1 | |
---|
2 | /* version 3.6. (c) Copyright 1993-2002 by the University of Washington. |
---|
3 | Written by Joseph Felsenstein, Akiko Fuseki, Sean Lamont, and Andrew Keeffe. |
---|
4 | Permission is granted to copy and use this program provided no fee is |
---|
5 | charged for it and provided that this copyright notice is not removed. */ |
---|
6 | |
---|
7 | #include "phylip.h" |
---|
8 | #include "cont.h" |
---|
9 | |
---|
10 | |
---|
11 | |
---|
12 | #ifndef OLDC |
---|
13 | /* function prototypes */ |
---|
14 | void getoptions(void); |
---|
15 | void getdata(void); |
---|
16 | void allocrest(void); |
---|
17 | void doinit(void); |
---|
18 | void contwithin(void); |
---|
19 | void contbetween(node *, node *); |
---|
20 | void nuview(node *); |
---|
21 | void makecontrasts(node *); |
---|
22 | void writecontrasts(void); |
---|
23 | |
---|
24 | void regressions(void); |
---|
25 | double logdet(double **); |
---|
26 | void invert(double **); |
---|
27 | void initcovars(boolean); |
---|
28 | double normdiff(boolean); |
---|
29 | void matcopy(double **, double **); |
---|
30 | void newcovars(boolean); |
---|
31 | void printcovariances(boolean); |
---|
32 | void emiterate(boolean); |
---|
33 | void initcontrastnode(node **, node **, node *, long, long, long *, |
---|
34 | long *, initops, pointarray, pointarray, Char *, Char *, FILE *); |
---|
35 | |
---|
36 | void maketree(void); |
---|
37 | /* function prototypes */ |
---|
38 | #endif |
---|
39 | |
---|
40 | |
---|
41 | Char infilename[FNMLNGTH], outfilename[FNMLNGTH], intreename[FNMLNGTH]; |
---|
42 | long nonodes, chars, numtrees; |
---|
43 | long *sample, contnum; |
---|
44 | phenotype3 **x, **cntrast, *ssqcont; |
---|
45 | double **vara, **vare, **oldvara, **oldvare, |
---|
46 | **Bax, **Bex, **temp1, **temp2, **temp3; |
---|
47 | double logL, logLvara, logLnovara; |
---|
48 | boolean nophylo, printdata, progress, reg, mulsets, |
---|
49 | varywithin, writecont, bifurcating; |
---|
50 | Char ch; |
---|
51 | long contno; |
---|
52 | node *grbg; |
---|
53 | |
---|
54 | /* Local variables for maketree, propagated globally for c version: */ |
---|
55 | tree curtree; |
---|
56 | |
---|
57 | /* Variables declared just to make treeread happy */ |
---|
58 | boolean haslengths, goteof, first; |
---|
59 | double trweight; |
---|
60 | |
---|
61 | |
---|
62 | void getoptions() |
---|
63 | { |
---|
64 | /* interactively set options */ |
---|
65 | long loopcount, loopcount2; |
---|
66 | Char ch; |
---|
67 | boolean done, done1; |
---|
68 | |
---|
69 | mulsets = false; |
---|
70 | nophylo = true; |
---|
71 | printdata = false; |
---|
72 | progress = true; |
---|
73 | varywithin = false; |
---|
74 | writecont = false; |
---|
75 | loopcount = 0; |
---|
76 | do { |
---|
77 | cleerhome(); |
---|
78 | printf("\nContinuous character comparative analysis, version %s\n\n", |
---|
79 | VERSION); |
---|
80 | printf("Settings for this run:\n"); |
---|
81 | printf(" W within-population variation in data?"); |
---|
82 | if (varywithin) |
---|
83 | printf(" Yes, multiple individuals\n"); |
---|
84 | else { |
---|
85 | printf(" No, species values are means\n"); |
---|
86 | printf(" R Print out correlations and regressions? %s\n", |
