | sscanf (tkn, "%s", tempStr); |
|---|
| 1073 | strcpy (sumpParams.sumpOutfile, tempStr); |
|---|
| 1074 | MrBayesPrint ("%s Setting sump output file name to \"%s\"\n", spacer, sumpParams.sumpOutfile); |
|---|
| 1075 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1076 | } |
|---|
| 1077 | else |
|---|
| 1078 | return (ERROR); |
|---|
| 1079 | } |
|---|
| 1080 | /* set Relburnin (chainParams.relativeBurnin) ********************************************************/ |
|---|
| 1081 | else if (!strcmp(parmName, "Relburnin")) |
|---|
| 1082 | { |
|---|
| 1083 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1084 | expecting = Expecting(ALPHA); |
|---|
| 1085 | else if (expecting == Expecting(ALPHA)) |
|---|
| 1086 | { |
|---|
| 1087 | if (IsArgValid(tkn, tempStr) == NO_ERROR) |
|---|
| 1088 | { |
|---|
| 1089 | if (!strcmp(tempStr, "Yes")) |
|---|
| 1090 | chainParams.relativeBurnin = YES; |
|---|
| 1091 | else |
|---|
| 1092 | chainParams.relativeBurnin = NO; |
|---|
| 1093 | } |
|---|
| 1094 | else |
|---|
| 1095 | { |
|---|
| 1096 | MrBayesPrint ("%s Invalid argument for Relburnin\n", spacer); |
|---|
| 1097 | return (ERROR); |
|---|
| 1098 | } |
|---|
| 1099 | if (chainParams.relativeBurnin == YES) |
|---|
| 1100 | MrBayesPrint ("%s Using relative burnin (a fraction of samples discarded).\n", spacer); |
|---|
| 1101 | else |
|---|
| 1102 | MrBayesPrint ("%s Using absolute burnin (a fixed number of samples discarded).\n", spacer); |
|---|
| 1103 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1104 | } |
|---|
| 1105 | else |
|---|
| 1106 | { |
|---|
| 1107 | return (ERROR); |
|---|
| 1108 | } |
|---|
| 1109 | } |
|---|
| 1110 | /* set Burnin (chainParams.chainBurnIn) ***********************************************************/ |
|---|
| 1111 | else if (!strcmp(parmName, "Burnin")) |
|---|
| 1112 | { |
|---|
| 1113 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1114 | expecting = Expecting(NUMBER); |
|---|
| 1115 | else if (expecting == Expecting(NUMBER)) |
|---|
| 1116 | { |
|---|
| 1117 | sscanf (tkn, "%d", &tempI); |
|---|
| 1118 | chainParams.chainBurnIn = tempI; |
|---|
| 1119 | MrBayesPrint ("%s Setting burn-in to %d\n", spacer, chainParams.chainBurnIn); |
|---|
| 1120 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1121 | } |
|---|
| 1122 | else |
|---|
| 1123 | { |
|---|
| 1124 | return (ERROR); |
|---|
| 1125 | } |
|---|
| 1126 | } |
|---|
| 1127 | /* set Burninfrac (chainParams.burninFraction) ************************************************************/ |
|---|
| 1128 | else if (!strcmp(parmName, "Burninfrac")) |
|---|
| 1129 | { |
|---|
| 1130 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1131 | expecting = Expecting(NUMBER); |
|---|
| 1132 | else if (expecting == Expecting(NUMBER)) |
|---|
| 1133 | { |
|---|
| 1134 | sscanf (tkn, "%lf", &tempD); |
|---|
| 1135 | if (tempD < 0.01) |
|---|
| 1136 | { |
|---|
| 1137 | MrBayesPrint ("%s Burnin fraction too low (< 0.01)\n", spacer); |
|---|
| 1138 | return (ERROR); |
|---|
| 1139 | } |
|---|
| 1140 | if (tempD > 0.50) |
|---|
| 1141 | { |
|---|
| 1142 | MrBayesPrint ("%s Burnin fraction too high (> 0.50)\n", spacer); |
|---|
| 1143 | return (ERROR); |
|---|
| 1144 | } |
|---|
| 1145 | chainParams.burninFraction = tempD; |
|---|
| 1146 | MrBayesPrint ("%s Setting burnin fraction to %.2f\n", spacer, chainParams.burninFraction); |
|---|
| 1147 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1148 | } |
|---|
| 1149 | else |
|---|
| 1150 | { |
|---|
| 1151 | return (ERROR); |
|---|
| 1152 | } |
|---|
| 1153 | } |
|---|
| 1154 | /* set Minprob (sumpParams.minProb) ************************************************************/ |
|---|
| 1155 | else if (!strcmp(parmName, "Minprob")) |
|---|
| 1156 | { |
|---|
| 1157 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1158 | expecting = Expecting(NUMBER); |
|---|
| 1159 | else if (expecting == Expecting(NUMBER)) |
|---|
| 1160 | { |
|---|
| 1161 | sscanf (tkn, "%lf", &tempD); |
|---|
| 1162 | if (tempD > 0.50) |
|---|
| 1163 | { |
|---|
| 1164 | MrBayesPrint ("%s Minprob too high (it should be smaller than 0.50)\n", spacer); |
|---|
| 1165 | return (ERROR); |
|---|
| 1166 | } |
|---|
| 1167 | sumpParams.minProb = tempD; |
|---|
| 1168 | MrBayesPrint ("%s Setting minprob to %1.3f\n", spacer, sumpParams.minProb); |
|---|
| 1169 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1170 | } |
|---|
| 1171 | else |
|---|
| 1172 | { |
|---|
| 1173 | return (ERROR); |
|---|
| 1174 | } |
|---|
| 1175 | } |
|---|
| 1176 | /* set Nruns (sumpParams.numRuns) *******************************************************/ |
|---|
| 1177 | else if (!strcmp(parmName, "Nruns")) |
|---|
| 1178 | { |
|---|
| 1179 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1180 | expecting = Expecting(NUMBER); |
|---|
| 1181 | else if (expecting == Expecting(NUMBER)) |
|---|
| 1182 | { |
|---|
| 1183 | sscanf (tkn, "%d", &tempI); |
|---|
| 1184 | if (tempI < 1) |
|---|
| 1185 | { |
|---|
| 1186 | MrBayesPrint ("%s Nruns must be at least 1\n", spacer); |
|---|
| 1187 | return (ERROR); |
|---|
| 1188 | } |
|---|
| 1189 | else |
|---|
| 1190 | { |
|---|
| 1191 | sumpParams.numRuns = tempI; |
|---|
| 1192 | MrBayesPrint ("%s Setting sump nruns to %d\n", spacer, sumpParams.numRuns); |
|---|
| 1193 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1194 | } |
|---|
| 1195 | } |
|---|
| 1196 | else |
|---|
| 1197 | return (ERROR); |
|---|
| 1198 | } |
|---|
| 1199 | /* set Hpd (sumpParams.HPD) ********************************************************/ |
|---|
| 1200 | else if (!strcmp(parmName, "Hpd")) |
|---|
| 1201 | { |
|---|
| 1202 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1203 | expecting = Expecting(ALPHA); |
|---|
| 1204 | else if (expecting == Expecting(ALPHA)) |
|---|
| 1205 | { |
|---|
| 1206 | if (IsArgValid(tkn, tempStr) == NO_ERROR) |
|---|
| 1207 | { |
|---|
| 1208 | if (!strcmp(tempStr, "Yes")) |
|---|
| 1209 | sumpParams.HPD = YES; |
|---|
| 1210 | else |
|---|
| 1211 | sumpParams.HPD = NO; |
|---|
| 1212 | } |
|---|
| 1213 | else |
|---|
| 1214 | { |
|---|
| 1215 | MrBayesPrint ("%s Invalid argument for Hpd\n", spacer); |
|---|
| 1216 | return (ERROR); |
|---|
| 1217 | } |
|---|
| 1218 | if (sumpParams.HPD == YES) |
|---|
| 1219 | MrBayesPrint ("%s Reporting 95 %% region of Highest Posterior Density (HPD).\n", spacer); |
|---|
| 1220 | else |
|---|
| 1221 | MrBayesPrint ("%s Reporting median interval containing 95 %% of values.\n", spacer); |
|---|
| 1222 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1223 | } |
|---|
| 1224 | else |
|---|
| 1225 | { |
|---|
| 1226 | return (ERROR); |
|---|
| 1227 | } |
|---|
| 1228 | } |
|---|
| 1229 | /* set Allruns (sumpParams.allRuns) ********************************************************/ |
|---|
| 1230 | else if (!strcmp(parmName, "Allruns")) |
|---|
| 1231 | { |
|---|
| 1232 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1233 | expecting = Expecting(ALPHA); |
|---|
| 1234 | else if (expecting == Expecting(ALPHA)) |
|---|
| 1235 | { |
|---|
| 1236 | if (IsArgValid(tkn, tempStr) == NO_ERROR) |
|---|
| 1237 | { |
|---|
| 1238 | if (!strcmp(tempStr, "Yes")) |
|---|
| 1239 | sumpParams.allRuns = YES; |
|---|
| 1240 | else |
|---|
| 1241 | sumpParams.allRuns = NO; |
|---|
| 1242 | } |
|---|
| 1243 | else |
|---|
| 1244 | { |
|---|
| 1245 | MrBayesPrint ("%s Invalid argument for allruns (valid arguments are 'yes' and 'no')\n", spacer); |
|---|
| 1246 | return (ERROR); |
|---|
| 1247 | } |
|---|
| 1248 | if (sumpParams.allRuns == YES) |
|---|
| 1249 | MrBayesPrint ("%s Setting sump to print information for each run\n", spacer); |
|---|
| 1250 | else |
|---|
| 1251 | MrBayesPrint ("%s Setting sump to print only summary information for all runs\n", spacer); |
|---|
| 1252 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1253 | } |
|---|
| 1254 | else |
|---|
| 1255 | return (ERROR); |
|---|
| 1256 | } |
|---|
| 1257 | else |
|---|
| 1258 | return (ERROR); |
|---|
| 1259 | } |
|---|
| 1260 | |
|---|
| 1261 | return (NO_ERROR); |
|---|
| 1262 | |
|---|
| 1263 | } |
|---|
| 1264 | |
|---|
| 1265 | |
|---|
| 1266 | |
|---|
| 1267 | |
|---|
| 1268 | |
|---|
| 1269 | int DoSumSsParm (char *parmName, char *tkn) |
|---|
| 1270 | |
|---|
| 1271 | { |
|---|
| 1272 | |
|---|
| 1273 | int tempI; |
|---|
| 1274 | MrBFlt tempD; |
|---|
| 1275 | char tempStr[100]; |
|---|
| 1276 | |
|---|
| 1277 | if (expecting == Expecting(PARAMETER)) |
|---|
| 1278 | { |
|---|
| 1279 | expecting = Expecting(EQUALSIGN); |
|---|
| 1280 | } |
|---|
| 1281 | else |
|---|
| 1282 | { |
|---|
| 1283 | if (!strcmp(parmName, "Xxxxxxxxxx")) |
|---|
| 1284 | { |
|---|
| 1285 | expecting = Expecting(PARAMETER); |
|---|
| 1286 | expecting |= Expecting(SEMICOLON); |
|---|
| 1287 | } |
|---|
| 1288 | /* set Filename (sumpParams.sumpFileName) ***************************************************/ |
|---|
| 1289 | else if (!strcmp(parmName, "Filename")) |
|---|
| 1290 | { |
|---|
| 1291 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1292 | { |
|---|
| 1293 | expecting = Expecting(ALPHA); |
|---|
| 1294 | readWord = YES; |
|---|
| 1295 | } |
|---|
| 1296 | else if (expecting == Expecting(ALPHA)) |
|---|
| 1297 | { |
|---|
| 1298 | if(strlen(tkn)>99 && (strchr(tkn,' ')-tkn) > 99 ) |
|---|
| 1299 | { |
|---|
| 1300 | MrBayesPrint ("%s Maximum allowed length of file name is 99 characters. The given name:\n", spacer); |
|---|
| 1301 | MrBayesPrint ("%s '%s'\n", spacer,tkn); |
|---|
| 1302 | return (ERROR); |
|---|
| 1303 | } |
|---|
