| 1 | // =============================================================== // |
|---|
| 2 | // // |
|---|
| 3 | // File : ST_ml.cxx // |
|---|
| 4 | // Purpose : // |
|---|
| 5 | // // |
|---|
| 6 | // Institute of Microbiology (Technical University Munich) // |
|---|
| 7 | // http://www.arb-home.de/ // |
|---|
| 8 | // // |
|---|
| 9 | // =============================================================== // |
|---|
| 10 | |
|---|
| 11 | #include "st_ml.hxx" |
|---|
| 12 | #include "MostLikelySeq.hxx" |
|---|
| 13 | |
|---|
| 14 | #include <ColumnStat.hxx> |
|---|
| 15 | #include <AP_filter.hxx> |
|---|
| 16 | #include <AP_Tree.hxx> |
|---|
| 17 | #include <arb_progress.h> |
|---|
| 18 | #include <gui_aliview.hxx> |
|---|
| 19 | #include <ad_cb.h> |
|---|
| 20 | |
|---|
| 21 | #include <cctype> |
|---|
| 22 | #include <cmath> |
|---|
| 23 | |
|---|
| 24 | DNA_Table dna_table; |
|---|
| 25 | |
|---|
| 26 | DNA_Table::DNA_Table() { |
|---|
| 27 | int i; |
|---|
| 28 | for (i = 0; i < 256; i++) { |
|---|
| 29 | switch (toupper(i)) { |
|---|
| 30 | case 'A': |
|---|
| 31 | char_to_enum_table[i] = ST_A; |
|---|
| 32 | break; |
|---|
| 33 | case 'C': |
|---|
| 34 | char_to_enum_table[i] = ST_C; |
|---|
| 35 | break; |
|---|
| 36 | case 'G': |
|---|
| 37 | char_to_enum_table[i] = ST_G; |
|---|
| 38 | break; |
|---|
| 39 | case 'T': |
|---|
| 40 | case 'U': |
|---|
| 41 | char_to_enum_table[i] = ST_T; |
|---|
| 42 | break; |
|---|
| 43 | case '-': |
|---|
| 44 | char_to_enum_table[i] = ST_GAP; |
|---|
| 45 | break; |
|---|
| 46 | default: |
|---|
| 47 | char_to_enum_table[i] = ST_UNKNOWN; |
|---|
| 48 | } |
|---|
| 49 | } |
|---|
| 50 | } |
|---|
| 51 | |
|---|
| 52 | // ----------------------- |
|---|
| 53 | // ST_base_vector |
|---|
| 54 | |
|---|
| 55 | void ST_base_vector::setBase(const ST_base_vector& inv_frequencies, char base) { |
|---|
| 56 | base = toupper(base); |
|---|
| 57 | |
|---|
| 58 | memset((char *) &b[0], 0, sizeof(b)); |
|---|
| 59 | DNA_Base ub = dna_table.char_to_enum(base); |
|---|
| 60 | |
|---|
| 61 | if (ub != ST_UNKNOWN) { |
|---|
| 62 | b[ub] = 1.0; // ill. access ? |
|---|
| 63 | } |
|---|
| 64 | else { |
|---|
| 65 | const double k = 1.0 / ST_MAX_BASE; |
|---|
| 66 | b[ST_A] = k; |
|---|
| 67 | b[ST_C] = k; |
|---|
| 68 | b[ST_G] = k; |
|---|
| 69 | b[ST_T] = k; |
|---|
| 70 | b[ST_GAP] = k; |
|---|
| 71 | } |
|---|
| 72 | for (int i = 0; i < ST_MAX_BASE; i++) { // LOOP_VECTORIZED[!<5.0] |
|---|
| 73 | b[i] *= inv_frequencies.b[i]; |
|---|
| 74 | } |
|---|
| 75 | ld_lik = 0; // ? why not 1.0 ? |
|---|
| 76 | lik = 1.0; |
|---|
| 77 | } |
|---|
| 78 | |
|---|
| 79 | inline void ST_base_vector::check_overflow() { |
|---|
| 80 | ST_FLOAT sum = summarize(); |
|---|
| 81 | |
|---|
| 82 | if (sum < .00001) { // what happend no data, extremely unlikely |
|---|
| 83 | setTo(0.25); // strange! shouldn't this be 1.0/ST_MAX_BASE ? |
|---|
| 84 | ld_lik -= 5; // ??? |
|---|
| 85 | } |
|---|
| 86 | else { |
|---|
| 87 | while (sum < 0.25) { |
|---|
| 88 | sum *= 4; |
|---|
| 89 | ld_lik -= 2; |
|---|
| 90 | multiplyWith(4); |
|---|
| 91 | } |
|---|
| 92 | } |
|---|
| 93 | |
|---|
| 94 | if (ld_lik> 10000) printf("overflow\n"); |
|---|
| 95 | } |
|---|
| 96 | |
|---|
| 97 | inline ST_base_vector& ST_base_vector::operator*=(const ST_base_vector& other) { |
|---|
| 98 | b[ST_A] *= other.b[ST_A]; |
|---|
| 99 | b[ST_C] *= other.b[ST_C]; |
|---|
| 100 | b[ST_G] *= other.b[ST_G]; |
|---|
| 101 | b[ST_T] *= other.b[ST_T]; |
|---|
| 102 | b[ST_GAP] *= other.b[ST_GAP]; |
|---|
| 103 | |
|---|
| 104 | ld_lik += other.ld_lik; // @@@ correct to use 'plus' here ? why ? |
|---|
| 105 | lik *= other.lik; |
|---|
| 106 | |
|---|
| 107 | return *this; |
|---|
| 108 | } |
|---|
| 109 | |
|---|
| 110 | void ST_base_vector::print() { |
|---|
| 111 | int i; |
|---|
| 112 | for (i = 0; i < ST_MAX_BASE; i++) { |
|---|
| 113 | printf("%.3G ", b[i]); |
|---|
| 114 | } |
|---|
| 115 | } |
|---|
| 116 | |
|---|
| 117 | // ----------------------- |
|---|
| 118 | // ST_rate_matrix |
|---|
| 119 | |
|---|
| 120 | void ST_rate_matrix::set(double dist, double /* TT_ratio */) { |
|---|
| 121 | const double k = 1.0 / ST_MAX_BASE; |
|---|
| 122 | ST_FLOAT exp_dist = exp(-dist); |
|---|
| 123 | |
|---|
| 124 | diag = k + (1.0 - k) * exp_dist; |
|---|
| 125 | rest = k - k * exp_dist; |
|---|
| 126 | } |
|---|
| 127 | |
|---|
| 128 | void ST_rate_matrix::print() { |
|---|
| 129 | for (int i = 0; i < ST_MAX_BASE; i++) { |
|---|
| 130 | for (int j = 0; j < ST_MAX_BASE; j++) { |
|---|
| 131 | printf("%.3G ", i == j ? diag : rest); |
|---|
| 132 | } |
|---|
| 133 | printf("\n"); |
|---|
| 134 | } |
|---|
| 135 | } |
