| 1 | /* |
|---|
| 2 | |
|---|
| 3 | PhyML: a program that computes maximum likelihood phylogenies from |
|---|
| 4 | DNA or AA homoLOGous sequences. |
|---|
| 5 | |
|---|
| 6 | Copyright (C) Stephane Guindon. Oct 2003 onward. |
|---|
| 7 | |
|---|
| 8 | All parts of the source except where indicated are distributed under |
|---|
| 9 | the GNU public licence. See http://www.opensource.org for details. |
|---|
| 10 | |
|---|
| 11 | */ |
|---|
| 12 | |
|---|
| 13 | |
|---|
| 14 | /* Routines for Markov-Modulated Markov Models (M4) */ |
|---|
| 15 | |
|---|
| 16 | #include "m4.h" |
|---|
| 17 | |
|---|
| 18 | int M4_main(int argc, char **argv) |
|---|
| 19 | { |
|---|
| 20 | |
|---|
| 21 | calign *cdata; |
|---|
| 22 | option *io; |
|---|
| 23 | t_tree *tree; |
|---|
| 24 | int num_data_set; |
|---|
| 25 | int num_tree,num_rand_tree; |
|---|
| 26 | t_mod *mod; |
|---|
| 27 | time_t t_beg,t_end; |
|---|
| 28 | phydbl best_lnL; |
|---|
| 29 | int r_seed; |
|---|
| 30 | char *most_likely_tree=NULL; |
|---|
| 31 | |
|---|
| 32 | |
|---|
| 33 | #ifdef MPI |
|---|
| 34 | int rc; |
|---|
| 35 | rc = MPI_Init(&argc,&argv); |
|---|
| 36 | if (rc != MPI_SUCCESS) { |
|---|
| 37 | PhyML_Printf("\n. Error starting MPI program. Terminating.\n"); |
|---|
| 38 | MPI_Abort(MPI_COMM_WORLD, rc); |
|---|
| 39 | } |
|---|
| 40 | MPI_Comm_size(MPI_COMM_WORLD,&Global_numTask); |
|---|
| 41 | MPI_Comm_rank(MPI_COMM_WORLD,&Global_myRank); |
|---|
| 42 | #endif |
|---|
| 43 | |
|---|
| 44 | #ifdef QUIET |
|---|
| 45 | setvbuf(stdout,NULL,_IOFBF,2048); |
|---|
| 46 | #endif |
|---|
| 47 | |
|---|
| 48 | |
|---|
| 49 | tree = NULL; |
|---|
| 50 | mod = NULL; |
|---|
| 51 | best_lnL = UNLIKELY; |
|---|
| 52 | |
|---|
| 53 | io = (option *)Get_Input(argc,argv); |
|---|
| 54 | r_seed = (io->r_seed < 0)?(time(NULL)):(io->r_seed); |
|---|
| 55 | srand(r_seed); |
|---|
| 56 | io->r_seed = r_seed; |
|---|
| 57 | |
|---|
| 58 | |
|---|
| 59 | if(io->in_tree == 2) Test_Multiple_Data_Set_Format(io); |
|---|
| 60 | else io->n_trees = 1; |
|---|
| 61 | |
|---|
| 62 | |
|---|
| 63 | if((io->n_data_sets > 1) && (io->n_trees > 1)) |
|---|
| 64 | { |
|---|
| 65 | io->n_data_sets = MIN(io->n_trees,io->n_data_sets); |
|---|
| 66 | io->n_trees = MIN(io->n_trees,io->n_data_sets); |
|---|
| 67 | } |
|---|
| 68 | |
|---|
| 69 | For(num_data_set,io->n_data_sets) |
|---|
| 70 | { |
|---|
| 71 | best_lnL = UNLIKELY; |
|---|
| 72 | Get_Seq(io); |
|---|
| 73 | Make_Model_Complete(io->mod); |
|---|
| 74 | Set_Model_Name(io->mod); |
|---|
| 75 | Print_Settings(io); |
|---|
| 76 | mod = io->mod; |
|---|
| 77 | |
|---|
| 78 | if(io->data) |
|---|
| 79 | { |
|---|
| 80 | if(io->n_data_sets > 1) PhyML_Printf("\n. Data set [#%d]\n",num_data_set+1); |
|---|
| 81 | cdata = Compact_Data(io->data,io); |
|---|
| 82 | |
|---|
| 83 | Free_Seq(io->data,cdata->n_otu); |
|---|
| 84 | |
|---|
| 85 | if(cdata) Check_Ambiguities(cdata,io->datatype,io->state_len); |
|---|
| 86 | else |
|---|
| 87 | { |
|---|
| 88 | PhyML_Printf("\n. Err in file %s at line %d\n",__FILE__,__LINE__); |
|---|
| 89 | Warn_And_Exit(""); |
|---|
| 90 | } |
|---|
| 91 | |
|---|
| 92 | for(num_tree=(io->n_trees == 1)?(0):(num_data_set);num_tree < io->n_trees;num_tree++) |
|---|
| 93 | { |
|---|
| 94 | if(!io->mod->s_opt->random_input_tree) io->mod->s_opt->n_rand_starts = 1; |
|---|
| 95 | |
|---|
| 96 | For(num_rand_tree,io->mod->s_opt->n_rand_starts) |
|---|
| 97 | { |
|---|
| 98 | if((io->mod->s_opt->random_input_tree) && (io->mod->s_opt->topo_search != NNI_MOVE)) |
|---|
| 99 | if(!io->quiet) PhyML_Printf("\n. [Random start %3d/%3d]\n",num_rand_tree+1,io->mod->s_opt->n_rand_starts); |
|---|
| 100 | |
|---|
| 101 | Init_Model(cdata,mod,io); |
|---|
| 102 | |
|---|
| 103 | if(io->mod->use_m4mod) M4_Init_Model(mod->m4mod,cdata,mod); |
|---|
| 104 | |
|---|
| 105 | switch(io->in_tree) |
|---|
| 106 | { |
|---|
| 107 | case 0 : case 1 : { tree = Dist_And_BioNJ(cdata,mod,io); break; } |
|---|
| 108 | case 2 : { tree = Read_User_Tree(cdata,mod,io); break; } |
|---|
| 109 | } |
|---|
| 110 | |
|---|
| 111 | |
|---|
| 112 | if(!tree) continue; |
|---|
| 113 | |
|---|
| 114 | time(&t_beg); |
|---|
| 115 | time(&(tree->t_beg)); |
|---|
| 116 | |
|---|
| 117 | |
|---|
| 118 | tree->mod = mod; |
|---|
| 119 | tree->io = io; |
|---|
| 120 | tree->data = cdata; |
|---|
| 121 | tree->n_pattern = tree->data->crunch_len; |
|---|
| 122 | |
|---|
| 123 | Set_Both_Sides(YES,tree); |
|---|
| 124 | |
|---|
| 125 | if(mod->s_opt->random_input_tree) Random_Tree(tree); |
|---|
| 126 | |
|---|
| 127 | if((!num_data_set) && (!num_tree) && (!num_rand_tree)) Check_Memory_Amount(tree); |
|---|
| 128 | |
|---|
| 129 | Prepare_Tree_For_Lk(tree); |
|---|
| 130 | |
|---|
| 131 | if(io->in_tree == 1) Spr_Pars(tree); |
|---|
| 132 | |
|---|
| 133 | if(io->do_alias_subpatt) |
|---|
| 134 | { |
|---|
| 135 | MIXT_Set_Alias_Subpatt(YES,tree); |
|---|
| 136 | Lk(NULL,tree); |
|---|
| 137 | MIXT_Set_Alias_Subpatt(NO,tree); |
|---|
| 138 | } |
|---|
| 139 | |
|---|
| 140 | if(tree->mod->s_opt->opt_topo) |
|---|
| 141 | { |
|---|
| 142 | if(tree->mod->s_opt->topo_search == NNI_MOVE) Simu_Loop(tree); |
|---|
| 143 | else if(tree->mod->s_opt->topo_search == SPR_MOVE) Speed_Spr_Loop(tree); |
|---|
| 144 | else Best_Of_NNI_And_SPR(tree); |
|---|
| 145 | } |
|---|
| 146 | else |
|---|
| 147 | { |
|---|
| 148 | if(tree->mod->s_opt->opt_subst_param || |
|---|
| 149 | tree->mod->s_opt->opt_bl) Round_Optimize(tree,tree->data,ROUND_MAX); |
|---|
| 150 | else Lk(NULL,tree); |
|---|
| 151 | } |
|---|
| 152 | |
|---|
| 153 | |
|---|
| 154 | Set_Both_Sides(YES,tree); |
|---|
| 155 | Lk(NULL,tree); |
|---|
| 156 | Pars(NULL,tree); |
|---|
| 157 | Get_Tree_Size(tree); |
|---|
| 158 | PhyML_Printf("\n. Log likelihood of the current tree: %f.\n",tree->c_lnL); |
|---|
| 159 | |
|---|
| 160 | Exit("\n"); |
|---|
| 161 | |
|---|
| 162 | /* */ |
|---|
| 163 | M4_Compute_Proba_Hidden_States_On_Edges(tree); |
|---|
| 164 | /* */ |
|---|
| 165 | |
|---|
| 166 | Get_Best_Root_Position(tree); |
|---|
| 167 | |
|---|
| 168 | /* Print the tree estimated using the current random (or BioNJ) starting tree */ |
|---|
| 169 | if(io->mod->s_opt->n_rand_starts > 1) |
|---|
| 170 | { |
|---|
| 171 | Br_Len_Involving_Invar(tree); |
|---|
| 172 | Print_Tree(io->fp_out_trees,tree); |
|---|
| 173 | fflush(NULL); |
|---|
| 174 | } |
|---|
| 175 | |
|---|
| 176 | /* Record the most likely tree in a string of characters */ |
|---|
| 177 | if(tree->c_lnL > best_lnL) |
|---|
| 178 | { |
|---|
| 179 | best_lnL = tree->c_lnL; |
|---|
| 180 | Br_Len_Involving_Invar(tree); |
|---|
| 181 | if(most_likely_tree) Free(most_likely_tree); |
|---|
| 182 | most_likely_tree = Write_Tree(tree,NO); |
|---|
| 183 | Get_Tree_Size(tree); |
|---|
| 184 | } |
|---|
| 185 | |
|---|
| 186 | /* JF(tree); */ |
|---|
| 187 | |
|---|
| 188 | time(&t_end); |
|---|
| 189 | Print_Fp_Out(io->fp_out_stats,t_beg,t_end,tree, |
|---|
| 190 | io,num_data_set+1, |
|---|
| 191 | (tree->mod->s_opt->n_rand_starts > 1)? |
|---|
| 192 | (num_rand_tree):(num_tree),YES); |
|---|
| 193 | |
|---|
| 194 | if(tree->io->print_site_lnl) Print_Site_Lk(tree,io->fp_out_lk); |
|---|
| 195 | |
|---|
| 196 | /* Start from BioNJ tree */ |
|---|
| 197 | if((num_rand_tree == io->mod->s_opt->n_rand_starts-1) && (tree->mod->s_opt->random_input_tree)) |
|---|
| 198 | { |
|---|
| 199 | /* Do one more iteration in the loop, but don't randomize the tree */ |
|---|
| 200 | num_rand_tree--; |
|---|
| 201 | tree->mod->s_opt->random_input_tree = 0; |
|---|
| 202 | } |
|---|
| 203 | |
|---|
| 204 | Free_Spr_List(tree); |
|---|
| 205 | Free_One_Spr(tree->best_spr); |
|---|
| 206 | if(tree->mat) Free_Mat(tree->mat); |
|---|
| 207 | Free_Triplet(tree->triplet_struct); |
|---|
| 208 | Free_Tree_Pars(tree); |
|---|
| 209 | Free_Tree_Lk(tree); |
|---|
| 210 | Free_Tree(tree); |
|---|
| 211 | } |
|---|
| 212 | |
|---|
| 213 | |
|---|
| 214 | /* Launch bootstrap analysis */ |
|---|
| 215 | if(mod->bootstrap) |
|---|
| 216 | { |
|---|
| 217 | if(!io->quiet) PhyML_Printf("\n. Launch bootstrap analysis on the most likely tree...\n"); |
|---|
| 218 | |
|---|
| 219 | #ifdef MPI |
|---|
| 220 | MPI_Bcast (most_likely_tree, strlen(most_likely_tree)+1, MPI_CHAR, 0, MPI_COMM_WORLD); |
|---|
| 221 | if(!io->quiet) PhyML_Printf("\n. The bootstrap analysis will use %d CPUs.\n",Global_numTask); |
|---|
| 222 | #endif |
|---|
| 223 | |
|---|
| 224 | most_likely_tree = Bootstrap_From_String(most_likely_tree,cdata,mod,io); |
|---|
| 225 | } |
|---|
| 226 | else if(io->ratio_test) |
|---|
| 227 | { |
|---|
| 228 | /* Launch aLRT */ |
|---|
| 229 | if(!io->quiet) PhyML_Printf("\n. Compute aLRT branch supports on the most likely tree...\n"); |
|---|
