| 1 | // ================================================================ // | 
|---|
| 2 | //                                                                  // | 
|---|
| 3 | //   File      : TreeNode.h                                         // | 
|---|
| 4 | //   Purpose   :                                                    // | 
|---|
| 5 | //                                                                  // | 
|---|
| 6 | //   Coded by Ralf Westram (coder@reallysoft.de) in December 2013   // | 
|---|
| 7 | //   Institute of Microbiology (Technical University Munich)        // | 
|---|
| 8 | //   http://www.arb-home.de/                                        // | 
|---|
| 9 | //                                                                  // | 
|---|
| 10 | // ================================================================ // | 
|---|
| 11 |  | 
|---|
| 12 | #ifndef TREENODE_H | 
|---|
| 13 | #define TREENODE_H | 
|---|
| 14 |  | 
|---|
| 15 | #ifndef ARBDBT_H | 
|---|
| 16 | #include "arbdbt.h" | 
|---|
| 17 | #endif | 
|---|
| 18 | #ifndef _GLIBCXX_ALGORITHM | 
|---|
| 19 | #include <algorithm> | 
|---|
| 20 | #endif | 
|---|
| 21 |  | 
|---|
| 22 | #define rt_assert(cond) arb_assert(cond) | 
|---|
| 23 |  | 
|---|
| 24 | #if defined(DEBUG) || defined(UNIT_TESTS) // UT_DIFF | 
|---|
| 25 | # define PROVIDE_TREE_STRUCTURE_TESTS | 
|---|
| 26 | #endif | 
|---|
| 27 | #if defined(DEVEL_RALF) && defined(PROVIDE_TREE_STRUCTURE_TESTS) | 
|---|
| 28 | # define AUTO_CHECK_TREE_STRUCTURE // Note: dramatically slows down most tree operations | 
|---|
| 29 | #endif | 
|---|
| 30 |  | 
|---|
| 31 | class TreeRoot; | 
|---|
| 32 | class TreeNode; | 
|---|
| 33 | class ARB_edge; | 
|---|
| 34 |  | 
|---|
| 35 | enum TreeOrder { // contains bit values! | 
|---|
| 36 | ORDER_BIG_DOWN      = 1, // bit 0 set -> big branches down | 
|---|
| 37 | ORDER_BIG_TO_EDGE   = 2, // bit 1 set -> big branches to edge | 
|---|
| 38 | ORDER_BIG_TO_CENTER = 4, // bit 2 set -> big branches to center | 
|---|
| 39 | ORDER_ALTERNATING   = 8, // bit 3 set -> alternate bit 0 | 
|---|
| 40 |  | 
|---|
| 41 | // user visible orders: | 
|---|
| 42 | BIG_BRANCHES_TO_TOP      = 0, | 
|---|
| 43 | BIG_BRANCHES_TO_BOTTOM   = ORDER_BIG_DOWN, | 
|---|
| 44 | BIG_BRANCHES_TO_EDGE     = ORDER_BIG_TO_EDGE, | 
|---|
| 45 | BIG_BRANCHES_TO_CENTER   = ORDER_BIG_TO_CENTER, | 
|---|
| 46 | BIG_BRANCHES_ALTERNATING = ORDER_BIG_TO_CENTER|ORDER_ALTERNATING, | 
|---|
| 47 | }; | 
|---|
| 48 |  | 
|---|
| 49 | #define DEFINE_READ_ACCESSORS(TYPE, ACCESS, MEMBER)     \ | 
|---|
| 50 | TYPE ACCESS() { return MEMBER; }                    \ | 
|---|
| 51 | const TYPE ACCESS() const { return MEMBER; } | 
|---|
| 52 |  | 
|---|
| 53 | class TreeRoot : virtual Noncopyable { | 
|---|
| 54 | TreeNode *rootNode;            // root node of the tree | 
|---|
| 55 | bool      deleteWithNodes; | 
|---|
| 56 | bool      seenBootstrapDuringLoad; | 
|---|
| 57 |  | 
|---|
| 58 | protected: | 
|---|
| 59 | void predelete() { | 
|---|
| 60 | // should be called from dtor of derived class defining makeNode/destroyNode | 
|---|
| 61 | if (rootNode) { | 
|---|
| 62 | destroyNode(rootNode); | 
|---|
| 63 | rt_assert(!rootNode); | 
|---|
| 64 | } | 
|---|
| 65 | } | 
|---|
| 66 | public: | 
|---|
| 67 | explicit TreeRoot(bool deleteWithNodes_) : | 
|---|
| 68 | rootNode(NULp), | 
|---|
| 69 | deleteWithNodes(deleteWithNodes_), | 
|---|
| 70 | seenBootstrapDuringLoad(false) | 
|---|
| 71 | { | 
|---|
| 72 | /*! Create a TreeRoot for a TreeNode. | 
|---|
| 73 | * Purpose: | 
|---|
| 74 | * - act as TreeNode factory | 
|---|
| 75 | * - place to store the current rootNode | 
|---|
| 76 | * - place to store other tree related information by deriving from TreeRoot | 
|---|
| 77 | * | 
|---|
| 78 | * @param nodeMaker_ heap-copy of a RootedTreeNodeFactory, will be deleted when this is destructed | 
|---|
| 79 | * @param deleteWithNodes_ true -> delete TreeRoot when the rootNode gets destroyed (TreeRoot needs to be a heap-copy in that case) | 
|---|
| 80 | * | 
|---|
| 81 | * Ressource handling of the tree structure is quite difficult (and error-prone). | 
|---|
| 82 | * There are two common use-cases: | 
|---|
| 83 | * 1. TreeRoot is owned by some other object/scope | 
|---|
| 84 | *    - pass false for deleteWithNodes_ | 
|---|
| 85 | *    - you may or may not destroy (parts of) the TreeNode manually | 
|---|
| 86 | * 2. TreeRoot is owned by the TreeNode | 
|---|
| 87 | *    - pass true for deleteWithNodes_ | 
|---|
| 88 | *    - when the rootNode gets destroyed, the TreeRoot will be destroyed as well | 
|---|
| 89 | */ | 
|---|
| 90 | } | 
|---|
| 91 | virtual ~TreeRoot(); | 
|---|
| 92 | virtual void change_root(TreeNode *old, TreeNode *newroot); | 
|---|
| 93 |  | 
|---|
| 94 | void delete_by_node() { | 
|---|
| 95 | if (deleteWithNodes) { | 
|---|
| 96 | rt_assert(!rootNode); | 
|---|
| 97 | delete this; | 
|---|
| 98 | } | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | bool has_bootstrap() const { | 
|---|
| 102 | return seenBootstrapDuringLoad; | 
|---|
| 103 | } | 
|---|
| 104 | void set_bootstrap_seen(bool seen) { | 
|---|
| 105 | seenBootstrapDuringLoad = seen; | 
|---|
| 106 | } | 
|---|
| 107 |  | 
|---|