|---|
| 136 | |
|---|
| 137 | |
|---|
| 138 | inline void ST_rate_matrix::transform(const ST_base_vector& in, ST_base_vector& out) const { |
|---|
| 139 | // optimized matrix/vector multiplication |
|---|
| 140 | // original version: http://bugs.arb-home.de/browser/trunk/STAT/ST_ml.cxx?rev=6403#L155 |
|---|
| 141 | |
|---|
| 142 | ST_FLOAT sum = in.summarize(); |
|---|
| 143 | ST_FLOAT diag_rest_diff = diag-rest; |
|---|
| 144 | ST_FLOAT sum_rest_prod = sum*rest; |
|---|
| 145 | |
|---|
| 146 | out.b[ST_A] = in.b[ST_A]*diag_rest_diff + sum_rest_prod; |
|---|
| 147 | out.b[ST_C] = in.b[ST_C]*diag_rest_diff + sum_rest_prod; |
|---|
| 148 | out.b[ST_G] = in.b[ST_G]*diag_rest_diff + sum_rest_prod; |
|---|
| 149 | out.b[ST_T] = in.b[ST_T]*diag_rest_diff + sum_rest_prod; |
|---|
| 150 | out.b[ST_GAP] = in.b[ST_GAP]*diag_rest_diff + sum_rest_prod; |
|---|
| 151 | |
|---|
| 152 | out.ld_lik = in.ld_lik; |
|---|
| 153 | out.lik = in.lik; |
|---|
| 154 | } |
|---|
| 155 | |
|---|
| 156 | |
|---|
| 157 | // ----------------------- |
|---|
| 158 | // MostLikelySeq |
|---|
| 159 | |
|---|
| 160 | MostLikelySeq::MostLikelySeq(const AliView *aliview, ST_ML *st_ml_) : |
|---|
| 161 | AP_sequence(aliview), |
|---|
| 162 | st_ml(st_ml_), |
|---|
| 163 | sequence(new ST_base_vector[ST_MAX_SEQ_PART]), |
|---|
| 164 | up_to_date(false), |
|---|
| 165 | color_out(NULp), |
|---|
| 166 | color_out_valid_till(NULp) |
|---|
| 167 | {} |
|---|
| 168 | |
|---|
| 169 | MostLikelySeq::~MostLikelySeq() { |
|---|
| 170 | delete [] sequence; |
|---|
| 171 | free(color_out); |
|---|
| 172 | free(color_out_valid_till); |
|---|
| 173 | |
|---|
| 174 | unbind_from_species(true); |
|---|
| 175 | } |
|---|
| 176 | |
|---|
| 177 | static void st_sequence_callback(GBDATA*, MostLikelySeq *seq) { |
|---|
| 178 | seq->sequence_change(); |
|---|
| 179 | } |
|---|
| 180 | |
|---|
| 181 | static void st_sequence_del_callback(GBDATA*, MostLikelySeq *seq) { |
|---|
| 182 | seq->unbind_from_species(false); |
|---|
| 183 | } |
|---|
| 184 | |
|---|
| 185 | |
|---|
| 186 | GB_ERROR MostLikelySeq::bind_to_species(GBDATA *gb_species) { |
|---|
| 187 | GB_ERROR error = AP_sequence::bind_to_species(gb_species); |
|---|
| 188 | if (!error) { |
|---|
| 189 | GBDATA *gb_seq = get_bound_species_data(); |
|---|
| 190 | st_assert(gb_seq); |
|---|
| 191 | |
|---|
| 192 | error = GB_add_callback(gb_seq, GB_CB_CHANGED, makeDatabaseCallback(st_sequence_callback, this)); |
|---|
| 193 | if (!error) error = GB_add_callback(gb_seq, GB_CB_DELETE, makeDatabaseCallback(st_sequence_del_callback, this)); |
|---|
| 194 | } |
|---|
| 195 | return error; |
|---|
| 196 | } |
|---|
| 197 | void MostLikelySeq::unbind_from_species(bool remove_callbacks) { |
|---|
| 198 | GBDATA *gb_seq = get_bound_species_data(); |
|---|
| 199 | |
|---|
| 200 | if (gb_seq) { |
|---|
| 201 | if (remove_callbacks) { |
|---|
| 202 | GB_remove_callback(gb_seq, GB_CB_CHANGED, makeDatabaseCallback(st_sequence_callback, this)); |
|---|
| 203 | GB_remove_callback(gb_seq, GB_CB_DELETE, makeDatabaseCallback(st_sequence_del_callback, this)); |
|---|
| 204 | } |
|---|
| 205 | AP_sequence::unbind_from_species(); |
|---|
| 206 | } |
|---|
| 207 | } |
|---|
| 208 | |
|---|
| 209 | void MostLikelySeq::sequence_change() { |
|---|
| 210 | st_ml->clear_all(); |
|---|
| 211 | } |
|---|
| 212 | |
|---|
| 213 | AP_sequence *MostLikelySeq::dup() const { |
|---|
| 214 | return new MostLikelySeq(get_aliview(), st_ml); |
|---|
| 215 | } |
|---|
| 216 | |
|---|
| 217 | void MostLikelySeq::set(const char *) { |
|---|
| 218 | st_assert(0); // hmm why not perform set_sequence() here ? |
|---|
| 219 | } |
|---|
| 220 | |
|---|
| 221 | void MostLikelySeq::unset() { |
|---|
| 222 | } |
|---|
| 223 | |
|---|
| 224 | void MostLikelySeq::set_sequence() { |
|---|
| 225 | /*! Transform the sequence from character to vector |
|---|
| 226 | * for current range [ST_ML::first_pos .. ST_ML::last_pos] |
|---|
| 227 | */ |
|---|
| 228 | |
|---|
| 229 | GBDATA *gb_data = get_bound_species_data(); |
|---|
| 230 | st_assert(gb_data); |
|---|
| 231 | |
|---|
| 232 | size_t source_sequence_len = (size_t)GB_read_string_count(gb_data); |
|---|
| 233 | const char *source_sequence = GB_read_char_pntr(gb_data) + st_ml->get_first_pos(); |
|---|
| 234 | ST_base_vector *dest = sequence; |
|---|
| 235 | const ST_base_vector *freq = st_ml->get_inv_base_frequencies() + st_ml->get_first_pos(); |
|---|
| 236 | |
|---|
| 237 | size_t range_len = st_ml->get_last_pos() - st_ml->get_first_pos(); |
|---|
| 238 | size_t data_len = std::min(range_len, source_sequence_len); |
|---|
| 239 | size_t pos = 0; |
|---|
| 240 | |
|---|