| 230 | most_likely_tree = aLRT_From_String(most_likely_tree,cdata,mod,io); |
|---|
| 231 | } |
|---|
| 232 | |
|---|
| 233 | /* Print the most likely tree in the output file */ |
|---|
| 234 | if(!io->quiet) PhyML_Printf("\n. Printing the most likely tree in file '%s'...\n", Basename(io->out_tree_file)); |
|---|
| 235 | if(io->n_data_sets == 1) rewind(io->fp_out_tree); |
|---|
| 236 | PhyML_Fprintf(io->fp_out_tree,"%s\n",most_likely_tree); |
|---|
| 237 | |
|---|
| 238 | |
|---|
| 239 | if(io->n_trees > 1 && io->n_data_sets > 1) break; |
|---|
| 240 | } |
|---|
| 241 | Free_Cseq(cdata); |
|---|
| 242 | } |
|---|
| 243 | else |
|---|
| 244 | { |
|---|
| 245 | PhyML_Printf("\n. No data was found.\n"); |
|---|
| 246 | PhyML_Printf("\n. Err in file %s at line %d\n",__FILE__,__LINE__); |
|---|
| 247 | Warn_And_Exit(""); |
|---|
| 248 | } |
|---|
| 249 | Free_Model_Complete(mod); |
|---|
| 250 | } |
|---|
| 251 | |
|---|
| 252 | if(most_likely_tree) Free(most_likely_tree); |
|---|
| 253 | |
|---|
| 254 | if(mod->s_opt->n_rand_starts > 1) PhyML_Printf("\n. Best log likelihood: %f\n",best_lnL); |
|---|
| 255 | |
|---|
| 256 | Free_Optimiz(mod->s_opt); |
|---|
| 257 | Free_Model_Basic(mod); |
|---|
| 258 | |
|---|
| 259 | if(io->fp_in_align) fclose(io->fp_in_align); |
|---|
| 260 | if(io->fp_in_tree) fclose(io->fp_in_tree); |
|---|
| 261 | if(io->fp_out_lk) fclose(io->fp_out_lk); |
|---|
| 262 | if(io->fp_out_tree) fclose(io->fp_out_tree); |
|---|
| 263 | if(io->fp_out_trees) fclose(io->fp_out_trees); |
|---|
| 264 | if(io->fp_out_stats) fclose(io->fp_out_stats); |
|---|
| 265 | |
|---|
| 266 | Free_Input(io); |
|---|
| 267 | |
|---|
| 268 | time(&t_end); |
|---|
| 269 | Print_Time_Info(t_beg,t_end); |
|---|
| 270 | |
|---|
| 271 | #ifdef MPI |
|---|
| 272 | MPI_Finalize(); |
|---|
| 273 | #endif |
|---|
| 274 | |
|---|
| 275 | return 0; |
|---|
| 276 | } |
|---|
| 277 | |
|---|
| 278 | ////////////////////////////////////////////////////////////// |
|---|
| 279 | ////////////////////////////////////////////////////////////// |
|---|
| 280 | |
|---|
| 281 | |
|---|
| 282 | /* Allocate memory */ |
|---|
| 283 | m4 *M4_Make_Light() |
|---|
| 284 | { |
|---|
| 285 | m4 *m4mod; |
|---|
| 286 | |
|---|
| 287 | m4mod = (m4 *)mCalloc(1,sizeof(m4)); |
|---|
| 288 | M4_Set_M4mod_Default(m4mod); |
|---|
| 289 | return m4mod; |
|---|
| 290 | } |
|---|
| 291 | |
|---|
| 292 | ////////////////////////////////////////////////////////////// |
|---|
| 293 | ////////////////////////////////////////////////////////////// |
|---|
| 294 | |
|---|
| 295 | |
|---|
| 296 | void M4_Set_M4mod_Default(m4 *m4mod) |
|---|
| 297 | { |
|---|
| 298 | m4mod->use_cov_alpha = 1; |
|---|
| 299 | m4mod->use_cov_alpha = 0; |
|---|
| 300 | m4mod->n_h = 3; |
|---|
| 301 | m4mod->n_o = 4; |
|---|
| 302 | } |
|---|
| 303 | |
|---|
| 304 | ////////////////////////////////////////////////////////////// |
|---|
| 305 | ////////////////////////////////////////////////////////////// |
|---|
| 306 | |
|---|
| 307 | /* Allocate memory */ |
|---|
| 308 | void M4_Make_Complete(int n_h, int n_o, m4 *m4mod) |
|---|
| 309 | { |
|---|
| 310 | int i; |
|---|
| 311 | |
|---|
| 312 | m4mod->n_h = n_h; |
|---|
| 313 | m4mod->n_o = n_o; |
|---|
| 314 | m4mod->n_o = n_o; |
|---|
| 315 | m4mod->o_rr = (phydbl *)mCalloc(n_o*n_o,sizeof(phydbl)); |
|---|
| 316 | m4mod->o_fq = (phydbl *)mCalloc(n_o,sizeof(phydbl)); |
|---|
| 317 | m4mod->o_mats = (phydbl **)mCalloc(n_h,sizeof(phydbl *)); |
|---|
| 318 | For(i,n_h) m4mod->o_mats[i] = (phydbl *)mCalloc(n_o*n_o,sizeof(phydbl)); |
|---|
| 319 | m4mod->h_mat = (phydbl *)mCalloc(n_h*n_h,sizeof(phydbl)); |
|---|
| 320 | m4mod->h_rr = (phydbl *)mCalloc(n_h*n_h,sizeof(phydbl)); |
|---|
| 321 | m4mod->h_fq = (phydbl *)mCalloc(n_h,sizeof(phydbl)); |
|---|
| 322 | m4mod->multipl = (phydbl *)mCalloc(n_h,sizeof(phydbl)); |
|---|
| 323 | m4mod->multipl_unscaled = (phydbl *)mCalloc(n_h,sizeof(phydbl)); |
|---|
| 324 | m4mod->h_fq_unscaled = (phydbl *)mCalloc(n_h,sizeof(phydbl)); |
|---|
| 325 | } |
|---|
| 326 | |
|---|
| 327 | ////////////////////////////////////////////////////////////// |
|---|
| 328 | ////////////////////////////////////////////////////////////// |
|---|
| 329 | |
|---|
| 330 | |
|---|
| 331 | /* Fill in the (big) rate matrix of the M4 t_mod */ |
|---|
| 332 | void M4_Update_Qmat(m4 *m4mod, t_mod *mod) |
|---|
| 333 | { |
|---|
| 334 | int i,j; |
|---|
| 335 | int n_s, n_o, n_h; |
|---|
| 336 | phydbl mr, sum; |
|---|
| 337 | |
|---|
| 338 | /* The number of states in M4 models is the product |
|---|
| 339 | of the number of hidden states (or classes) by the |
|---|
| 340 | number of observable states |
|---|
| 341 | */ |
|---|
| 342 | n_s = mod->ns; |
|---|
| 343 | n_o = m4mod->n_o; |
|---|
| 344 | n_h = m4mod->n_h; |
|---|
| 345 | |
|---|
| 346 | /* Set the relative substitution rates */ |
|---|
| 347 | if(mod->m4mod->use_cov_alpha) |
|---|
| 348 | { |
|---|
| 349 | DiscreteGamma(m4mod->h_fq,m4mod->multipl,m4mod->alpha,m4mod->alpha,m4mod->n_h,mod->ras->gamma_median); |
|---|
| 350 | } |
|---|
| 351 | else if(mod->m4mod->use_cov_free) |
|---|
| 352 | { |
|---|
| 353 | sum = .0; |
|---|
| 354 | For(i,mod->m4mod->n_h) sum += FABS(mod->m4mod->h_fq_unscaled[i]); |
|---|
| 355 | For(i,mod->m4mod->n_h) mod->m4mod->h_fq[i] = FABS(mod->m4mod->h_fq_unscaled[i])/sum; |
|---|
| 356 | |
|---|
| 357 | do |
|---|
| 358 | { |
|---|
| 359 | sum = .0; |
|---|
| 360 | For(i,mod->m4mod->n_h) |
|---|
| 361 | { |
|---|
| 362 | if(mod->m4mod->h_fq[i] < 0.01) mod->m4mod->h_fq[i]=0.01; |
|---|
| 363 | if(mod->m4mod->h_fq[i] > 0.99) mod->m4mod->h_fq[i]=0.99; |
|---|
| 364 | sum += mod->m4mod->h_fq[i]; |
|---|
| 365 | } |
|---|
| 366 | |
|---|
| 367 | For(i,mod->m4mod->n_h) mod->m4mod->h_fq[i]/=sum; |
|---|
| 368 | } |
|---|
| 369 | while((sum > 1.01) || (sum < 0.99)); |
|---|
| 370 | |
|---|
| 371 | |
|---|
| 372 | /* Make sure the multipliers are centered on 1.0 */ |
|---|
| 373 | sum = .0; |
|---|
| 374 | For(i,mod->m4mod->n_h) sum += FABS(mod->m4mod->multipl_unscaled[i]) * mod->m4mod->h_fq[i]; |
|---|
| 375 | For(i,mod->m4mod->n_h) mod->m4mod->multipl[i] = mod->m4mod->multipl_unscaled[i] / sum; |
|---|
| 376 | |
|---|
| 377 | /* printf("\n. WARNING\n"); */ |
|---|
| 378 | /* mod->m4mod->h_fq[0] = 1./3; */ |
|---|
| 379 | /* mod->m4mod->h_fq[1] = 1./3; */ |
|---|
| 380 | /* mod->m4mod->h_fq[2] = 1./3; */ |
|---|
| 381 | |
|---|
| 382 | /* mod->m4mod->multipl[0] = 1.0; */ |
|---|
| 383 | /* mod->m4mod->multipl[1] = 1.0; */ |
|---|
| 384 | /* mod->m4mod->multipl[2] = 1.0; */ |
|---|
| 385 | |
|---|
| 386 | sum = 0; |
|---|
| 387 | For(i,mod->m4mod->n_h) sum += mod->m4mod->multipl[i] * mod->m4mod->h_fq[i]; |
|---|
| 388 | if(sum < 0.99 || sum > 1.01) |
|---|
| 389 | { |
|---|
| 390 | PhyML_Printf("\n. sum = %f",sum); |
|---|
| 391 | PhyML_Printf("\n. Err in file %s at line %d\n\n",__FILE__,__LINE__); |
|---|
| 392 | Warn_And_Exit("\n"); |
|---|
| 393 | } |
|---|
| 394 | |
|---|
| 395 | /* PhyML_Printf("\n__ "); */ |
|---|
| 396 | /* For(i,mod->m4mod->n_h) PhyML_Printf("\n.%f %f %f", */ |
|---|
| 397 | /* mod->m4mod->h_fq[i], */ |
|---|
| 398 | /* mod->m4mod->h_fq_unscaled[i], */ |
|---|
| 399 | /* mod->m4mod->multipl[i]); */ |
|---|
| 400 | } |
|---|
| 401 | |
|---|
| 402 | |
|---|
| 403 | /* PhyML_Printf("\n."); */ |
|---|
| 404 | /* PhyML_Printf("\n. M4 model parameters"); */ |
|---|
| 405 | /* m4mod->delta=.0; */ |
|---|
| 406 | /* PhyML_Printf("\n. Delta = %f",m4mod->delta); */ |
|---|
| 407 | /* For(i,mod->m4mod->n_h) PhyML_Printf("\n. multipl %d = %f",i,m4mod->multipl[i]); */ |
|---|
| 408 | /* For(i,mod->m4mod->n_h) PhyML_Printf("\n. fq %d = %f",i,m4mod->h_fq[i]); */ |
|---|
| 409 | |
|---|
| 410 | |
|---|
| 411 | /* Set up the stationary frequency vector */ |
|---|
| 412 | For(i,n_s) mod->e_frq->pi->v[i] = m4mod->o_fq[i%n_o] * m4mod->h_fq[i/n_o]; |
|---|
| 413 | |
|---|
| 414 | |
|---|
| 415 | if(mod->whichmodel != CUSTOM && |
|---|
| 416 | mod->whichmodel != GTR && |
|---|
| 417 | mod->io->datatype == NT) |
|---|
| 418 | { |
|---|
| 419 | phydbl kappa1,kappa2; |
|---|
| 420 | |
|---|
| 421 | if((mod->whichmodel != F84) && (mod->whichmodel != TN93)) mod->lambda->v = 1.; |
|---|
| 422 | else if(mod->whichmodel == F84) |
|---|
| 423 | { |
|---|
| 424 | mod->lambda->v = Get_Lambda_F84(mod->e_frq->pi->v,&(mod->kappa->v)); |
|---|
| 425 | } |
|---|
| 426 | |
|---|
| 427 | kappa2 = mod->kappa->v*2./(1.+mod->lambda->v); |
|---|
| 428 | kappa1 = kappa2 * mod->lambda->v; |
|---|
| 429 | |
|---|
| 430 | /* A <-> C */ m4mod->o_rr[0] = 1.0; |
|---|
| 431 | /* A <-> G */ m4mod->o_rr[1] = kappa2; |
|---|
| 432 | /* A <-> T */ m4mod->o_rr[2] = 1.0; |
|---|
| 433 | /* C <-> G */ m4mod->o_rr[3] = 1.0; |
|---|