| 1304 | sscanf (tkn, "%s", tempStr); |
|---|
| 1305 | strcpy (sumpParams.sumpFileName, tempStr); |
|---|
| 1306 | strcpy (sumpParams.sumpOutfile, tempStr); |
|---|
| 1307 | MrBayesPrint ("%s Setting sump filename and output file name to %s\n", spacer, sumpParams.sumpFileName); |
|---|
| 1308 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1309 | } |
|---|
| 1310 | else |
|---|
| 1311 | return (ERROR); |
|---|
| 1312 | } |
|---|
| 1313 | /* set Outputname (sumpParams.sumpOutfile) *******************************************************/ |
|---|
| 1314 | /*else if (!strcmp(parmName, "Outputname")) |
|---|
| 1315 | { |
|---|
| 1316 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1317 | { |
|---|
| 1318 | expecting = Expecting(ALPHA); |
|---|
| 1319 | readWord = YES; |
|---|
| 1320 | } |
|---|
| 1321 | else if (expecting == Expecting(ALPHA)) |
|---|
| 1322 | { |
|---|
| 1323 | if(strlen(tkn)>99 && (strchr(tkn,' ')-tkn) > 99 ) |
|---|
| 1324 | { |
|---|
| 1325 | MrBayesPrint ("%s Maximum allowed length of file name is 99 characters. The given name:\n", spacer); |
|---|
| 1326 | MrBayesPrint ("%s '%s'\n", spacer,tkn); |
|---|
| 1327 | return (ERROR); |
|---|
| 1328 | } |
|---|
| 1329 | sscanf (tkn, "%s", tempStr); |
|---|
| 1330 | strcpy (sumpParams.sumpOutfile, tempStr); |
|---|
| 1331 | MrBayesPrint ("%s Setting sump output file name to \"%s\"\n", spacer, sumpParams.sumpOutfile); |
|---|
| 1332 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1333 | } |
|---|
| 1334 | else |
|---|
| 1335 | return (ERROR); |
|---|
| 1336 | }*/ |
|---|
| 1337 | /* set Relburnin (chainParams.relativeBurnin) ********************************************************/ |
|---|
| 1338 | else if (!strcmp(parmName, "Relburnin")) |
|---|
| 1339 | { |
|---|
| 1340 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1341 | expecting = Expecting(ALPHA); |
|---|
| 1342 | else if (expecting == Expecting(ALPHA)) |
|---|
| 1343 | { |
|---|
| 1344 | if (IsArgValid(tkn, tempStr) == NO_ERROR) |
|---|
| 1345 | { |
|---|
| 1346 | if (!strcmp(tempStr, "Yes")) |
|---|
| 1347 | chainParams.relativeBurnin = YES; |
|---|
| 1348 | else |
|---|
| 1349 | chainParams.relativeBurnin = NO; |
|---|
| 1350 | } |
|---|
| 1351 | else |
|---|
| 1352 | { |
|---|
| 1353 | MrBayesPrint ("%s Invalid argument for Relburnin\n", spacer); |
|---|
| 1354 | return (ERROR); |
|---|
| 1355 | } |
|---|
| 1356 | if (chainParams.relativeBurnin == YES) |
|---|
| 1357 | MrBayesPrint ("%s Using relative burnin (a fraction of samples discarded).\n", spacer); |
|---|
| 1358 | else |
|---|
| 1359 | MrBayesPrint ("%s Using absolute burnin (a fixed number of samples discarded).\n", spacer); |
|---|
| 1360 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1361 | } |
|---|
| 1362 | else |
|---|
| 1363 | { |
|---|
| 1364 | return (ERROR); |
|---|
| 1365 | } |
|---|
| 1366 | } |
|---|
| 1367 | /* set Burnin (chainParams.chainBurnIn) ***********************************************************/ |
|---|
| 1368 | else if (!strcmp(parmName, "Burnin")) |
|---|
| 1369 | { |
|---|
| 1370 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1371 | expecting = Expecting(NUMBER); |
|---|
| 1372 | else if (expecting == Expecting(NUMBER)) |
|---|
| 1373 | { |
|---|
| 1374 | sscanf (tkn, "%d", &tempI); |
|---|
| 1375 | chainParams.chainBurnIn = tempI; |
|---|
| 1376 | MrBayesPrint ("%s Setting burn-in to %d\n", spacer, chainParams.chainBurnIn); |
|---|
| 1377 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1378 | } |
|---|
| 1379 | else |
|---|
| 1380 | { |
|---|
| 1381 | return (ERROR); |
|---|
| 1382 | } |
|---|
| 1383 | } |
|---|
| 1384 | /* set Burninfrac (chainParams.burninFraction) ************************************************************/ |
|---|
| 1385 | else if (!strcmp(parmName, "Burninfrac")) |
|---|
| 1386 | { |
|---|
| 1387 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1388 | expecting = Expecting(NUMBER); |
|---|
| 1389 | else if (expecting == Expecting(NUMBER)) |
|---|
| 1390 | { |
|---|
| 1391 | sscanf (tkn, "%lf", &tempD); |
|---|
| 1392 | if (tempD < 0.01) |
|---|
| 1393 | { |
|---|
| 1394 | MrBayesPrint ("%s Burnin fraction too low (< 0.01)\n", spacer); |
|---|
| 1395 | return (ERROR); |
|---|
| 1396 | } |
|---|
| 1397 | if (tempD > 0.50) |
|---|
| 1398 | { |
|---|
| 1399 | MrBayesPrint ("%s Burnin fraction too high (> 0.50)\n", spacer); |
|---|
| 1400 | return (ERROR); |
|---|
| 1401 | } |
|---|
| 1402 | chainParams.burninFraction = tempD; |
|---|
| 1403 | MrBayesPrint ("%s Setting burnin fraction to %.2f\n", spacer, chainParams.burninFraction); |
|---|
| 1404 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1405 | } |
|---|
| 1406 | else |
|---|
| 1407 | { |
|---|
| 1408 | return (ERROR); |
|---|
| 1409 | } |
|---|
| 1410 | } |
|---|
| 1411 | /* set Nruns (sumssParams.numRuns) *******************************************************/ |
|---|
| 1412 | else if (!strcmp(parmName, "Nruns")) |
|---|
| 1413 | { |
|---|
| 1414 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1415 | expecting = Expecting(NUMBER); |
|---|
| 1416 | else if (expecting == Expecting(NUMBER)) |
|---|
| 1417 | { |
|---|
| 1418 | sscanf (tkn, "%d", &tempI); |
|---|
| 1419 | if (tempI < 1) |
|---|
| 1420 | { |
|---|
| 1421 | MrBayesPrint ("%s Nruns must be at least 1\n", spacer); |
|---|
| 1422 | return (ERROR); |
|---|
| 1423 | } |
|---|
| 1424 | else |
|---|
| 1425 | { |
|---|
| 1426 | sumssParams.numRuns = tempI; |
|---|
| 1427 | MrBayesPrint ("%s Setting sumss nruns to %d\n", spacer, sumssParams.numRuns); |
|---|
| 1428 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1429 | } |
|---|
| 1430 | } |
|---|
| 1431 | else |
|---|
| 1432 | return (ERROR); |
|---|
| 1433 | } |
|---|
| 1434 | /* set Allruns (sumssParams.allRuns) ********************************************************/ |
|---|
| 1435 | else if (!strcmp(parmName, "Allruns")) |
|---|
| 1436 | { |
|---|
| 1437 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1438 | expecting = Expecting(ALPHA); |
|---|
| 1439 | else if (expecting == Expecting(ALPHA)) |
|---|
| 1440 | { |
|---|
| 1441 | if (IsArgValid(tkn, tempStr) == NO_ERROR) |
|---|
| 1442 | { |
|---|
| 1443 | if (!strcmp(tempStr, "Yes")) |
|---|
| 1444 | sumssParams.allRuns = YES; |
|---|
| 1445 | else |
|---|
| 1446 | sumssParams.allRuns = NO; |
|---|
| 1447 | } |
|---|
| 1448 | else |
|---|
| 1449 | { |
|---|
| 1450 | MrBayesPrint ("%s Invalid argument for allruns (valid arguments are 'yes' and 'no')\n", spacer); |
|---|
| 1451 | return (ERROR); |
|---|
| 1452 | } |
|---|
| 1453 | if (sumssParams.allRuns == YES) |
|---|
| 1454 | MrBayesPrint ("%s Setting sump to print information for each run\n", spacer); |
|---|
| 1455 | else |
|---|
| 1456 | MrBayesPrint ("%s Setting sump to print only summary information for all runs\n", spacer); |
|---|
| 1457 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1458 | } |
|---|
| 1459 | else |
|---|
| 1460 | return (ERROR); |
|---|
| 1461 | } |
|---|
| 1462 | /* set Steptoplot (sumssParams.stepToPlot) *******************************************************/ |
|---|
| 1463 | else if (!strcmp(parmName, "Steptoplot")) |
|---|
| 1464 | { |
|---|
| 1465 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1466 | expecting = Expecting(NUMBER); |
|---|
| 1467 | else if (expecting == Expecting(NUMBER)) |
|---|
| 1468 | { |
|---|
| 1469 | sscanf (tkn, "%d", &tempI); |
|---|
| 1470 | if (tempI < 0) |
|---|
| 1471 | { |
|---|
| 1472 | MrBayesPrint ("%s Steptoplot must be at least 0\n", spacer); |
|---|
| 1473 | return (ERROR); |
|---|
| 1474 | } |
|---|
| 1475 | else |
|---|
| 1476 | { |
|---|
| 1477 | sumssParams.stepToPlot = tempI; |
|---|
| 1478 | MrBayesPrint ("%s Setting sumss steptoplot to %d\n", spacer, sumssParams.stepToPlot); |
|---|
| 1479 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1480 | } |
|---|
| 1481 | } |
|---|
| 1482 | else |
|---|
| 1483 | return (ERROR); |
|---|
| 1484 | } |
|---|
| 1485 | /* set Smoothing (sumssParams.smoothing ) *******************************************************/ |
|---|
| 1486 | else if (!strcmp(parmName, "Smoothing")) |
|---|
| 1487 | { |
|---|
| 1488 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1489 | expecting = Expecting(NUMBER); |
|---|
| 1490 | else if (expecting == Expecting(NUMBER)) |
|---|
| 1491 | { |
|---|
| 1492 | sscanf (tkn, "%d", &tempI); |
|---|
| 1493 | if (tempI < 0) |
|---|
| 1494 | { |
|---|
| 1495 | MrBayesPrint ("%s Smoothing must be at least 0\n", spacer); |
|---|
| 1496 | return (ERROR); |
|---|
| 1497 | } |
|---|
| 1498 | else |
|---|
| 1499 | { |
|---|
| 1500 | sumssParams.smoothing = tempI; |
|---|
| 1501 | MrBayesPrint ("%s Setting sumss smoothing to %d\n", spacer, sumssParams.smoothing ); |
|---|
| 1502 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1503 | } |
|---|
| 1504 | } |
|---|
| 1505 | else |
|---|
| 1506 | return (ERROR); |
|---|
| 1507 | } |
|---|
| 1508 | /* set Allruns (sumssParams.askForMorePlots) ********************************************************/ |
|---|
| 1509 | else if (!strcmp(parmName, "Askmore")) |
|---|
| 1510 | { |
|---|
| 1511 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1512 | expecting = Expecting(ALPHA); |
|---|
| 1513 | else if (expecting == Expecting(ALPHA)) |
|---|
| 1514 | { |
|---|
| 1515 | if (IsArgValid(tkn, tempStr) == NO_ERROR) |
|---|
| 1516 | { |
|---|
| 1517 | if (!strcmp(tempStr, "Yes")) |
|---|
| 1518 | sumssParams.askForMorePlots = YES; |
|---|
| 1519 | else |
|---|
| 1520 | sumssParams.askForMorePlots = NO; |
|---|
| 1521 | } |
|---|
| 1522 | else |
|---|