| 241 | for (; pos<data_len; ++pos) dest[pos].setBase(freq[pos], toupper(source_sequence[pos])); |
|---|
| 242 | for (; pos<range_len; ++pos) dest[pos].setBase(freq[pos], '.'); |
|---|
| 243 | |
|---|
| 244 | up_to_date = true; |
|---|
| 245 | } |
|---|
| 246 | |
|---|
| 247 | void MostLikelySeq::calculate_ancestor(const MostLikelySeq *lefts, double leftl, const MostLikelySeq *rights, double rightl) { |
|---|
| 248 | st_assert(!up_to_date); |
|---|
| 249 | |
|---|
| 250 | ST_base_vector hbv; |
|---|
| 251 | double lc = leftl / st_ml->get_step_size(); |
|---|
| 252 | double rc = rightl / st_ml->get_step_size(); |
|---|
| 253 | const ST_base_vector *lb = lefts->sequence; |
|---|
| 254 | const ST_base_vector *rb = rights->sequence; |
|---|
| 255 | ST_base_vector *dest = sequence; |
|---|
| 256 | |
|---|
| 257 | for (size_t pos = st_ml->get_first_pos(); pos < st_ml->get_last_pos(); pos++) { |
|---|
| 258 | st_assert(lb->lik == 1 && rb->lik == 1); |
|---|
| 259 | |
|---|
| 260 | int distl = (int) (st_ml->get_rate_at(pos) * lc); |
|---|
| 261 | int distr = (int) (st_ml->get_rate_at(pos) * rc); |
|---|
| 262 | |
|---|
| 263 | st_ml->get_matrix_for(distl).transform(*lb, *dest); |
|---|
| 264 | st_ml->get_matrix_for(distr).transform(*rb, hbv); |
|---|
| 265 | |
|---|
| 266 | *dest *= hbv; |
|---|
| 267 | dest->check_overflow(); |
|---|
| 268 | |
|---|
| 269 | st_assert(dest->lik == 1); |
|---|
| 270 | |
|---|
| 271 | dest++; |
|---|
| 272 | lb++; |
|---|
| 273 | rb++; |
|---|
| 274 | } |
|---|
| 275 | |
|---|
| 276 | up_to_date = true; |
|---|
| 277 | } |
|---|
| 278 | |
|---|
| 279 | ST_base_vector *MostLikelySeq::tmp_out = NULp; |
|---|
| 280 | |
|---|
| 281 | void MostLikelySeq::calc_out(const MostLikelySeq *next_branch, double dist) { |
|---|
| 282 | // result will be in tmp_out |
|---|
| 283 | |
|---|
| 284 | ST_base_vector *out = tmp_out + st_ml->get_first_pos(); |
|---|
| 285 | double lc = dist / st_ml->get_step_size(); |
|---|
| 286 | ST_base_vector *lefts = next_branch->sequence; |
|---|
| 287 | |
|---|
| 288 | for (size_t pos = st_ml->get_first_pos(); pos < st_ml->get_last_pos(); pos++) { |
|---|
| 289 | int distl = (int) (st_ml->get_rate_at(pos) * lc); |
|---|
| 290 | st_ml->get_matrix_for(distl).transform(*lefts, *out); |
|---|
| 291 | |
|---|
| 292 | // correct frequencies |
|---|
| 293 | // @@@ check if st_ml->get_base_frequency_at(pos).lik is 1 - if so, use vec-mult here |
|---|
| 294 | for (int i = ST_A; i < ST_MAX_BASE; i++) { |
|---|
| 295 | out->b[i] *= st_ml->get_base_frequency_at(pos).b[i]; |
|---|
| 296 | } |
|---|
| 297 | |
|---|
| 298 | lefts++; |
|---|
| 299 | out++; |
|---|
| 300 | } |
|---|
| 301 | } |
|---|
| 302 | |
|---|
| 303 | void MostLikelySeq::print() { |
|---|
| 304 | const char *data = GB_read_char_pntr(get_bound_species_data()); |
|---|
| 305 | for (size_t i = 0; i < ST_MAX_SEQ_PART; i++) { |
|---|
| 306 | printf("POS %3zu %c ", i, data[i]); |
|---|
| 307 | printf("\n"); |
|---|
| 308 | } |
|---|
| 309 | } |
|---|
| 310 | |
|---|
| 311 | // -------------- |
|---|
| 312 | // ST_ML |
|---|
| 313 | |
|---|
| 314 | ST_ML::ST_ML(GBDATA *gb_maini) : |
|---|
| 315 | alignment_name(NULp), |
|---|
| 316 | hash_2_ap_tree(NULp), |
|---|
| 317 | keep_species_hash(NULp), |
|---|
| 318 | refresh_n(0), |
|---|
| 319 | not_valid(NULp), |
|---|
| 320 | tree_root(NULp), |
|---|
| 321 | latest_modification(0), |
|---|
| 322 | first_pos(0), |
|---|
| 323 | last_pos(0), |
|---|
| 324 | postcalc_cb(NULp), |
|---|
| 325 | cb_window(NULp), |
|---|
| 326 | gb_main(gb_maini), |
|---|
| 327 | column_stat(NULp), |
|---|
| 328 | rates(NULp), |
|---|
| 329 | ttratio(NULp), |
|---|
| 330 | base_frequencies(NULp), |
|---|
| 331 | inv_base_frequencies(NULp), |
|---|
| 332 | max_dist(0.0), |
|---|
| 333 | step_size(0.0), |
|---|
| 334 | max_rate_matrices(0), |
|---|
| 335 | rate_matrices(NULp), |
|---|
| 336 | is_initialized(false) |
|---|
| 337 | {} |
|---|
| 338 | |
|---|
| 339 | ST_ML::~ST_ML() { |
|---|
| 340 | delete tree_root; |
|---|
| 341 | free(alignment_name); |
|---|
| 342 | if (hash_2_ap_tree) GBS_free_hash(hash_2_ap_tree); |
|---|
| 343 | delete not_valid; |
|---|
| 344 | delete [] base_frequencies; |
|---|
| 345 | delete [] inv_base_frequencies; |
|---|
| 346 | delete [] rate_matrices; |
|---|
| 347 | if (!column_stat) { |
|---|
| 348 | // rates and ttratio have been allocated (see ST_ML::calc_st_ml) |
|---|
| 349 | delete [] rates; |
|---|
| 350 | delete [] ttratio; |
|---|
| 351 | } |
|---|
| 352 | } |
|---|
| 353 | |
|---|
| 354 | |
|---|
| 355 | void ST_ML::create_frequencies() { |
|---|
| 356 | //! Translate characters to base frequencies |
|---|
| 357 | |
|---|