| 108 | virtual TreeNode *makeNode() const             = 0; | 
|---|
| 109 | virtual void destroyNode(TreeNode *node) const = 0; | 
|---|
| 110 |  | 
|---|
| 111 | DEFINE_READ_ACCESSORS(TreeNode*, get_root_node, rootNode); | 
|---|
| 112 |  | 
|---|
| 113 | ARB_edge find_innermost_edge(); | 
|---|
| 114 | }; | 
|---|
| 115 | MARK_NONFINAL_METHOD(TreeRoot,change_root,(TreeNode*,TreeNode*)); | 
|---|
| 116 |  | 
|---|
| 117 | inline GBT_RemarkType parse_remark(const char *remark, double& bootstrap) { | 
|---|
| 118 | /*! analyse 'remark' and return GBT_RemarkType. | 
|---|
| 119 | * If result is REMARK_BOOTSTRAP, 'bootstrap' contains the bootstrap value | 
|---|
| 120 | */ | 
|---|
| 121 | if (!remark) return REMARK_NONE; | 
|---|
| 122 |  | 
|---|
| 123 | const char *end = NULp; | 
|---|
| 124 | bootstrap       = strtod(remark, (char**)&end); | 
|---|
| 125 |  | 
|---|
| 126 | bool is_bootstrap = end[0] == '%' && end[1] == 0; | 
|---|
| 127 | return is_bootstrap ? REMARK_BOOTSTRAP : REMARK_OTHER; | 
|---|
| 128 | } | 
|---|
| 129 |  | 
|---|
| 130 | struct TreeNode : virtual Noncopyable { | 
|---|
| 131 | TreeNode *father, *leftson, *rightson; | 
|---|
| 132 | GBT_LEN   leftlen, rightlen; | 
|---|
| 133 | GBDATA   *gb_node; | 
|---|
| 134 | char     *name; | 
|---|
| 135 |  | 
|---|
| 136 | private: | 
|---|
| 137 | bool leaf; | 
|---|
| 138 | bool keeledOver;  // node has group info and tree-root was moved "inside" that group -> group changed meaning (see #735) | 
|---|
| 139 | bool inverseLeft; // (only if keeledOver) true -> left son contains "inverse" of original group; false -> right son dito | 
|---|
| 140 |  | 
|---|
| 141 | SmartCharPtr remark_branch; // remark_branch normally contains some bootstrap value in format 'xx%' | 
|---|
| 142 | // if you store other info there, please make sure that this info does not start with digits!! | 
|---|
| 143 | // Otherwise the tree export routines will not work correctly! | 
|---|
| 144 |  | 
|---|
| 145 | GBT_LEN& length_ref() { return is_leftson() ? father->leftlen : father->rightlen; } | 
|---|
| 146 | const GBT_LEN& length_ref() const { return const_cast<TreeNode*>(this)->length_ref(); } | 
|---|
| 147 |  | 
|---|
| 148 | void keelOver(TreeNode *prev, TreeNode *next, double len); | 
|---|
| 149 |  | 
|---|
| 150 | protected: | 
|---|
| 151 | TreeNode*& self_ref() { | 
|---|
| 152 | return is_leftson() ? father->leftson : father->rightson; | 
|---|
| 153 | } | 
|---|
| 154 | void unlink_from_father() { | 
|---|
| 155 | if (father) { | 
|---|
| 156 | self_ref() = NULp; | 
|---|
| 157 | father     = NULp; | 
|---|
| 158 | } | 
|---|
| 159 | } | 
|---|
| 160 |  | 
|---|
| 161 | inline void swap_node_info(TreeNode *other, bool ofKeeledGroups); | 
|---|
| 162 | void fixKeeledOrientation() { | 
|---|
| 163 | if (father->keeledOver) { | 
|---|
| 164 | father->inverseLeft = is_leftson(); | 
|---|
| 165 | rt_assert(is_keeled_group()); | 
|---|
| 166 | } | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | public: | 
|---|
| 170 |  | 
|---|
| 171 | bool is_leaf() const { return leaf; } | 
|---|
| 172 | void markAsLeaf() { | 
|---|
| 173 | rt_assert(!is_leaf()); | 
|---|
| 174 | rt_assert(!leftson && !rightson); // only allowed during setup! | 
|---|
| 175 | leaf = true; | 
|---|
| 176 | } | 
|---|
| 177 |  | 
|---|
| 178 | DEFINE_READ_ACCESSORS(TreeNode*, get_father,   father); | 
|---|
| 179 | DEFINE_READ_ACCESSORS(TreeNode*, get_leftson,  leftson); | 
|---|
| 180 | DEFINE_READ_ACCESSORS(TreeNode*, get_rightson, rightson); | 
|---|
| 181 |  | 
|---|
| 182 | // Note: unittests for these attributes are in ../NTREE/ad_trees.cxx@TEST_TreeNode_attributes | 
|---|
| 183 |  | 
|---|
| 184 | bool is_son_of(const TreeNode *Father) const { | 
|---|
| 185 | return father == Father && | 
|---|
| 186 | (father->leftson == this || father->rightson == this); | 
|---|
| 187 | } | 
|---|
| 188 | bool is_leftson() const { | 
|---|
| 189 | // left when root is at bottom; see also ../SL/ARB_TREE/ARB_Tree.hxx@is_upper_son | 
|---|
| 190 | gb_assert(is_son_of(get_father())); // do only call with sons! | 
|---|
| 191 | return father->leftson == this; | 
|---|
| 192 | } | 
|---|
| 193 | bool is_rightson() const { | 
|---|
| 194 | gb_assert(is_son_of(get_father())); // do only call with sons! | 
|---|
| 195 | return father->rightson == this; | 
|---|
| 196 | } | 
|---|
| 197 |  | 
|---|
| 198 | bool is_inside(const TreeNode *subtree) const { | 
|---|
| 199 | return this == subtree || (father && get_father()->is_inside(subtree)); | 
|---|
| 200 | } | 
|---|
| 201 | bool is_ancestor_of(const TreeNode *descendant) const { | 
|---|
| 202 | return !is_leaf() && descendant != this && descendant->is_inside(this); | 
|---|
| 203 | } | 
|---|
| 204 | bool in_same_branch_as(const TreeNode *other) const { | 
|---|
| 205 | // returns true if 'this' and 'other' are in ONE branch | 
|---|
| 206 | return this == other || is_ancestor_of(other) || other->is_ancestor_of(this); | 
|---|
| 207 | } | 
|---|
| 208 | bool in_other_branch_than(const TreeNode *other) const { | 
|---|
| 209 | // returns true if 'this' and 'other' are NOT in one branch | 
|---|
| 210 | return !in_same_branch_as(other); | 
|---|
| 211 | } | 
|---|
| 212 | const TreeNode *ancestor_common_with(const TreeNode *other) const; | 
|---|