---|
87 | (reg ? "Yes" : "No")); |
---|
88 | } |
---|
89 | printf(" A LRT test of no phylogenetic component?"); |
---|
90 | if (nophylo) |
---|
91 | printf(" Yes, with and without VarA\n"); |
---|
92 | else |
---|
93 | printf(" No, just assume it is there\n"); |
---|
94 | if (!varywithin) |
---|
95 | printf(" C Print out contrasts? %s\n", |
---|
96 | (writecont? "Yes" : "No")); |
---|
97 | printf(" M Analyze multiple trees?"); |
---|
98 | if (mulsets) |
---|
99 | printf(" Yes, %2ld trees\n", numtrees); |
---|
100 | else |
---|
101 | printf(" No\n"); |
---|
102 | printf(" 0 Terminal type (IBM PC, ANSI, none)? %s\n", |
---|
103 | ibmpc ? "IBM PC" : |
---|
104 | ansi ? "ANSI" : "(none)"); |
---|
105 | printf(" 1 Print out the data at start of run %s\n", |
---|
106 | (printdata ? "Yes" : "No")); |
---|
107 | printf(" 2 Print indications of progress of run %s\n", |
---|
108 | (progress ? "Yes" : "No")); |
---|
109 | printf("\n Y to accept these or type the letter for one to change\n"); |
---|
110 | #ifdef WIN32 |
---|
111 | phyFillScreenColor(); |
---|
112 | #endif |
---|
113 | scanf("%c%*[^\n]", &ch); |
---|
114 | getchar(); |
---|
115 | if (ch == '\n') |
---|
116 | ch = ' '; |
---|
117 | uppercase(&ch); |
---|
118 | done = (ch == 'Y'); |
---|
119 | if (!done) { |
---|
120 | if (strchr("RAMWC120", ch) != NULL) { |
---|
121 | switch (ch) { |
---|
122 | |
---|
123 | case 'R': |
---|
124 | reg = !reg; |
---|
125 | break; |
---|
126 | |
---|
127 | case 'A': |
---|
128 | nophylo = !nophylo; |
---|
129 | break; |
---|
130 | |
---|
131 | case 'M': |
---|
132 | mulsets = !mulsets; |
---|
133 | if (mulsets) { |
---|
134 | loopcount2 = 0; |
---|
135 | do { |
---|
136 | printf("How many trees?\n"); |
---|
137 | #ifdef WIN32 |
---|
138 | phyFillScreenColor(); |
---|
139 | #endif |
---|
140 | scanf("%ld%*[^\n]", &numtrees); |
---|
141 | getchar(); |
---|
142 | done1 = (numtrees >= 1); |
---|
143 | if (!done1) |
---|
144 | printf("BAD TREES NUMBER: it must be greater than 1\n"); |
---|
145 | countup(&loopcount2, 10); |
---|
146 | } while (done1 != true); |
---|
147 | } |
---|
148 | break; |
---|
149 | |
---|
150 | case 'C': |
---|
151 | writecont = !writecont; |
---|
152 | break; |
---|
153 | |
---|
154 | case 'W': |
---|
155 | varywithin = !varywithin; |
---|
156 | break; |
---|
157 | |
---|
158 | case '0': |
---|
159 | initterminal(&ibmpc, &ansi); |
---|
160 | break; |
---|
161 | |
---|
162 | case '1': |
---|
163 | printdata = !printdata; |
---|
164 | break; |
---|
165 | |
---|
166 | case '2': |
---|
167 | progress = !progress; |
---|
168 | break; |
---|
169 | } |
---|
170 | } else |
---|
171 | printf("Not a possible option!\n"); |
---|
172 | } |
---|
173 | countup(&loopcount, 100); |
---|
174 | } while (!done); |
---|
175 | } /* getoptions */ |
---|
176 | |
---|
177 | |
---|
178 | void getdata() |
---|
179 | { |
---|
180 | /* read species data */ |
---|
181 | long i, j, k, l; |
---|
182 | |
---|
183 | if (printdata) { |
---|
184 | fprintf(outfile, |
---|
185 | "\nContinuous character contrasts analysis, version %s\n\n",VERSION); |
---|
186 | fprintf(outfile, "%4ld Populations, %4ld Characters\n\n", spp, chars); |