| 434 | /* C <-> T */ m4mod->o_rr[4] = kappa1; |
|---|
| 435 | } |
|---|
| 436 | |
|---|
| 437 | /* Fill in the matrices of nucleotide or amino-acid substitution rates here */ |
|---|
| 438 | Update_Qmat_Generic(m4mod->o_rr, m4mod->o_fq, m4mod->n_o, m4mod->o_mats[0]); |
|---|
| 439 | |
|---|
| 440 | /* Print_Square_Matrix_Generic(n_o,m4mod->o_mats[0]); */ |
|---|
| 441 | |
|---|
| 442 | /* Multiply each of these matrices by a relative substitution rate */ |
|---|
| 443 | for(i=1;i<m4mod->n_h;i++) For(j,n_o*n_o) m4mod->o_mats[i][j] = m4mod->o_mats[0][j]*m4mod->multipl[i]; |
|---|
| 444 | For(j,n_o*n_o) m4mod->o_mats[0][j] *= m4mod->multipl[0]; |
|---|
| 445 | |
|---|
| 446 | For(i,n_s*n_s) mod->r_mat->qmat->v[i] = .0; |
|---|
| 447 | |
|---|
| 448 | /* Diagonal blocks (i.e, nucleotide substitutions), symmetric */ |
|---|
| 449 | For(i,n_s) |
|---|
| 450 | { |
|---|
| 451 | for(j=i+1;j<n_s;j++) |
|---|
| 452 | { |
|---|
| 453 | if((int)(j/n_o) == (int)(i/n_o)) |
|---|
| 454 | { |
|---|
| 455 | mod->r_mat->qmat->v[i*n_s+j] = m4mod->o_mats[(int)(i/n_o)][(i%n_o)*n_o+j%n_o]; |
|---|
| 456 | mod->r_mat->qmat->v[j*n_s+i] = mod->r_mat->qmat->v[i*n_s+j] * m4mod->o_fq[i%n_o] / m4mod->o_fq[j%n_o]; |
|---|
| 457 | } |
|---|
| 458 | } |
|---|
| 459 | } |
|---|
| 460 | |
|---|
| 461 | /* Work out scaling factor such that the expected number of observed state substitution |
|---|
| 462 | along a branch of length 1 is 1.*/ |
|---|
| 463 | mr = .0; |
|---|
| 464 | For(i,n_s) |
|---|
| 465 | { |
|---|
| 466 | sum = .0; |
|---|
| 467 | For(j,n_s) sum += mod->r_mat->qmat->v[i*n_s+j]; |
|---|
| 468 | mr += sum * m4mod->o_fq[i%n_o] * m4mod->h_fq[(int)(i/n_o)]; |
|---|
| 469 | } |
|---|
| 470 | |
|---|
| 471 | /* Scale the diagonal blocks */ |
|---|
| 472 | For(i,n_s*n_s) mod->r_mat->qmat->v[i] /= mr; |
|---|
| 473 | |
|---|
| 474 | /* We are done with the diagonal blocks. Let's fill the non-diagonal ones now. */ |
|---|
| 475 | |
|---|
| 476 | /* Fill the matrix of substitution rate across classes (switches) here */ |
|---|
| 477 | Update_Qmat_Generic(m4mod->h_rr, m4mod->h_fq, m4mod->n_h, m4mod->h_mat); |
|---|
| 478 | |
|---|
| 479 | /* Print_Square_Matrix_Generic(m4mod->n_h,m4mod->h_mat); */ |
|---|
| 480 | |
|---|
| 481 | /* Multiply this matrix by the switching rate */ |
|---|
| 482 | For(i,n_h*n_h) m4mod->h_mat[i] *= m4mod->delta; |
|---|
| 483 | |
|---|
| 484 | /* Fill the non diagonal blocks */ |
|---|
| 485 | For(i,n_s) |
|---|
| 486 | { |
|---|
| 487 | for(j=i+1;j<n_s;j++) |
|---|
| 488 | { |
|---|
| 489 | if((int)(j/n_o) != (int)(i/n_o)) |
|---|
| 490 | { |
|---|
| 491 | if(i%n_o == j%n_o) |
|---|
| 492 | { |
|---|
| 493 | mod->r_mat->qmat->v[i*n_s+j] = m4mod->h_mat[(int)(i/n_o)*n_h+(int)(j/n_o)]; |
|---|
| 494 | mod->r_mat->qmat->v[j*n_s+i] = mod->r_mat->qmat->v[i*n_s+j] * m4mod->h_fq[(int)(i/n_o)] / m4mod->h_fq[(int)(j/n_o)]; |
|---|
| 495 | } |
|---|
| 496 | } |
|---|
| 497 | } |
|---|
| 498 | } |
|---|
| 499 | |
|---|
| 500 | /* Note: class equilibrium frequencies are already built in the h_mat matrix. |
|---|
| 501 | No need to 'add' these frequencies later on. */ |
|---|
| 502 | |
|---|
| 503 | /* We are done with the non diagonal blocks */ |
|---|
| 504 | |
|---|
| 505 | |
|---|
| 506 | /* Diagonal cells */ |
|---|
| 507 | For(i,n_s) |
|---|
| 508 | { |
|---|
| 509 | sum = .0; |
|---|
| 510 | For(j,n_s) |
|---|
| 511 | { |
|---|
| 512 | if(j != i) |
|---|
| 513 | sum += mod->r_mat->qmat->v[i*n_s+j]; |
|---|
| 514 | } |
|---|
| 515 | mod->r_mat->qmat->v[i*n_s+i] = -sum; |
|---|
| 516 | } |
|---|
| 517 | |
|---|
| 518 | For(i,n_s*n_s) mod->eigen->q[i] = mod->r_mat->qmat->v[i]; |
|---|
| 519 | } |
|---|
| 520 | |
|---|
| 521 | ////////////////////////////////////////////////////////////// |
|---|
| 522 | ////////////////////////////////////////////////////////////// |
|---|
| 523 | |
|---|
| 524 | |
|---|
| 525 | void M4_Init_P_Lk_Tips_Double(t_tree *tree) |
|---|
| 526 | { |
|---|
| 527 | int curr_site,i,j,k,l,dim1,dim2,dim3; |
|---|
| 528 | |
|---|
| 529 | dim1 = tree->mod->ras->n_catg * tree->mod->m4mod->n_h * tree->mod->m4mod->n_o; |
|---|
| 530 | dim2 = tree->mod->m4mod->n_h * tree->mod->m4mod->n_o; |
|---|
| 531 | dim3 = tree->mod->m4mod->n_o; |
|---|
| 532 | |
|---|
| 533 | |
|---|
| 534 | Fors(curr_site,tree->data->crunch_len,tree->mod->io->state_len) |
|---|
| 535 | { |
|---|
| 536 | For(i,tree->n_otu) |
|---|
| 537 | { |
|---|
| 538 | for(j=1;j<tree->mod->m4mod->n_h;j++) |
|---|
| 539 | { |
|---|
| 540 | For(k,tree->mod->m4mod->n_o) |
|---|
| 541 | { |
|---|
| 542 | tree->a_nodes[i]->b[0]->p_lk_rght[curr_site*dim1 + 0*dim2 + j*dim3+k] = |
|---|
| 543 | tree->a_nodes[i]->b[0]->p_lk_rght[curr_site*dim1 + 0*dim2 + 0*dim3+k]; |
|---|
| 544 | |
|---|
| 545 | printf("\n() i=%d plk=%f", |
|---|
| 546 | curr_site*dim1 + 0*dim2 + j*dim3+k, |
|---|
| 547 | tree->a_nodes[i]->b[0]->p_lk_rght[curr_site*dim1 + 0*dim2 + j*dim3+k]); |
|---|
| 548 | |
|---|
| 549 | /* tree->a_nodes[i]->b[0]->p_lk_rght[curr_site][0][j*tree->mod->m4mod->n_o+k] = */ |
|---|
| 550 | /* tree->a_nodes[i]->b[0]->p_lk_rght[curr_site][0][k]; */ |
|---|
| 551 | } |
|---|
| 552 | |
|---|
| 553 | |
|---|
| 554 | For(k,tree->mod->m4mod->n_o) |
|---|
| 555 | for(l=1;l<tree->mod->ras->n_catg;l++) |
|---|
| 556 | tree->a_nodes[i]->b[0]->p_lk_rght[curr_site*dim1 + l*dim2 + j*dim3+k] = |
|---|
| 557 | tree->a_nodes[i]->b[0]->p_lk_rght[curr_site*dim1 + 0*dim2 + j*dim3+k]; |
|---|
| 558 | /* tree->a_nodes[i]->b[0]->p_lk_rght[curr_site][l][j*tree->mod->m4mod->n_o+k] = */ |
|---|
| 559 | /* tree->a_nodes[i]->b[0]->p_lk_rght[curr_site][0][j*tree->mod->m4mod->n_o+k]; */ |
|---|
| 560 | } |
|---|
| 561 | } |
|---|
| 562 | } |
|---|
| 563 | } |
|---|
| 564 | |
|---|
| 565 | ////////////////////////////////////////////////////////////// |
|---|
| 566 | ////////////////////////////////////////////////////////////// |
|---|
| 567 | |
|---|
| 568 | |
|---|
| 569 | void M4_Init_P_Lk_Tips_Int(t_tree *tree) |
|---|
| 570 | { |
|---|
| 571 | int curr_site,i,j,k,dim2,dim3; |
|---|
| 572 | |
|---|
| 573 | dim2 = tree->mod->m4mod->n_h * tree->mod->m4mod->n_o; |
|---|
| 574 | dim3 = tree->mod->m4mod->n_o; |
|---|
| 575 | |
|---|
| 576 | Fors(curr_site,tree->data->crunch_len,tree->mod->io->state_len) |
|---|
| 577 | { |
|---|
| 578 | For(i,tree->n_otu) |
|---|
| 579 | { |
|---|
| 580 | for(j=1;j<tree->mod->m4mod->n_h;j++) |
|---|
| 581 | { |
|---|
| 582 | For(k,tree->mod->m4mod->n_o) |
|---|
| 583 | { |
|---|
| 584 | tree->a_nodes[i]->b[0]->p_lk_tip_r[curr_site*dim2 + j*dim3+k] = |
|---|
| 585 | tree->a_nodes[i]->b[0]->p_lk_tip_r[curr_site*dim2 + 0*dim3+k]; |
|---|
| 586 | /* tree->a_nodes[i]->b[0]->p_lk_tip_r[curr_site][j*tree->mod->m4mod->n_o+k] = */ |
|---|
| 587 | /* tree->a_nodes[i]->b[0]->p_lk_tip_r[curr_site][k]; */ |
|---|
| 588 | } |
|---|
| 589 | } |
|---|
| 590 | } |
|---|
| 591 | } |
|---|
| 592 | } |
|---|
| 593 | |
|---|
| 594 | ////////////////////////////////////////////////////////////// |
|---|
| 595 | ////////////////////////////////////////////////////////////// |
|---|
| 596 | |
|---|
| 597 | |
|---|
| 598 | phydbl ****M4_Integral_Term_On_One_Edge(t_edge *b, t_tree *tree) |
|---|
| 599 | { |
|---|
| 600 | phydbl ****integral,*P1,*P2; |
|---|
| 601 | int ns; |
|---|
| 602 | int g,i,j,k,l; |
|---|
| 603 | int step; |
|---|
| 604 | |
|---|
| 605 | |
|---|
| 606 | ns = tree->mod->ns; |
|---|
| 607 | |
|---|
| 608 | |
|---|
| 609 | P1 = (phydbl *)mCalloc(tree->mod->ras->n_catg*ns*ns,sizeof(phydbl)); |
|---|
| 610 | P2 = (phydbl *)mCalloc(tree->mod->ras->n_catg*ns*ns,sizeof(phydbl)); |
|---|
| 611 | |
|---|
| 612 | |
|---|
| 613 | integral = (phydbl ****)mCalloc(tree->mod->ras->n_catg,sizeof(phydbl ***)); |
|---|
| 614 | For(g,tree->mod->ras->n_catg) |
|---|
| 615 | { |
|---|
| 616 | integral[g] = (phydbl ***)mCalloc(ns,sizeof(phydbl **)); |
|---|
| 617 | For(j,ns) |
|---|
| 618 | { |
|---|
| 619 | integral[g][j] = (phydbl **)mCalloc(ns,sizeof(phydbl *)); |
|---|
| 620 | For(k,ns) integral[g][j][k] = (phydbl *)mCalloc(ns,sizeof(phydbl)); |
|---|
| 621 | } |
|---|
| 622 | } |
|---|
| 623 | |
|---|
| 624 | /* Integral calculation */ |
|---|
| 625 | step = 100; |
|---|
| 626 | |
|---|
| 627 | PhyML_Printf("\n. ["); |
|---|
| 628 | For(i,step) |
|---|
| 629 | { |
|---|
| 630 | For(g,tree->mod->ras->n_catg) |
|---|
| 631 | { |
|---|
| 632 | PMat(((phydbl)(i+0.5)/step)*b->l->v*tree->mod->ras->gamma_rr->v[g],tree->mod,g*ns*ns,P1); |
|---|
| 633 | PMat(((phydbl)(step-i-0.5)/step)*b->l->v*tree->mod->ras->gamma_rr->v[g],tree->mod,g*ns*ns,P2); |
|---|
| 634 | |
|---|
| 635 | For(j,ns) |
|---|
| 636 | { |
|---|
| 637 | For(k,ns) |
|---|
| 638 | { |
|---|
| 639 | For(l,ns) |
|---|
| 640 | { |
|---|
| 641 | /* integral[g][j][k][l] += P1[g][j][k] * P2[g][j][l] / ((phydbl)(step)); */ |