| 358 | size_t filtered_length = get_filtered_length(); |
|---|
| 359 | base_frequencies = new ST_base_vector[filtered_length]; |
|---|
| 360 | inv_base_frequencies = new ST_base_vector[filtered_length]; |
|---|
| 361 | |
|---|
| 362 | if (!column_stat) { |
|---|
| 363 | for (size_t i = 0; i < filtered_length; i++) { |
|---|
| 364 | base_frequencies[i].setTo(1.0); |
|---|
| 365 | base_frequencies[i].lik = 1.0; |
|---|
| 366 | |
|---|
| 367 | inv_base_frequencies[i].setTo(1.0); |
|---|
| 368 | inv_base_frequencies[i].lik = 1.0; |
|---|
| 369 | } |
|---|
| 370 | } |
|---|
| 371 | else { |
|---|
| 372 | for (size_t i = 0; i < filtered_length; i++) { |
|---|
| 373 | const ST_FLOAT NO_FREQ = 0.01; |
|---|
| 374 | ST_base_vector& base_freq = base_frequencies[i]; |
|---|
| 375 | |
|---|
| 376 | base_freq.setTo(NO_FREQ); |
|---|
| 377 | |
|---|
| 378 | static struct { |
|---|
| 379 | unsigned char c; |
|---|
| 380 | DNA_Base b; |
|---|
| 381 | } toCount[] = { |
|---|
| 382 | { 'A', ST_A }, { 'a', ST_A }, |
|---|
| 383 | { 'C', ST_C }, { 'c', ST_C }, |
|---|
| 384 | { 'G', ST_G }, { 'g', ST_G }, |
|---|
| 385 | { 'T', ST_T }, { 't', ST_T }, |
|---|
| 386 | { 'U', ST_T }, { 'u', ST_T }, |
|---|
| 387 | { '-', ST_GAP }, |
|---|
| 388 | { 0, ST_UNKNOWN }, |
|---|
| 389 | }; |
|---|
| 390 | |
|---|
| 391 | for (int j = 0; toCount[j].c; ++j) { |
|---|
| 392 | const float *freq = column_stat->get_frequencies(toCount[j].c); |
|---|
| 393 | if (freq) base_freq.b[toCount[j].b] += freq[i]; |
|---|
| 394 | } |
|---|
| 395 | |
|---|
| 396 | ST_FLOAT sum = base_freq.summarize(); |
|---|
| 397 | ST_FLOAT smooth = sum*0.01; // smooth by %1 to avoid "crazy values" |
|---|
| 398 | base_freq.increaseBy(smooth); |
|---|
| 399 | |
|---|
| 400 | sum += smooth*ST_MAX_BASE; // correct sum |
|---|
| 401 | |
|---|
| 402 | ST_FLOAT min = base_freq.min_frequency(); |
|---|
| 403 | |
|---|
| 404 | // @@@ if min == 0.0 all inv_base_frequencies will be set to inf ? correct ? |
|---|
| 405 | // maybe min should be better calculated after next if-else-clause ? |
|---|
| 406 | |
|---|
| 407 | if (sum>NO_FREQ) { |
|---|
| 408 | base_freq.multiplyWith(ST_MAX_BASE/sum); |
|---|
| 409 | } |
|---|
| 410 | else { |
|---|
| 411 | base_freq.setTo(1.0); // columns w/o data |
|---|
| 412 | } |
|---|
| 413 | |
|---|
| 414 | base_freq.lik = 1.0; |
|---|
| 415 | |
|---|
| 416 | inv_base_frequencies[i].makeInverseOf(base_freq, min); |
|---|
| 417 | inv_base_frequencies[i].lik = 1.0; |
|---|
| 418 | } |
|---|
| 419 | } |
|---|
| 420 | } |
|---|
| 421 | |
|---|
| 422 | void ST_ML::insert_tree_into_hash_rek(AP_tree *node) { |
|---|
| 423 | node->gr.gc = 0; |
|---|
| 424 | if (node->is_leaf()) { |
|---|
| 425 | GBS_write_hash(hash_2_ap_tree, node->name, (long) node); |
|---|
| 426 | } |
|---|
| 427 | else { |
|---|
| 428 | insert_tree_into_hash_rek(node->get_leftson()); |
|---|
| 429 | insert_tree_into_hash_rek(node->get_rightson()); |
|---|
| 430 | } |
|---|
| 431 | } |
|---|
| 432 | |
|---|
| 433 | void ST_ML::create_matrices(double max_disti, int nmatrices) { |
|---|
| 434 | delete [] rate_matrices; |
|---|
| 435 | rate_matrices = new ST_rate_matrix[nmatrices]; // LOOP_VECTORIZED |
|---|
| 436 | |
|---|
| 437 | max_dist = max_disti; |
|---|
| 438 | max_rate_matrices = nmatrices; |
|---|
| 439 | step_size = max_dist / max_rate_matrices; |
|---|
| 440 | |
|---|
| 441 | for (int i = 0; i < max_rate_matrices; i++) { |
|---|
| 442 | rate_matrices[i].set((i + 1) * step_size, 0); // ttratio[i] |
|---|
| 443 | } |
|---|
| 444 | } |
|---|
| 445 | |
|---|
| 446 | long ST_ML::delete_species(const char *key, long val, void *cd_st_ml) { |
|---|
| 447 | ST_ML *st_ml = (ST_ML*)cd_st_ml; |
|---|
| 448 | |
|---|
| 449 | if (GBS_read_hash(st_ml->keep_species_hash, key)) { |
|---|
| 450 | return val; |
|---|
| 451 | } |
|---|
| 452 | else { |
|---|
| 453 | AP_tree *leaf = (AP_tree *)val; |
|---|
| 454 | UNCOVERED(); |
|---|
| 455 | destroy(leaf->REMOVE()); |
|---|
| 456 | |
|---|
| 457 | return 0; |
|---|
| 458 | } |
|---|
| 459 | } |
|---|
| 460 | |
|---|
| 461 | inline GB_ERROR tree_size_ok(AP_tree_root *tree_root) { |
|---|
| 462 | GB_ERROR error = NULp; |
|---|
| 463 | |
|---|
| 464 | AP_tree *root = tree_root->get_root_node(); |
|---|
| 465 | if (!root || root->is_leaf()) { |
|---|
| 466 | const char *tree_name = tree_root->get_tree_name(); |
|---|
| 467 | error = GBS_global_string("Too few species remained in tree '%s'", tree_name); |
|---|
| 468 | } |
|---|
| 469 | return error; |
|---|
| 470 | } |
|---|
| 471 | |
|---|
| 472 | void ST_ML::cleanup() { |
|---|
| 473 | freenull(alignment_name); |
|---|
| 474 | |
|---|
| 475 | if (MostLikelySeq::tmp_out) { |