---|
187 | fprintf(outfile, "Name"); |
---|
188 | fprintf(outfile, " Phenotypes\n"); |
---|
189 | fprintf(outfile, "----"); |
---|
190 | fprintf(outfile, " ----------\n\n"); |
---|
191 | } |
---|
192 | x = (phenotype3 **)Malloc((long)spp*sizeof(phenotype3 *)); |
---|
193 | cntrast = (phenotype3 **)Malloc((long)spp*sizeof(phenotype3 *)); |
---|
194 | ssqcont = (phenotype3 *)Malloc((long)spp*sizeof(phenotype3 *)); |
---|
195 | contnum = spp-1; |
---|
196 | for (i = 0; i < spp; i++) { |
---|
197 | scan_eoln(infile); |
---|
198 | initname(i); |
---|
199 | if (varywithin) { |
---|
200 | fscanf(infile, "%ld", &sample[i]); |
---|
201 | contnum += sample[i]-1; |
---|
202 | scan_eoln(infile); |
---|
203 | } |
---|
204 | else sample[i] = 1; |
---|
205 | if (printdata) |
---|
206 | for(j = 0; j < nmlngth; j++) |
---|
207 | putc(nayme[i][j], outfile); |
---|
208 | x[i] = (phenotype3 *)Malloc((long)sample[i]*sizeof(phenotype3)); |
---|
209 | cntrast[i] = (phenotype3 *)Malloc((long)(sample[i]*sizeof(phenotype3))); |
---|
210 | ssqcont[i] = (double *)Malloc((long)(sample[i]*sizeof(double))); |
---|
211 | for (k = 0; k <= sample[i]-1; k++) { |
---|
212 | x[i][k] = (phenotype3)Malloc((long)chars*sizeof(double)); |
---|
213 | cntrast[i][k] = (phenotype3)Malloc((long)chars*sizeof(double)); |
---|
214 | for (j = 1; j <= chars; j++) { |
---|
215 | if (eoln(infile)) |
---|
216 | scan_eoln(infile); |
---|
217 | fscanf(infile, "%lf", &x[i][k][j - 1]); |
---|
218 | if (printdata) { |
---|
219 | fprintf(outfile, "%10.5f", x[i][k][j - 1]); |
---|
220 | if (j % 6 == 0) { |
---|
221 | putc('\n', outfile); |
---|
222 | for (l = 1; l <= nmlngth; l++) |
---|
223 | putc(' ', outfile); |
---|
224 | } |
---|
225 | } |
---|
226 | } |
---|
227 | } |
---|
228 | if (printdata) |
---|
229 | putc('\n', outfile); |
---|
230 | } |
---|
231 | scan_eoln(infile); |
---|
232 | if (printdata) |
---|
233 | putc('\n', outfile); |
---|
234 | } /* getdata */ |
---|
235 | |
---|
236 | |
---|
237 | void allocrest() |
---|
238 | { |
---|
239 | long i; |
---|
240 | |
---|
241 | /* otherwise if individual variation, these are allocated in getdata */ |
---|
242 | sample = (long *)Malloc((long)spp*sizeof(long)); |
---|
243 | nayme = (naym *)Malloc((long)spp*sizeof(naym)); |
---|
244 | vara = (double **)Malloc((long)chars*sizeof(double *)); |
---|
245 | oldvara = (double **)Malloc((long)chars*sizeof(double *)); |
---|
246 | vare = (double **)Malloc((long)chars*sizeof(double *)); |
---|
247 | oldvare = (double **)Malloc((long)chars*sizeof(double *)); |
---|
248 | Bax = (double **)Malloc((long)chars*sizeof(double *)); |
---|
249 | Bex = (double **)Malloc((long)chars*sizeof(double *)); |
---|
250 | temp1 = (double **)Malloc((long)chars*sizeof(double *)); |
---|
251 | temp2 = (double **)Malloc((long)chars*sizeof(double *)); |
---|
252 | temp3 = (double **)Malloc((long)chars*sizeof(double *)); |
---|
253 | for (i = 0; i < chars; i++) { |
---|
254 | vara[i] = (double *)Malloc((long)chars*sizeof(double)); |
---|
255 | oldvara[i] = (double *)Malloc((long)chars*sizeof(double)); |
---|
256 | vare[i] = (double *)Malloc((long)chars*sizeof(double)); |
---|
257 | oldvare[i] = (double *)Malloc((long)chars*sizeof(double)); |