| 1523 | { |
|---|
| 1524 | MrBayesPrint ("%s Invalid argument for askmore (valid arguments are 'yes' and 'no')\n", spacer); |
|---|
| 1525 | return (ERROR); |
|---|
| 1526 | } |
|---|
| 1527 | if (sumssParams.askForMorePlots == YES) |
|---|
| 1528 | MrBayesPrint ("%s Setting sumss to be interactiva by asking for more plots of burn-in or individual steps.\n", spacer); |
|---|
| 1529 | else |
|---|
| 1530 | MrBayesPrint ("%s Setting sumss not to be interactive. It will not ask to print more plots.\n", spacer); |
|---|
| 1531 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1532 | } |
|---|
| 1533 | else |
|---|
| 1534 | return (ERROR); |
|---|
| 1535 | } |
|---|
| 1536 | /* set Discardfrac (sumssParams.discardFraction) ************************************************************/ |
|---|
| 1537 | else if (!strcmp(parmName, "Discardfrac")) |
|---|
| 1538 | { |
|---|
| 1539 | if (expecting == Expecting(EQUALSIGN)) |
|---|
| 1540 | expecting = Expecting(NUMBER); |
|---|
| 1541 | else if (expecting == Expecting(NUMBER)) |
|---|
| 1542 | { |
|---|
| 1543 | sscanf (tkn, "%lf", &tempD); |
|---|
| 1544 | if (tempD < 0.00) |
|---|
| 1545 | { |
|---|
| 1546 | MrBayesPrint ("%s Discard fraction too low (< 0.00)\n", spacer); |
|---|
| 1547 | return (ERROR); |
|---|
| 1548 | } |
|---|
| 1549 | if (tempD > 1.00) |
|---|
| 1550 | { |
|---|
| 1551 | MrBayesPrint ("%s Discard fraction too high (> 1.00)\n", spacer); |
|---|
| 1552 | return (ERROR); |
|---|
| 1553 | } |
|---|
| 1554 | sumssParams.discardFraction = tempD; |
|---|
| 1555 | MrBayesPrint ("%s Setting discard fraction to %.2f\n", spacer, sumssParams.discardFraction); |
|---|
| 1556 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
|---|
| 1557 | } |
|---|
| 1558 | else |
|---|
| 1559 | { |
|---|
| 1560 | return (ERROR); |
|---|
| 1561 | } |
|---|
| 1562 | } |
|---|
| 1563 | else |
|---|
| 1564 | return (ERROR); |
|---|
| 1565 | } |
|---|
| 1566 | |
|---|
| 1567 | return (NO_ERROR); |
|---|
| 1568 | |
|---|
| 1569 | } |
|---|
| 1570 | |
|---|
| 1571 | |
|---|
| 1572 | |
|---|
| 1573 | |
|---|
| 1574 | |
|---|
| 1575 | /* ExamineSumpFile: Collect info on the parameter samples in the file */ |
|---|
| 1576 | int ExamineSumpFile (char *fileName, SumpFileInfo *fileInfo, char ***headerNames, int *nHeaders) |
|---|
| 1577 | { |
|---|
| 1578 | char *sumpTokenP, sumpToken[CMD_STRING_LENGTH], *s=NULL, *headerLine, *t; |
|---|
| 1579 | int i, lineTerm, inSumpComment, lineNum, lastNonDigitLine, numParamLines, allDigitLine, |
|---|
| 1580 | lastTokenWasDash, nNumbersOnThisLine, tokenType, burnin, nLines, firstNumCols, |
|---|
| 1581 | numRows, numColumns; |
|---|
| 1582 | MrBFlt tempD; |
|---|
| 1583 | FILE *fp = NULL; |
|---|
| 1584 | |
|---|
| 1585 | |
|---|
| 1586 | /* open binary file */ |
|---|
| 1587 | if ((fp = OpenBinaryFileR(fileName)) == NULL) |
|---|
| 1588 | { |
|---|
| 1589 | /* test for some simple errors */ |
|---|
| 1590 | if (strlen(sumpParams.sumpFileName) > 2) |
|---|
| 1591 | { |
|---|
| 1592 | s = sumpParams.sumpFileName + (int) strlen(sumpParams.sumpFileName) - 2; |
|---|
| 1593 | if (strcmp(s, ".p") == 0) |
|---|
| 1594 | { |
|---|
| 1595 | MrBayesPrint ("%s It appears that you need to remove '.p' from the 'Filename' parameter\n", spacer); |
|---|
| 1596 | MrBayesPrint ("%s Also make sure that 'Nruns' is set correctly\n", spacer); |
|---|
| 1597 | return ERROR; |
|---|
| 1598 | } |
|---|
| 1599 | } |
|---|
| 1600 | MrBayesPrint ("%s Make sure that 'Nruns' is set correctly\n", spacer); |
|---|
| 1601 | return ERROR; |
|---|
| 1602 | } |
|---|
| 1603 | |
|---|
| 1604 | /* find out what type of line termination is used */ |
|---|
| 1605 | lineTerm = LineTermType (fp); |
|---|
| 1606 | if (lineTerm != LINETERM_MAC && lineTerm != LINETERM_DOS && lineTerm != LINETERM_UNIX) |
|---|
| 1607 | { |
|---|
| 1608 | MrBayesPrint ("%s Unknown line termination\n", spacer); |
|---|
| 1609 | goto errorExit; |
|---|
| 1610 | } |
|---|
| 1611 | |
|---|
| 1612 | /* find length of longest line */ |
|---|
| 1613 | fileInfo->longestLineLength = LongestLine (fp); |
|---|
| 1614 | fileInfo->longestLineLength += 10; /* better safe than sorry; if you fgets with raw longestLineLength, you run into problems */ |
|---|
| 1615 | |
|---|
| 1616 | /* allocate string long enough to hold a line */ |
|---|
| 1617 | s = (char *)SafeMalloc((size_t) (2*(fileInfo->longestLineLength + 10) * sizeof(char))); |
|---|
| 1618 | if (!s) |
|---|
| 1619 | { |
|---|
| 1620 | MrBayesPrint ("%s Problem allocating string for reading sump file\n", spacer); |
|---|
| 1621 | goto errorExit; |
|---|
| 1622 | } |
|---|
| 1623 | headerLine = s + fileInfo->longestLineLength + 10; |
|---|
| 1624 | |
|---|
| 1625 | /* close binary file */ |
|---|
| 1626 | SafeFclose (&fp); |
|---|
| 1627 | |
|---|
| 1628 | /* open text file */ |
|---|
| 1629 | if ((fp = OpenTextFileR(fileName)) == NULL) |
|---|
| 1630 | goto errorExit; |
|---|
| 1631 | |
|---|
| 1632 | /* Check file for appropriate blocks. We want to find the last block |
|---|
| 1633 | in the file and start from there. */ |
|---|
| 1634 | inSumpComment = NO; |
|---|
| 1635 | lineNum = lastNonDigitLine = numParamLines = 0; |
|---|
| 1636 | while (fgets (s, fileInfo->longestLineLength + 2, fp) != NULL) |
|---|
| 1637 | { |
|---|
| 1638 | sumpTokenP = &s[0]; |
|---|
| 1639 | allDigitLine = YES; |
|---|
| 1640 | lastTokenWasDash = NO; |
|---|
| 1641 | nNumbersOnThisLine = 0; |
|---|
| 1642 | do { |
|---|
| 1643 | if(GetToken (sumpToken, &tokenType, &sumpTokenP)) |
|---|
| 1644 | goto errorExit; |
|---|
| 1645 | /*printf ("%s (%d)\n", sumpToken, tokenType);*/ |
|---|
| 1646 | if (IsSame("[", sumpToken) == SAME) |
|---|
| 1647 | inSumpComment = YES; |
|---|
| 1648 | if (IsSame("]", sumpToken) == SAME) |
|---|
| 1649 | inSumpComment = NO; |
|---|
| 1650 | |
|---|
| 1651 | if (inSumpComment == NO) |
|---|
| 1652 | { |
|---|
| 1653 | if (tokenType == NUMBER) |
|---|
| 1654 | { |
|---|
| 1655 | sscanf (sumpToken, "%lf", &tempD); |
|---|
| 1656 | if (lastTokenWasDash == YES) |
|---|
| 1657 | tempD *= -1.0; |
|---|
| 1658 | nNumbersOnThisLine++; |
|---|
| 1659 | lastTokenWasDash = NO; |
|---|
| 1660 | } |
|---|
| 1661 | else if (tokenType == DASH) |
|---|
| 1662 | { |
|---|
| 1663 | lastTokenWasDash = YES; |
|---|
| 1664 | } |
|---|
| 1665 | else if (tokenType != UNKNOWN_TOKEN_TYPE) |
|---|
| 1666 | { |
|---|
| 1667 | allDigitLine = NO; |
|---|
| 1668 | lastTokenWasDash = NO; |
|---|
| 1669 | } |
|---|
| 1670 | } |
|---|
| 1671 | } while (*sumpToken); |
|---|
| 1672 | lineNum++; |
|---|
| 1673 | |
|---|
| 1674 | if (allDigitLine == NO) |
|---|
| 1675 | { |
|---|
| 1676 | lastNonDigitLine = lineNum; |
|---|
| 1677 | numParamLines = 0; |
|---|
| 1678 | } |
|---|
| 1679 | else |
|---|
| 1680 | { |
|---|
| 1681 | if (nNumbersOnThisLine > 0) |
|---|
| 1682 | numParamLines++; |
|---|
| 1683 | } |
|---|
| 1684 | } |
|---|
| 1685 | |
|---|
| 1686 | /* Now, check some aspects of the .p file. */ |
|---|
| 1687 | if (inSumpComment == YES) |
|---|
| 1688 | { |
|---|
| 1689 | MrBayesPrint ("%s Unterminated comment in file \"%s\"\n", spacer, fileName); |
|---|
| 1690 | goto errorExit; |
|---|
| 1691 | } |
|---|
| 1692 | if (numParamLines <= 0) |
|---|
| 1693 | { |
|---|
| 1694 | MrBayesPrint ("%s No parameters were found in file or there characters not representing a number in last string of the file.\"%s\"\n", spacer, fileName); |
|---|
| 1695 | goto errorExit; |
|---|
| 1696 | } |
|---|
| 1697 | |
|---|
| 1698 | /* calculate burnin */ |
|---|
| 1699 | if ( chainParams.isSS == YES ) |
|---|
| 1700 | { |
|---|
| 1701 | burnin = 0; |
|---|
| 1702 | } |
|---|
| 1703 | else |
|---|
| 1704 | { |
|---|
| 1705 | if (chainParams.relativeBurnin == YES) |
|---|
| 1706 | burnin = (int) (chainParams.burninFraction * numParamLines); |
|---|
| 1707 | else |
|---|
| 1708 | burnin = chainParams.chainBurnIn; |
|---|
| 1709 | } |
|---|
| 1710 | |
|---|
| 1711 | /* check against burnin */ |
|---|
| 1712 | if (burnin > numParamLines) |
|---|
| 1713 | { |
|---|
| 1714 | MrBayesPrint ("%s No parameters can be sampled from file %s as the burnin (%d) exceeds the number of lines in last block (%d)\n", |
|---|
| 1715 | spacer, fileName, burnin, numParamLines); |
|---|
| 1716 | MrBayesPrint ("%s Try setting burnin to a number less than %d\n", spacer, numParamLines); |
|---|
| 1717 | goto errorExit; |
|---|
| 1718 | } |
|---|
| 1719 | |
|---|
| 1720 | /* Set some info in fileInfo */ |
|---|
| 1721 | fileInfo->firstParamLine = lastNonDigitLine + burnin; |
|---|
| 1722 | fileInfo->headerLine = lastNonDigitLine; |
|---|
| 1723 | |
|---|
| 1724 | /* Calculate and check the number of columns and rows for the file; get header line at the same time */ |
|---|
| 1725 | (void)fseek(fp, 0L, 0); |
|---|
| 1726 | for (lineNum=0; lineNum<lastNonDigitLine; lineNum++) |
|---|
| 1727 | if(fgets (s, fileInfo->longestLineLength + 2, fp)==NULL) |
|---|
| 1728 | goto errorExit; |
|---|
| 1729 | strcpy(headerLine, s); |
|---|
| 1730 | for (; lineNum < lastNonDigitLine+burnin; lineNum++) |
|---|
| 1731 | if(fgets (s, fileInfo->longestLineLength + 2, fp)==NULL) |
|---|
| 1732 | goto errorExit; |
|---|
| 1733 | |
|---|
| 1734 | inSumpComment = NO; |
|---|
| 1735 | nLines = 0; |
|---|
| 1736 | numRows = numColumns = firstNumCols = 0; |
|---|
| 1737 | while (fgets (s, fileInfo->longestLineLength + 2, fp) != NULL) |
|---|
| 1738 | { |
|---|
| 1739 | sumpTokenP = &s[0]; |
|---|
| 1740 | allDigitLine = YES; |
|---|
| 1741 | lastTokenWasDash = NO; |
|---|
| 1742 | nNumbersOnThisLine = 0; |
|---|