|---|
| 642 | integral[g][j][k][l] += P1[g*ns*ns + j*ns+k] * P2[g*ns*ns + j*ns+l] / ((phydbl)(step)); |
|---|
| 643 | } |
|---|
| 644 | } |
|---|
| 645 | } |
|---|
| 646 | } |
|---|
| 647 | PhyML_Printf("."); fflush(NULL); |
|---|
| 648 | } |
|---|
| 649 | PhyML_Printf("]\n"); |
|---|
| 650 | |
|---|
| 651 | Free(P1); |
|---|
| 652 | Free(P2); |
|---|
| 653 | |
|---|
| 654 | return integral; |
|---|
| 655 | } |
|---|
| 656 | |
|---|
| 657 | ////////////////////////////////////////////////////////////// |
|---|
| 658 | ////////////////////////////////////////////////////////////// |
|---|
| 659 | |
|---|
| 660 | |
|---|
| 661 | void M4_Post_Prob_H_Class_Edge_Site(t_edge *b, phydbl ****integral, phydbl *postprob, t_tree *tree) |
|---|
| 662 | { |
|---|
| 663 | /* Calculation of the expected frequencies of each hidden |
|---|
| 664 | class at a given site. */ |
|---|
| 665 | |
|---|
| 666 | phydbl site_lk; |
|---|
| 667 | int g,i,j,k,l; |
|---|
| 668 | int n_h; |
|---|
| 669 | phydbl sum; |
|---|
| 670 | int dim1,dim2; |
|---|
| 671 | |
|---|
| 672 | dim1 = tree->mod->ras->n_catg * tree->mod->ns; |
|---|
| 673 | dim2 = tree->mod->ns; |
|---|
| 674 | |
|---|
| 675 | n_h = tree->mod->m4mod->n_h; /* number of classes, i.e., number of hidden states */ |
|---|
| 676 | |
|---|
| 677 | site_lk = (phydbl)EXP(tree->cur_site_lk[tree->curr_site]); |
|---|
| 678 | |
|---|
| 679 | if(b->rght->tax) |
|---|
| 680 | { |
|---|
| 681 | sum = .0; |
|---|
| 682 | For(i,n_h) |
|---|
| 683 | { |
|---|
| 684 | postprob[i] = .0; |
|---|
| 685 | For(j,tree->mod->m4mod->n_o) |
|---|
| 686 | { |
|---|
| 687 | For(g,tree->mod->ras->n_catg) |
|---|
| 688 | { |
|---|
| 689 | For(k,tree->mod->ns) |
|---|
| 690 | { |
|---|
| 691 | For(l,tree->mod->ns) |
|---|
| 692 | { |
|---|
| 693 | postprob[i] += |
|---|
| 694 | |
|---|
| 695 | (1./site_lk) * |
|---|
| 696 | tree->mod->ras->gamma_r_proba->v[g] * |
|---|
| 697 | tree->mod->m4mod->h_fq[i] * |
|---|
| 698 | tree->mod->m4mod->o_fq[j] * |
|---|
| 699 | b->p_lk_left[tree->curr_site*dim1 + g*dim2 + k] * |
|---|
| 700 | b->p_lk_tip_r[tree->curr_site*dim2 + l] * |
|---|
| 701 | integral[g][i*tree->mod->m4mod->n_o+j][k][l]; |
|---|
| 702 | |
|---|
| 703 | /* (1./site_lk) * */ |
|---|
| 704 | /* tree->mod->ras->gamma_r_proba[g] * */ |
|---|
| 705 | /* tree->mod->m4mod->h_fq[i] * */ |
|---|
| 706 | /* tree->mod->m4mod->o_fq[j] * */ |
|---|
| 707 | /* b->p_lk_left[tree->curr_site][g][k] * */ |
|---|
| 708 | /* b->p_lk_tip_r[tree->curr_site][l] * */ |
|---|
| 709 | /* /\* b->p_lk_rght[tree->curr_site][0][l] * *\/ */ |
|---|
| 710 | /* integral[g][i*tree->mod->m4mod->n_o+j][k][l]; */ |
|---|
| 711 | } |
|---|
| 712 | } |
|---|
| 713 | } |
|---|
| 714 | } |
|---|
| 715 | sum += postprob[i]; |
|---|
| 716 | } |
|---|
| 717 | |
|---|
| 718 | /* TO DO */ |
|---|
| 719 | For(i,n_h) postprob[i] *= EXP(b->sum_scale_left[tree->curr_site]); |
|---|
| 720 | |
|---|
| 721 | } |
|---|
| 722 | else |
|---|
| 723 | { |
|---|
| 724 | sum = .0; |
|---|
| 725 | For(i,n_h) |
|---|
| 726 | { |
|---|
| 727 | postprob[i] = .0; |
|---|
| 728 | For(j,tree->mod->m4mod->n_o) |
|---|
| 729 | { |
|---|
| 730 | For(g,tree->mod->ras->n_catg) |
|---|
| 731 | { |
|---|
| 732 | For(k,tree->mod->ns) |
|---|
| 733 | { |
|---|
| 734 | For(l,tree->mod->ns) |
|---|
| 735 | { |
|---|
| 736 | postprob[i] += |
|---|
| 737 | |
|---|
| 738 | (1./site_lk) * |
|---|
| 739 | tree->mod->ras->gamma_r_proba->v[g] * |
|---|
| 740 | tree->mod->m4mod->h_fq[i] * |
|---|
| 741 | tree->mod->m4mod->o_fq[j] * |
|---|
| 742 | b->p_lk_left[tree->curr_site*dim1 + g*dim2 + k] * |
|---|
| 743 | b->p_lk_rght[tree->curr_site*dim1 + g*dim2 + l] * |
|---|
| 744 | integral[g][i*tree->mod->m4mod->n_o+j][k][l]; |
|---|
| 745 | |
|---|
| 746 | /* (1./site_lk) * */ |
|---|
| 747 | /* tree->mod->ras->gamma_r_proba[g] * */ |
|---|
| 748 | /* tree->mod->m4mod->h_fq[i] * */ |
|---|
| 749 | /* tree->mod->m4mod->o_fq[j] * */ |
|---|
| 750 | /* b->p_lk_left[tree->curr_site][g][k] * */ |
|---|
| 751 | /* b->p_lk_rght[tree->curr_site][g][l] * */ |
|---|
| 752 | /* integral[g][i*tree->mod->m4mod->n_o+j][k][l]; */ |
|---|
| 753 | } |
|---|
| 754 | } |
|---|
| 755 | } |
|---|
| 756 | } |
|---|
| 757 | sum += postprob[i]; |
|---|
| 758 | } |
|---|
| 759 | |
|---|
| 760 | /* TO DO */ |
|---|
| 761 | For(i,n_h) postprob[i] *= EXP(b->sum_scale_left[tree->curr_site] + b->sum_scale_rght[tree->curr_site]); |
|---|
| 762 | |
|---|
| 763 | } |
|---|
| 764 | |
|---|
| 765 | For(i,n_h) |
|---|
| 766 | if((postprob[i] < -1.E-5) || (postprob[i] > 1.0+1.E-5)) |
|---|
| 767 | { |
|---|
| 768 | PhyML_Printf("\n. Cat : %d Prob : %f\n",i,postprob[i]); |
|---|
| 769 | PhyML_Printf("\n. Err in file %s at line %d\n\n",__FILE__,__LINE__); |
|---|
| 770 | Warn_And_Exit("\n"); |
|---|
| 771 | } |
|---|
| 772 | |
|---|
| 773 | sum = 0.0; |
|---|
| 774 | For(i,n_h) sum += postprob[i]; |
|---|
| 775 | |
|---|
| 776 | if((sum > 1.0+1.E-2) || (sum < 1.0-1.E-2)) |
|---|
| 777 | { |
|---|
| 778 | PhyML_Printf("\n. Sum = %f\n",sum); |
|---|
| 779 | PhyML_Printf("\n. Err in file %s at line %d\n\n",__FILE__,__LINE__); |
|---|
| 780 | Exit("\n"); |
|---|
| 781 | } |
|---|
| 782 | |
|---|
| 783 | return; |
|---|
| 784 | } |
|---|
| 785 | |
|---|
| 786 | ////////////////////////////////////////////////////////////// |
|---|
| 787 | ////////////////////////////////////////////////////////////// |
|---|
| 788 | |
|---|
| 789 | |
|---|
| 790 | phydbl ***M4_Compute_Proba_Hidden_States_On_Edges(t_tree *tree) |
|---|
| 791 | { |
|---|
| 792 | int i; |
|---|
| 793 | phydbl ***post_probs; |
|---|
| 794 | phydbl ****integral; |
|---|
| 795 | |
|---|
| 796 | |
|---|
| 797 | post_probs = (phydbl ***)mCalloc(2*tree->n_otu-3,sizeof(phydbl **)); |
|---|
| 798 | |
|---|
| 799 | For(i,2*tree->n_otu-3) |
|---|
| 800 | { |
|---|
| 801 | post_probs[i] = (phydbl **)mCalloc(tree->n_pattern,sizeof(phydbl *)); |
|---|
| 802 | For(tree->curr_site,tree->n_pattern) |
|---|
| 803 | post_probs[i][tree->curr_site] = (phydbl *)mCalloc(tree->mod->m4mod->n_h,sizeof(phydbl)); |
|---|
| 804 | } |
|---|
| 805 | |
|---|
| 806 | |
|---|
| 807 | /* Compute posterior probabilities of each hidden class (usually a rate class) |
|---|
| 808 | on each edge, at each site. |
|---|
| 809 | */ |
|---|
| 810 | For(i,2*tree->n_otu-3) |
|---|
| 811 | { |
|---|
| 812 | PhyML_Printf("\n. Edge %4d/%4d",i+1,2*tree->n_otu-3); |
|---|
| 813 | |
|---|
| 814 | integral = M4_Integral_Term_On_One_Edge(tree->a_edges[i],tree); |
|---|
| 815 | |
|---|
| 816 | For(tree->curr_site,tree->n_pattern) |
|---|
| 817 | M4_Post_Prob_H_Class_Edge_Site(tree->a_edges[i], |
|---|
| 818 | integral, |
|---|
| 819 | post_probs[i][tree->curr_site], |
|---|
| 820 | tree); |
|---|
| 821 | |
|---|
| 822 | M4_Free_Integral_Term_On_One_Edge(integral,tree); |
|---|
| 823 | } |
|---|
| 824 | return post_probs; |
|---|
| 825 | } |
|---|
| 826 | |
|---|
| 827 | ////////////////////////////////////////////////////////////// |
|---|
| 828 | ////////////////////////////////////////////////////////////// |
|---|
| 829 | |
|---|
| 830 | |
|---|
| 831 | /* Estimate the (posterior) mean relative rate of substitution on each branch |
|---|
| 832 | at each site. The posterior mean rates averaged over sites is also estimated |
|---|
| 833 | for each edge. The corresponding trees are printed in a postscript file. Tree 0 |
|---|
| 834 | is the tree with posterior mean rates averaged over the sites. The following trees |
|---|
| 835 | have posterior mean rates computed for each site. |
|---|
| 836 | */ |
|---|
| 837 | void M4_Compute_Posterior_Mean_Rates(phydbl ***post_probs, t_tree *tree) |
|---|
| 838 | { |
|---|
| 839 | char *s; |
|---|
| 840 | int i; |
|---|
| 841 | phydbl **mean_post_probs; |
|---|
| 842 | phydbl *mrr; |
|---|
| 843 | phydbl sum; |
|---|
| 844 | int patt,br,rcat; |
|---|
| 845 | phydbl *mean_br_len; |
|---|
| 846 | int best_r,len_var; |
|---|
| 847 | phydbl max_prob; |
|---|
| 848 | |
|---|
| 849 | mean_br_len = (phydbl *)mCalloc(2*tree->n_otu-3,sizeof(phydbl)); |
|---|
| 850 | mean_post_probs = (phydbl **)mCalloc(2*tree->n_otu-3,sizeof(phydbl *)); |
|---|
| 851 | For(i,2*tree->n_otu-3) mean_post_probs[i] = (phydbl *)mCalloc(tree->mod->m4mod->n_h,sizeof(phydbl )); |
|---|
| 852 | mrr = (phydbl *)mCalloc(2*tree->n_otu-3,sizeof(phydbl)); |
|---|
| 853 | |
|---|
| 854 | Record_Br_Len(tree); |
|---|
| 855 | M4_Scale_Br_Len(tree); |
|---|
| 856 | |
|---|
| 857 | /* Compute the posterior mean relative rate on each branch averaged over the |
|---|
| 858 | whole set of patterns (sites) */ |
|---|
| 859 | len_var = 0; |
|---|
| 860 | For(patt,tree->n_pattern) |
|---|
| 861 | { |
|---|
| 862 | if(!Is_Invar(patt,1,NT,tree->data)) |
|---|
| 863 | { |
|---|
