1 | #include "muscle.h" |
---|
2 | #include "tree.h" |
---|
3 | |
---|
4 | #define TRACE 0 |
---|
5 | |
---|
6 | /*** |
---|
7 | Algorithm to compare two trees, X and Y. |
---|
8 | |
---|
9 | A node x in X and node y in Y are defined to be |
---|
10 | similar iff the set of leaves in the subtree under |
---|
11 | x is identical to the set of leaves under y. |
---|
12 | |
---|
13 | A node is defined to be changed iff it is not |
---|
14 | similar to any node in the other tree. |
---|
15 | |
---|
16 | Nodes x and y are defined to be married iff every |
---|
17 | node in the subtree under x is similar to a node |
---|
18 | in the subtree under y. Married nodes are considered |
---|
19 | to be equal. The subtrees under two married nodes can |
---|
20 | at most differ by exchanges of left and right branches, |
---|
21 | which we do not consider to be significant here. |
---|
22 | |
---|
23 | A node is changed iff it is not married. If a node is |
---|
24 | changed, then it has a dissimilar node in its subtree, |
---|
25 | and it follows immediately from the definition of marriage |
---|
26 | that its parent is also a bachelor. Hence all nodes on the |
---|
27 | path from a changed node to the root are changed. |
---|
28 | |
---|
29 | We assume the trees have the same set of leaves, so |
---|
30 | every leaf is trivially both similar and married to |
---|
31 | the same leaf in the opposite tree. Changed nodes |
---|
32 | are therefore always internal (i.e., non-leaf) nodes. |
---|
33 | |
---|
34 | Example: |
---|
35 | |
---|
36 | -----A |
---|
37 | -----k |
---|
38 | ----j -----B |
---|
39 | --i -----C |
---|
40 | ------D |
---|
41 | |
---|
42 | |
---|
43 | -----A |
---|
44 | -----p |
---|
45 | ----n -----B |
---|
46 | --m -----D |
---|
47 | ------C |
---|
48 | |
---|
49 | |
---|
50 | The following pairs of internal nodes are similar. |
---|
51 | |
---|
52 | Nodes Set of leaves |
---|
53 | ----- ------------- |
---|
54 | k,p A,B |
---|
55 | i,m A,B,C,D |
---|
56 | |
---|
57 | Changed nodes in the first tree are i and j, changed nodes |
---|
58 | in the second tree are m and n. |
---|
59 | |
---|
60 | Node k and p are married, but i and m are not (because j |
---|
61 | and n are changed). The diffs are C, D and k. |
---|
62 | |
---|
63 | To achieve O(N) we avoid traversing a given subtree multiple |
---|
64 | times and also avoid comparing lists of leaves. |
---|
65 | |
---|
66 | We visit nodes in depth-first order (i.e., a node is visited |
---|
67 | before its parent). |
---|
68 | |
---|
69 | If either child of a node is changed, we flag it as changed. |
---|
70 | |
---|
71 | If both children of the node we are visiting are married, |
---|
72 | we check whether the spouses of those children have the |
---|
73 | same parent in the other tree. If the parents are different, |
---|
74 | the current node is a bachelor. If they have the same parent, |
---|
75 | then the node we are visiting is the spouse of that parent. |
---|
76 | We assign this newly identified married couple a unique integer |
---|
77 | id. The id of a node is in one-to-one correspondence with the |
---|
78 | set of leaves in its subtree. Two nodes have the same set of |