---|
258 | Bax[i] = (double *)Malloc((long)chars*sizeof(double)); |
---|
259 | Bex[i] = (double *)Malloc((long)chars*sizeof(double)); |
---|
260 | temp1[i] = (double *)Malloc((long)chars*sizeof(double)); |
---|
261 | temp2[i] = (double *)Malloc((long)chars*sizeof(double)); |
---|
262 | temp3[i] = (double *)Malloc((long)chars*sizeof(double)); |
---|
263 | } |
---|
264 | } /* allocrest */ |
---|
265 | |
---|
266 | |
---|
267 | void doinit() |
---|
268 | { |
---|
269 | /* initializes variables */ |
---|
270 | |
---|
271 | inputnumbers(&spp, &chars, &nonodes, 1); |
---|
272 | getoptions(); |
---|
273 | allocrest(); |
---|
274 | } /* doinit */ |
---|
275 | |
---|
276 | |
---|
277 | void contwithin() |
---|
278 | { |
---|
279 | /* compute the within-species contrasts, if any */ |
---|
280 | long i, j, k; |
---|
281 | double *sumphen; |
---|
282 | |
---|
283 | sumphen = (double *)Malloc((long)chars*sizeof(double)); |
---|
284 | for (i = 0; i <= spp-1 ; i++) { |
---|
285 | for (j = 0; j < chars; j++) |
---|
286 | sumphen[j] = 0.0; |
---|
287 | for (k = 0; k <= (sample[i]-1); k++) { |
---|
288 | for (j = 0; j < chars; j++) { |
---|
289 | if (k > 0) |
---|
290 | cntrast[i][k][j] |
---|
291 | = (sumphen[j] - k*x[i][k][j])/sqrt((double)(k*(k+1))); |
---|
292 | sumphen[j] += x[i][k][j]; |
---|
293 | if (k == (sample[i]-1)) |
---|
294 | curtree.nodep[i]->view[j] = sumphen[j]/sample[i]; |
---|
295 | x[i][0][j] = sumphen[j]/sample[i]; |
---|
296 | } |
---|
297 | if (k == 0) |
---|
298 | curtree.nodep[i]->ssq = 1.0/sample[i]; /* sum of squares for sp. i */ |
---|
299 | else |
---|
300 | ssqcont[i][k] = 1.0; /* if a within contrast */ |
---|
301 | } |
---|
302 | } |
---|
303 | contno = 1; |
---|
304 | } /* contwithin */ |
---|
305 | |
---|
306 | |
---|
307 | void contbetween(node *p, node *q) |
---|
308 | { |
---|
309 | /* compute one contrast */ |
---|
310 | long i; |
---|
311 | double v1, v2; |
---|
312 | |
---|
313 | for (i = 0; i < chars; i++) |
---|
314 | cntrast[contno - 1][0][i] = (p->view[i] - q->view[i])/sqrt(p->ssq+q->ssq); |
---|
315 | v1 = q->v + q->deltav; |
---|
316 | if (p->back != q) |
---|
317 | v2 = p->v + p->deltav; |
---|
318 | else v2 = p->deltav; |
---|
319 | ssqcont[contno - 1][0] = (v1 + v2)/(p->ssq + q->ssq); |
---|
320 | /* this is really the variance of the contrast */ |
---|
321 | contno++; |
---|
322 | } /* contbetween */ |
---|
323 | |
---|
324 | |
---|
325 | void nuview(node *p) |
---|
326 | { |
---|
327 | /* renew information about subtrees */ |
---|
328 | long j; |
---|
329 | node *q, *r; |
---|
330 | double v1, v2, vtot, f1, f2; |
---|
331 | |
---|
332 | q = p->next->back; |
---|
333 | r = p->next->next->back; |
---|
334 | v1 = q->v + q->deltav; |
---|
335 | v2 = r->v + r->deltav; |
---|
336 | vtot = v1 + v2; |
---|
337 | if (vtot > 0.0) |
---|
338 | f1 = v2 / vtot; |
---|
339 | else |
---|
340 | f1 = 0.5; |
---|
341 | f2 = 1.0 - f1; |
---|
342 | for (j = 0; j < chars; j++) |
---|
343 | p->view[j] = f1 * q->view[j] + f2 * r->view[j]; |
---|
344 | p->deltav = v1 * f1; |
---|
345 | p->ssq = f1*f1*q->ssq + f2*f2*r->ssq; |
---|
346 | } /* nuview */ |
---|
347 | |
---|
348 | |
---|