| 864 | For(br,2*tree->n_otu-3) |
|---|
| 865 | { |
|---|
| 866 | max_prob = -1.; |
|---|
| 867 | best_r = -1; |
|---|
| 868 | For(rcat,tree->mod->m4mod->n_h) |
|---|
| 869 | { |
|---|
| 870 | if(post_probs[br][patt][rcat] > max_prob) |
|---|
| 871 | { |
|---|
| 872 | max_prob = post_probs[br][patt][rcat]; |
|---|
| 873 | best_r = rcat; |
|---|
| 874 | } |
|---|
| 875 | } |
|---|
| 876 | |
|---|
| 877 | /* /\* Add weight on each category, weight is proportional to the corresponding posterior probability *\/ */ |
|---|
| 878 | /* For(rcat,tree->mod->m4mod->n_h) */ |
|---|
| 879 | /* { */ |
|---|
| 880 | /* mean_post_probs[br][rcat] += post_probs[br][patt][rcat] * tree->data->wght[patt]; */ |
|---|
| 881 | /* } */ |
|---|
| 882 | |
|---|
| 883 | /* Add weight on the most probable rate category only */ |
|---|
| 884 | mean_post_probs[br][best_r] += tree->data->wght[patt]; |
|---|
| 885 | } |
|---|
| 886 | len_var += tree->data->wght[patt]; |
|---|
| 887 | } |
|---|
| 888 | } |
|---|
| 889 | |
|---|
| 890 | For(br,2*tree->n_otu-3) |
|---|
| 891 | { |
|---|
| 892 | For(rcat,tree->mod->m4mod->n_h) |
|---|
| 893 | { |
|---|
| 894 | mean_post_probs[br][rcat] /= (phydbl)len_var; |
|---|
| 895 | } |
|---|
| 896 | } |
|---|
| 897 | |
|---|
| 898 | /* Compute the posterior mean relative rate and scale |
|---|
| 899 | each branch length using this factor */ |
|---|
| 900 | For(br,2*tree->n_otu-3) |
|---|
| 901 | { |
|---|
| 902 | For(rcat,tree->mod->m4mod->n_h) |
|---|
| 903 | { |
|---|
| 904 | mrr[br] += mean_post_probs[br][rcat] * tree->mod->m4mod->multipl[rcat]; |
|---|
| 905 | } |
|---|
| 906 | tree->a_edges[br]->l->v *= mrr[br]; |
|---|
| 907 | } |
|---|
| 908 | |
|---|
| 909 | PhyML_Fprintf(tree->io->fp_out_stats,"\n. Mean posterior probabilities & rates\n"); |
|---|
| 910 | For(rcat,tree->mod->m4mod->n_h) PhyML_Fprintf(tree->io->fp_out_stats,"%2.4f ",tree->mod->m4mod->multipl[rcat]); |
|---|
| 911 | PhyML_Fprintf(tree->io->fp_out_stats,"\n"); |
|---|
| 912 | For(br,2*tree->n_otu-3) |
|---|
| 913 | { |
|---|
| 914 | For(rcat,tree->mod->m4mod->n_h) |
|---|
| 915 | { |
|---|
| 916 | PhyML_Fprintf(tree->io->fp_out_stats,"%2.4f ",mean_post_probs[br][rcat]); |
|---|
| 917 | } |
|---|
| 918 | /* PhyML_Fprintf(tree->io->fp_out_stats," -- %f -> %f x %f = %f",mrr[br],tree->a_edges[br]->l->v,mrr[br],tree->a_edges[br]->l->v*mrr[br]); */ |
|---|
| 919 | |
|---|
| 920 | PhyML_Fprintf(tree->io->fp_out_stats," mrr=%f ",mrr[br]); |
|---|
| 921 | |
|---|
| 922 | if(mrr[br] > 1.) PhyML_Fprintf(tree->io->fp_out_stats,"FAST "); |
|---|
| 923 | else PhyML_Fprintf(tree->io->fp_out_stats,"SLOW "); |
|---|
| 924 | |
|---|
| 925 | PhyML_Fprintf(tree->io->fp_out_stats,"%s",tree->a_edges[br]->labels[0]); |
|---|
| 926 | |
|---|
| 927 | PhyML_Fprintf(tree->io->fp_out_stats,"\n"); |
|---|
| 928 | } |
|---|
| 929 | |
|---|
| 930 | /* Print the tree */ |
|---|
| 931 | PhyML_Fprintf(tree->io->fp_out_tree,"Constrained tree with corrected branch lengths = "); |
|---|
| 932 | s = Write_Tree(tree,NO); |
|---|
| 933 | PhyML_Fprintf(tree->io->fp_out_tree,"%s\n",s); |
|---|
| 934 | Free(s); |
|---|
| 935 | tree->ps_tree = DR_Make_Tdraw_Struct(tree); |
|---|
| 936 | DR_Print_Postscript_Header(tree->n_pattern,tree->io->fp_out_ps); |
|---|
| 937 | tree->ps_page_number = 0; |
|---|
| 938 | DR_Print_Tree_Postscript(tree->ps_page_number++,YES,tree->io->fp_out_ps,tree); |
|---|
| 939 | |
|---|
| 940 | /* Go back to the initial scaled branch lengths */ |
|---|
| 941 | For(br,2*tree->n_otu-3) tree->a_edges[br]->l->v /= mrr[br]; |
|---|
| 942 | |
|---|
| 943 | /* Compute the posterior mean relative rate at each site, for each branch |
|---|
| 944 | and each rate category. Scale branch lengths using these factors and |
|---|
| 945 | print each tree (i.e., on tree per site pattern) */ |
|---|
| 946 | For(patt,tree->n_pattern) |
|---|
| 947 | { |
|---|
| 948 | For(br,2*tree->n_otu-3) |
|---|
| 949 | { |
|---|
| 950 | mrr[br] = .0; |
|---|
| 951 | max_prob = -1.; |
|---|
| 952 | best_r = -1; |
|---|
| 953 | For(rcat,tree->mod->m4mod->n_h) /* For each rate class */ |
|---|
| 954 | { |
|---|
| 955 | mrr[br] += post_probs[br][patt][rcat] * tree->mod->m4mod->multipl[rcat]; |
|---|
| 956 | if(post_probs[br][patt][rcat] > max_prob) |
|---|
| 957 | { |
|---|
| 958 | max_prob = post_probs[br][patt][rcat]; |
|---|
| 959 | best_r = rcat; |
|---|
| 960 | } |
|---|
| 961 | } |
|---|
| 962 | /* mrr[br] = tree->mod->m4mod->multipl[best_r]; /\* Use the most probable relative rate instead of mean *\/ */ |
|---|
| 963 | tree->a_edges[br]->l->v *= mrr[br]; |
|---|
| 964 | } |
|---|
| 965 | |
|---|
| 966 | For(br,2*tree->n_otu-3) mean_br_len[br] += tree->a_edges[br]->l->v * tree->data->wght[patt]; |
|---|
| 967 | |
|---|
| 968 | PhyML_Fprintf(tree->io->fp_out_stats,"\n. Posterior probabilities site %4d (weight=%d, is_inv=%d)\n", |
|---|
| 969 | patt, |
|---|
| 970 | tree->data->wght[patt], |
|---|
| 971 | Is_Invar(patt,1,NT,tree->data)); |
|---|
| 972 | |
|---|
| 973 | For(rcat,tree->mod->m4mod->n_h) PhyML_Fprintf(tree->io->fp_out_stats,"%2.4f ",tree->mod->m4mod->multipl[rcat]); |
|---|
| 974 | PhyML_Fprintf(tree->io->fp_out_stats,"\n"); |
|---|
| 975 | For(br,2*tree->n_otu-3) |
|---|
| 976 | { |
|---|
| 977 | PhyML_Fprintf(tree->io->fp_out_stats,"Edge %3d ",br); |
|---|
| 978 | max_prob = -1.0; |
|---|
| 979 | best_r = -1; |
|---|
| 980 | For(rcat,tree->mod->m4mod->n_h) |
|---|
| 981 | { |
|---|
| 982 | if(post_probs[br][patt][rcat] > max_prob) |
|---|
| 983 | { |
|---|
| 984 | max_prob = post_probs[br][patt][rcat]; |
|---|
| 985 | best_r = rcat; |
|---|
| 986 | } |
|---|
| 987 | } |
|---|
| 988 | |
|---|
| 989 | For(rcat,tree->mod->m4mod->n_h) |
|---|
| 990 | { |
|---|
| 991 | PhyML_Fprintf(tree->io->fp_out_stats,"%2.4f",post_probs[br][patt][rcat]); |
|---|
| 992 | if(rcat == best_r) PhyML_Fprintf(tree->io->fp_out_stats,"* "); |
|---|
| 993 | else PhyML_Fprintf(tree->io->fp_out_stats," "); |
|---|
| 994 | } |
|---|
| 995 | |
|---|
| 996 | /* PhyML_Fprintf(tree->io->fp_out_stats," -- %f -> %f x %f = %f",mrr[br],tree->a_edges[br]->l->v,mrr[br],tree->a_edges[br]->l->v*mrr[br]); */ |
|---|
| 997 | |
|---|
| 998 | if(mrr[br] > 1.01) PhyML_Fprintf(tree->io->fp_out_stats," %s ","FAST"); |
|---|
| 999 | else if(mrr[br] < 0.99) PhyML_Fprintf(tree->io->fp_out_stats," %s ","SLOW"); |
|---|
| 1000 | else PhyML_Fprintf(tree->io->fp_out_stats," %s ","MEDIUM"); |
|---|
| 1001 | PhyML_Fprintf(tree->io->fp_out_stats,"%s ",tree->a_edges[br]->labels[0]); |
|---|
| 1002 | PhyML_Fprintf(tree->io->fp_out_stats,"\n"); |
|---|
| 1003 | } |
|---|
| 1004 | |
|---|
| 1005 | PhyML_Fprintf(tree->io->fp_out_tree,"tree %d = ",patt+1); |
|---|
| 1006 | s = Write_Tree(tree,NO); |
|---|
| 1007 | PhyML_Fprintf(tree->io->fp_out_tree,"%s\n",s); |
|---|
| 1008 | Free(s); |
|---|
| 1009 | DR_Print_Tree_Postscript(tree->ps_page_number++,YES,tree->io->fp_out_ps,tree); |
|---|
| 1010 | |
|---|
| 1011 | /* Go back to the initial scaled branch lengths */ |
|---|
| 1012 | For(br,2*tree->n_otu-3) tree->a_edges[br]->l->v /= mrr[br]; |
|---|
| 1013 | |
|---|
| 1014 | For(br,2*tree->n_otu-3) |
|---|
| 1015 | { |
|---|
| 1016 | sum = .0; |
|---|
| 1017 | For(rcat,tree->mod->m4mod->n_h) |
|---|
| 1018 | { |
|---|
| 1019 | sum += post_probs[br][patt][rcat]; |
|---|
| 1020 | } |
|---|
| 1021 | |
|---|
| 1022 | if((sum < 0.99) || (sum > 1.01)) |
|---|
| 1023 | { |
|---|
| 1024 | PhyML_Fprintf(tree->io->fp_out_stats,"\n. sum = %f\n",sum); |
|---|
| 1025 | PhyML_Fprintf(tree->io->fp_out_stats,"\n. Err in file %s at line %d\n\n",__FILE__,__LINE__); |
|---|
| 1026 | Warn_And_Exit("\n"); |
|---|
| 1027 | } |
|---|
| 1028 | } |
|---|
| 1029 | } |
|---|
| 1030 | |
|---|
| 1031 | /* Mean branch lengths */ |
|---|
| 1032 | For(br,2*tree->n_otu-3) |
|---|
| 1033 | { |
|---|
| 1034 | mean_br_len[br] /= (phydbl)tree->data->init_len; |
|---|
| 1035 | tree->a_edges[br]->l->v = mean_br_len[br]; |
|---|
| 1036 | } |
|---|
| 1037 | PhyML_Fprintf(tree->io->fp_out_tree,"Mean branch lengths="); |
|---|
| 1038 | s = Write_Tree(tree,NO); |
|---|
| 1039 | PhyML_Fprintf(tree->io->fp_out_tree,"%s\n",s); |
|---|
| 1040 | Free(s); |
|---|
| 1041 | /* DR_Print_Tree_Postscript(tree->ps_page_number++,tree->io->fp_out_ps,tree); */ |
|---|
| 1042 | |
|---|
| 1043 | Restore_Br_Len(tree); |
|---|
| 1044 | |
|---|
| 1045 | DR_Print_Postscript_EOF(tree->io->fp_out_ps); |
|---|
| 1046 | |
|---|
| 1047 | For(br,2*tree->n_otu-3) |
|---|
| 1048 | { |
|---|
| 1049 | For(tree->curr_site,tree->n_pattern) |
|---|
| 1050 | Free(post_probs[br][tree->curr_site]); |
|---|
| 1051 | Free(post_probs[br]); |
|---|
| 1052 | } |
|---|
| 1053 | Free(post_probs); |
|---|
| 1054 | For(i,2*tree->n_otu-3) Free(mean_post_probs[i]); |
|---|
| 1055 | Free(mean_post_probs); |