| 213 | TreeNode *ancestor_common_with(TreeNode *other) { return const_cast<TreeNode*>(ancestor_common_with(const_cast<const TreeNode*>(other))); } | 
|---|
| 214 |  | 
|---|
| 215 | bool is_son_of_root() const { | 
|---|
| 216 | return father && !father->father && father->is_root_node(); | 
|---|
| 217 | } | 
|---|
| 218 |  | 
|---|
| 219 | GBT_LEN get_branchlength() const { return length_ref(); } | 
|---|
| 220 | void set_branchlength(GBT_LEN newlen) { | 
|---|
| 221 | gb_assert(!is_nan_or_inf(newlen)); | 
|---|
| 222 | length_ref() = newlen; | 
|---|
| 223 | } | 
|---|
| 224 |  | 
|---|
| 225 | GBT_LEN get_branchlength_unrooted() const { | 
|---|
| 226 | //! like get_branchlength, but root-edge is treated correctly | 
|---|
| 227 | if (father->is_root_node()) { | 
|---|
| 228 | return father->leftlen+father->rightlen; | 
|---|
| 229 | } | 
|---|
| 230 | return get_branchlength(); | 
|---|
| 231 | } | 
|---|
| 232 | void set_branchlength_unrooted(GBT_LEN newlen) { | 
|---|
| 233 | //! like set_branchlength, but root-edge is treated correctly | 
|---|
| 234 | if (father->is_root_node()) { | 
|---|
| 235 | father->leftlen  = newlen/2; | 
|---|
| 236 | father->rightlen = newlen-father->leftlen; // make sure sum equals newlen | 
|---|
| 237 | } | 
|---|
| 238 | else { | 
|---|
| 239 | set_branchlength(newlen); | 
|---|
| 240 | } | 
|---|
| 241 | } | 
|---|
| 242 |  | 
|---|
| 243 | GBT_LEN sum_child_lengths() const; | 
|---|
| 244 | GBT_LEN root_distance() const { | 
|---|
| 245 | //! returns distance from node to root (including nodes own length) | 
|---|
| 246 | return father ? get_branchlength()+father->root_distance() : 0.0; | 
|---|
| 247 | } | 
|---|
| 248 | GBT_LEN intree_distance_to(const TreeNode *other) const { | 
|---|
| 249 | const TreeNode *ancestor = ancestor_common_with(other); | 
|---|
| 250 | return root_distance() + other->root_distance() - 2*ancestor->root_distance(); | 
|---|
| 251 | } | 
|---|
| 252 |  | 
|---|
| 253 | void remove_bootstrap();                        // remove bootstrap values from subtree | 
|---|
| 254 |  | 
|---|
| 255 | void reset_branchlengths();                     // reset branchlengths of subtree to tree_defaults::LENGTH | 
|---|
| 256 | void scale_branchlengths(double factor); | 
|---|
| 257 |  | 
|---|
| 258 | void bootstrap2branchlen();                     // copy bootstraps to branchlengths | 
|---|
| 259 | void branchlen2bootstrap();                     // copy branchlengths to bootstraps | 
|---|
| 260 |  | 
|---|
| 261 | GBT_RemarkType parse_bootstrap(double& bootstrap) const { | 
|---|
| 262 | rt_assert(!is_leaf()); // only inner nodes may have bootstraps | 
|---|
| 263 | return parse_remark(remark_branch.content(), bootstrap); | 
|---|
| 264 | } | 
|---|
| 265 |  | 
|---|
| 266 | const char *get_remark() const { | 
|---|
| 267 | rt_assert(!is_leaf()); // only inner nodes may have bootstraps | 
|---|
| 268 | return remark_branch.content(); | 
|---|
| 269 | } | 
|---|
| 270 | const SmartCharPtr& get_remark_ptr() const { | 
|---|
| 271 | rt_assert(!is_leaf()); // only inner nodes may have bootstraps | 
|---|
| 272 | return remark_branch; | 
|---|
| 273 | } | 
|---|
| 274 | bool is_inner_node_with_remark() const { return !is_leaf() && get_remark_ptr().isSet(); } | 
|---|
| 275 | void use_as_remark(const SmartCharPtr& newRemark) { | 
|---|
| 276 | rt_assert(!is_leaf()); // only inner nodes may have bootstraps | 
|---|
| 277 | remark_branch = newRemark; | 
|---|
| 278 | } | 
|---|
| 279 | void set_remark(const char *newRemark) { | 
|---|
| 280 | use_as_remark(strdup(newRemark)); | 
|---|
| 281 | } | 
|---|
| 282 | void set_bootstrap(double bootstrap) { | 
|---|
| 283 | use_as_remark(GBS_global_string_copy("%i%%", int(bootstrap+0.5))); | 
|---|
| 284 | } | 
|---|
| 285 | void remove_remark() { | 
|---|
| 286 | SmartCharPtr norem; | 
|---|
| 287 | use_as_remark(norem); | 
|---|
| 288 | } | 
|---|
| 289 | #if defined(ASSERTION_USED) || defined(PROVIDE_TREE_STRUCTURE_TESTS) | 
|---|
| 290 | bool has_no_remark() const { return remark_branch.isNull(); } | 
|---|
| 291 | bool has_valid_root_remarks() const; | 
|---|
| 292 | #endif | 
|---|
| 293 |  | 
|---|
| 294 | private: | 
|---|
| 295 |  | 
|---|
| 296 | friend void TreeRoot::change_root(TreeNode *old, TreeNode *newroot); | 
|---|
| 297 |  | 
|---|
| 298 | TreeRoot *tree_root; | 
|---|
| 299 |  | 
|---|
| 300 | // ------------------ | 
|---|
| 301 | //      functions | 
|---|
| 302 |  | 
|---|
| 303 | void reorder_subtree(TreeOrder mode); | 
|---|
| 304 |  | 
|---|
| 305 | protected: | 
|---|
| 306 | void set_tree_root(TreeRoot *new_root); | 
|---|
| 307 |  | 
|---|
| 308 | bool at_root() const { | 
|---|
| 309 | //! return true for root-node and its sons | 
|---|
| 310 | return !father || !father->father; | 
|---|
| 311 | } | 
|---|
| 312 | virtual ~TreeNode() { | 
|---|
| 313 | if (tree_root) { | 
|---|
| 314 | rt_assert(tree_root->get_root_node() == this); // you may only free the root-node or unlinked nodes (i.e. nodes where tree_root is NULp) | 
|---|
| 315 |  | 
|---|
| 316 | TreeRoot *root = tree_root; | 
|---|
| 317 | root->TreeRoot::change_root(this, NULp); | 
|---|
| 318 | root->delete_by_node(); | 
|---|
| 319 | } | 
|---|
| 320 | delete leftson;  gb_assert(!leftson); // cannot use destroy here | 