| 1743 | do { |
|---|
| 1744 | if(GetToken (sumpToken, &tokenType, &sumpTokenP)) |
|---|
| 1745 | goto errorExit; |
|---|
| 1746 | if (IsSame("[", sumpToken) == SAME) |
|---|
| 1747 | inSumpComment = YES; |
|---|
| 1748 | if (IsSame("]", sumpToken) == SAME) |
|---|
| 1749 | inSumpComment = NO; |
|---|
| 1750 | if (inSumpComment == NO) |
|---|
| 1751 | { |
|---|
| 1752 | if (tokenType == NUMBER) |
|---|
| 1753 | { |
|---|
| 1754 | nNumbersOnThisLine++; |
|---|
| 1755 | lastTokenWasDash = NO; |
|---|
| 1756 | } |
|---|
| 1757 | else if (tokenType == DASH) |
|---|
| 1758 | { |
|---|
| 1759 | lastTokenWasDash = YES; |
|---|
| 1760 | } |
|---|
| 1761 | else if (tokenType != UNKNOWN_TOKEN_TYPE) |
|---|
| 1762 | { |
|---|
| 1763 | allDigitLine = NO; |
|---|
| 1764 | lastTokenWasDash = NO; |
|---|
| 1765 | } |
|---|
| 1766 | } |
|---|
| 1767 | } while (*sumpToken); |
|---|
| 1768 | lineNum++; |
|---|
| 1769 | if (allDigitLine == NO) |
|---|
| 1770 | { |
|---|
| 1771 | MrBayesPrint ("%s Found a line with non-digit characters (line %d) in file %s\n", spacer, lineNum, fileName); |
|---|
| 1772 | goto errorExit; |
|---|
| 1773 | } |
|---|
| 1774 | else |
|---|
| 1775 | { |
|---|
| 1776 | if (nNumbersOnThisLine > 0) |
|---|
| 1777 | { |
|---|
| 1778 | nLines++; |
|---|
| 1779 | if (nLines == 1) |
|---|
| 1780 | firstNumCols = nNumbersOnThisLine; |
|---|
| 1781 | else |
|---|
| 1782 | { |
|---|
| 1783 | if (nNumbersOnThisLine != firstNumCols) |
|---|
| 1784 | { |
|---|
| 1785 | MrBayesPrint ("%s Number of columns is not even (%d in first line and %d in %d line of file %s)\n", spacer, firstNumCols, nNumbersOnThisLine, lineNum, fileName); |
|---|
| 1786 | goto errorExit; |
|---|
| 1787 | } |
|---|
| 1788 | } |
|---|
| 1789 | } |
|---|
| 1790 | } |
|---|
| 1791 | } |
|---|
| 1792 | fileInfo->numRows = nLines; |
|---|
| 1793 | fileInfo->numColumns = firstNumCols; |
|---|
| 1794 | |
|---|
| 1795 | /* set or check headers */ |
|---|
| 1796 | if ((*headerNames) == NULL) |
|---|
| 1797 | { |
|---|
| 1798 | GetHeaders (headerNames, headerLine, nHeaders); |
|---|
| 1799 | if (*nHeaders != fileInfo->numColumns) |
|---|
| 1800 | { |
|---|
| 1801 | MrBayesPrint ("%s Expected %d headers but found %d headers\n", spacer, fileInfo->numColumns, *nHeaders); |
|---|
| 1802 | for (i=0; i<*nHeaders; i++) |
|---|
| 1803 | SafeFree ((void **) &((*headerNames)[i])); |
|---|
| 1804 | SafeFree ((void **) &(*headerNames)); |
|---|
| 1805 | *nHeaders=0; |
|---|
| 1806 | goto errorExit; |
|---|
| 1807 | } |
|---|
| 1808 | } |
|---|
| 1809 | else |
|---|
| 1810 | { |
|---|
| 1811 | if (*nHeaders != fileInfo->numColumns) |
|---|
| 1812 | { |
|---|
| 1813 | MrBayesPrint ("%s Expected %d columns but found %d columns\n", spacer, *nHeaders, fileInfo->numColumns); |
|---|
| 1814 | goto errorExit; |
|---|
| 1815 | } |
|---|
| 1816 | for (i=0, t=strtok(headerLine,"\t\n\r"); t!=NULL; t=strtok(NULL,"\t\n\r"), i++) |
|---|
| 1817 | { |
|---|
| 1818 | if (i == *nHeaders) |
|---|
| 1819 | { |
|---|
| 1820 | MrBayesPrint ("%s Expected %d headers but found more headers.\n", |
|---|
| 1821 | spacer, fileInfo->numColumns); |
|---|
| 1822 | goto errorExit; |
|---|
| 1823 | } |
|---|
| 1824 | if (strcmp(t,(*headerNames)[i])!=0) |
|---|
| 1825 | { |
|---|
| 1826 | MrBayesPrint ("%s Expected header '%s' for column %d but the header for this column was '%s' in file '%s'\n", spacer, (*headerNames)[i], i+1, t, fileName); |
|---|
| 1827 | MrBayesPrint ("%s It could be that some paramiter values are not numbers and the whole string containing \n",spacer); |
|---|
| 1828 | MrBayesPrint ("%s this wrongly formated paramiter is treated as a header.\n",spacer); |
|---|
| 1829 | goto errorExit; |
|---|
| 1830 | } |
|---|
| 1831 | } |
|---|
| 1832 | if (t != NULL) |
|---|
| 1833 | { |
|---|
| 1834 | MrBayesPrint ("%s Expected %d headers but found more headers.\n",spacer, fileInfo->numColumns); |
|---|
| 1835 | goto errorExit; |
|---|
| 1836 | } |
|---|
| 1837 | if (i < *nHeaders) |
|---|
| 1838 | { |
|---|
| 1839 | MrBayesPrint ("%s Expected header '%s' for column %d but the header for this column was '%s' in file '%s'\n", |
|---|
| 1840 | spacer, (*headerNames)[i], i+1, t, fileName); |
|---|
| 1841 | goto errorExit; |
|---|
| 1842 | } |
|---|
| 1843 | } |
|---|
| 1844 | |
|---|
| 1845 | free (s); |
|---|
| 1846 | fclose(fp); |
|---|
| 1847 | return (NO_ERROR); |
|---|
| 1848 | |
|---|
| 1849 | errorExit: |
|---|
| 1850 | |
|---|
| 1851 | free(s); |
|---|
| 1852 | fclose(fp); |
|---|
| 1853 | return (ERROR); |
|---|
| 1854 | } |
|---|
| 1855 | |
|---|
| 1856 | |
|---|
| 1857 | |
|---|
| 1858 | |
|---|
| 1859 | |
|---|
| 1860 | /*************************************************** |
|---|
| 1861 | | |
|---|
| 1862 | | FindHeader: Find token in list |
|---|
| 1863 | | |
|---|
| 1864 | ----------------------------------------------------*/ |
|---|
| 1865 | int FindHeader (char *token, char **headerNames, int nHeaders, int *index) |
|---|
| 1866 | { |
|---|
| 1867 | int i, match=0, nMatches; |
|---|
| 1868 | |
|---|
| 1869 | *index = -1; |
|---|
| 1870 | nMatches = 0; |
|---|
| 1871 | for (i=0; i<nHeaders; i++) |
|---|
| 1872 | { |
|---|
| 1873 | if (!strcmp(token,headerNames[i])) |
|---|
| 1874 | { |
|---|
| 1875 | nMatches++; |
|---|
| 1876 | match = i; |
|---|
| 1877 | } |
|---|
| 1878 | } |
|---|
| 1879 | |
|---|
| 1880 | if (nMatches != 1) |
|---|
| 1881 | return (ERROR); |
|---|
| 1882 | |
|---|
| 1883 | *index = match; |
|---|
| 1884 | return (NO_ERROR); |
|---|
| 1885 | } |
|---|
| 1886 | |
|---|
| 1887 | |
|---|
| 1888 | |
|---|
| 1889 | |
|---|
| 1890 | |
|---|
| 1891 | /* FreeParameterSamples: Free parameter samples space */ |
|---|
| 1892 | void FreeParameterSamples (ParameterSample *parameterSamples) |
|---|
| 1893 | { |
|---|
| 1894 | if (parameterSamples != NULL) |
|---|
| 1895 | { |
|---|
| 1896 | free (parameterSamples[0].values[0]); |
|---|
| 1897 | free (parameterSamples[0].values); |
|---|
| 1898 | free (parameterSamples); |
|---|
| 1899 | } |
|---|
| 1900 | } |
|---|
| 1901 | |
|---|
| 1902 | |
|---|
| 1903 | |
|---|
| 1904 | |
|---|
| 1905 | |
|---|
| 1906 | /*************************************************** |
|---|
| 1907 | | |
|---|
| 1908 | | GetHeaders: Get headers from headerLine and put |
|---|
| 1909 | | them in list while updating nHeaders to reflect |
|---|
| 1910 | | the number of headers |
|---|
| 1911 | | |
|---|
| 1912 | ----------------------------------------------------*/ |
|---|
| 1913 | int GetHeaders (char ***headerNames, char *headerLine, int *nHeaders) |
|---|
| 1914 | { |
|---|
| 1915 | char *s; |
|---|
| 1916 | |
|---|
| 1917 | (*nHeaders) = 0; |
|---|
| 1918 | for (s=strtok(headerLine," \t\n\r"); s!=NULL; s=strtok(NULL," \t\n\r")) |
|---|
| 1919 | { |
|---|
| 1920 | if (AddString (headerNames, *nHeaders, s) == ERROR) |
|---|
| 1921 | { |
|---|
| 1922 | MrBayesPrint ("%s Error adding header to list of headers \n", spacer, s); |
|---|
| 1923 | return ERROR; |
|---|
| 1924 | } |
|---|
| 1925 | (*nHeaders)++; |
|---|
| 1926 | } |
|---|
| 1927 | |
|---|
| 1928 | # if 0 |
|---|
| 1929 | for (i=0; i<(*nHeaders); i++) |
|---|
| 1930 | printf ("%4d -> '%s'\n", i, headerNames[i]); |
|---|
| 1931 | # endif |
|---|
| 1932 | |
|---|
| 1933 | return (NO_ERROR); |
|---|
| 1934 | } |
|---|
| 1935 | |
|---|
| 1936 | |
|---|
| 1937 | |
|---|
| 1938 | |
|---|
| 1939 | |
|---|
| 1940 | /* PrintMargLikes: Print marginal likelihoods to screen and to .lstat file */ |
|---|
| 1941 | int PrintMargLikes (char *fileName, char **headerNames, int nHeaders, ParameterSample *parameterSamples, int nRuns, int nSamples) |
|---|
| 1942 | { |
|---|
| 1943 | int i, j, len, longestHeader, *sampleCounts=NULL; |
|---|
| 1944 | char temp[100]; |
|---|
| 1945 | Stat theStats; |
|---|
| 1946 | FILE *fp; |
|---|
| 1947 | |
|---|
| 1948 | /* calculate longest header */ |
|---|
| 1949 | longestHeader = 9; /* length of 'parameter' */ |
|---|
| 1950 | for (i=0; i<nHeaders; i++) |
|---|
| 1951 | { |
|---|
| 1952 | strcpy (temp, headerNames[i]); |
|---|
| 1953 | len = (int) strlen(temp); |
|---|
| 1954 | for (j=0; modelIndicatorParams[j][0]!='\0'; j++) |
|---|
| 1955 | if (IsSame (temp,modelIndicatorParams[j]) != DIFFERENT) |
|---|
| 1956 | break; |
|---|
| 1957 | if (modelIndicatorParams[j][0]!='\0') |
|---|
| 1958 | continue; |
|---|
| 1959 | if (!strcmp (temp, "Gen")) |
|---|
| 1960 | continue; |
|---|
| 1961 | if (!strcmp (temp, "lnL") == SAME) |
|---|
| 1962 | continue; |
|---|
| 1963 | if (len > longestHeader) |
|---|
| 1964 | longestHeader = len; |
|---|
| 1965 | } |
|---|
| 1966 | |
|---|
| 1967 | /* open output file */ |
|---|
| 1968 | strncpy (temp, fileName, 90); |
|---|
| 1969 | strcat (temp, ".pstat"); |
|---|
| 1970 | fp = OpenNewMBPrintFile (temp); |
|---|
| 1971 | if (!fp) |
|---|
| 1972 | return ERROR; |
|---|
| 1973 | |
|---|
| 1974 | /* print unique identifier to the output file */ |
|---|
| 1975 | if (strlen(stamp) > 1) |
|---|
| 1976 | fprintf (fp, "[ID: %s]\n", stamp); |
|---|
| 1977 | |
|---|
| 1978 | /* allocate and set nSamples */ |
|---|
| 1979 | sampleCounts = (int *) SafeCalloc (nRuns, sizeof(int)); |
|---|
| 1980 | if (!sampleCounts) |
|---|
| 1981 | { |
|---|
| 1982 | fclose(fp); |
|---|
| 1983 | return ERROR; |
|---|
| 1984 | } |
|---|
| 1985 | for (i=0; i<nRuns; i++) |
|---|
| 1986 | sampleCounts[i] = nSamples; |
|---|
| 1987 | |
|---|
| 1988 | /* print the header rows */ |
|---|
| 1989 | MrBayesPrint("\n"); |
|---|
| 1990 | if (sumpParams.HPD == YES) |
|---|
| 1991 | MrBayesPrint ("%s %*c 95%% HPD Interval\n", spacer, longestHeader, ' '); |