|---|
| 476 | delete MostLikelySeq::tmp_out; |
|---|
| 477 | MostLikelySeq::tmp_out = NULp; |
|---|
| 478 | } |
|---|
| 479 | |
|---|
| 480 | delete tree_root; |
|---|
| 481 | tree_root = NULp; |
|---|
| 482 | |
|---|
| 483 | if (hash_2_ap_tree) { |
|---|
| 484 | GBS_free_hash(hash_2_ap_tree); |
|---|
| 485 | hash_2_ap_tree = NULp; |
|---|
| 486 | } |
|---|
| 487 | |
|---|
| 488 | is_initialized = false; |
|---|
| 489 | } |
|---|
| 490 | |
|---|
| 491 | GB_ERROR ST_ML::calc_st_ml(const char *tree_name, const char *alignment_namei, |
|---|
| 492 | const char *species_names, int marked_only, |
|---|
| 493 | ColumnStat *colstat, const WeightedFilter *weighted_filter) |
|---|
| 494 | { |
|---|
| 495 | // acts as contructor, leaks as hell when called twice |
|---|
| 496 | |
|---|
| 497 | GB_ERROR error = NULp; |
|---|
| 498 | |
|---|
| 499 | if (is_initialized) cleanup(); |
|---|
| 500 | |
|---|
| 501 | { |
|---|
| 502 | GB_transaction ta(gb_main); |
|---|
| 503 | arb_progress progress("Activating column statistic"); |
|---|
| 504 | |
|---|
| 505 | column_stat = colstat; |
|---|
| 506 | GB_ERROR column_stat_error = column_stat->calculate(NULp); |
|---|
| 507 | |
|---|
| 508 | if (column_stat_error) fprintf(stderr, "Column statistic error: %s (using equal rates/tt-ratio for all columns)\n", column_stat_error); |
|---|
| 509 | |
|---|
| 510 | alignment_name = ARB_strdup(alignment_namei); |
|---|
| 511 | long ali_len = GBT_get_alignment_len(gb_main, alignment_name); |
|---|
| 512 | |
|---|
| 513 | if (ali_len<=0) { |
|---|
| 514 | error = GB_await_error(); |
|---|
| 515 | } |
|---|
| 516 | else if (ali_len<10) { |
|---|
| 517 | error = "alignment too short"; |
|---|
| 518 | } |
|---|
| 519 | else { |
|---|
| 520 | { |
|---|
| 521 | AliView *aliview = NULp; |
|---|
| 522 | if (weighted_filter) { |
|---|
| 523 | aliview = weighted_filter->create_aliview(alignment_name, error); |
|---|
| 524 | } |
|---|
| 525 | else { |
|---|
| 526 | AP_filter filter(ali_len); // unfiltered |
|---|
| 527 | |
|---|
| 528 | error = filter.is_invalid(); |
|---|
| 529 | if (!error) { |
|---|
| 530 | AP_weights weights(&filter); |
|---|
| 531 | aliview = new AliView(gb_main, filter, weights, alignment_name); |
|---|
| 532 | } |
|---|
| 533 | } |
|---|
| 534 | |
|---|
| 535 | st_assert(contradicted(aliview, error)); |
|---|
| 536 | |
|---|
| 537 | if (!error) { |
|---|
| 538 | MostLikelySeq *seq_templ = new MostLikelySeq(aliview, this); // @@@ error: never freed! (should be freed when freeing tree_root!) |
|---|
| 539 | tree_root = new AP_tree_root(aliview, seq_templ, false, NULp); |
|---|
| 540 | // do not delete 'aliview' or 'seq_templ' (they belong to 'tree_root' now) |
|---|
| 541 | } |
|---|
| 542 | } |
|---|
| 543 | |
|---|
| 544 | if (!error) { |
|---|
| 545 | tree_root->loadFromDB(tree_name); // tree is not linked! |
|---|
| 546 | |
|---|
| 547 | if (!tree_root->get_root_node()) { // no tree |
|---|
| 548 | error = GBS_global_string("Failed to load tree '%s'", tree_name); |
|---|
| 549 | } |
|---|
| 550 | else { |
|---|
| 551 | { |
|---|
| 552 | size_t species_in_tree = count_species_in_tree(); |
|---|
| 553 | hash_2_ap_tree = GBS_create_hash(species_in_tree, GB_MIND_CASE); |
|---|
| 554 | } |
|---|
| 555 | |
|---|
| 556 | // delete species from tree: |
|---|
| 557 | if (species_names) { // keep names |
|---|
| 558 | tree_root->remove_leafs(AWT_REMOVE_ZOMBIES); |
|---|
| 559 | |
|---|
| 560 | error = tree_size_ok(tree_root); |
|---|
| 561 | if (!error) { |
|---|
| 562 | char *l, *n; |
|---|
| 563 | keep_species_hash = GBS_create_hash(GBT_get_species_count(gb_main), GB_MIND_CASE); |
|---|
| 564 | for (l = (char *) species_names; l; l = n) { |
|---|
| 565 | n = strchr(l, 1); |
|---|
| 566 | if (n) *n = 0; |
|---|
| 567 | GBS_write_hash(keep_species_hash, l, 1); |
|---|
| 568 | if (n) *(n++) = 1; |
|---|
| 569 | } |
|---|
| 570 | |
|---|
| 571 | insert_tree_into_hash_rek(tree_root->get_root_node()); |
|---|
| 572 | GBS_hash_do_loop(hash_2_ap_tree, delete_species, this); |
|---|
| 573 | GBS_free_hash(keep_species_hash); |
|---|
| 574 | keep_species_hash = NULp; |
|---|
| 575 | GBT_link_tree(tree_root->get_root_node(), gb_main, true, NULp, NULp); |
|---|
| 576 | } |
|---|
| 577 | } |
|---|
| 578 | else { // keep marked/all |
|---|
| 579 | GBT_link_tree(tree_root->get_root_node(), gb_main, true, NULp, NULp); |
|---|
| 580 | tree_root->remove_leafs(marked_only ? AWT_KEEP_MARKED : AWT_REMOVE_ZOMBIES); |
|---|
| 581 | |
|---|
| 582 | error = tree_size_ok(tree_root); |
|---|
| 583 | if (!error) insert_tree_into_hash_rek(tree_root->get_root_node()); |
|---|
| 584 | } |
|---|
| 585 | } |
|---|
| 586 | } |