|---|
| 1056 | Free(mrr); |
|---|
| 1057 | Free(mean_br_len); |
|---|
| 1058 | } |
|---|
| 1059 | |
|---|
| 1060 | ////////////////////////////////////////////////////////////// |
|---|
| 1061 | ////////////////////////////////////////////////////////////// |
|---|
| 1062 | |
|---|
| 1063 | |
|---|
| 1064 | /* Classifiy each branch, at each site, among one of the rate classes */ |
|---|
| 1065 | phydbl **M4_Site_Branch_Classification(phydbl ***post_probs, t_tree *tree) |
|---|
| 1066 | { |
|---|
| 1067 | int patt, br, rcat, i; |
|---|
| 1068 | phydbl **best_probs; |
|---|
| 1069 | phydbl post_prob_fast, post_prob_slow; |
|---|
| 1070 | |
|---|
| 1071 | best_probs = (phydbl **)mCalloc(tree->n_pattern,sizeof(phydbl *)); |
|---|
| 1072 | For(i,tree->n_pattern) best_probs[i] = (phydbl *)mCalloc(2*tree->n_otu-3,sizeof(phydbl)); |
|---|
| 1073 | |
|---|
| 1074 | tree->write_labels = YES; |
|---|
| 1075 | |
|---|
| 1076 | For(patt,tree->n_pattern) |
|---|
| 1077 | { |
|---|
| 1078 | For(br,2*tree->n_otu-3) |
|---|
| 1079 | { |
|---|
| 1080 | post_prob_fast = .0; |
|---|
| 1081 | post_prob_slow = .0; |
|---|
| 1082 | |
|---|
| 1083 | For(rcat,tree->mod->m4mod->n_h) /* For each rate class */ |
|---|
| 1084 | { |
|---|
| 1085 | if(tree->mod->m4mod->multipl[rcat] > 1.0) |
|---|
| 1086 | post_prob_fast += post_probs[br][patt][rcat]; |
|---|
| 1087 | else |
|---|
| 1088 | post_prob_slow += post_probs[br][patt][rcat]; |
|---|
| 1089 | } |
|---|
| 1090 | |
|---|
| 1091 | best_probs[patt][br] = (post_prob_fast > post_prob_slow)?(post_prob_fast):(post_prob_slow); |
|---|
| 1092 | |
|---|
| 1093 | if(!(tree->a_edges[br]->n_labels%BLOCK_LABELS)) Make_New_Edge_Label(tree->a_edges[br]); |
|---|
| 1094 | |
|---|
| 1095 | /* if((post_prob_fast > post_prob_slow) && (best_probs[patt][br] > 0.95)) */ |
|---|
| 1096 | /* strcpy(tree->a_edges[br]->labels[tree->a_edges[br]->n_labels],"FASTER"); */ |
|---|
| 1097 | /* else if((post_prob_fast < post_prob_slow) && (best_probs[patt][br] > 0.95)) */ |
|---|
| 1098 | /* strcpy(tree->a_edges[br]->labels[tree->a_edges[br]->n_labels],"SLOWER"); */ |
|---|
| 1099 | /* else */ |
|---|
| 1100 | /* strcpy(tree->a_edges[br]->labels[tree->a_edges[br]->n_labels],"UNKNOWN"); */ |
|---|
| 1101 | |
|---|
| 1102 | if(post_prob_fast > post_prob_slow) |
|---|
| 1103 | strcpy(tree->a_edges[br]->labels[tree->a_edges[br]->n_labels],"FASTER"); |
|---|
| 1104 | else |
|---|
| 1105 | strcpy(tree->a_edges[br]->labels[tree->a_edges[br]->n_labels],"SLOWER"); |
|---|
| 1106 | |
|---|
| 1107 | tree->a_edges[br]->n_labels++; |
|---|
| 1108 | } |
|---|
| 1109 | } |
|---|
| 1110 | return best_probs; |
|---|
| 1111 | } |
|---|
| 1112 | |
|---|
| 1113 | ////////////////////////////////////////////////////////////// |
|---|
| 1114 | ////////////////////////////////////////////////////////////// |
|---|
| 1115 | |
|---|
| 1116 | |
|---|
| 1117 | void M4_Site_Branch_Classification_Experiment(t_tree *tree) |
|---|
| 1118 | { |
|---|
| 1119 | calign *cpy_data; |
|---|
| 1120 | short int **true_rclass, **est_rclass; |
|---|
| 1121 | phydbl **best_probs; |
|---|
| 1122 | int i,j; |
|---|
| 1123 | phydbl correct_class, mis_class, unknown; |
|---|
| 1124 | |
|---|
| 1125 | true_rclass = (short int **)mCalloc(tree->data->init_len, sizeof(short int *)); |
|---|
| 1126 | est_rclass = (short int **)mCalloc(tree->data->init_len, sizeof(short int *)); |
|---|
| 1127 | |
|---|
| 1128 | For(i,tree->data->init_len) |
|---|
| 1129 | { |
|---|
| 1130 | true_rclass[i] = (short int *)mCalloc(2*tree->n_otu-3,sizeof(short int)); |
|---|
| 1131 | est_rclass[i] = (short int *)mCalloc(2*tree->n_otu-3,sizeof(short int)); |
|---|
| 1132 | } |
|---|
| 1133 | |
|---|
| 1134 | if(tree->io->datatype != NT && tree->io->datatype != AA) |
|---|
| 1135 | { |
|---|
| 1136 | PhyML_Printf("\n. Not implemented yet."); |
|---|
| 1137 | PhyML_Printf("\n. Err in file %s at line %d\n",__FILE__,__LINE__); |
|---|
| 1138 | Warn_And_Exit(""); |
|---|
| 1139 | } |
|---|
| 1140 | |
|---|
| 1141 | cpy_data = Copy_Cseq(tree->data,tree->io); |
|---|
| 1142 | |
|---|
| 1143 | /* Generate a simulated data set under H0, with the right sequence length. */ |
|---|
| 1144 | PhyML_Printf("\n. Evolving sequences (delta=%f, alpha=%f) ...\n",tree->mod->m4mod->delta,tree->mod->m4mod->alpha); |
|---|
| 1145 | Evolve(cpy_data,tree->mod,tree); |
|---|
| 1146 | |
|---|
| 1147 | For(i,cpy_data->init_len) |
|---|
| 1148 | { |
|---|
| 1149 | For(j,2*tree->n_otu-3) |
|---|
| 1150 | { |
|---|
| 1151 | if(!strcmp(tree->a_edges[j]->labels[i],"FASTER")) |
|---|
| 1152 | { |
|---|
| 1153 | true_rclass[i][j] = 1; |
|---|
| 1154 | } |
|---|
| 1155 | else if(!strcmp(tree->a_edges[j]->labels[i],"SLOWER")) |
|---|
| 1156 | { |
|---|
| 1157 | true_rclass[i][j] = 0; |
|---|
| 1158 | } |
|---|
| 1159 | else |
|---|
| 1160 | { |
|---|
| 1161 | PhyML_Printf("\n. Err in file %s at line %d\n\n",__FILE__,__LINE__); |
|---|
| 1162 | Warn_And_Exit("\n"); |
|---|
| 1163 | } |
|---|
| 1164 | } |
|---|
| 1165 | } |
|---|
| 1166 | |
|---|
| 1167 | For(j,2*tree->n_otu-3) |
|---|
| 1168 | { |
|---|
| 1169 | Free_Edge_Labels(tree->a_edges[j]); |
|---|
| 1170 | tree->a_edges[j]->n_labels = 0; |
|---|
| 1171 | } |
|---|
| 1172 | |
|---|
| 1173 | /* Generate the memory needed for likelihood calculation because |
|---|
| 1174 | we will need bigger arrays |
|---|
| 1175 | */ |
|---|
| 1176 | Free_Tree_Lk(tree); |
|---|
| 1177 | Free_Tree_Pars(tree); |
|---|
| 1178 | |
|---|
| 1179 | tree->data = cpy_data; |
|---|
| 1180 | tree->n_pattern = tree->data->crunch_len; |
|---|
| 1181 | |
|---|
| 1182 | /* Allocate memory and initialize likelihood structure with |
|---|
| 1183 | simulated sequences (i.e., columns are not compressed) |
|---|
| 1184 | */ |
|---|
| 1185 | Make_Tree_4_Pars(tree,cpy_data,cpy_data->init_len); |
|---|
| 1186 | Make_Tree_4_Lk(tree,cpy_data,cpy_data->init_len); |
|---|
| 1187 | |
|---|
| 1188 | /* Estimate model parameters */ |
|---|
| 1189 | PhyML_Printf("\n. Estimating model parameters...\n"); |
|---|
| 1190 | tree->mod->s_opt->opt_cov_alpha = 1; |
|---|
| 1191 | tree->mod->s_opt->opt_cov_delta = 1; |
|---|
| 1192 | Round_Optimize(tree,tree->data,ROUND_MAX); |
|---|
| 1193 | |
|---|
| 1194 | tree->both_sides = 1; |
|---|
| 1195 | Lk(NULL,tree); |
|---|
| 1196 | |
|---|
| 1197 | /* Classify branches */ |
|---|
| 1198 | best_probs = M4_Site_Branch_Classification(M4_Compute_Proba_Hidden_States_On_Edges(tree),tree); |
|---|
| 1199 | |
|---|
| 1200 | For(i,tree->data->init_len) |
|---|
| 1201 | { |
|---|
| 1202 | For(j,2*tree->n_otu-3) |
|---|
| 1203 | { |
|---|
| 1204 | if(!strcmp(tree->a_edges[j]->labels[i],"FASTER")) |
|---|
| 1205 | { |
|---|
| 1206 | est_rclass[i][j] = 1; |
|---|
| 1207 | } |
|---|
| 1208 | else if(!strcmp(tree->a_edges[j]->labels[i],"SLOWER")) |
|---|
| 1209 | { |
|---|
| 1210 | est_rclass[i][j] = 0; |
|---|
| 1211 | } |
|---|
| 1212 | else if(!strcmp(tree->a_edges[j]->labels[i],"UNKNOWN")) |
|---|
| 1213 | { |
|---|
| 1214 | est_rclass[i][j] = -1; |
|---|
| 1215 | } |
|---|
| 1216 | else |
|---|
| 1217 | { |
|---|
| 1218 | PhyML_Printf("\n. Err in file %s at line %d\n\n",__FILE__,__LINE__); |
|---|
| 1219 | Warn_And_Exit("\n"); |
|---|
| 1220 | } |
|---|
| 1221 | } |
|---|
| 1222 | } |
|---|
| 1223 | |
|---|
| 1224 | unknown = .0; |
|---|
| 1225 | correct_class = .0; |
|---|
| 1226 | mis_class = .0; |
|---|
| 1227 | For(i,tree->data->init_len) |
|---|
| 1228 | { |
|---|
| 1229 | For(j,2*tree->n_otu-3) |
|---|
| 1230 | { |
|---|
| 1231 | /* PhyML_Printf("\n. Edge %3d %4d %4d - %f",j,true_rclass[i][j],est_rclass[i][j],best_probs[i][j]); */ |
|---|
| 1232 | if(est_rclass[i][j] == -1) |
|---|
| 1233 | { |
|---|
| 1234 | unknown += 1.; |
|---|
| 1235 | } |
|---|
| 1236 | else if(est_rclass[i][j] == true_rclass[i][j]) |
|---|
| 1237 | { |
|---|
| 1238 | correct_class += 1.; |
|---|
| 1239 | } |
|---|
| 1240 | else if(est_rclass[i][j] != true_rclass[i][j]) |
|---|
| 1241 | { |
|---|
| 1242 | mis_class += 1.; |
|---|
| 1243 | } |
|---|
| 1244 | else |
|---|
| 1245 | { |
|---|
| 1246 | PhyML_Printf("\n. Err in file %s at line %d\n\n",__FILE__,__LINE__); |
|---|
| 1247 | Warn_And_Exit("\n"); |
|---|
| 1248 | } |
|---|
| 1249 | } |
|---|
| 1250 | /* PhyML_Printf("\n"); */ |
|---|
| 1251 | } |
|---|
| 1252 | |
|---|
| 1253 | correct_class /= ((tree->data->init_len * (2*tree->n_otu-3)) - unknown); |
|---|
| 1254 | mis_class /= ((tree->data->init_len * (2*tree->n_otu-3)) - unknown); |
|---|
| 1255 | unknown /= (tree->data->init_len * (2*tree->n_otu-3)); |
|---|
| 1256 | |
|---|
| 1257 | PhyML_Printf("\n. correct_class = %f mis_class = %f unknown = %f", |
|---|
| 1258 | correct_class, |
|---|
| 1259 | mis_class, |
|---|
| 1260 | unknown); |
|---|
| 1261 | |