|---|
| 321 | delete rightson; gb_assert(!rightson); | 
|---|
| 322 |  | 
|---|
| 323 | unlink_from_father(); | 
|---|
| 324 |  | 
|---|
| 325 | free(name); | 
|---|
| 326 | } | 
|---|
| 327 | void destroy()  { | 
|---|
| 328 | rt_assert(knownNonNull(this)); | 
|---|
| 329 | TreeRoot *myRoot = get_tree_root(); | 
|---|
| 330 | rt_assert(myRoot); // if this fails, you need to use destroy(TreeRoot*), i.e. destroy(TreeNode*, TreeRoot*) | 
|---|
| 331 | myRoot->destroyNode(this); | 
|---|
| 332 | } | 
|---|
| 333 | void destroy(TreeRoot *viaRoot) { | 
|---|
| 334 | rt_assert(knownNonNull(this)); | 
|---|
| 335 | #if defined(ASSERTION_USED) | 
|---|
| 336 | TreeRoot *myRoot = get_tree_root(); | 
|---|
| 337 | rt_assert(!myRoot || myRoot == viaRoot); | 
|---|
| 338 | #endif | 
|---|
| 339 | viaRoot->destroyNode(this); | 
|---|
| 340 | } | 
|---|
| 341 |  | 
|---|
| 342 | public: | 
|---|
| 343 | TreeNode(TreeRoot *root) : | 
|---|
| 344 | father(NULp), leftson(NULp), rightson(NULp), | 
|---|
| 345 | leftlen(0.0), rightlen(0.0), | 
|---|
| 346 | gb_node(NULp), | 
|---|
| 347 | name(NULp), | 
|---|
| 348 | leaf(false), | 
|---|
| 349 | keeledOver(false), | 
|---|
| 350 | inverseLeft(false), | 
|---|
| 351 | tree_root(root) | 
|---|
| 352 | {} | 
|---|
| 353 | static void destroy(TreeNode *that)  { // replacement for destructor | 
|---|
| 354 | if (that) that->destroy(); | 
|---|
| 355 | } | 
|---|
| 356 | static void destroy(TreeNode *that, TreeRoot *root) { | 
|---|
| 357 | if (that) that->destroy(root); | 
|---|
| 358 | } | 
|---|
| 359 |  | 
|---|
| 360 | TreeNode *fixDeletedSon(); // @@@ review (design) | 
|---|
| 361 |  | 
|---|
| 362 | void unlink_from_DB(); | 
|---|
| 363 |  | 
|---|
| 364 | void announce_tree_constructed() { // @@@ use this function or just call change_root instead? | 
|---|
| 365 | // (has to be) called after tree has been constructed | 
|---|
| 366 | gb_assert(!father); // has to be called with root-node! | 
|---|
| 367 | get_tree_root()->change_root(NULp, this); | 
|---|
| 368 | } | 
|---|
| 369 |  | 
|---|
| 370 | virtual unsigned get_leaf_count() const = 0; | 
|---|
| 371 | virtual void compute_tree()             = 0; | 
|---|
| 372 |  | 
|---|
| 373 | void forget_origin() { set_tree_root(NULp); } | 
|---|
| 374 | void forget_relatives() { | 
|---|
| 375 | leftson  = NULp; | 
|---|
| 376 | rightson = NULp; | 
|---|
| 377 | father   = NULp; | 
|---|
| 378 | } | 
|---|
| 379 |  | 
|---|
| 380 | TreeRoot *get_tree_root() const { return tree_root; } | 
|---|
| 381 |  | 
|---|
| 382 | const TreeNode *get_root_node() const { | 
|---|
| 383 | if (!tree_root) return NULp; // nodes removed from tree have no root-node | 
|---|
| 384 |  | 
|---|
| 385 | const TreeNode *root = tree_root->get_root_node(); | 
|---|
| 386 | rt_assert(is_inside(root)); // this is not in tree - behavior of get_root_node() changed! | 
|---|
| 387 | return root; | 
|---|
| 388 | } | 
|---|
| 389 | TreeNode *get_root_node() { return const_cast<TreeNode*>(const_cast<const TreeNode*>(this)->get_root_node()); } | 
|---|
| 390 |  | 
|---|
| 391 | bool is_root_node() const { return !father && get_root_node() == this; } | 
|---|
| 392 | virtual void set_root(); | 
|---|
| 393 |  | 
|---|
| 394 | TreeNode *get_brother() { | 
|---|
| 395 | rt_assert(!is_root_node()); // root node has no brother | 
|---|
| 396 | rt_assert(father);          // this is a removed node (not root, but no father) | 
|---|
| 397 | return is_leftson() ? get_father()->get_rightson() : get_father()->get_leftson(); | 
|---|
| 398 | } | 
|---|
| 399 | const TreeNode *get_brother() const { | 
|---|
| 400 | return const_cast<const TreeNode*>(const_cast<TreeNode*>(this)->get_brother()); | 
|---|
| 401 | } | 
|---|
| 402 |  | 
|---|
| 403 | bool has_group_info() const { | 
|---|
| 404 | rt_assert(!is_leaf()); // a leaf never has group info (useless call) | 
|---|
| 405 | return gb_node && name; | 
|---|
| 406 | } | 
|---|
| 407 | TreeNode *keelTarget() { | 
|---|
| 408 | return (has_group_info() && keeledOver) ? (inverseLeft ? get_leftson() : get_rightson()) : NULp; | 
|---|
| 409 | } | 
|---|
| 410 | const TreeNode *keelTarget() const { | 
|---|
| 411 | return const_cast<TreeNode*>(this)->keelTarget(); | 
|---|
| 412 | } | 
|---|
| 413 | bool keelsDownGroup(const TreeNode *toSon) const { | 
|---|
| 414 | // returns true if node has a group keeled down 'toSon' | 
|---|
| 415 | return keelTarget() == toSon; | 
|---|
| 416 | } | 
|---|
| 417 | void unkeelGroup() { | 
|---|
| 418 | rt_assert(keelTarget()); | 
|---|
| 419 | keeledOver = false; | 
|---|
| 420 | } | 
|---|
| 421 | int keeledStateInfo() const { // keeled-state as stored in database | 
|---|
| 422 | return keeledOver ? (inverseLeft ? 1 : 2) : 0; | 
|---|
| 423 | } | 
|---|
| 424 | void setKeeledState(int keeledState) { | 
|---|
| 425 | keeledOver  = keeledState; | 
|---|
| 426 | inverseLeft = keeledState == 1; | 
|---|
| 427 | } | 
|---|
| 428 |  | 
|---|
| 429 | bool is_normal_group() const { | 
|---|
| 430 | // returns true when node shall show a "normal" group | 
|---|
| 431 | rt_assert(!is_leaf()); // useless call (a normal group never may occur at leaf) | 
|---|
| 432 | return has_group_info() && !keeledOver; | 
|---|
| 433 | } | 
|---|