---|
79 | leaves iff they have the same id. Changed nodes do not get |
---|
80 | an id. |
---|
81 | ***/ |
---|
82 | |
---|
83 | void DiffTreesE(const Tree &NewTree, const Tree &OldTree, |
---|
84 | unsigned NewNodeIndexToOldNodeIndex[]) |
---|
85 | { |
---|
86 | #if TRACE |
---|
87 | Log("DiffTreesE NewTree:\n"); |
---|
88 | NewTree.LogMe(); |
---|
89 | Log("\n"); |
---|
90 | Log("OldTree:\n"); |
---|
91 | OldTree.LogMe(); |
---|
92 | #endif |
---|
93 | |
---|
94 | if (!NewTree.IsRooted() || !OldTree.IsRooted()) |
---|
95 | Quit("DiffTrees: requires rooted trees"); |
---|
96 | |
---|
97 | const unsigned uNodeCount = NewTree.GetNodeCount(); |
---|
98 | const unsigned uOldNodeCount = OldTree.GetNodeCount(); |
---|
99 | const unsigned uLeafCount = NewTree.GetLeafCount(); |
---|
100 | const unsigned uOldLeafCount = OldTree.GetLeafCount(); |
---|
101 | if (uNodeCount != uOldNodeCount || uLeafCount != uOldLeafCount) |
---|
102 | Quit("DiffTreesE: different node counts"); |
---|
103 | |
---|
104 | { |
---|
105 | unsigned *IdToOldNodeIndex = new unsigned[uNodeCount]; |
---|
106 | for (unsigned uOldNodeIndex = 0; uOldNodeIndex < uNodeCount; ++uOldNodeIndex) |
---|
107 | { |
---|
108 | if (OldTree.IsLeaf(uOldNodeIndex)) |
---|
109 | { |
---|
110 | unsigned Id = OldTree.GetLeafId(uOldNodeIndex); |
---|
111 | IdToOldNodeIndex[Id] = uOldNodeIndex; |
---|
112 | } |
---|
113 | } |
---|
114 | |
---|
115 | // Initialize NewNodeIndexToOldNodeIndex[] |
---|
116 | // All internal nodes are marked as changed, but may be updated later. |
---|
117 | for (unsigned uNewNodeIndex = 0; uNewNodeIndex < uNodeCount; ++uNewNodeIndex) |
---|
118 | { |
---|
119 | if (NewTree.IsLeaf(uNewNodeIndex)) |
---|
120 | { |
---|
121 | unsigned uId = NewTree.GetLeafId(uNewNodeIndex); |
---|
122 | assert(uId < uLeafCount); |
---|
123 | |
---|
124 | unsigned uOldNodeIndex = IdToOldNodeIndex[uId]; |
---|
125 | assert(uOldNodeIndex < uNodeCount); |
---|
126 | |
---|
127 | NewNodeIndexToOldNodeIndex[uNewNodeIndex] = uOldNodeIndex; |
---|
128 | } |
---|
129 | else |
---|
130 | NewNodeIndexToOldNodeIndex[uNewNodeIndex] = NODE_CHANGED; |
---|
131 | } |
---|
132 | delete[] IdToOldNodeIndex; |
---|
133 | } |
---|
134 | |
---|
135 | // Depth-first traversal of tree. |
---|
136 | // The order guarantees that a node is visited before |
---|
137 | // its parent is visited. |
---|
138 | for (unsigned uNewNodeIndex = NewTree.FirstDepthFirstNode(); |
---|
139 | NULL_NEIGHBOR != uNewNodeIndex; |
---|
140 | uNewNodeIndex = NewTree.NextDepthFirstNode(uNewNodeIndex)) |
---|
141 | { |
---|
142 | if (NewTree.IsLeaf(uNewNodeIndex)) |
---|
143 | continue; |
---|
144 | |
---|
145 | // If either child is changed, flag this node as changed and continue. |
---|
146 | unsigned uNewLeft = NewTree.GetLeft(uNewNodeIndex); |
---|
147 | unsigned uOldLeft = NewNodeIndexToOldNodeIndex[uNewLeft]; |
---|
148 | if (NODE_CHANGED == uOldLeft) |
---|
149 | { |
---|
150 | NewNodeIndexToOldNodeIndex[uNewLeft] = NODE_CHANGED; |
---|
151 | continue; |
---|
152 | } |
---|
153 | |
---|
154 | unsigned uNewRight = NewTree.GetRight(uNewNodeIndex); |
---|
155 | unsigned uOldRight = NewNodeIndexToOldNodeIndex[uNewRight]; |