|---|
| 1262 | |
|---|
| 1263 | For(i,tree->data->init_len) |
|---|
| 1264 | { |
|---|
| 1265 | Free(true_rclass[i]); |
|---|
| 1266 | Free(est_rclass[i]); |
|---|
| 1267 | Free(best_probs[i]); |
|---|
| 1268 | } |
|---|
| 1269 | Free(true_rclass); |
|---|
| 1270 | Free(est_rclass); |
|---|
| 1271 | Free(best_probs); |
|---|
| 1272 | |
|---|
| 1273 | } |
|---|
| 1274 | |
|---|
| 1275 | ////////////////////////////////////////////////////////////// |
|---|
| 1276 | ////////////////////////////////////////////////////////////// |
|---|
| 1277 | |
|---|
| 1278 | |
|---|
| 1279 | /* Scale branch lengths such that they express expected number |
|---|
| 1280 | of nucleotide or amino-acid substitutions */ |
|---|
| 1281 | |
|---|
| 1282 | void M4_Scale_Br_Len(t_tree *tree) |
|---|
| 1283 | { |
|---|
| 1284 | phydbl scale_fact,mrs; |
|---|
| 1285 | int i,j; |
|---|
| 1286 | |
|---|
| 1287 | /* (1) Work out the relative mean rate of switches */ |
|---|
| 1288 | mrs = .0; |
|---|
| 1289 | For(i,tree->mod->m4mod->n_h) |
|---|
| 1290 | { |
|---|
| 1291 | For(j,tree->mod->m4mod->n_h) |
|---|
| 1292 | { |
|---|
| 1293 | if(j != i) |
|---|
| 1294 | mrs += tree->mod->m4mod->h_fq[i] * tree->mod->m4mod->h_mat[i*tree->mod->m4mod->n_h+j]; |
|---|
| 1295 | } |
|---|
| 1296 | } |
|---|
| 1297 | |
|---|
| 1298 | /* (2) scale_fact = (1 + delta x mrs) */ |
|---|
| 1299 | scale_fact = 1.0 + tree->mod->m4mod->delta * mrs; |
|---|
| 1300 | |
|---|
| 1301 | /* (3) Scale branch lengths */ |
|---|
| 1302 | For(i,2*tree->n_otu-3) tree->a_edges[i]->l->v /= scale_fact; |
|---|
| 1303 | } |
|---|
| 1304 | |
|---|
| 1305 | ////////////////////////////////////////////////////////////// |
|---|
| 1306 | ////////////////////////////////////////////////////////////// |
|---|
| 1307 | |
|---|
| 1308 | |
|---|
| 1309 | void M4_Free_Integral_Term_On_One_Edge(phydbl ****integral, t_tree *tree) |
|---|
| 1310 | { |
|---|
| 1311 | int g,i,j; |
|---|
| 1312 | |
|---|
| 1313 | For(g,tree->mod->ras->n_catg) |
|---|
| 1314 | { |
|---|
| 1315 | For(i,tree->mod->m4mod->n_h) |
|---|
| 1316 | { |
|---|
| 1317 | For(j,tree->mod->m4mod->n_h) |
|---|
| 1318 | { |
|---|
| 1319 | Free(integral[g][i][j]); |
|---|
| 1320 | } |
|---|
| 1321 | Free(integral[g][i]); |
|---|
| 1322 | } |
|---|
| 1323 | Free(integral[g]); |
|---|
| 1324 | } |
|---|
| 1325 | Free(integral); |
|---|
| 1326 | } |
|---|
| 1327 | |
|---|
| 1328 | ////////////////////////////////////////////////////////////// |
|---|
| 1329 | ////////////////////////////////////////////////////////////// |
|---|
| 1330 | |
|---|
| 1331 | |
|---|
| 1332 | void M4_Detect_Site_Switches_Experiment(t_tree *tree) |
|---|
| 1333 | { |
|---|
| 1334 | t_mod *nocov_mod,*cov_mod,*ori_mod; |
|---|
| 1335 | calign *ori_data,*cpy_data; |
|---|
| 1336 | int i,n_iter; |
|---|
| 1337 | phydbl *nocov_bl,*cov_bl; |
|---|
| 1338 | phydbl *site_lnl_nocov, *site_lnl_cov; |
|---|
| 1339 | |
|---|
| 1340 | nocov_bl = (phydbl *)mCalloc(2*tree->n_otu-3,sizeof(phydbl)); |
|---|
| 1341 | cov_bl = (phydbl *)mCalloc(2*tree->n_otu-3,sizeof(phydbl)); |
|---|
| 1342 | site_lnl_nocov = (phydbl *)mCalloc(tree->data->init_len,sizeof(phydbl)); |
|---|
| 1343 | site_lnl_cov = (phydbl *)mCalloc(tree->data->init_len,sizeof(phydbl)); |
|---|
| 1344 | |
|---|
| 1345 | ori_data = tree->data; |
|---|
| 1346 | ori_mod = tree->mod; |
|---|
| 1347 | |
|---|
| 1348 | if(tree->io->datatype != NT && tree->io->datatype != AA) |
|---|
| 1349 | { |
|---|
| 1350 | PhyML_Printf("\n== Not implemented yet."); |
|---|
| 1351 | PhyML_Printf("\n== Err in file %s at line %d\n",__FILE__,__LINE__); |
|---|
| 1352 | Warn_And_Exit(""); |
|---|
| 1353 | } |
|---|
| 1354 | |
|---|
| 1355 | cpy_data = Copy_Cseq(tree->data,tree->io); |
|---|
| 1356 | |
|---|
| 1357 | PhyML_Printf("\n. Estimate model parameters under non-switching substitution model.\n"); |
|---|
| 1358 | Switch_From_M4mod_To_Mod(tree->mod); |
|---|
| 1359 | Simu_Loop(tree); |
|---|
| 1360 | nocov_mod = (t_mod *)Copy_Model(tree->mod); /* Record model parameters */ |
|---|
| 1361 | For(i,2*tree->n_otu-3) nocov_bl[i] = tree->a_edges[i]->l->v; /* Record branch lengths */ |
|---|
| 1362 | For(i,tree->data->crunch_len) site_lnl_nocov[i] = tree->cur_site_lk[i]; |
|---|
| 1363 | Print_Lk(tree,"[LnL under non-switching substitution model]"); |
|---|
| 1364 | |
|---|
| 1365 | PhyML_Printf("\n. Estimate model parameters under switching substitution model.\n"); |
|---|
| 1366 | Switch_From_Mod_To_M4mod(tree->mod); |
|---|
| 1367 | Simu_Loop(tree); |
|---|
| 1368 | cov_mod = (t_mod *)Copy_Model(tree->mod); /* Record model parameters */ |
|---|
| 1369 | For(i,2*tree->n_otu-3) cov_bl[i] = tree->a_edges[i]->l->v; /* Record branch lengths */ |
|---|
| 1370 | For(i,tree->data->crunch_len) site_lnl_cov[i] = tree->cur_site_lk[i]; |
|---|
| 1371 | Print_Lk(tree,"[LnL under switching substitution model]"); |
|---|
| 1372 | |
|---|
| 1373 | |
|---|
| 1374 | PhyML_Printf("\n"); |
|---|
| 1375 | For(i,tree->data->crunch_len) PhyML_Printf("TRUTH %f %f\n",site_lnl_nocov[i],site_lnl_cov[i]); |
|---|
| 1376 | |
|---|
| 1377 | /* Generate a simulated data set under H0, with the right sequence length. */ |
|---|
| 1378 | tree->mod = nocov_mod; |
|---|
| 1379 | Evolve(cpy_data, nocov_mod, tree); |
|---|
| 1380 | |
|---|
| 1381 | /* Generate the memory needed for likelihood calculation because |
|---|
| 1382 | we will need bigger arrays |
|---|
| 1383 | */ |
|---|
| 1384 | tree->mod = cov_mod; |
|---|
| 1385 | Free_Tree_Lk(tree); |
|---|
| 1386 | Free_Tree_Pars(tree); |
|---|
| 1387 | |
|---|
| 1388 | tree->data = cpy_data; |
|---|
| 1389 | tree->n_pattern = tree->data->crunch_len; |
|---|
| 1390 | tree->mod = cov_mod; |
|---|
| 1391 | |
|---|
| 1392 | /* Allocate memory and initialize likelihood structure with |
|---|
| 1393 | simulated sequences (i.e., columns are not compressed) |
|---|
| 1394 | */ |
|---|
| 1395 | Make_Tree_4_Pars(tree,cpy_data,cpy_data->init_len); |
|---|
| 1396 | Make_Tree_4_Lk(tree,cpy_data,cpy_data->init_len); |
|---|
| 1397 | |
|---|
| 1398 | |
|---|
| 1399 | n_iter = 0; |
|---|
| 1400 | do |
|---|
| 1401 | { |
|---|
| 1402 | /* Get the transition proba right to generate sequences */ |
|---|
| 1403 | tree->mod = nocov_mod; |
|---|
| 1404 | For(i,2*tree->n_otu-3) tree->a_edges[i]->l->v = nocov_bl[i]; |
|---|
| 1405 | For(i,2*tree->n_otu-3) Update_PMat_At_Given_Edge(tree->a_edges[i],tree); |
|---|
| 1406 | |
|---|
| 1407 | /* Generate sequences */ |
|---|
| 1408 | Evolve(cpy_data, nocov_mod, tree); |
|---|
| 1409 | tree->data = cpy_data; |
|---|
| 1410 | |
|---|
| 1411 | if(tree->mod->s_opt->greedy) Init_P_Lk_Tips_Double(tree); |
|---|
| 1412 | else Init_P_Lk_Tips_Int(tree); |
|---|
| 1413 | |
|---|
| 1414 | tree->mod = nocov_mod; |
|---|
| 1415 | For(i,2*tree->n_otu-3) tree->a_edges[i]->l->v = nocov_bl[i]; |
|---|
| 1416 | Lk(NULL,tree); |
|---|
| 1417 | For(i,tree->data->crunch_len) site_lnl_nocov[i] = tree->cur_site_lk[i]; |
|---|
| 1418 | Print_Lk(tree,"[CPY LnL under non-switching substitution model]"); |
|---|
| 1419 | |
|---|
| 1420 | tree->mod = cov_mod; |
|---|
| 1421 | For(i,2*tree->n_otu-3) tree->a_edges[i]->l->v = cov_bl[i]; |
|---|
| 1422 | Lk(NULL,tree); |
|---|
| 1423 | For(i,tree->data->crunch_len) site_lnl_cov[i] = tree->cur_site_lk[i]; |
|---|
| 1424 | Print_Lk(tree,"[CPY LnL under switching substitution model]"); |
|---|
| 1425 | |
|---|
| 1426 | PhyML_Printf("\n"); |
|---|
| 1427 | For(i,tree->data->crunch_len) PhyML_Printf("SYNTH %f %f\n",site_lnl_nocov[i],site_lnl_cov[i]); |
|---|
| 1428 | } |
|---|
| 1429 | while(++n_iter < 200); |
|---|
| 1430 | |
|---|
| 1431 | Free_Tree_Lk(tree); |
|---|
| 1432 | Free_Tree_Pars(tree); |
|---|
| 1433 | |
|---|
| 1434 | /* Back to the original data set to check that everything is ok */ |
|---|
| 1435 | tree->data = ori_data; |
|---|
| 1436 | tree->n_pattern = tree->data->crunch_len; |
|---|
| 1437 | |
|---|
| 1438 | Make_Tree_4_Pars(tree,ori_data,ori_data->init_len); |
|---|
| 1439 | Make_Tree_4_Lk(tree,ori_data,ori_data->init_len); |
|---|
| 1440 | |
|---|
| 1441 | tree->mod = nocov_mod; |
|---|
| 1442 | For(i,2*tree->n_otu-3) tree->a_edges[i]->l->v = nocov_bl[i]; |
|---|
| 1443 | Lk(NULL,tree); |
|---|
| 1444 | Print_Lk(tree,"[FINAL LnL under non-switching substitution model]"); |
|---|
| 1445 | |
|---|
| 1446 | tree->mod = cov_mod; |
|---|
| 1447 | For(i,2*tree->n_otu-3) tree->a_edges[i]->l->v = cov_bl[i]; |
|---|
| 1448 | Lk(NULL,tree); |
|---|
| 1449 | Print_Lk(tree,"[FINAL LnL under switching substitution model]"); |
|---|
| 1450 | |
|---|
| 1451 | tree->mod = ori_mod; |
|---|
| 1452 | |
|---|
| 1453 | Free_Model(cov_mod); |
|---|
| 1454 | Free_Model(nocov_mod); |
|---|
| 1455 | Free(site_lnl_cov); |
|---|