| 434 | bool is_keeled_group() const { | 
|---|
| 435 | // returns true when node shall show a "keeled" group. | 
|---|
| 436 | // (i.e. when father has a keeled group oriented towards 'this') | 
|---|
| 437 | return father && father->keelsDownGroup(this); | 
|---|
| 438 | } | 
|---|
| 439 | bool is_clade() const { | 
|---|
| 440 | // return true, if a clickable group shall be displayed in tree | 
|---|
| 441 | // (Note: keeled groups may appear at leafs) | 
|---|
| 442 | return (!is_leaf() && is_normal_group()) || is_keeled_group(); | 
|---|
| 443 | } | 
|---|
| 444 |  | 
|---|
| 445 | const char *get_group_name() const { | 
|---|
| 446 | return | 
|---|
| 447 | !is_leaf() && is_normal_group() | 
|---|
| 448 | ? name | 
|---|
| 449 | : (is_keeled_group() ? father->name : NULp); | 
|---|
| 450 | } | 
|---|
| 451 |  | 
|---|
| 452 | const TreeNode *find_parent_with_groupInfo(bool skipKeeledBrothers = false) const { | 
|---|
| 453 | const TreeNode *child  = this; | 
|---|
| 454 | const TreeNode *parent = get_father(); | 
|---|
| 455 |  | 
|---|
| 456 | while (parent) { | 
|---|
| 457 | if (parent->has_group_info()) { | 
|---|
| 458 | if (!skipKeeledBrothers) break; // report any group | 
|---|
| 459 |  | 
|---|
| 460 | const TreeNode *keeled = parent->keelTarget(); | 
|---|
| 461 | if (!keeled || keeled == child) break; | 
|---|
| 462 |  | 
|---|
| 463 | // continue with next parent if keeled to other branch | 
|---|
| 464 | } | 
|---|
| 465 | child  = parent; | 
|---|
| 466 | parent = child->get_father(); | 
|---|
| 467 | } | 
|---|
| 468 | return parent; | 
|---|
| 469 | } | 
|---|
| 470 | TreeNode *find_parent_with_groupInfo(bool skipKeeledBrothers = false) { | 
|---|
| 471 | return const_cast<TreeNode*>(const_cast<const TreeNode*>(this)->find_parent_with_groupInfo(skipKeeledBrothers)); | 
|---|
| 472 | } | 
|---|
| 473 |  | 
|---|
| 474 | const TreeNode *find_parent_clade() const { | 
|---|
| 475 | // opposed to find_parent_with_groupInfo this reports only nodes where a group is DISPLAYED | 
|---|
| 476 | // (i.e. in case of keeled groups at son node) | 
|---|
| 477 |  | 
|---|
| 478 | const TreeNode *parent   = find_parent_with_groupInfo(); | 
|---|
| 479 | const TreeNode *myBranch = this;  // me or any ancestor | 
|---|
| 480 | while (parent) { | 
|---|
| 481 | const TreeNode *keeled = parent->keelTarget(); | 
|---|
| 482 | if (!keeled) break; // use parent | 
|---|
| 483 |  | 
|---|
| 484 | if (parent != father && keeled->in_same_branch_as(myBranch)) { | 
|---|
| 485 | parent = keeled; // use keeled | 
|---|
| 486 | break; | 
|---|
| 487 | } | 
|---|
| 488 |  | 
|---|
| 489 | // either keeled to self, to brother or to brother of some of my ancestors -> step up | 
|---|
| 490 | rt_assert(keeled == this || keeled == get_brother() || keeled->get_brother()->is_ancestor_of(this)); | 
|---|
| 491 |  | 
|---|
| 492 | myBranch = parent; | 
|---|
| 493 | parent   = parent->find_parent_with_groupInfo(); | 
|---|
| 494 | } | 
|---|
| 495 |  | 
|---|
| 496 | rt_assert(implicated(parent, parent->is_clade())); | 
|---|
| 497 |  | 
|---|
| 498 | return parent; | 
|---|
| 499 | } | 
|---|
| 500 | TreeNode *find_parent_clade() { | 
|---|
| 501 | return const_cast<TreeNode*>(const_cast<const TreeNode*>(this)->find_parent_clade()); | 
|---|
| 502 | } | 
|---|
| 503 | int calc_clade_level() const { | 
|---|
| 504 | int             taxLev  = is_clade(); | 
|---|
| 505 | const TreeNode *parent  = find_parent_clade(); | 
|---|
| 506 | if (parent) taxLev     += parent->calc_clade_level(); | 
|---|
| 507 | return taxLev; | 
|---|
| 508 | } | 
|---|
| 509 |  | 
|---|
| 510 | int count_clades() const; | 
|---|
| 511 |  | 
|---|
| 512 | virtual void swap_sons() { | 
|---|
| 513 | rt_assert(!is_leaf()); // only possible for inner nodes! | 
|---|
| 514 |  | 
|---|
| 515 | std::swap(leftson, rightson); | 
|---|
| 516 | std::swap(leftlen, rightlen); | 
|---|
| 517 | inverseLeft = !inverseLeft; | 
|---|
| 518 | } | 
|---|
| 519 | void rotate_subtree(); // flip whole subtree ( = recursive swap_sons()) | 
|---|
| 520 | void reorder_tree(TreeOrder mode); | 
|---|
| 521 |  | 
|---|
| 522 | TreeNode *findLeafNamed(const char *wantedName); | 
|---|
| 523 |  | 
|---|
| 524 | GBT_LEN reset_length_and_bootstrap() { | 
|---|
| 525 | //! remove remark + zero but return branchlen | 
|---|
| 526 | if (!is_leaf()) remove_remark(); | 
|---|
| 527 | GBT_LEN len = get_branchlength_unrooted(); | 
|---|
| 528 | set_branchlength_unrooted(0.0); | 
|---|
| 529 | return len; | 
|---|
| 530 | } | 
|---|
| 531 |  | 
|---|
| 532 | struct multifurc_limits { | 
|---|
| 533 | double bootstrap; | 
|---|
| 534 | double branchlength; | 
|---|
| 535 | bool   applyAtLeafs; | 
|---|
| 536 | multifurc_limits(double bootstrap_, double branchlength_, bool applyAtLeafs_) | 
|---|
| 537 | : bootstrap(bootstrap_), | 
|---|
| 538 | branchlength(branchlength_), | 
|---|
| 539 | applyAtLeafs(applyAtLeafs_) | 
|---|
| 540 | {} | 
|---|
| 541 | }; | 
|---|
| 542 | class LengthCollector; | 
|---|
| 543 |  | 
|---|
| 544 | void multifurcate(); | 
|---|
| 545 | void set_branchlength_preserving(GBT_LEN new_len); | 
|---|
| 546 |  | 
|---|
| 547 | void multifurcate_whole_tree(const multifurc_limits& below); | 
|---|
| 548 | private: | 
|---|