|---|
| 587 | |
|---|
| 588 | if (!error) { |
|---|
| 589 | // calc frequencies |
|---|
| 590 | |
|---|
| 591 | progress.subtitle("calculating frequencies"); |
|---|
| 592 | |
|---|
| 593 | size_t filtered_length = get_filtered_length(); |
|---|
| 594 | if (!column_stat_error) { |
|---|
| 595 | rates = column_stat->get_rates(); |
|---|
| 596 | ttratio = column_stat->get_ttratio(); |
|---|
| 597 | } |
|---|
| 598 | else { |
|---|
| 599 | float *alloc_rates = new float[filtered_length]; |
|---|
| 600 | float *alloc_ttratio = new float[filtered_length]; |
|---|
| 601 | |
|---|
| 602 | for (size_t i = 0; i < filtered_length; i++) { // LOOP_VECTORIZED |
|---|
| 603 | alloc_rates[i] = 1.0; |
|---|
| 604 | alloc_ttratio[i] = 2.0; |
|---|
| 605 | } |
|---|
| 606 | rates = alloc_rates; |
|---|
| 607 | ttratio = alloc_ttratio; |
|---|
| 608 | |
|---|
| 609 | column_stat = NULp; // mark rates and ttratio as "allocated" (see ST_ML::~ST_ML) |
|---|
| 610 | } |
|---|
| 611 | create_frequencies(); |
|---|
| 612 | latest_modification = GB_read_clock(gb_main); // set update time |
|---|
| 613 | create_matrices(2.0, 1000); |
|---|
| 614 | |
|---|
| 615 | MostLikelySeq::tmp_out = new ST_base_vector[filtered_length]; // @@@ error: never freed! |
|---|
| 616 | is_initialized = true; |
|---|
| 617 | } |
|---|
| 618 | } |
|---|
| 619 | |
|---|
| 620 | if (error) { |
|---|
| 621 | cleanup(); |
|---|
| 622 | error = ta.close(error); |
|---|
| 623 | } |
|---|
| 624 | } |
|---|
| 625 | return error; |
|---|
| 626 | } |
|---|
| 627 | |
|---|
| 628 | MostLikelySeq *ST_ML::getOrCreate_seq(AP_tree *node) { |
|---|
| 629 | MostLikelySeq *seq = DOWNCAST(MostLikelySeq*, node->get_seq()); |
|---|
| 630 | if (!seq) { |
|---|
| 631 | seq = new MostLikelySeq(tree_root->get_aliview(), this); // @@@ why not use dup() ? |
|---|
| 632 | |
|---|
| 633 | node->set_seq(seq); |
|---|
| 634 | if (node->is_leaf()) { |
|---|
| 635 | st_assert(node->gb_node); |
|---|
| 636 | seq->bind_to_species(node->gb_node); |
|---|
| 637 | } |
|---|
| 638 | } |
|---|
| 639 | return seq; |
|---|
| 640 | } |
|---|
| 641 | |
|---|
| 642 | const MostLikelySeq *ST_ML::get_mostlikely_sequence(AP_tree *node) { |
|---|
| 643 | /*! go through the tree and calculate the ST_base_vector from bottom to top |
|---|
| 644 | */ |
|---|
| 645 | |
|---|
| 646 | MostLikelySeq *seq = getOrCreate_seq(node); |
|---|
| 647 | if (!seq->is_up_to_date()) { |
|---|
| 648 | if (node->is_leaf()) { |
|---|
| 649 | seq->set_sequence(); |
|---|
| 650 | } |
|---|
| 651 | else { |
|---|
| 652 | const MostLikelySeq *leftSeq = get_mostlikely_sequence(node->get_leftson()); |
|---|
| 653 | const MostLikelySeq *rightSeq = get_mostlikely_sequence(node->get_rightson()); |
|---|
| 654 | |
|---|
| 655 | seq->calculate_ancestor(leftSeq, node->leftlen, rightSeq, node->rightlen); |
|---|
| 656 | } |
|---|
| 657 | } |
|---|
| 658 | |
|---|
| 659 | return seq; |
|---|
| 660 | } |
|---|
| 661 | |
|---|
| 662 | void ST_ML::clear_all() { |
|---|
| 663 | GB_transaction ta(gb_main); |
|---|
| 664 | undo_tree(tree_root->get_root_node()); |
|---|
| 665 | latest_modification = GB_read_clock(gb_main); |
|---|
| 666 | } |
|---|
| 667 | |
|---|
| 668 | void ST_ML::undo_tree(AP_tree *node) { |
|---|
| 669 | MostLikelySeq *seq = getOrCreate_seq(node); |
|---|
| 670 | seq->forget_sequence(); |
|---|
| 671 | if (!node->is_leaf()) { |
|---|
| 672 | undo_tree(node->get_leftson()); |
|---|
| 673 | undo_tree(node->get_rightson()); |
|---|
| 674 | } |
|---|
| 675 | } |
|---|
| 676 | |
|---|
| 677 | #define GET_ML_VECTORS_BUG_WORKAROUND_INCREMENT (ST_MAX_SEQ_PART-1) // workaround bug in get_ml_vectors |
|---|
| 678 | |
|---|
| 679 | MostLikelySeq *ST_ML::get_ml_vectors(const char *species_name, AP_tree *node, size_t start_ali_pos, size_t end_ali_pos) { |
|---|
| 680 | /* result will be in tmp_out |
|---|
| 681 | * |
|---|
| 682 | * assert end_ali_pos - start_ali_pos < ST_MAX_SEQ_PART |
|---|
| 683 | * |
|---|
| 684 | * @@@ CAUTION!!! get_ml_vectors has a bug: |
|---|
| 685 | * it does not calculate the last value, if (end_ali_pos-start_ali_pos+1)==ST_MAX_SEQ_PART |
|---|
| 686 | * (search for GET_ML_VECTORS_BUG_WORKAROUND_INCREMENT) |
|---|
| 687 | * |
|---|
| 688 | * I'm not sure whether this is really a bug! Maybe it's only some misunderstanding about |
|---|
| 689 | * 'end_ali_pos', because it does not mark the last calculated position, but the position |
|---|
| 690 | * behind the last calculated position! @@@ Need to rename it! |
|---|
| 691 | * |
|---|
| 692 | */ |
|---|
| 693 | |
|---|
| 694 | if (!node) { |
|---|
| 695 | if (!hash_2_ap_tree) return NULp; |
|---|