|---|
| 1992 | else |
|---|
| 1993 | MrBayesPrint ("%s %*c 95%% Cred. Interval\n", spacer, longestHeader, ' '); |
|---|
| 1994 | MrBayesPrint ("%s %*c --------------------\n", spacer, longestHeader, ' '); |
|---|
| 1995 | |
|---|
| 1996 | MrBayesPrint ("%s Parameter%*c Mean Variance Lower Upper Median", spacer, longestHeader-9, ' '); |
|---|
| 1997 | if (nRuns > 1) |
|---|
| 1998 | MrBayesPrint (" PSRF+ "); |
|---|
| 1999 | MrBayesPrint ("\n"); |
|---|
| 2000 | |
|---|
| 2001 | MrBayesPrint ("%s ", spacer); |
|---|
| 2002 | for (j=0; j<longestHeader+1; j++) |
|---|
| 2003 | MrBayesPrint ("-"); |
|---|
| 2004 | MrBayesPrint ("-----------------------------------------------------------"); |
|---|
| 2005 | if (nRuns > 1) |
|---|
| 2006 | MrBayesPrint ("----------"); |
|---|
| 2007 | MrBayesPrint ("\n"); |
|---|
| 2008 | if (nRuns > 1) |
|---|
| 2009 | MrBayesPrintf (fp, "Parameter\tMean\tVariance\tLower\tUpper\tMedian\tPSRF\n"); |
|---|
| 2010 | else |
|---|
| 2011 | MrBayesPrintf (fp, "Parameter\tMean\tVariance\tLower\tUpper\tMedian\n"); |
|---|
| 2012 | |
|---|
| 2013 | /* print table values */ |
|---|
| 2014 | for (i=0; i<nHeaders; i++) |
|---|
| 2015 | { |
|---|
| 2016 | strcpy (temp, headerNames[i]); |
|---|
| 2017 | len = (int) strlen(temp); |
|---|
| 2018 | for (j=0; modelIndicatorParams[j][0]!='\0'; j++) |
|---|
| 2019 | if (IsSame (temp,modelIndicatorParams[j]) != DIFFERENT) |
|---|
| 2020 | break; |
|---|
| 2021 | if (IsSame (temp, "Gen") == SAME) |
|---|
| 2022 | continue; |
|---|
| 2023 | if (IsSame (temp, "lnL") == SAME) |
|---|
| 2024 | continue; |
|---|
| 2025 | |
|---|
| 2026 | GetSummary (parameterSamples[i].values, nRuns, sampleCounts, &theStats, sumpParams.HPD); |
|---|
| 2027 | |
|---|
| 2028 | MrBayesPrint ("%s %-*s ", spacer, longestHeader, temp); |
|---|
| 2029 | MrBayesPrint ("%10.6lf %10.6lf %10.6lf %10.6lf %10.6lf", theStats.mean, theStats.var, theStats.lower, theStats.upper, theStats.median); |
|---|
| 2030 | MrBayesPrintf (fp, "%s", temp); |
|---|
| 2031 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.mean)); |
|---|
| 2032 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.var)); |
|---|
| 2033 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.lower)); |
|---|
| 2034 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.upper)); |
|---|
| 2035 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.median)); |
|---|
| 2036 | if (nRuns > 1) |
|---|
| 2037 | { |
|---|
| 2038 | if (theStats.PSRF < 0.0) |
|---|
| 2039 | { |
|---|
| 2040 | MrBayesPrint (" NA "); |
|---|
| 2041 | MrBayesPrintf (fp, "NA"); |
|---|
| 2042 | } |
|---|
| 2043 | else |
|---|
| 2044 | { |
|---|
| 2045 | MrBayesPrint (" %7.3lf", theStats.PSRF); |
|---|
| 2046 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.PSRF)); |
|---|
| 2047 | } |
|---|
| 2048 | } |
|---|
| 2049 | MrBayesPrint ("\n"); |
|---|
| 2050 | MrBayesPrintf (fp, "\n"); |
|---|
| 2051 | } |
|---|
| 2052 | MrBayesPrint ("%s ", spacer); |
|---|
| 2053 | for (j=0; j<longestHeader+1; j++) |
|---|
| 2054 | MrBayesPrint ("-"); |
|---|
| 2055 | MrBayesPrint ("-----------------------------------------------------------"); |
|---|
| 2056 | if (nRuns > 1) |
|---|
| 2057 | MrBayesPrint ("----------"); |
|---|
| 2058 | MrBayesPrint ("\n"); |
|---|
| 2059 | if (nRuns > 1) |
|---|
| 2060 | { |
|---|
| 2061 | MrBayesPrint ("%s + Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman\n", spacer); |
|---|
| 2062 | MrBayesPrint ("%s and Rubin, 1992) should approach 1.0 as runs converge.\n", spacer); |
|---|
| 2063 | } |
|---|
| 2064 | |
|---|
| 2065 | fclose (fp); |
|---|
| 2066 | free (sampleCounts); |
|---|
| 2067 | |
|---|
| 2068 | return (NO_ERROR); |
|---|
| 2069 | } |
|---|
| 2070 | |
|---|
| 2071 | |
|---|
| 2072 | |
|---|
| 2073 | |
|---|
| 2074 | |
|---|
| 2075 | /* PrintModelStats: Print model stats to screen and to .mstat file */ |
|---|
| 2076 | int PrintModelStats (char *fileName, char **headerNames, int nHeaders, ParameterSample *parameterSamples, int nRuns, int nSamples) |
|---|
| 2077 | { |
|---|
| 2078 | int i, j, j1, j2, k, longestName, nElements, *modelCounts=NULL; |
|---|
| 2079 | MrBFlt f, *prob=NULL, *sum=NULL, *ssq=NULL, *min=NULL, *max=NULL, *stddev=NULL; |
|---|
| 2080 | char temp[100]; |
|---|
| 2081 | FILE *fp; |
|---|
| 2082 | ModelProb *elem = NULL; |
|---|
| 2083 | |
|---|
| 2084 | /* nHeaders - is a convenient synonym for number of column headers */ |
|---|
| 2085 | |
|---|
| 2086 | /* check if we have any model indicator variables and also check for longest header */ |
|---|
| 2087 | k = 0; |
|---|
| 2088 | longestName = 0; |
|---|
| 2089 | for (i=0; i<nHeaders; i++) |
|---|
| 2090 | { |
|---|
| 2091 | for (j=0; strcmp(modelIndicatorParams[j],"")!=0; j++) |
|---|
| 2092 | { |
|---|
| 2093 | if (IsSame (headerNames[i], modelIndicatorParams[j]) != DIFFERENT) |
|---|
| 2094 | { |
|---|
| 2095 | k++; |
|---|
| 2096 | for (j1=0; strcmp(modelElementNames[j][j1],"")!=0; j1++) |
|---|
| 2097 | { |
|---|
| 2098 | j2 = (int)(strlen(headerNames[i]) + 2 + strlen(modelElementNames[j][j1])); |
|---|
| 2099 | if (j2 > longestName) |
|---|
| 2100 | longestName = j2; |
|---|
| 2101 | } |
|---|
| 2102 | break; |
|---|
| 2103 | } |
|---|
| 2104 | } |
|---|
| 2105 | } |
|---|
| 2106 | |
|---|
| 2107 | /* return if nothing to do */ |
|---|
| 2108 | if (k==0) |
|---|
| 2109 | return NO_ERROR; |
|---|
| 2110 | |
|---|
| 2111 | /* open output file */ |
|---|
| 2112 | MrBayesPrint ("%s Model probabilities above %1.3lf\n", spacer, sumpParams.minProb); |
|---|
| 2113 | MrBayesPrint ("%s Estimates saved to file \"%s.mstat\".\n", spacer, sumpParams.sumpOutfile); |
|---|
| 2114 | strncpy (temp,fileName,90); |
|---|
| 2115 | strcat (temp, ".mstat"); |
|---|
| 2116 | fp = OpenNewMBPrintFile(temp); |
|---|
| 2117 | if (!fp) |
|---|
| 2118 | return ERROR; |
|---|
| 2119 | MrBayesPrint ("\n"); |
|---|
| 2120 | |
|---|
| 2121 | /* print unique identifier to the output file */ |
|---|
| 2122 | if (strlen(stamp) > 1) |
|---|
| 2123 | fprintf (fp, "[ID: %s]\n", stamp); |
|---|
| 2124 | |
|---|
| 2125 | /* print header */ |
|---|
| 2126 | MrBayesPrintf (fp, "\n\n"); |
|---|
| 2127 | if (nRuns == 1) |
|---|
| 2128 | { |
|---|
| 2129 | MrBayesPrint ("%s %*c Posterior\n", spacer, longestName-5, ' '); |
|---|
| 2130 | MrBayesPrint ("%s Model%*c Probability\n", spacer, longestName-5, ' '); |
|---|
| 2131 | MrBayesPrint ("%s -----", spacer); |
|---|
| 2132 | for (i=0; i<longestName-5; i++) |
|---|
| 2133 | MrBayesPrint ("-"); |
|---|
| 2134 | MrBayesPrint ("------------------\n"); |
|---|
| 2135 | MrBayesPrintf (fp, "Model\tProbability\n"); |
|---|
| 2136 | } |
|---|
| 2137 | else |
|---|
| 2138 | { |
|---|
| 2139 | MrBayesPrint ("%s %*c Posterior Standard Min. Max. \n", spacer, longestName-5, ' '); |
|---|
| 2140 | MrBayesPrint ("%s Model%*c Probability Deviation Probability Probability\n", spacer, longestName-5, ' '); |
|---|
| 2141 | MrBayesPrint ("%s -----", spacer); |
|---|
| 2142 | for (i=0; i<longestName-5; i++) |
|---|
| 2143 | MrBayesPrint ("-"); |
|---|
| 2144 | MrBayesPrint ("---------------------------------------------------------------\n"); |
|---|
| 2145 | MrBayesPrintf (fp, "Model\tProbability\tStd_dev\tMin_prob\tMax_prob\n"); |
|---|
| 2146 | } |
|---|
| 2147 | |
|---|
| 2148 | /* calculate and print values */ |
|---|
| 2149 | for (i=0; i<nHeaders; i++) |
|---|
| 2150 | { |
|---|
| 2151 | for (j=0; modelIndicatorParams[j][0]!='\0'; j++) |
|---|
| 2152 | if (IsSame (headerNames[i], modelIndicatorParams[j]) != DIFFERENT) |
|---|
| 2153 | break; |
|---|
| 2154 | if (modelIndicatorParams[j][0] == '\0') |
|---|
| 2155 | continue; |
|---|
| 2156 | |
|---|
| 2157 | for (nElements=0; modelElementNames[j][nElements][0]!='\0'; nElements++) |
|---|
| 2158 | ; |
|---|
| 2159 | |
|---|
| 2160 | modelCounts = (int *) SafeCalloc (nElements, sizeof(int)); |
|---|
| 2161 | if (!modelCounts) |
|---|
| 2162 | { |
|---|
| 2163 | fclose(fp); |
|---|
| 2164 | return ERROR; |
|---|
| 2165 | } |
|---|
| 2166 | prob = (MrBFlt *) SafeCalloc (6*nElements, sizeof(MrBFlt)); |
|---|
| 2167 | if (!prob) |
|---|
| 2168 | { |
|---|
| 2169 | free (modelCounts); |
|---|
| 2170 | fclose (fp); |
|---|
| 2171 | return ERROR; |
|---|
| 2172 | } |
|---|
| 2173 | sum = prob + nElements; |
|---|
| 2174 | ssq = prob + 2*nElements; |
|---|
| 2175 | stddev = prob + 3*nElements; |
|---|
| 2176 | min = prob + 4*nElements; |
|---|
| 2177 | max = prob + 5*nElements; |
|---|
| 2178 | |
|---|
| 2179 | for (j1=0; j1<nElements; j1++) |
|---|
| 2180 | min[j1] = 1.0; |
|---|
| 2181 | |
|---|
| 2182 | for (j1=0; j1<nRuns; j1++) |
|---|
| 2183 | { |
|---|
| 2184 | for (j2=0; j2<nElements; j2++) |
|---|
| 2185 | modelCounts[j2] = 0; |
|---|
| 2186 | for (j2=0; j2<nSamples; j2++) |
|---|
| 2187 | modelCounts[(int)(parameterSamples[i].values[j1][j2] + 0.1)]++; |
|---|
| 2188 | for (j2=0; j2<nElements; j2++) |
|---|
| 2189 | { |
|---|
| 2190 | f = (MrBFlt) modelCounts[j2] / (MrBFlt) nSamples; |
|---|
| 2191 | sum[j2] += f; |
|---|
| 2192 | ssq[j2] += f*f; |
|---|
| 2193 | if (f<min[j2]) |
|---|
| 2194 | min[j2] = f; |
|---|
| 2195 | if (f > max[j2]) |
|---|
| 2196 | max[j2] = f; |
|---|
| 2197 | } |
|---|
| 2198 | } |
|---|
| 2199 | |
|---|
| 2200 | for (j1=0; j1<nElements; j1++) |
|---|
| 2201 | { |
|---|
| 2202 | prob[j1] = sum[j1] / (MrBFlt) nRuns; |
|---|
| 2203 | f = ssq[j1] - (sum[j1] * sum[j1] / (MrBFlt) nRuns); |
|---|
| 2204 | f /= (nRuns - 1); |
|---|
| 2205 | if (f <= 0.0) |
|---|
| 2206 | stddev[j1] = 0.0; |
|---|
| 2207 | else |
|---|