| 1456 | Free(site_lnl_nocov); |
|---|
| 1457 | |
|---|
| 1458 | Free_Cseq(cpy_data); |
|---|
| 1459 | Free(nocov_bl); |
|---|
| 1460 | Free(cov_bl); |
|---|
| 1461 | } |
|---|
| 1462 | |
|---|
| 1463 | ////////////////////////////////////////////////////////////// |
|---|
| 1464 | ////////////////////////////////////////////////////////////// |
|---|
| 1465 | |
|---|
| 1466 | |
|---|
| 1467 | void M4_Posterior_Prediction_Experiment(t_tree *tree) |
|---|
| 1468 | { |
|---|
| 1469 | calign *ori_data,*cpy_data; |
|---|
| 1470 | int i,n_iter,n_simul; |
|---|
| 1471 | FILE *fp_nocov,*fp_cov,*fp_obs; |
|---|
| 1472 | char *s; |
|---|
| 1473 | t_edge *best_edge; |
|---|
| 1474 | |
|---|
| 1475 | s = (char *)mCalloc(100,sizeof(char)); |
|---|
| 1476 | |
|---|
| 1477 | best_edge = NULL; |
|---|
| 1478 | |
|---|
| 1479 | strcpy(s,tree->io->in_align_file); |
|---|
| 1480 | fp_nocov = Openfile(strcat(s,"_nocov"),1); |
|---|
| 1481 | strcpy(s,tree->io->in_align_file); |
|---|
| 1482 | fp_cov = Openfile(strcat(s,"_cov"),1); |
|---|
| 1483 | strcpy(s,tree->io->in_align_file); |
|---|
| 1484 | fp_obs = Openfile(strcat(s,"_obs"),1); |
|---|
| 1485 | |
|---|
| 1486 | Free(s); |
|---|
| 1487 | |
|---|
| 1488 | Print_Diversity_Header(fp_nocov, tree); |
|---|
| 1489 | Print_Diversity_Header(fp_cov, tree); |
|---|
| 1490 | Print_Diversity_Header(fp_obs, tree); |
|---|
| 1491 | |
|---|
| 1492 | ori_data = tree->data; |
|---|
| 1493 | |
|---|
| 1494 | if(tree->io->datatype != NT && tree->io->datatype != AA) |
|---|
| 1495 | { |
|---|
| 1496 | PhyML_Printf("\n. Not implemented yet."); |
|---|
| 1497 | PhyML_Printf("\n. Err in file %s at line %d\n",__FILE__,__LINE__); |
|---|
| 1498 | Warn_And_Exit(""); |
|---|
| 1499 | } |
|---|
| 1500 | |
|---|
| 1501 | cpy_data = Copy_Cseq(tree->data,tree->io); |
|---|
| 1502 | |
|---|
| 1503 | /* Generate a simulated data set under H0, with the right sequence length. */ |
|---|
| 1504 | Set_Model_Parameters(tree->mod); |
|---|
| 1505 | For(i,2*tree->n_otu-3) Update_PMat_At_Given_Edge(tree->a_edges[i],tree); |
|---|
| 1506 | Evolve(cpy_data,tree->mod,tree); |
|---|
| 1507 | |
|---|
| 1508 | /* Generate the memory needed for likelihood calculation because |
|---|
| 1509 | we will need bigger arrays |
|---|
| 1510 | */ |
|---|
| 1511 | Free_Tree_Lk(tree); |
|---|
| 1512 | Free_Tree_Pars(tree); |
|---|
| 1513 | |
|---|
| 1514 | tree->data = cpy_data; |
|---|
| 1515 | tree->n_pattern = tree->data->crunch_len; |
|---|
| 1516 | |
|---|
| 1517 | /* Allocate memory and initialize likelihood structure with |
|---|
| 1518 | simulated sequences (i.e., columns are not compressed) |
|---|
| 1519 | */ |
|---|
| 1520 | Make_Tree_4_Pars(tree,cpy_data,cpy_data->init_len); |
|---|
| 1521 | Make_Tree_4_Lk(tree,cpy_data,cpy_data->init_len); |
|---|
| 1522 | |
|---|
| 1523 | /* Go back to the original data set */ |
|---|
| 1524 | tree->data = ori_data; |
|---|
| 1525 | tree->n_pattern = ori_data->crunch_len; |
|---|
| 1526 | |
|---|
| 1527 | if(tree->mod->s_opt->greedy) Init_P_Lk_Tips_Double(tree); |
|---|
| 1528 | else Init_P_Lk_Tips_Int(tree); |
|---|
| 1529 | |
|---|
| 1530 | PhyML_Printf("\n. Estimate model parameters under non-switching substitution model.\n"); |
|---|
| 1531 | Switch_From_M4mod_To_Mod(tree->mod); |
|---|
| 1532 | |
|---|
| 1533 | tree->bl_from_node_stamps = 1; |
|---|
| 1534 | /* best_edge = TIMES_Find_Best_Root_Position(tree); */ |
|---|
| 1535 | PhyML_Printf("\n. Put root on t_edge %3d",i); |
|---|
| 1536 | TIMES_Least_Square_Node_Times(best_edge,tree); |
|---|
| 1537 | TIMES_Adjust_Node_Times(tree); |
|---|
| 1538 | /* TIMES_Round_Optimize(tree); */ |
|---|
| 1539 | |
|---|
| 1540 | /* Round_Optimize(tree,tree->data); */ |
|---|
| 1541 | /* Simu_Loop(tree); */ |
|---|
| 1542 | Print_Lk(tree,"[LnL under non-switching substitution model]"); |
|---|
| 1543 | Print_Tree(tree->io->fp_out_tree,tree); |
|---|
| 1544 | |
|---|
| 1545 | /* Print observed diversities */ |
|---|
| 1546 | Init_Ui_Tips(tree); |
|---|
| 1547 | Site_Diversity(tree); |
|---|
| 1548 | Print_Diversity(fp_obs,tree); |
|---|
| 1549 | |
|---|
| 1550 | n_simul = 100; |
|---|
| 1551 | n_iter = 0; |
|---|
| 1552 | do |
|---|
| 1553 | { |
|---|
| 1554 | Evolve(cpy_data,tree->mod,tree); |
|---|
| 1555 | tree->data = cpy_data; |
|---|
| 1556 | tree->n_pattern = cpy_data->init_len; |
|---|
| 1557 | |
|---|
| 1558 | if(tree->mod->s_opt->greedy) Init_P_Lk_Tips_Double(tree); |
|---|
| 1559 | else Init_P_Lk_Tips_Int(tree); |
|---|
| 1560 | |
|---|
| 1561 | Lk(NULL,tree); |
|---|
| 1562 | |
|---|
| 1563 | Init_Ui_Tips(tree); |
|---|
| 1564 | Site_Diversity(tree); |
|---|
| 1565 | Print_Diversity(fp_nocov,tree); |
|---|
| 1566 | |
|---|
| 1567 | Print_Lk(tree,"[CPY under non-switching substitution model]"); |
|---|
| 1568 | }while(++n_iter < n_simul); |
|---|
| 1569 | |
|---|
| 1570 | |
|---|
| 1571 | /* Go back to the original data set */ |
|---|
| 1572 | tree->data = ori_data; |
|---|
| 1573 | tree->n_pattern = ori_data->crunch_len; |
|---|
| 1574 | |
|---|
| 1575 | if(tree->mod->s_opt->greedy) Init_P_Lk_Tips_Double(tree); |
|---|
| 1576 | else Init_P_Lk_Tips_Int(tree); |
|---|
| 1577 | |
|---|
| 1578 | PhyML_Printf("\n. Estimate model parameters under switching substitution model.\n"); |
|---|
| 1579 | Switch_From_Mod_To_M4mod(tree->mod); |
|---|
| 1580 | /* TIME_Round_Optimize(tree); */ |
|---|
| 1581 | /* Round_Optimize(tree,tree->data); */ |
|---|
| 1582 | /* Simu_Loop(tree); */ |
|---|
| 1583 | Print_Lk(tree,"[LnL under switching substitution model]"); |
|---|
| 1584 | Print_Tree(tree->io->fp_out_tree,tree); |
|---|
| 1585 | |
|---|
| 1586 | n_iter = 0; |
|---|
| 1587 | do |
|---|
| 1588 | { |
|---|
| 1589 | Evolve(cpy_data,tree->mod,tree); |
|---|
| 1590 | tree->data = cpy_data; |
|---|
| 1591 | tree->n_pattern = cpy_data->init_len; |
|---|
| 1592 | if(tree->mod->s_opt->greedy) Init_P_Lk_Tips_Double(tree); |
|---|
| 1593 | else Init_P_Lk_Tips_Int(tree); |
|---|
| 1594 | |
|---|
| 1595 | Lk(NULL,tree); |
|---|
| 1596 | |
|---|
| 1597 | Init_Ui_Tips(tree); |
|---|
| 1598 | Site_Diversity(tree); |
|---|
| 1599 | Print_Diversity(fp_cov,tree); |
|---|
| 1600 | |
|---|
| 1601 | Print_Lk(tree,"[LnL under switching substitution model]"); |
|---|
| 1602 | }while(++n_iter < n_simul); |
|---|
| 1603 | |
|---|
| 1604 | fclose(fp_obs); |
|---|
| 1605 | fclose(fp_nocov); |
|---|
| 1606 | fclose(fp_cov); |
|---|
| 1607 | } |
|---|
| 1608 | |
|---|
| 1609 | ////////////////////////////////////////////////////////////// |
|---|
| 1610 | ////////////////////////////////////////////////////////////// |
|---|
| 1611 | |
|---|
| 1612 | m4 *M4_Copy_M4_Model(t_mod *ori_mod, m4 *ori_m4mod) |
|---|
| 1613 | { |
|---|
| 1614 | int i,j,n_h, n_o; |
|---|
| 1615 | m4 *cpy_m4mod; |
|---|
| 1616 | |
|---|
| 1617 | if(ori_mod->io->datatype != NT && ori_mod->io->datatype != AA) |
|---|
| 1618 | { |
|---|
| 1619 | PhyML_Printf("\n== Not implemented yet."); |
|---|
| 1620 | PhyML_Printf("\n== Err in file %s at line %d\n",__FILE__,__LINE__); |
|---|
| 1621 | Exit("\n"); |
|---|
| 1622 | } |
|---|
| 1623 | |
|---|
| 1624 | |
|---|
| 1625 | cpy_m4mod = (m4 *)M4_Make_Light(); |
|---|
| 1626 | cpy_m4mod->n_o = ori_m4mod->n_o; |
|---|
| 1627 | cpy_m4mod->n_h = ori_m4mod->n_h; |
|---|
| 1628 | |
|---|
| 1629 | if(ori_mod->use_m4mod) |
|---|
| 1630 | { |
|---|
| 1631 | M4_Make_Complete(cpy_m4mod->n_h, |
|---|
| 1632 | cpy_m4mod->n_o, |
|---|
| 1633 | cpy_m4mod); |
|---|
| 1634 | |
|---|
| 1635 | n_h = cpy_m4mod->n_h; |
|---|
| 1636 | n_o = cpy_m4mod->n_o; |
|---|
| 1637 | |
|---|
| 1638 | cpy_m4mod->n_h = ori_m4mod->n_h; |
|---|
| 1639 | cpy_m4mod->n_o = ori_m4mod->n_o; |
|---|
| 1640 | For(i,n_h) For(j,n_o*n_o) cpy_m4mod->o_mats[i][j] = ori_m4mod->o_mats[i][j]; |
|---|
| 1641 | For(i,n_h) cpy_m4mod->multipl[i] = ori_m4mod->multipl[i]; |
|---|
| 1642 | For(i,n_h) cpy_m4mod->multipl_unscaled[i] = ori_m4mod->multipl_unscaled[i]; |
|---|
| 1643 | For(i,n_o*n_o) cpy_m4mod->o_rr[i] = ori_m4mod->o_rr[i]; |
|---|
| 1644 | For(i,n_h*n_h) cpy_m4mod->h_rr[i] = ori_m4mod->h_rr[i]; |
|---|
| 1645 | For(i,n_h*n_h) cpy_m4mod->h_mat[i] = ori_m4mod->h_mat[i]; |
|---|
| 1646 | For(i,n_o) cpy_m4mod->o_fq[i] = ori_m4mod->o_fq[i]; |
|---|
| 1647 | For(i,n_h) cpy_m4mod->h_fq[i] = ori_m4mod->h_fq[i]; |
|---|
| 1648 | For(i,n_h) cpy_m4mod->h_fq_unscaled[i] = ori_m4mod->h_fq_unscaled[i]; |
|---|
| 1649 | cpy_m4mod->delta = ori_m4mod->delta; |
|---|
| 1650 | cpy_m4mod->alpha = ori_m4mod->alpha; |
|---|
| 1651 | } |
|---|
| 1652 | |
|---|
| 1653 | return cpy_m4mod; |
|---|
| 1654 | } |
|---|
| 1655 | |
|---|
| 1656 | ////////////////////////////////////////////////////////////// |
|---|
| 1657 | ////////////////////////////////////////////////////////////// |
|---|
| 1658 | |
|---|