---|
156 | if (NODE_CHANGED == NewNodeIndexToOldNodeIndex[uNewRight]) |
---|
157 | { |
---|
158 | NewNodeIndexToOldNodeIndex[uNewRight] = NODE_CHANGED; |
---|
159 | continue; |
---|
160 | } |
---|
161 | |
---|
162 | unsigned uOldParentLeft = OldTree.GetParent(uOldLeft); |
---|
163 | unsigned uOldParentRight = OldTree.GetParent(uOldRight); |
---|
164 | if (uOldParentLeft == uOldParentRight) |
---|
165 | NewNodeIndexToOldNodeIndex[uNewNodeIndex] = uOldParentLeft; |
---|
166 | else |
---|
167 | NewNodeIndexToOldNodeIndex[uNewNodeIndex] = NODE_CHANGED; |
---|
168 | } |
---|
169 | |
---|
170 | #if TRACE |
---|
171 | { |
---|
172 | Log("NewToOld "); |
---|
173 | for (unsigned uNewNodeIndex = 0; uNewNodeIndex < uNodeCount; ++uNewNodeIndex) |
---|
174 | { |
---|
175 | Log(" [%3u]=", uNewNodeIndex); |
---|
176 | if (NODE_CHANGED == NewNodeIndexToOldNodeIndex[uNewNodeIndex]) |
---|
177 | Log(" X"); |
---|
178 | else |
---|
179 | Log("%3u", NewNodeIndexToOldNodeIndex[uNewNodeIndex]); |
---|
180 | if ((uNewNodeIndex+1)%8 == 0) |
---|
181 | Log("\n "); |
---|
182 | } |
---|
183 | Log("\n"); |
---|
184 | } |
---|
185 | #endif |
---|
186 | |
---|
187 | #if DEBUG |
---|
188 | { |
---|
189 | for (unsigned uNewNodeIndex = 0; uNewNodeIndex < uNodeCount; ++uNewNodeIndex) |
---|
190 | { |
---|
191 | unsigned uOld = NewNodeIndexToOldNodeIndex[uNewNodeIndex]; |
---|
192 | if (NewTree.IsLeaf(uNewNodeIndex)) |
---|
193 | { |
---|
194 | if (uOld >= uNodeCount) |
---|
195 | { |
---|
196 | Log("NewNode=%u uOld=%u > uNodeCount=%u\n", |
---|
197 | uNewNodeIndex, uOld, uNodeCount); |
---|
198 | Quit("Diff check failed"); |
---|
199 | } |
---|
200 | unsigned uIdNew = NewTree.GetLeafId(uNewNodeIndex); |
---|
201 | unsigned uIdOld = OldTree.GetLeafId(uOld); |
---|
202 | if (uIdNew != uIdOld) |
---|
203 | { |
---|
204 | Log("NewNode=%u uOld=%u IdNew=%u IdOld=%u\n", |
---|
205 | uNewNodeIndex, uOld, uIdNew, uIdOld); |
---|
206 | Quit("Diff check failed"); |
---|
207 | } |
---|
208 | continue; |
---|
209 | } |
---|
210 | |
---|
211 | if (NODE_CHANGED == uOld) |
---|
212 | continue; |
---|
213 | |
---|
214 | unsigned uNewLeft = NewTree.GetLeft(uNewNodeIndex); |
---|
215 | unsigned uNewRight = NewTree.GetRight(uNewNodeIndex); |
---|
216 | |
---|
217 | unsigned uOldLeft = OldTree.GetLeft(uOld); |
---|
218 | unsigned uOldRight = OldTree.GetRight(uOld); |
---|
219 | |
---|
220 | unsigned uNewLeftPartner = NewNodeIndexToOldNodeIndex[uNewLeft]; |
---|
221 | unsigned uNewRightPartner = NewNodeIndexToOldNodeIndex[uNewRight]; |
---|
222 | |
---|
223 | bool bSameNotRotated = (uNewLeftPartner == uOldLeft && uNewRightPartner == uOldRight); |
---|
224 | bool bSameRotated = (uNewLeftPartner == uOldRight && uNewRightPartner == uOldLeft); |
---|
225 | if (!bSameNotRotated && !bSameRotated) |
---|
226 | { |
---|
227 | Log("NewNode=%u NewL=%u NewR=%u\n", uNewNodeIndex, uNewLeft, uNewRight); |
---|
228 | Log("OldNode=%u OldL=%u OldR=%u\n", uOld, uOldLeft, uOldRight); |
---|
229 | Log("NewLPartner=%u NewRPartner=%u\n", uNewLeftPartner, uNewRightPartner); |
---|
230 | Quit("Diff check failed"); |
---|
231 | } |
---|
232 | } |
---|
233 | } |
---|
234 | #endif |
---|
235 | } |
---|