| 2208 | stddev[j1] = sqrt (f); |
|---|
| 2209 | } |
|---|
| 2210 | |
|---|
| 2211 | elem = (ModelProb *) SafeCalloc (nElements, sizeof(ModelProb)); |
|---|
| 2212 | for (j1=0; j1<nElements; j1++) |
|---|
| 2213 | { |
|---|
| 2214 | elem[j1].index = j1; |
|---|
| 2215 | elem[j1].prob = prob[j1]; |
|---|
| 2216 | } |
|---|
| 2217 | |
|---|
| 2218 | /* sort in terms of decreasing probabilities */ |
|---|
| 2219 | qsort((void *) elem, (size_t) nElements, (size_t) sizeof(ModelProb), CompareModelProbs); |
|---|
| 2220 | |
|---|
| 2221 | for (j1=0; j1<nElements; j1++) |
|---|
| 2222 | { |
|---|
| 2223 | if (elem[j1].prob <= sumpParams.minProb) |
|---|
| 2224 | break; |
|---|
| 2225 | |
|---|
| 2226 | if (nRuns == 1) |
|---|
| 2227 | { |
|---|
| 2228 | sprintf (temp, "%s[%s]", headerNames[i], modelElementNames[j][elem[j1].index]); |
|---|
| 2229 | MrBayesPrint ("%s %-*s %1.3lf\n", spacer, longestName, temp, prob[elem[j1].index]); |
|---|
| 2230 | MrBayesPrintf (fp, "%s\t%s\n", temp, MbPrintNum(prob[elem[j1].index])); |
|---|
| 2231 | } |
|---|
| 2232 | else /* if (nRuns > 1) */ |
|---|
| 2233 | { |
|---|
| 2234 | sprintf (temp, "%s[%s]", headerNames[i], modelElementNames[j][elem[j1].index]); |
|---|
| 2235 | MrBayesPrint ("%s %-*s %1.3lf %1.3lf %1.3lf %1.3lf\n", |
|---|
| 2236 | spacer, longestName, temp, prob[elem[j1].index], stddev[elem[j1].index], min[elem[j1].index], max[elem[j1].index]); |
|---|
| 2237 | MrBayesPrintf (fp, "%s", temp); |
|---|
| 2238 | MrBayesPrintf (fp, "\t%s", MbPrintNum(prob[elem[j1].index])); |
|---|
| 2239 | MrBayesPrintf (fp, "\t%s", MbPrintNum(stddev[elem[j1].index])); |
|---|
| 2240 | MrBayesPrintf (fp, "\t%s", MbPrintNum(min[elem[j1].index])); |
|---|
| 2241 | MrBayesPrintf (fp, "\t%s", MbPrintNum(max[elem[j1].index])); |
|---|
| 2242 | MrBayesPrintf (fp, "\n"); |
|---|
| 2243 | } |
|---|
| 2244 | } |
|---|
| 2245 | free(elem); |
|---|
| 2246 | elem = NULL; |
|---|
| 2247 | free(modelCounts); |
|---|
| 2248 | modelCounts = NULL; |
|---|
| 2249 | free (prob); |
|---|
| 2250 | prob = NULL; |
|---|
| 2251 | } |
|---|
| 2252 | |
|---|
| 2253 | /* print footer */ |
|---|
| 2254 | if (nRuns == 1) |
|---|
| 2255 | { |
|---|
| 2256 | MrBayesPrint ("%s -----", spacer); |
|---|
| 2257 | for (i=0; i<longestName-5; i++) |
|---|
| 2258 | MrBayesPrint ("-"); |
|---|
| 2259 | MrBayesPrint ("------------------\n\n"); |
|---|
| 2260 | } |
|---|
| 2261 | else |
|---|
| 2262 | { |
|---|
| 2263 | MrBayesPrint ("%s -----", spacer); |
|---|
| 2264 | for (i=0; i<longestName-5; i++) |
|---|
| 2265 | MrBayesPrint ("-"); |
|---|
| 2266 | MrBayesPrint ("---------------------------------------------------------------\n\n"); |
|---|
| 2267 | } |
|---|
| 2268 | |
|---|
| 2269 | /* close output file */ |
|---|
| 2270 | fclose (fp); |
|---|
| 2271 | |
|---|
| 2272 | return (NO_ERROR); |
|---|
| 2273 | } |
|---|
| 2274 | |
|---|
| 2275 | |
|---|
| 2276 | |
|---|
| 2277 | |
|---|
| 2278 | |
|---|
| 2279 | /* PrintOverlayPlot: Print overlay x-y plot of log likelihood vs. generation for several runs */ |
|---|
| 2280 | int PrintOverlayPlot (MrBFlt **xVals, MrBFlt **yVals, int nRuns, int startingFrom, int nSamples) |
|---|
| 2281 | { |
|---|
| 2282 | int i, j, k, k2, n, screenHeight, screenWidth, numY[60], width; |
|---|
| 2283 | char plotSymbol[15][60]; |
|---|
| 2284 | MrBFlt x, y, minX, maxX, minY, maxY, meanY[60]; |
|---|
| 2285 | |
|---|
| 2286 | if (nRuns == 2) |
|---|
| 2287 | MrBayesPrint ("\n%s Overlay plot for both runs:\n", spacer); |
|---|
| 2288 | else |
|---|
| 2289 | MrBayesPrint ("\n%s Overlay plot for all %d runs:\n", spacer, sumpParams.numRuns); |
|---|
| 2290 | if (nRuns > 9) |
|---|
| 2291 | MrBayesPrint ("%s (1 = Run number 1; 2 = Run number 2 etc.; x = Run number 10 or above; * = Several runs)\n", spacer); |
|---|
| 2292 | else if (nRuns > 2) |
|---|
| 2293 | MrBayesPrint ("%s (1 = Run number 1; 2 = Run number 2 etc.; * = Several runs)\n", spacer); |
|---|
| 2294 | else |
|---|
| 2295 | MrBayesPrint ("%s (1 = Run number 1; 2 = Run number 2; * = Both runs)\n", spacer); |
|---|
| 2296 | |
|---|
| 2297 | /* print overlay x-y plot of log likelihood vs. generation for all runs */ |
|---|
| 2298 | screenWidth = 60; /* don't change this without changing numY, meanY, and plotSymbol declared above */ |
|---|
| 2299 | screenHeight = 15; |
|---|
| 2300 | |
|---|
| 2301 | /* find minX, minY, maxX, and maxY over all runs */ |
|---|
| 2302 | minX = minY = 1000000000.0; |
|---|
| 2303 | maxX = maxY = -1000000000.0; |
|---|
| 2304 | for (n=0; n<nRuns; n++) |
|---|
| 2305 | { |
|---|
| 2306 | for (i=startingFrom; i<startingFrom+nSamples; i++) |
|---|
| 2307 | { |
|---|
| 2308 | x = xVals[n][i]; |
|---|
| 2309 | if (x < minX) |
|---|
| 2310 | minX = x; |
|---|
| 2311 | if (x > maxX) |
|---|
| 2312 | maxX = x; |
|---|
| 2313 | } |
|---|
| 2314 | } |
|---|
| 2315 | for (n=0; n<nRuns; n++) |
|---|
| 2316 | { |
|---|
| 2317 | y = 0.0; |
|---|
| 2318 | j = 0; |
|---|
| 2319 | k2 = 0; |
|---|
| 2320 | for (i=startingFrom; i<startingFrom+nSamples; i++) |
|---|
| 2321 | { |
|---|
| 2322 | x = xVals[n][i]; |
|---|
| 2323 | k = (int) (((x - minX) / (maxX - minX)) * screenWidth); |
|---|
| 2324 | if (k <= 0) |
|---|
| 2325 | k = 0; |
|---|
| 2326 | if (k >= screenWidth) |
|---|
| 2327 | k = screenWidth - 1; |
|---|
| 2328 | if (k == j) |
|---|
| 2329 | { |
|---|
| 2330 | y += yVals[n][i]; |
|---|
| 2331 | k2 ++; |
|---|
| 2332 | } |
|---|
| 2333 | else |
|---|
| 2334 | { |
|---|
| 2335 | y /= k2; |
|---|
| 2336 | if (y < minY) |
|---|
| 2337 | minY = y; |
|---|
| 2338 | if (y > maxY) |
|---|
| 2339 | maxY = y; |
|---|
| 2340 | k2 = 1; |
|---|
| 2341 | y = yVals[n][i]; |
|---|
| 2342 | j++; |
|---|
| 2343 | } |
|---|
| 2344 | } |
|---|
| 2345 | if (k2 > 0) |
|---|
| 2346 | { |
|---|
| 2347 | y /= k2; |
|---|
| 2348 | if (y < minY) |
|---|
| 2349 | minY = y; |
|---|
| 2350 | if (y > maxY) |
|---|
| 2351 | maxY = y; |
|---|
| 2352 | } |
|---|
| 2353 | } |
|---|
| 2354 | |
|---|
| 2355 | /* initialize the plot symbols */ |
|---|
| 2356 | for (i=0; i<screenHeight; i++) |
|---|
| 2357 | for (j=0; j<screenWidth; j++) |
|---|
| 2358 | plotSymbol[i][j] = ' '; |
|---|
| 2359 | |
|---|
| 2360 | /* assemble the plot symbols */ |
|---|
| 2361 | for (n=0; n<nRuns; n++) |
|---|
| 2362 | { |
|---|
| 2363 | /* find the plot points for this run */ |
|---|
| 2364 | for (i=0; i<screenWidth; i++) |
|---|
| 2365 | { |
|---|
| 2366 | numY[i] = 0; |
|---|
| 2367 | meanY[i] = 0.0; |
|---|
| 2368 | } |
|---|
| 2369 | for (i=startingFrom; i<startingFrom+nSamples; i++) |
|---|
| 2370 | { |
|---|
| 2371 | x = xVals[n][i]; |
|---|
| 2372 | y = yVals[n][i]; |
|---|
| 2373 | k = (int)(((x - minX) / (maxX - minX)) * screenWidth); |
|---|
| 2374 | if (k >= screenWidth) |
|---|
| 2375 | k = screenWidth - 1; |
|---|
| 2376 | if (k <= 0) |
|---|
| 2377 | k = 0; |
|---|
| 2378 | meanY[k] += y; |
|---|
| 2379 | numY[k]++; |
|---|
| 2380 | } |
|---|
| 2381 | |
|---|
| 2382 | /* transfer these points to the overlay */ |
|---|
| 2383 | for (i=0; i<screenWidth; i++) |
|---|
| 2384 | { |
|---|
| 2385 | if (numY[i] > 0) |
|---|
| 2386 | { |
|---|
| 2387 | k = (int) ((((meanY[i] / numY[i]) - minY)/ (maxY - minY)) * screenHeight); |
|---|
| 2388 | if (k < 0) |
|---|
| 2389 | k = 0; |
|---|
| 2390 | else if (k >= screenHeight) |
|---|
| 2391 | k = screenHeight - 1; |
|---|
| 2392 | if (plotSymbol[k][i] == ' ') |
|---|
| 2393 | { |
|---|
| 2394 | if (n <= 8) |
|---|
| 2395 | plotSymbol[k][i] = '1' + n; |
|---|
| 2396 | else |
|---|
| 2397 | plotSymbol[k][i] = 'x'; |
|---|
| 2398 | } |
|---|
| 2399 | else |
|---|
| 2400 | plotSymbol[k][i] = '*'; |
|---|
| 2401 | } |
|---|
| 2402 | } |
|---|
| 2403 | } /* next run */ |
|---|
| 2404 | |
|---|
| 2405 | /* now print the overlay plot */ |
|---|
| 2406 | MrBayesPrint ("\n%s +", spacer); |
|---|
| 2407 | for (i=0; i<screenWidth; i++) |
|---|
| 2408 | MrBayesPrint ("-"); |
|---|
| 2409 | MrBayesPrint ("+ %1.2lf\n", maxY); |
|---|
| 2410 | for (i=screenHeight-1; i>=0; i--) |
|---|
| 2411 | { |
|---|
| 2412 | MrBayesPrint ("%s |", spacer); |
|---|
| 2413 | for (j=0; j<screenWidth; j++) |
|---|
| 2414 | { |
|---|
| 2415 | MrBayesPrint ("%c", plotSymbol[i][j]); |
|---|
| 2416 | } |
|---|
| 2417 | MrBayesPrint ("|\n"); |
|---|
| 2418 | } |
|---|
| 2419 | MrBayesPrint ("%s +", spacer); |
|---|
| 2420 | for (i=0; i<screenWidth; i++) |
|---|
| 2421 | { |
|---|
| 2422 | if (i % (screenWidth/10) == 0 && i != 0) |
|---|
| 2423 | MrBayesPrint ("+"); |
|---|
| 2424 | else |
|---|
| 2425 | MrBayesPrint ("-"); |
|---|
| 2426 | } |
|---|
| 2427 | MrBayesPrint ("+ %1.2lf\n", minY); |
|---|
| 2428 | MrBayesPrint ("%s ^", spacer); |
|---|
| 2429 | for (i=0; i<screenWidth; i++) |
|---|
| 2430 | MrBayesPrint (" "); |
|---|
| 2431 | MrBayesPrint ("^\n"); |
|---|
| 2432 | MrBayesPrint ("%s %1.0lf", spacer, minX); |
|---|
| 2433 | if((int)minX>0) |
|---|
| 2434 | width=(int)(log10(minX)); |
|---|
| 2435 | else if((int)minX==0) |
|---|
| 2436 | width=1; |
|---|
| 2437 | else |
|---|
| 2438 | width=(int)(log10(-minX))+1; |
|---|
| 2439 | for (i=0; i<screenWidth-width; i++) |
|---|
| 2440 | MrBayesPrint (" "); |
|---|
| 2441 | MrBayesPrint ("%1.0lf\n\n", maxX); |
|---|
| 2442 | |
|---|
| 2443 | return (NO_ERROR); |
|---|
| 2444 | } |
|---|
| 2445 | |
|---|
| 2446 | |
|---|
| 2447 | |
|---|
| 2448 | |
|---|
| 2449 | |
|---|
| 2450 | /* PrintParamStats: Print parameter table (not model indicator params) to screen and .pstat file */ |
|---|
| 2451 | int PrintParamStats (char *fileName, char **headerNames, int nHeaders, ParameterSample *parameterSamples, int nRuns, int nSamples) |