| 696 | node = (AP_tree *) GBS_read_hash(hash_2_ap_tree, species_name); |
|---|
| 697 | if (!node) return NULp; |
|---|
| 698 | } |
|---|
| 699 | |
|---|
| 700 | st_assert(start_ali_pos<end_ali_pos); |
|---|
| 701 | st_assert((end_ali_pos - start_ali_pos + 1) <= ST_MAX_SEQ_PART); |
|---|
| 702 | |
|---|
| 703 | MostLikelySeq *seq = getOrCreate_seq(node); |
|---|
| 704 | |
|---|
| 705 | if (start_ali_pos != first_pos || end_ali_pos > last_pos) { |
|---|
| 706 | undo_tree(tree_root->get_root_node()); // undo everything |
|---|
| 707 | first_pos = start_ali_pos; |
|---|
| 708 | last_pos = end_ali_pos; |
|---|
| 709 | } |
|---|
| 710 | |
|---|
| 711 | AP_tree *pntr; |
|---|
| 712 | for (pntr = node->get_father(); pntr; pntr = pntr->get_father()) { |
|---|
| 713 | MostLikelySeq *sequ = getOrCreate_seq(pntr); |
|---|
| 714 | if (sequ) sequ->forget_sequence(); |
|---|
| 715 | } |
|---|
| 716 | |
|---|
| 717 | node->set_root(); |
|---|
| 718 | |
|---|
| 719 | const MostLikelySeq *seq_of_brother = get_mostlikely_sequence(node->get_brother()); |
|---|
| 720 | |
|---|
| 721 | seq->calc_out(seq_of_brother, node->father->leftlen + node->father->rightlen); |
|---|
| 722 | return seq; |
|---|
| 723 | } |
|---|
| 724 | |
|---|
| 725 | bool ST_ML::update_ml_likelihood(char *result[4], int& latest_update, const char *species_name, AP_tree *node) { |
|---|
| 726 | /*! calculates values for 'Detailed column statistics' in ARB_EDIT4 |
|---|
| 727 | * @return true if calculated with sucess |
|---|
| 728 | * |
|---|
| 729 | * @param result if result[0] is NULp, memory will be allocated and assigned to result[0 .. 3]. |
|---|
| 730 | * You should NOT allocate result yourself, but you can reuse it for multiple calls. |
|---|
| 731 | * @param latest_update has to contain and will be set to the latest statistic modification time |
|---|
| 732 | * (0 is a good start value) |
|---|
| 733 | * @param species_name name of the species (for which the column statistic shall be calculated) |
|---|
| 734 | * @param node of the current tree (for which the column statistic shall be calculated) |
|---|
| 735 | * |
|---|
| 736 | * Note: either 'species_name' or 'node' needs to be specified, but NOT BOTH |
|---|
| 737 | */ |
|---|
| 738 | |
|---|
| 739 | st_assert(contradicted(species_name, node)); |
|---|
| 740 | |
|---|
| 741 | if (latest_update < latest_modification) { |
|---|
| 742 | if (!node) { // if node isn't given search it using species name |
|---|
| 743 | st_assert(hash_2_ap_tree); // ST_ML was not prepared for search-by-name |
|---|
| 744 | if (hash_2_ap_tree) node = (AP_tree *) GBS_read_hash(hash_2_ap_tree, species_name); |
|---|
| 745 | if (!node) return false; |
|---|
| 746 | } |
|---|
| 747 | |
|---|
| 748 | DNA_Base adb[4]; |
|---|
| 749 | int i; |
|---|
| 750 | |
|---|
| 751 | size_t ali_len = get_alignment_length(); |
|---|
| 752 | st_assert(get_filtered_length() == ali_len); // assume column stat was calculated w/o filters |
|---|
| 753 | |
|---|
| 754 | if (!result[0]) { // allocate Array-elements for result |
|---|
| 755 | for (i = 0; i < 4; i++) { |
|---|
| 756 | ARB_calloc(result[i], ali_len+1); // [0 .. alignment_len[ + zerobyte |
|---|
| 757 | } |
|---|
| 758 | } |
|---|
| 759 | |
|---|
| 760 | for (i = 0; i < 4; i++) { |
|---|
| 761 | adb[i] = dna_table.char_to_enum("ACGU"[i]); |
|---|
| 762 | } |
|---|
| 763 | |
|---|
| 764 | for (size_t seq_start = 0; seq_start < ali_len; seq_start += GET_ML_VECTORS_BUG_WORKAROUND_INCREMENT) { |
|---|
| 765 | size_t seq_end = std::min(ali_len, seq_start+GET_ML_VECTORS_BUG_WORKAROUND_INCREMENT); |
|---|
| 766 | get_ml_vectors(NULp, node, seq_start, seq_end); |
|---|
| 767 | } |
|---|
| 768 | |
|---|
| 769 | MostLikelySeq *seq = getOrCreate_seq(node); |
|---|
| 770 | |
|---|
| 771 | for (size_t pos = 0; pos < ali_len; pos++) { |
|---|
| 772 | ST_base_vector& vec = seq->tmp_out[pos]; |
|---|
| 773 | double sum = vec.summarize(); |
|---|
| 774 | |
|---|
| 775 | if (sum == 0) { |
|---|
| 776 | for (i = 0; i < 4; i++) { |
|---|
| 777 | result[i][pos] = -1; |
|---|
| 778 | } |
|---|
| 779 | } |
|---|
| 780 | else { |
|---|
| 781 | double div = 100.0 / sum; |
|---|
| 782 | |
|---|
| 783 | for (i = 0; i < 4; i++) { |
|---|
| 784 | result[i][pos] = char ((vec.b[adb[i]] * div) + 0.5); |
|---|
| 785 | } |
|---|
| 786 | } |
|---|
| 787 | } |
|---|
| 788 | |
|---|
| 789 | latest_update = latest_modification; |
|---|
| 790 | } |
|---|
| 791 | return true; |
|---|
| 792 | } |
|---|
| 793 | |
|---|
| 794 | ST_ML_Color *ST_ML::get_color_string(const char *species_name, AP_tree *node, size_t start_ali_pos, size_t end_ali_pos) { |
|---|
| 795 | /*! (Re-)Calculates the color string of a given node for sequence positions [start_ali_pos .. end_ali_pos[ |