| 549 | void eliminate_and_collect(const multifurc_limits& below, LengthCollector& collect); | 
|---|
| 550 | public: | 
|---|
| 551 |  | 
|---|
| 552 | #if defined(PROVIDE_TREE_STRUCTURE_TESTS) | 
|---|
| 553 | Validity is_valid() const; | 
|---|
| 554 | #endif // PROVIDE_TREE_STRUCTURE_TESTS | 
|---|
| 555 | }; | 
|---|
| 556 | MARK_NONFINAL_METHOD(TreeNode,swap_sons,()); | 
|---|
| 557 | MARK_NONFINAL_METHOD(TreeNode,set_root,()); | 
|---|
| 558 |  | 
|---|
| 559 | inline void destroy(TreeNode *that) { | 
|---|
| 560 | TreeNode::destroy(that); | 
|---|
| 561 | } | 
|---|
| 562 | inline void destroy(TreeNode *that, TreeRoot *root) { | 
|---|
| 563 | TreeNode::destroy(that, root); | 
|---|
| 564 | } | 
|---|
| 565 |  | 
|---|
| 566 | // --------------------------------------------------------------------------------------- | 
|---|
| 567 | //      macros to overwrite accessors in classes derived from TreeRoot or TreeNode: | 
|---|
| 568 |  | 
|---|
| 569 | #define DEFINE_TREE_ROOT_ACCESSORS(RootType, TreeType)                                  \ | 
|---|
| 570 | DEFINE_DOWNCAST_ACCESSORS(TreeType, get_root_node, TreeRoot::get_root_node()) | 
|---|
| 571 |  | 
|---|
| 572 | #define DEFINE_TREE_RELATIVES_ACCESSORS(TreeType) \ | 
|---|
| 573 | DEFINE_DOWNCAST_ACCESSORS(TreeType, get_father, father); \ | 
|---|
| 574 | DEFINE_DOWNCAST_ACCESSORS(TreeType, get_leftson, leftson);  \ | 
|---|
| 575 | DEFINE_DOWNCAST_ACCESSORS(TreeType, get_rightson, rightson); \ | 
|---|
| 576 | DEFINE_DOWNCAST_ACCESSORS(TreeType, get_brother, TreeNode::get_brother()); \ | 
|---|
| 577 | DEFINE_DOWNCAST_ACCESSORS(TreeType, get_root_node, TreeNode::get_root_node());                                      \ | 
|---|
| 578 | TreeType *findLeafNamed(const char *wantedName) { return DOWNCAST(TreeType*, TreeNode::findLeafNamed(wantedName)); } | 
|---|
| 579 |  | 
|---|
| 580 | #define DEFINE_TREE_ACCESSORS(RootType, TreeType)                                     \ | 
|---|
| 581 | DEFINE_DOWNCAST_ACCESSORS(RootType, get_tree_root, TreeNode::get_tree_root());    \ | 
|---|
| 582 | DEFINE_TREE_RELATIVES_ACCESSORS(TreeType) | 
|---|
| 583 |  | 
|---|
| 584 |  | 
|---|
| 585 | // ------------------------- | 
|---|
| 586 | //      structure tests | 
|---|
| 587 |  | 
|---|
| 588 | #if defined(PROVIDE_TREE_STRUCTURE_TESTS) | 
|---|
| 589 | template <typename TREE> | 
|---|
| 590 | inline Validity tree_is_valid(const TREE *tree, bool acceptNULL) { | 
|---|
| 591 | if (tree) return tree->is_valid(); | 
|---|
| 592 | return Validity(acceptNULL, "NULp tree"); | 
|---|
| 593 | } | 
|---|
| 594 | template <typename TREE> | 
|---|
| 595 | inline bool tree_is_valid_or_dump(const TREE *tree, bool acceptNULL) { | 
|---|
| 596 | Validity valid = tree_is_valid(tree, acceptNULL); | 
|---|
| 597 | if (!valid) fprintf(stderr, "\ntree is NOT valid (Reason: %s)\n", valid.why_not()); | 
|---|
| 598 | return valid; | 
|---|
| 599 | } | 
|---|
| 600 | #endif | 
|---|
| 601 |  | 
|---|
| 602 | #if defined(AUTO_CHECK_TREE_STRUCTURE) | 
|---|
| 603 | #define ASSERT_VALID_TREE(tree)         rt_assert(tree_is_valid_or_dump(tree, false)) | 
|---|
| 604 | #define ASSERT_VALID_TREE_OR_NULL(tree) rt_assert(tree_is_valid_or_dump(tree, true)) | 
|---|
| 605 | #else | 
|---|
| 606 | #define ASSERT_VALID_TREE(tree) | 
|---|
| 607 | #define ASSERT_VALID_TREE_OR_NULL(tree) | 
|---|
| 608 | #endif // AUTO_CHECK_TREE_STRUCTURE | 
|---|
| 609 |  | 
|---|
| 610 | #if defined(PROVIDE_TREE_STRUCTURE_TESTS) && defined(UNIT_TESTS) | 
|---|
| 611 |  | 
|---|
| 612 | #define TEST_EXPECT_VALID_TREE(tree)                     TEST_VALIDITY(tree_is_valid(tree, false)) | 
|---|
| 613 | #define TEST_EXPECT_VALID_TREE_OR_NULL(tree)             TEST_VALIDITY(tree_is_valid(tree, true)) | 
|---|
| 614 | #define TEST_EXPECT_VALID_TREE__BROKEN(tree,why)         TEST_VALIDITY__BROKEN(tree_is_valid(tree, false), why) | 
|---|
| 615 | #define TEST_EXPECT_VALID_TREE_OR_NULL__BROKEN(tree,why) TEST_VALIDITY__BROKEN(tree_is_valid(tree, true), why) | 
|---|
| 616 |  | 
|---|
| 617 | #else | 
|---|
| 618 |  | 
|---|
| 619 | #define TEST_EXPECT_VALID_TREE(tree) | 
|---|
| 620 | #define TEST_EXPECT_VALID_TREE_OR_NULL(tree) | 
|---|
| 621 | #define TEST_EXPECT_VALID_TREE__BROKEN(tree) | 
|---|
| 622 | #define TEST_EXPECT_VALID_TREE_OR_NULL__BROKEN(tree) | 
|---|
| 623 |  | 
|---|
| 624 | #endif | 
|---|
| 625 |  | 
|---|
| 626 | // -------------------- | 
|---|
| 627 | //      SimpleTree | 
|---|
| 628 |  | 
|---|
| 629 | struct SimpleRoot : public TreeRoot { | 
|---|
| 630 | inline SimpleRoot(); | 
|---|
| 631 | inline TreeNode *makeNode() const OVERRIDE; | 
|---|
| 632 | inline void destroyNode(TreeNode *node) const OVERRIDE; | 
|---|
| 633 | }; | 
|---|
| 634 |  | 
|---|
| 635 | class SimpleTree FINAL_TYPE : public TreeNode { | 
|---|
| 636 | protected: | 
|---|
| 637 | ~SimpleTree() OVERRIDE {} | 
|---|
| 638 | friend class SimpleRoot; | 
|---|
| 639 | public: | 
|---|
| 640 | SimpleTree(SimpleRoot *sroot) : TreeNode(sroot) {} | 
|---|
| 641 |  | 
|---|
| 642 | // TreeNode interface | 
|---|
| 643 | unsigned get_leaf_count() const OVERRIDE { | 
|---|
| 644 | rt_assert(0); // @@@ impl? | 
|---|
| 645 | return 0; | 
|---|
| 646 | } | 
|---|
| 647 | void compute_tree() OVERRIDE {} | 
|---|
| 648 | }; | 
|---|