|---|
| 2452 | { |
|---|
| 2453 | int i, j, len, longestHeader, *sampleCounts=NULL; |
|---|
| 2454 | static char *temp=NULL; |
|---|
| 2455 | char tempf[100]; |
|---|
| 2456 | Stat theStats; |
|---|
| 2457 | FILE *fp; |
|---|
| 2458 | |
|---|
| 2459 | /* calculate longest header */ |
|---|
| 2460 | longestHeader = 9; /* length of 'parameter' */ |
|---|
| 2461 | for (i=0; i<nHeaders; i++) |
|---|
| 2462 | { |
|---|
| 2463 | SafeStrcpy (&temp, headerNames[i]); |
|---|
| 2464 | len = (int) strlen(temp); |
|---|
| 2465 | for (j=0; modelIndicatorParams[j][0]!='\0'; j++) |
|---|
| 2466 | if (IsSame (temp,modelIndicatorParams[j]) != DIFFERENT) |
|---|
| 2467 | break; |
|---|
| 2468 | if (modelIndicatorParams[j][0]!='\0') |
|---|
| 2469 | continue; |
|---|
| 2470 | if (!strcmp (temp, "Gen")) |
|---|
| 2471 | continue; |
|---|
| 2472 | if (!strcmp (temp, "lnL") == SAME) |
|---|
| 2473 | continue; |
|---|
| 2474 | if (len > longestHeader) |
|---|
| 2475 | longestHeader = len; |
|---|
| 2476 | } |
|---|
| 2477 | |
|---|
| 2478 | /* open output file */ |
|---|
| 2479 | strncpy (tempf, fileName, 90); |
|---|
| 2480 | strcat (tempf, ".pstat"); |
|---|
| 2481 | fp = OpenNewMBPrintFile (tempf); |
|---|
| 2482 | if (!fp) |
|---|
| 2483 | return ERROR; |
|---|
| 2484 | |
|---|
| 2485 | /* print unique identifier to the output file */ |
|---|
| 2486 | if (strlen(stamp) > 1) |
|---|
| 2487 | fprintf (fp, "[ID: %s]\n", stamp); |
|---|
| 2488 | |
|---|
| 2489 | /* allocate and set nSamples */ |
|---|
| 2490 | sampleCounts = (int *) SafeCalloc (nRuns, sizeof(int)); |
|---|
| 2491 | if (!sampleCounts) |
|---|
| 2492 | { |
|---|
| 2493 | fclose(fp); |
|---|
| 2494 | return ERROR; |
|---|
| 2495 | } |
|---|
| 2496 | for (i=0; i<nRuns; i++) |
|---|
| 2497 | sampleCounts[i] = nSamples; |
|---|
| 2498 | |
|---|
| 2499 | /* print the header rows */ |
|---|
| 2500 | MrBayesPrint("\n"); |
|---|
| 2501 | if (sumpParams.HPD == YES) |
|---|
| 2502 | MrBayesPrint ("%s %*c 95%% HPD Interval\n", spacer, longestHeader, ' '); |
|---|
| 2503 | else |
|---|
| 2504 | MrBayesPrint ("%s %*c 95%% Cred. Interval\n", spacer, longestHeader, ' '); |
|---|
| 2505 | MrBayesPrint ("%s %*c --------------------\n", spacer, longestHeader, ' '); |
|---|
| 2506 | |
|---|
| 2507 | if (nRuns > 1) |
|---|
| 2508 | MrBayesPrint ("%s Parameter%*c Mean Variance Lower Upper Median min ESS* avg ESS PSRF+ ", spacer, longestHeader-9, ' '); |
|---|
| 2509 | else |
|---|
| 2510 | MrBayesPrint ("%s Parameter%*c Mean Variance Lower Upper Median ESS*", spacer, longestHeader-9, ' '); |
|---|
| 2511 | MrBayesPrint ("\n"); |
|---|
| 2512 | |
|---|
| 2513 | MrBayesPrint ("%s ", spacer); |
|---|
| 2514 | for (j=0; j<longestHeader+1; j++) |
|---|
| 2515 | MrBayesPrint ("-"); |
|---|
| 2516 | MrBayesPrint ("---------------------------------------------------------------------"); |
|---|
| 2517 | if (nRuns > 1) |
|---|
| 2518 | MrBayesPrint ("-------------------"); |
|---|
| 2519 | MrBayesPrint ("\n"); |
|---|
| 2520 | if (nRuns > 1) |
|---|
| 2521 | MrBayesPrintf (fp, "Parameter\tMean\tVariance\tLower\tUpper\tMedian\tminESS\tavgESS\tPSRF\n"); |
|---|
| 2522 | else |
|---|
| 2523 | MrBayesPrintf (fp, "Parameter\tMean\tVariance\tLower\tUpper\tMedian\tESS\n"); |
|---|
| 2524 | |
|---|
| 2525 | /* print table values */ |
|---|
| 2526 | for (i=0; i<nHeaders; i++) |
|---|
| 2527 | { |
|---|
| 2528 | SafeStrcpy(&temp, headerNames[i]); |
|---|
| 2529 | len = (int) strlen(temp); |
|---|
| 2530 | for (j=0; modelIndicatorParams[j][0]!='\0'; j++) |
|---|
| 2531 | if (IsSame (temp,modelIndicatorParams[j]) != DIFFERENT) |
|---|
| 2532 | break; |
|---|
| 2533 | if (modelIndicatorParams[j][0]!='\0') |
|---|
| 2534 | continue; |
|---|
| 2535 | if (IsSame (temp, "Gen") == SAME) |
|---|
| 2536 | continue; |
|---|
| 2537 | if (IsSame (temp, "lnL") == SAME) |
|---|
| 2538 | continue; |
|---|
| 2539 | |
|---|
| 2540 | GetSummary (parameterSamples[i].values, nRuns, sampleCounts, &theStats, sumpParams.HPD); |
|---|
| 2541 | |
|---|
| 2542 | MrBayesPrint ("%s %-*s ", spacer, longestHeader, temp); |
|---|
| 2543 | MrBayesPrint ("%10.6lf %10.6lf %10.6lf %10.6lf %10.6lf", theStats.mean, theStats.var, theStats.lower, theStats.upper, theStats.median); |
|---|
| 2544 | MrBayesPrintf (fp, "%s", temp); |
|---|
| 2545 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.mean)); |
|---|
| 2546 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.var)); |
|---|
| 2547 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.lower)); |
|---|
| 2548 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.upper)); |
|---|
| 2549 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.median)); |
|---|
| 2550 | |
|---|
| 2551 | if(theStats.minESS == theStats.minESS) |
|---|
| 2552 | { |
|---|
| 2553 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.minESS)); |
|---|
| 2554 | MrBayesPrint (" %8.2lf", theStats.minESS); |
|---|
| 2555 | } |
|---|
| 2556 | else |
|---|
| 2557 | { |
|---|
| 2558 | MrBayesPrint (" NA "); |
|---|
| 2559 | MrBayesPrintf (fp, "NA"); |
|---|
| 2560 | } |
|---|
| 2561 | if (nRuns > 1) |
|---|
| 2562 | { |
|---|
| 2563 | if(theStats.minESS == theStats.minESS) |
|---|
| 2564 | { |
|---|
| 2565 | MrBayesPrint (" %8.2lf", theStats.avrESS); |
|---|
| 2566 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.avrESS)); |
|---|
| 2567 | } |
|---|
| 2568 | else |
|---|
| 2569 | { |
|---|
| 2570 | MrBayesPrint (" NA "); |
|---|
| 2571 | MrBayesPrintf (fp, "NA"); |
|---|
| 2572 | } |
|---|
| 2573 | if (theStats.PSRF < 0.0) |
|---|
| 2574 | { |
|---|
| 2575 | MrBayesPrint (" NA "); |
|---|
| 2576 | MrBayesPrintf (fp, "NA"); |
|---|
| 2577 | } |
|---|
| 2578 | else |
|---|
| 2579 | { |
|---|
| 2580 | MrBayesPrint (" %7.3lf", theStats.PSRF); |
|---|
| 2581 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.PSRF)); |
|---|
| 2582 | } |
|---|
| 2583 | } |
|---|
| 2584 | MrBayesPrint ("\n"); |
|---|
| 2585 | MrBayesPrintf (fp, "\n"); |
|---|
| 2586 | } |
|---|
| 2587 | MrBayesPrint ("%s ", spacer); |
|---|
| 2588 | for (j=0; j<longestHeader+1; j++) |
|---|
| 2589 | MrBayesPrint ("-"); |
|---|
| 2590 | MrBayesPrint ("---------------------------------------------------------------------"); |
|---|
| 2591 | if (nRuns > 1) |
|---|
| 2592 | MrBayesPrint ("-------------------"); |
|---|
| 2593 | MrBayesPrint ("\n"); |
|---|
| 2594 | if (nRuns > 1) |
|---|
| 2595 | { |
|---|
| 2596 | MrBayesPrint ("%s * Convergence diagnostic (ESS = Estimated Sample Size); min and avg values\n", spacer); |
|---|
| 2597 | MrBayesPrint ("%s correspond to minimal and average ESS among runs. \n", spacer); |
|---|
| 2598 | MrBayesPrint ("%s ESS value below 100 may indicate that the parameter is undersampled. \n", spacer); |
|---|
| 2599 | MrBayesPrint ("%s + Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman\n", spacer); |
|---|
| 2600 | MrBayesPrint ("%s and Rubin, 1992) should approach 1.0 as runs converge.\n", spacer); |
|---|
| 2601 | } |
|---|
| 2602 | else |
|---|
| 2603 | { |
|---|
| 2604 | MrBayesPrint ("%s * Convergence diagnostic (ESS = Estimated Sample Size); ESS value \n", spacer); |
|---|
| 2605 | MrBayesPrint ("%s below 100 may indicate that the parameter is undersampled. \n", spacer); |
|---|
| 2606 | } |
|---|
| 2607 | MrBayesPrint ("\n\n"); |
|---|
| 2608 | |
|---|
| 2609 | fclose (fp); |
|---|
| 2610 | free (sampleCounts); |
|---|
| 2611 | SafeFree ((void **)&temp); |
|---|
| 2612 | |
|---|
| 2613 | return (NO_ERROR); |
|---|
| 2614 | } |
|---|
| 2615 | |
|---|
| 2616 | |
|---|
| 2617 | |
|---|
| 2618 | |
|---|
| 2619 | |
|---|
| 2620 | /* PrintPlot: Print x-y plot of log likelihood vs. generation */ |
|---|
| 2621 | int PrintPlot (MrBFlt *xVals, MrBFlt *yVals, int numVals) |
|---|
| 2622 | { |
|---|
| 2623 | int i, j, k, numY[60], screenWidth, screenHeight; |
|---|
| 2624 | MrBFlt x, y, minX, maxX, minY, maxY, meanY[60], diff; |
|---|
| 2625 | |
|---|
| 2626 | /* print x-y plot of log likelihood vs. generation */ |
|---|
| 2627 | screenWidth = 60; /* don't change this without changing numY and meanY, declared above */ |
|---|
| 2628 | screenHeight = 15; |
|---|
| 2629 | |
|---|
| 2630 | /* find minX and maxX */ |
|---|
| 2631 | minX = xVals[0]; |
|---|
| 2632 | maxX = xVals[0]; |
|---|
| 2633 | for (i=0; i<numVals; i++) |
|---|
| 2634 | { |
|---|
| 2635 | x = xVals[i]; |
|---|
| 2636 | if (x < minX) |
|---|
| 2637 | minX = x; |
|---|
| 2638 | if (x > maxX) |
|---|
| 2639 | maxX = x; |
|---|
| 2640 | } |
|---|
| 2641 | |
|---|
| 2642 | /* collect Y data */ |
|---|
| 2643 | for (i=0; i<screenWidth; i++) |
|---|
| 2644 | { |
|---|
| 2645 | numY[i] = 0; |
|---|
| 2646 | meanY[i] = 0.0; |
|---|
| 2647 | } |
|---|
| 2648 | for (i=0; i<numVals; i++) |
|---|
| 2649 | { |
|---|
| 2650 | x = xVals[i]; |
|---|
| 2651 | y = yVals[i]; |
|---|
| 2652 | k = (int)(((x - minX) / (maxX - minX)) * screenWidth); |
|---|
| 2653 | if (k >= screenWidth) |
|---|
| 2654 | k = screenWidth - 1; |
|---|
| 2655 | if (k < 0) |
|---|
| 2656 | k = 0; |
|---|
| 2657 | meanY[k] += y; |
|---|
| 2658 | numY[k]++; |
|---|
| 2659 | } |
|---|
| 2660 | |
|---|
| 2661 | /* find minY and maxY */ |
|---|
| 2662 | minY = maxY = meanY[0] / numY[0]; |
|---|
| 2663 | for (i=0; i<screenWidth; i++) |
|---|
| 2664 | { |
|---|
| 2665 | if( meanY[i] == 0) /* with some compilers if( NaN < 1 ) is equal true !!! so we realy need this check*/ |
|---|
| 2666 | continue; |
|---|
| 2667 | meanY[i] /= numY[i]; |
|---|
| 2668 | if (meanY[i] < minY) |
|---|
| 2669 | minY = meanY[i]; |
|---|