|---|
| 796 | */ |
|---|
| 797 | |
|---|
| 798 | if (!node) { |
|---|
| 799 | // if node isn't given, search it using species name: |
|---|
| 800 | if (!hash_2_ap_tree) return NULp; |
|---|
| 801 | node = (AP_tree *) GBS_read_hash(hash_2_ap_tree, species_name); |
|---|
| 802 | if (!node) return NULp; |
|---|
| 803 | } |
|---|
| 804 | |
|---|
| 805 | // align start_ali_pos/end_ali_pos to previous/next pos divisible by ST_BUCKET_SIZE: |
|---|
| 806 | start_ali_pos &= ~(ST_BUCKET_SIZE - 1); |
|---|
| 807 | end_ali_pos = (end_ali_pos & ~(ST_BUCKET_SIZE - 1)) + ST_BUCKET_SIZE - 1; |
|---|
| 808 | |
|---|
| 809 | size_t ali_len = get_alignment_length(); |
|---|
| 810 | if (end_ali_pos > ali_len) { |
|---|
| 811 | end_ali_pos = ali_len; |
|---|
| 812 | } |
|---|
| 813 | |
|---|
| 814 | double val; |
|---|
| 815 | MostLikelySeq *seq = getOrCreate_seq(node); |
|---|
| 816 | size_t pos; |
|---|
| 817 | |
|---|
| 818 | if (!seq->color_out) { // allocate mem for color_out if we not already have it |
|---|
| 819 | ARB_calloc(seq->color_out, ali_len); |
|---|
| 820 | ARB_calloc(seq->color_out_valid_till, (ali_len >> LD_BUCKET_SIZE) + ST_BUCKET_SIZE); |
|---|
| 821 | } |
|---|
| 822 | // search for first out-dated position: |
|---|
| 823 | for (pos = start_ali_pos; pos <= end_ali_pos; pos += ST_BUCKET_SIZE) { |
|---|
| 824 | if (seq->color_out_valid_till[pos >> LD_BUCKET_SIZE] < latest_modification) break; |
|---|
| 825 | } |
|---|
| 826 | if (pos > end_ali_pos) { // all positions are up-to-date |
|---|
| 827 | return seq->color_out; // => return existing result |
|---|
| 828 | } |
|---|
| 829 | |
|---|
| 830 | for (size_t start = start_ali_pos; start <= end_ali_pos; start += GET_ML_VECTORS_BUG_WORKAROUND_INCREMENT) { |
|---|
| 831 | int end = std::min(end_ali_pos, start+GET_ML_VECTORS_BUG_WORKAROUND_INCREMENT); |
|---|
| 832 | get_ml_vectors(NULp, node, start, end); // calculates tmp_out (see below) |
|---|
| 833 | } |
|---|
| 834 | |
|---|
| 835 | const char *source_sequence = NULp; |
|---|
| 836 | GBDATA *gb_data = seq->get_bound_species_data(); |
|---|
| 837 | if (gb_data) source_sequence = GB_read_char_pntr(gb_data); |
|---|
| 838 | |
|---|
| 839 | // create color string in 'outs': |
|---|
| 840 | ST_ML_Color *outs = seq->color_out + start_ali_pos; |
|---|
| 841 | ST_base_vector *vec = seq->tmp_out + start_ali_pos; // tmp_out was calculated by get_ml_vectors above |
|---|
| 842 | const char *source = source_sequence + start_ali_pos; |
|---|
| 843 | |
|---|
| 844 | for (pos = start_ali_pos; pos <= end_ali_pos; pos++) { |
|---|
| 845 | { |
|---|
| 846 | DNA_Base b = dna_table.char_to_enum(*source); // convert seq-character to enum DNA_Base |
|---|
| 847 | *outs = 0; |
|---|
| 848 | |
|---|
| 849 | if (b != ST_UNKNOWN) { |
|---|
| 850 | ST_FLOAT max = vec->max_frequency(); |
|---|
| 851 | val = max / (0.0001 + vec->b[b]); // calc ratio of max/real base-char |
|---|
| 852 | |
|---|
| 853 | if (val > 1.0) { // if real base-char is NOT the max-likely base-char |
|---|
| 854 | *outs = (int) (log(val)); // => insert color |
|---|
| 855 | } |
|---|
| 856 | } |
|---|
| 857 | } |
|---|
| 858 | outs++; |
|---|
| 859 | vec++; |
|---|
| 860 | source++; |
|---|
| 861 | |
|---|
| 862 | seq->color_out_valid_till[pos >> LD_BUCKET_SIZE] = latest_modification; |
|---|
| 863 | } |
|---|
| 864 | return seq->color_out; |
|---|
| 865 | } |
|---|
| 866 | |
|---|
| 867 | void ST_ML::create_column_statistic(AW_root *awr, const char *awarname, AW_awar *awar_default_alignment) { |
|---|
| 868 | column_stat = new ColumnStat(get_gb_main(), awr, awarname, awar_default_alignment); |
|---|
| 869 | } |
|---|
| 870 | |
|---|
| 871 | const TreeNode *ST_ML::get_gbt_tree() const { |
|---|
| 872 | return tree_root->get_root_node(); |
|---|
| 873 | } |
|---|
| 874 | |
|---|
| 875 | size_t ST_ML::count_species_in_tree() const { |
|---|
| 876 | ARB_tree_info info; |
|---|
| 877 | tree_root->get_root_node()->calcTreeInfo(info); |
|---|
| 878 | return info.leafs; |
|---|
| 879 | } |
|---|
| 880 | |
|---|
| 881 | AP_tree *ST_ML::find_node_by_name(const char *species_name) { |
|---|
| 882 | AP_tree *node = NULp; |
|---|
| 883 | if (hash_2_ap_tree) node = (AP_tree *)GBS_read_hash(hash_2_ap_tree, species_name); |
|---|
| 884 | return node; |
|---|
| 885 | } |
|---|
| 886 | |
|---|
| 887 | const AP_filter *ST_ML::get_filter() const { return tree_root->get_filter(); } |
|---|
| 888 | size_t ST_ML::get_filtered_length() const { return get_filter()->get_filtered_length(); } |
|---|
| 889 | size_t ST_ML::get_alignment_length() const { return get_filter()->get_length(); } |
|---|
| 890 | |
|---|