| 649 |  | 
|---|
| 650 | SimpleRoot::SimpleRoot() : TreeRoot(true) {} | 
|---|
| 651 | inline TreeNode *SimpleRoot::makeNode() const { return new SimpleTree(const_cast<SimpleRoot*>(this)); } | 
|---|
| 652 | inline void SimpleRoot::destroyNode(TreeNode *node) const { delete DOWNCAST(SimpleTree*,node); } | 
|---|
| 653 |  | 
|---|
| 654 | // ---------------------- | 
|---|
| 655 | //      ARB_edge_type | 
|---|
| 656 |  | 
|---|
| 657 | enum ARB_edge_type { | 
|---|
| 658 | EDGE_TO_ROOT, // edge points towards the root node | 
|---|
| 659 | EDGE_TO_LEAF, // edge points away from the root node | 
|---|
| 660 | ROOT_EDGE, // edge between sons of root node | 
|---|
| 661 | }; | 
|---|
| 662 |  | 
|---|
| 663 | class ARB_edge { | 
|---|
| 664 | // ARB_edge is a directional edge between two non-root-nodes of the same tree | 
|---|
| 665 | // (can act as iterator for TreeNode) | 
|---|
| 666 |  | 
|---|
| 667 | TreeNode      *from, *to; | 
|---|
| 668 | ARB_edge_type  type; | 
|---|
| 669 |  | 
|---|
| 670 | ARB_edge_type detectType() const { | 
|---|
| 671 | rt_assert(to != from); | 
|---|
| 672 | rt_assert(!from->is_root_node());                // edges cannot be at root - use edge between sons of root! | 
|---|
| 673 | rt_assert(!to->is_root_node()); | 
|---|
| 674 |  | 
|---|
| 675 | if (from->father == to) return EDGE_TO_ROOT; | 
|---|
| 676 | if (to->father == from) return EDGE_TO_LEAF; | 
|---|
| 677 |  | 
|---|
| 678 | rt_assert(from->get_brother() == to);       // no edge exists between 'from' and 'to' | 
|---|
| 679 | rt_assert(to->get_father()->is_root_node()); | 
|---|
| 680 | return ROOT_EDGE; | 
|---|
| 681 | } | 
|---|
| 682 |  | 
|---|
| 683 | GBT_LEN adjacent_distance() const; | 
|---|
| 684 | GBT_LEN length_or_adjacent_distance() const { | 
|---|
| 685 | { | 
|---|
| 686 | GBT_LEN len = length(); | 
|---|
| 687 | if (len>0.0) return len; | 
|---|
| 688 | } | 
|---|
| 689 | return adjacent_distance(); | 
|---|
| 690 | } | 
|---|
| 691 |  | 
|---|
| 692 | void virtually_add_or_distribute_length_forward(GBT_LEN len, TreeNode::LengthCollector& collect) const; | 
|---|
| 693 | void virtually_distribute_length_forward(GBT_LEN len, TreeNode::LengthCollector& collect) const; | 
|---|
| 694 | public: | 
|---|
| 695 | void virtually_distribute_length(GBT_LEN len, TreeNode::LengthCollector& collect) const; // @@@ hm public :( | 
|---|
| 696 | private: | 
|---|
| 697 |  | 
|---|
| 698 | #if defined(UNIT_TESTS) // UT_DIFF | 
|---|
| 699 | friend void TEST_edges(); | 
|---|
| 700 | #endif | 
|---|
| 701 |  | 
|---|
| 702 | public: | 
|---|
| 703 | ARB_edge(TreeNode *From, TreeNode *To) : | 
|---|
| 704 | from(From), | 
|---|
| 705 | to(To), | 
|---|
| 706 | type(detectType()) | 
|---|
| 707 | {} | 
|---|
| 708 | ARB_edge(TreeNode *From, TreeNode *To, ARB_edge_type Type) : | 
|---|
| 709 | from(From), | 
|---|
| 710 | to(To), | 
|---|
| 711 | type(Type) | 
|---|
| 712 | { | 
|---|
| 713 | rt_assert(type == detectType()); | 
|---|
| 714 | } | 
|---|
| 715 | ARB_edge(const ARB_edge& otherEdge) : | 
|---|
| 716 | from(otherEdge.from), | 
|---|
| 717 | to(otherEdge.to), | 
|---|
| 718 | type(otherEdge.type) | 
|---|
| 719 | { | 
|---|
| 720 | rt_assert(type == detectType()); | 
|---|
| 721 | } | 
|---|
| 722 |  | 
|---|
| 723 | DECLARE_ASSIGNMENT_OPERATOR(ARB_edge); | 
|---|
| 724 |  | 
|---|
| 725 | ARB_edge_type get_type() const { return type; } | 
|---|
| 726 | TreeNode *source() const { return from; } | 
|---|
| 727 | TreeNode *dest() const { return to; } | 
|---|
| 728 |  | 
|---|
| 729 | TreeNode *son() const  { return type == EDGE_TO_ROOT ? from : to; } | 
|---|
| 730 | TreeNode *other() const  { return type == EDGE_TO_ROOT ? to : from; } | 
|---|
| 731 |  | 
|---|
| 732 | GBT_LEN length() const { | 
|---|
| 733 | if (type == ROOT_EDGE) return from->get_branchlength() + to->get_branchlength(); | 
|---|
| 734 | return son()->get_branchlength(); | 
|---|
| 735 | } | 
|---|
| 736 | void set_length(GBT_LEN len)  { | 
|---|
| 737 | if (type == ROOT_EDGE) { | 
|---|
| 738 | from->set_branchlength(len/2); | 
|---|
| 739 | to->set_branchlength(len/2); | 
|---|
| 740 | } | 
|---|
| 741 | else { | 
|---|
| 742 | son()->set_branchlength(len); | 
|---|
| 743 | } | 
|---|
| 744 | } | 
|---|
| 745 | GBT_LEN eliminate() { | 
|---|
| 746 | //! eliminates edge (zeroes length and bootstrap). returns eliminated length. | 
|---|
| 747 | if (type == ROOT_EDGE) { | 
|---|
| 748 | return source()->reset_length_and_bootstrap() + dest()->reset_length_and_bootstrap(); | 
|---|
| 749 | } | 
|---|
| 750 | return son()->reset_length_and_bootstrap(); | 
|---|
| 751 | } | 
|---|
| 752 |  | 
|---|
| 753 | ARB_edge inverse() const { | 
|---|
| 754 | return ARB_edge(to, from, ARB_edge_type(type == ROOT_EDGE ? ROOT_EDGE : (EDGE_TO_LEAF+EDGE_TO_ROOT)-type)); | 
|---|
| 755 | } | 
|---|
| 756 |  | 
|---|
| 757 | // iterator functions: endlessly iterate over all edges of tree | 
|---|
| 758 | // - next:        forward  (=towards dest()) | 
|---|
| 759 | // - previous:    backward (=back before source()) | 
|---|
| 760 | // - counter:     forward descends left  (=upper) son first | 
|---|
| 761 | // - non-counter: forward descends right (=lower) son first | 
|---|
| 762 |  | 
|---|