| 2670 | if (meanY[i] > maxY) |
|---|
| 2671 | maxY = meanY[i]; |
|---|
| 2672 | } |
|---|
| 2673 | |
|---|
| 2674 | /* find difference */ |
|---|
| 2675 | diff = maxY - minY; |
|---|
| 2676 | |
|---|
| 2677 | /* print plot */ |
|---|
| 2678 | MrBayesPrint ("\n +"); |
|---|
| 2679 | for (i=0; i<screenWidth; i++) |
|---|
| 2680 | MrBayesPrint ("-"); |
|---|
| 2681 | MrBayesPrint ("+ %1.3lf\n", maxY); |
|---|
| 2682 | for (j=screenHeight-1; j>=0; j--) |
|---|
| 2683 | { |
|---|
| 2684 | MrBayesPrint (" |"); |
|---|
| 2685 | for (i=0; i<screenWidth; i++) |
|---|
| 2686 | { |
|---|
| 2687 | if (numY[i] > 0) |
|---|
| 2688 | { |
|---|
| 2689 | if ((meanY[i] > ((diff/screenHeight)*j)+minY && meanY[i] <= ((diff/screenHeight)*(j+1))+minY) || |
|---|
| 2690 | (j == 0 && meanY[i] <= minY)) |
|---|
| 2691 | MrBayesPrint ("*"); |
|---|
| 2692 | else |
|---|
| 2693 | MrBayesPrint (" "); |
|---|
| 2694 | } |
|---|
| 2695 | else |
|---|
| 2696 | { |
|---|
| 2697 | MrBayesPrint (" "); |
|---|
| 2698 | } |
|---|
| 2699 | } |
|---|
| 2700 | MrBayesPrint ("|\n"); |
|---|
| 2701 | } |
|---|
| 2702 | MrBayesPrint (" +"); |
|---|
| 2703 | for (i=0; i<screenWidth; i++) |
|---|
| 2704 | { |
|---|
| 2705 | if (i % (screenWidth/10) == 0 && i != 0) |
|---|
| 2706 | MrBayesPrint ("+"); |
|---|
| 2707 | else |
|---|
| 2708 | MrBayesPrint ("-"); |
|---|
| 2709 | } |
|---|
| 2710 | MrBayesPrint ("+ %1.3lf\n", minY); |
|---|
| 2711 | MrBayesPrint (" ^"); |
|---|
| 2712 | for (i=0; i<screenWidth; i++) |
|---|
| 2713 | MrBayesPrint (" "); |
|---|
| 2714 | MrBayesPrint ("^\n"); |
|---|
| 2715 | MrBayesPrint (" %1.0lf", minX); |
|---|
| 2716 | if (minX == 0) |
|---|
| 2717 | j = 1; |
|---|
| 2718 | else |
|---|
| 2719 | j = (int)(log10(minX)) + 1; |
|---|
| 2720 | for (i=0; i<screenWidth-j; i++) |
|---|
| 2721 | MrBayesPrint (" "); |
|---|
| 2722 | MrBayesPrint ("%1.0lf\n\n", maxX); |
|---|
| 2723 | |
|---|
| 2724 | return (NO_ERROR); |
|---|
| 2725 | } |
|---|
| 2726 | |
|---|
| 2727 | |
|---|
| 2728 | |
|---|
| 2729 | |
|---|
| 2730 | |
|---|
| 2731 | void PrintPlotHeader (void) |
|---|
| 2732 | { |
|---|
| 2733 | MrBayesPrint ("\n"); |
|---|
| 2734 | if (sumpParams.numRuns > 1) |
|---|
| 2735 | { |
|---|
| 2736 | MrBayesPrint ("%s Below are rough plots of the generation (x-axis) versus the log \n", spacer); |
|---|
| 2737 | MrBayesPrint ("%s probability of observing the data (y-axis). You can use these \n", spacer); |
|---|
| 2738 | MrBayesPrint ("%s graphs to determine what the burn in for your analysis should be. \n", spacer); |
|---|
| 2739 | MrBayesPrint ("%s When the log probability starts to plateau you may be at station- \n", spacer); |
|---|
| 2740 | MrBayesPrint ("%s arity. Sample trees and parameters after the log probability \n", spacer); |
|---|
| 2741 | MrBayesPrint ("%s plateaus. Of course, this is not a guarantee that you are at sta- \n", spacer); |
|---|
| 2742 | MrBayesPrint ("%s tionarity. Also examine the convergence diagnostics provided by \n", spacer); |
|---|
| 2743 | MrBayesPrint ("%s the 'sump' and 'sumt' commands for all the parameters in your \n", spacer); |
|---|
| 2744 | MrBayesPrint ("%s model. Remember that the burn in is the number of samples to dis- \n", spacer); |
|---|
| 2745 | MrBayesPrint ("%s card. There are a total of ngen / samplefreq samples taken during \n", spacer); |
|---|
| 2746 | MrBayesPrint ("%s a MCMC analysis. \n", spacer); |
|---|
| 2747 | } |
|---|
| 2748 | else |
|---|
| 2749 | { |
|---|
| 2750 | MrBayesPrint ("%s Below is a rough plot of the generation (x-axis) versus the log \n", spacer); |
|---|
| 2751 | MrBayesPrint ("%s probability of observing the data (y-axis). You can use this \n", spacer); |
|---|
| 2752 | MrBayesPrint ("%s graph to determine what the burn in for your analysis should be. \n", spacer); |
|---|
| 2753 | MrBayesPrint ("%s When the log probability starts to plateau you may be at station- \n", spacer); |
|---|
| 2754 | MrBayesPrint ("%s arity. Sample trees and parameters after the log probability \n", spacer); |
|---|
| 2755 | MrBayesPrint ("%s plateaus. Of course, this is not a guarantee that you are at sta- \n", spacer); |
|---|
| 2756 | MrBayesPrint ("%s analysis should be. When the log probability starts to plateau \n", spacer); |
|---|
| 2757 | MrBayesPrint ("%s tionarity. When possible, run multiple analyses starting from dif-\n", spacer); |
|---|
| 2758 | MrBayesPrint ("%s ferent random trees; if the inferences you make for independent \n", spacer); |
|---|
| 2759 | MrBayesPrint ("%s analyses are the same, this is reasonable evidence that the chains\n", spacer); |
|---|
| 2760 | MrBayesPrint ("%s have converged. You can use MrBayes to run several independent \n", spacer); |
|---|
| 2761 | MrBayesPrint ("%s analyses simultaneously. During such a run, MrBayes will monitor \n", spacer); |
|---|
| 2762 | MrBayesPrint ("%s the convergence of topologies. After the run has been completed, \n", spacer); |
|---|
| 2763 | MrBayesPrint ("%s the 'sumt' and 'sump' functions will provide additional conver- \n", spacer); |
|---|
| 2764 | MrBayesPrint ("%s gence diagnostics for all the parameters in your model. Remember \n", spacer); |
|---|
| 2765 | MrBayesPrint ("%s that the burn in is the number of samples to discard. There are \n", spacer); |
|---|
| 2766 | MrBayesPrint ("%s a total of ngen / samplefreq samples taken during a MCMC analysis.\n", spacer); |
|---|
| 2767 | } |
|---|
| 2768 | } |
|---|
| 2769 | |
|---|
| 2770 | |
|---|
| 2771 | |
|---|
| 2772 | |
|---|
| 2773 | |
|---|
| 2774 | /* ReadParamSamples: Read parameter samples from .p file */ |
|---|
| 2775 | int ReadParamSamples (char *fileName, SumpFileInfo *fileInfo, ParameterSample *parameterSamples, int runNo) |
|---|
| 2776 | { |
|---|
| 2777 | char sumpToken[CMD_STRING_LENGTH], *s=NULL, *p; |
|---|
| 2778 | int inSumpComment, lineNum, numLinesRead, numLinesToRead, column, lastTokenWasDash, |
|---|
| 2779 | tokenType; |
|---|
| 2780 | MrBFlt tempD; |
|---|
| 2781 | FILE *fp; |
|---|
| 2782 | |
|---|
| 2783 | /* open file */ |
|---|
| 2784 | if ((fp = OpenTextFileR (fileName)) == NULL) |
|---|
| 2785 | return ERROR; |
|---|
| 2786 | |
|---|
| 2787 | /* allocate space for reading lines */ |
|---|
| 2788 | s = (char *) SafeCalloc (fileInfo->longestLineLength + 10, sizeof(char)); |
|---|
| 2789 | |
|---|
| 2790 | /* fast forward to beginning of last unburned parameter line. */ |
|---|
| 2791 | for (lineNum=0; lineNum<fileInfo->firstParamLine; lineNum++) |
|---|
| 2792 | if (fgets (s, fileInfo->longestLineLength + 5, fp) == 0) |
|---|
| 2793 | goto errorExit; |
|---|
| 2794 | |
|---|
| 2795 | /* parse file, line-by-line. We are only parsing lines that have digits that should be read. */ |
|---|
| 2796 | inSumpComment = NO; |
|---|
| 2797 | numLinesToRead = fileInfo->numRows; |
|---|
| 2798 | numLinesRead = 0; |
|---|
| 2799 | while (fgets (s, fileInfo->longestLineLength + 1, fp) != NULL) |
|---|
| 2800 | { |
|---|
| 2801 | lastTokenWasDash = NO; |
|---|
| 2802 | column = 0; |
|---|
| 2803 | p = s; |
|---|
| 2804 | do { |
|---|
| 2805 | if(GetToken (sumpToken, &tokenType, &p)) |
|---|
| 2806 | goto errorExit; |
|---|
| 2807 | if (IsSame("[", sumpToken) == SAME) |
|---|
| 2808 | inSumpComment = YES; |
|---|
| 2809 | if (IsSame("]", sumpToken) == SAME) |
|---|
| 2810 | inSumpComment = NO; |
|---|
| 2811 | if (inSumpComment == NO) |
|---|
| 2812 | { |
|---|
| 2813 | if (tokenType == NUMBER) |
|---|
| 2814 | { |
|---|
| 2815 | /* read the number */ |
|---|
| 2816 | if (column >= fileInfo->numColumns) |
|---|
| 2817 | { |
|---|
| 2818 | MrBayesPrint ("%s Too many values read on line %d of file %s\n", spacer, lineNum, fileName); |
|---|
| 2819 | goto errorExit; |
|---|
| 2820 | } |
|---|
| 2821 | sscanf (sumpToken, "%lf", &tempD); |
|---|
| 2822 | if (lastTokenWasDash == YES) |
|---|
| 2823 | tempD *= -1.0; |
|---|
| 2824 | parameterSamples[column].values[runNo][numLinesRead] = tempD; |
|---|
| 2825 | column++; |
|---|
| 2826 | lastTokenWasDash = NO; |
|---|
| 2827 | } |
|---|
| 2828 | else if (tokenType == DASH) |
|---|
| 2829 | { |
|---|
| 2830 | lastTokenWasDash = YES; |
|---|
| 2831 | } |
|---|
| 2832 | else if (tokenType != UNKNOWN_TOKEN_TYPE) |
|---|
| 2833 | { |
|---|
| 2834 | /* we have a problem */ |
|---|
| 2835 | MrBayesPrint ("%s Line %d of file %s has non-digit characters\n", spacer, lineNum, fileName); |
|---|
| 2836 | goto errorExit; |
|---|
| 2837 | } |
|---|
| 2838 | } |
|---|
| 2839 | } while (*sumpToken); |
|---|
| 2840 | |
|---|
| 2841 | lineNum++; |
|---|
| 2842 | if (column == fileInfo->numColumns) |
|---|
| 2843 | numLinesRead++; |
|---|
| 2844 | else if (column != 0) |
|---|
| 2845 | { |
|---|
| 2846 | MrBayesPrint ("%s Too few values on line %d of file %s\n", spacer, lineNum, fileName); |
|---|
| 2847 | goto errorExit; |
|---|
| 2848 | } |
|---|
| 2849 | } |
|---|
| 2850 | |
|---|
| 2851 | |
|---|
| 2852 | /* Check how many parameter line was read in. */ |
|---|
| 2853 | if (numLinesRead != numLinesToRead) |
|---|
| 2854 | { |
|---|
| 2855 | MrBayesPrint ("%s Unable to read all lines that should contain parameter samples\n", spacer); |
|---|
| 2856 | goto errorExit; |
|---|
| 2857 | } |
|---|
| 2858 | |
|---|
| 2859 | fclose (fp); |
|---|
| 2860 | free (s); |
|---|
| 2861 | |
|---|
| 2862 | return (NO_ERROR); |
|---|
| 2863 | |
|---|
| 2864 | errorExit: |
|---|
| 2865 | |
|---|
| 2866 | fclose (fp); |
|---|
| 2867 | free (s); |
|---|
| 2868 | |
|---|
| 2869 | return ERROR; |
|---|
| 2870 | } |
|---|
| 2871 | |
|---|
| 2872 | |
|---|
| 2873 | |
|---|
| 2874 | |
|---|