| 763 | ARB_edge next() const { // descends rightson first (traverses leaf-edges from bottom to top) | 
|---|
| 764 | if (type == EDGE_TO_ROOT) { | 
|---|
| 765 | rt_assert(from->is_son_of(to)); | 
|---|
| 766 | if (from->is_rightson()) return ARB_edge(to, to->get_leftson(), EDGE_TO_LEAF); | 
|---|
| 767 | TreeNode *father = to->get_father(); | 
|---|
| 768 | if (father->is_root_node()) return ARB_edge(to, to->get_brother(), ROOT_EDGE); | 
|---|
| 769 | return ARB_edge(to, father, EDGE_TO_ROOT); | 
|---|
| 770 | } | 
|---|
| 771 | if (is_edge_to_leaf()) return inverse(); | 
|---|
| 772 | return ARB_edge(to, to->get_rightson(), EDGE_TO_LEAF); | 
|---|
| 773 | } | 
|---|
| 774 | ARB_edge previous() const { // inverse of next(). (traverses leaf-edges from top to bottom) | 
|---|
| 775 | if (type == EDGE_TO_LEAF) { | 
|---|
| 776 | rt_assert(to->is_son_of(from)); | 
|---|
| 777 | if (to->is_leftson()) return ARB_edge(from->get_rightson(), from, EDGE_TO_ROOT); | 
|---|
| 778 | TreeNode *father = from->get_father(); | 
|---|
| 779 | if (father->is_root_node()) return ARB_edge(from->get_brother(), from, ROOT_EDGE); | 
|---|
| 780 | return ARB_edge(father, from, EDGE_TO_LEAF); | 
|---|
| 781 | } | 
|---|
| 782 | if (is_edge_from_leaf()) return inverse(); | 
|---|
| 783 | return ARB_edge(from->get_leftson(), from, EDGE_TO_ROOT); | 
|---|
| 784 | } | 
|---|
| 785 |  | 
|---|
| 786 | ARB_edge counter_next() const { // descends leftson first (traverses leaf-edges from top to bottom) | 
|---|
| 787 | if (type == EDGE_TO_ROOT) { | 
|---|
| 788 | rt_assert(from->is_son_of(to)); | 
|---|
| 789 | if (from->is_leftson()) return ARB_edge(to, to->get_rightson(), EDGE_TO_LEAF); | 
|---|
| 790 | TreeNode *father = to->get_father(); | 
|---|
| 791 | if (father->is_root_node()) return ARB_edge(to, to->get_brother(), ROOT_EDGE); | 
|---|
| 792 | return ARB_edge(to, father, EDGE_TO_ROOT); | 
|---|
| 793 | } | 
|---|
| 794 | if (is_edge_to_leaf()) return inverse(); | 
|---|
| 795 | return ARB_edge(to, to->get_leftson(), EDGE_TO_LEAF); | 
|---|
| 796 | } | 
|---|
| 797 | ARB_edge counter_previous() const { // inverse of counter_next(). (traverses leaf-edges from bottom to top) | 
|---|
| 798 | if (type == EDGE_TO_LEAF) { | 
|---|
| 799 | rt_assert(to->is_son_of(from)); | 
|---|
| 800 | if (to->is_rightson()) return ARB_edge(from->get_leftson(), from, EDGE_TO_ROOT); | 
|---|
| 801 | TreeNode *father = from->get_father(); | 
|---|
| 802 | if (father->is_root_node()) return ARB_edge(from->get_brother(), from, ROOT_EDGE); | 
|---|
| 803 | return ARB_edge(father, from, EDGE_TO_LEAF); | 
|---|
| 804 | } | 
|---|
| 805 | if (is_edge_from_leaf()) return inverse(); | 
|---|
| 806 | return ARB_edge(from->get_rightson(), from, EDGE_TO_ROOT); | 
|---|
| 807 | } | 
|---|
| 808 |  | 
|---|
| 809 | static int iteration_count(int leafs_in_tree) { | 
|---|
| 810 | /*! returns number of different edges produced by next() / previous(): | 
|---|
| 811 | * - each edge is visited twice (once in each direction) | 
|---|
| 812 | */ | 
|---|
| 813 | return leafs_2_edges(leafs_in_tree, UNROOTED) * 2; | 
|---|
| 814 | } | 
|---|
| 815 |  | 
|---|
| 816 | bool operator == (const ARB_edge& otherEdge) const { | 
|---|
| 817 | return from == otherEdge.from && to == otherEdge.to; | 
|---|
| 818 | } | 
|---|
| 819 | bool operator != (const ARB_edge& otherEdge) const { | 
|---|
| 820 | return !operator == (otherEdge); | 
|---|
| 821 | } | 
|---|
| 822 |  | 
|---|
| 823 | bool is_edge_to_leaf() const { | 
|---|
| 824 | //! true if edge is leaf edge AND points towards the leaf | 
|---|
| 825 | return dest()->is_leaf(); | 
|---|
| 826 | } | 
|---|
| 827 | bool is_edge_from_leaf() const { | 
|---|
| 828 | //! true if edge is leaf edge AND points away from the leaf | 
|---|
| 829 | return source()->is_leaf(); | 
|---|
| 830 | } | 
|---|
| 831 | bool is_inner_edge() const { | 
|---|
| 832 | //! true for inner edges | 
|---|
| 833 | return !is_edge_to_leaf() && !is_edge_from_leaf(); | 
|---|
| 834 | } | 
|---|
| 835 |  | 
|---|
| 836 | void set_root() { son()->set_root(); } | 
|---|
| 837 |  | 
|---|
| 838 | void multifurcate(); | 
|---|
| 839 |  | 
|---|
| 840 | }; | 
|---|
| 841 |  | 
|---|
| 842 | inline ARB_edge parentEdge(TreeNode *son) { | 
|---|
| 843 | /*! returns edge to father (or to brother for sons of root). | 
|---|
| 844 | * Cannot be called with root-node (but can be called with each end of any ARB_edge) | 
|---|
| 845 | */ | 
|---|
| 846 | TreeNode *father = son->get_father(); | 
|---|
| 847 | rt_assert(father); | 
|---|
| 848 |  | 
|---|
| 849 | if (father->is_root_node()) return ARB_edge(son, son->get_brother(), ROOT_EDGE); | 
|---|
| 850 | return ARB_edge(son, father, EDGE_TO_ROOT); | 
|---|
| 851 | } | 
|---|
| 852 | inline ARB_edge leafEdge(TreeNode *leaf) { | 
|---|
| 853 | rt_assert(leaf->is_leaf()); | 
|---|
| 854 | return parentEdge(leaf).inverse(); | 
|---|
| 855 | } | 
|---|
| 856 |  | 
|---|
| 857 | inline ARB_edge rootEdge(TreeRoot *root) { | 
|---|
| 858 | TreeNode *root_node = root->get_root_node(); | 
|---|
| 859 | return ARB_edge(root_node->get_leftson(), root_node->get_rightson(), ROOT_EDGE); | 
|---|
| 860 | } | 
|---|
| 861 |  | 
|---|
| 862 | #else | 
|---|
| 863 | #error TreeNode.h included twice | 
|---|
| 864 | #endif // TREENODE_H | 
|---|