349 | void makecontrasts(node *p) |
---|
350 | { |
---|
351 | /* compute the contrasts, recursively */ |
---|
352 | if (p->tip) |
---|
353 | return; |
---|
354 | makecontrasts(p->next->back); |
---|
355 | makecontrasts(p->next->next->back); |
---|
356 | nuview(p); |
---|
357 | contbetween(p->next->back, p->next->next->back); |
---|
358 | } /* makecontrasts */ |
---|
359 | |
---|
360 | |
---|
361 | void writecontrasts() |
---|
362 | { |
---|
363 | /* write out the contrasts */ |
---|
364 | long i, j; |
---|
365 | |
---|
366 | if (printdata || reg) { |
---|
367 | fprintf(outfile, "\nContrasts (columns are different characters)\n"); |
---|
368 | fprintf(outfile, "--------- -------- --- --------- -----------\n\n"); |
---|
369 | } |
---|
370 | for (i = 0; i <= contno - 2; i++) { |
---|
371 | for (j = 0; j < chars; j++) |
---|
372 | fprintf(outfile, "%10.5f", cntrast[i][0][j]); |
---|
373 | putc('\n', outfile); |
---|
374 | } |
---|
375 | } /* writecontrasts */ |
---|
376 | |
---|
377 | |
---|
378 | void regressions() |
---|
379 | { |
---|
380 | /* compute regressions and correlations among contrasts */ |
---|
381 | long i, j, k; |
---|
382 | double **sumprod; |
---|
383 | |
---|
384 | sumprod = (double **)Malloc((long)chars*sizeof(double *)); |
---|
385 | for (i = 0; i < chars; i++) { |
---|
386 | sumprod[i] = (double *)Malloc((long)chars*sizeof(double)); |
---|
387 | for (j = 0; j < chars; j++) |
---|
388 | sumprod[i][j] = 0.0; |
---|
389 | } |
---|
390 | for (i = 0; i <= contno - 2; i++) { |
---|
391 | for (j = 0; j < chars; j++) { |
---|
392 | for (k = 0; k < chars; k++) |
---|
393 | sumprod[j][k] += cntrast[i][0][j] * cntrast[i][0][k]; |
---|
394 | } |
---|
395 | } |
---|
396 | fprintf(outfile, "\nCovariance matrix\n"); |
---|
397 | fprintf(outfile, "---------- ------\n\n"); |
---|
398 | for (i = 0; i < chars; i++) { |
---|
399 | for (j = 0; j < chars; j++) |
---|
400 | sumprod[i][j] /= contno - 1; |
---|
401 | } |
---|
402 | for (i = 0; i < chars; i++) { |
---|
403 | for (j = 0; j < chars; j++) |
---|
404 | fprintf(outfile, "%10.4f", sumprod[i][j]); |
---|
405 | putc('\n', outfile); |
---|
406 | } |
---|
407 | fprintf(outfile, "\nRegressions (columns on rows)\n"); |
---|
408 | fprintf(outfile, "----------- -------- -- -----\n\n"); |
---|
409 | for (i = 0; i < chars; i++) { |
---|
410 | for (j = 0; j < chars; j++) |
---|
411 | fprintf(outfile, "%10.4f", sumprod[i][j] / sumprod[i][i]); |
---|
412 | putc('\n', outfile); |
---|
413 | } |
---|
414 | fprintf(outfile, "\nCorrelations\n"); |
---|
415 | fprintf(outfile, "------------\n\n"); |
---|
416 | for (i = 0; i < chars; i++) { |
---|
417 | for (j = 0; j < chars; j++) |
---|
418 | fprintf(outfile, "%10.4f", |
---|
419 | sumprod[i][j] / sqrt(sumprod[i][i] * sumprod[j][j])); |
---|
420 | putc('\n', outfile); |
---|
421 | } |
---|
422 | for (i = 0; i < chars; i++) |
---|
423 | free(sumprod[i]); |
---|
424 | free(sumprod); |
---|
425 | } /* regressions */ |
---|
426 | |
---|
427 | |
---|
428 | double logdet(double **a) |
---|
429 | { |
---|
430 | /* Gauss-Jordan log determinant calculation. |
---|
431 | in place, overwriting previous contents of a. On exit, |
---|
432 | matrix a contains the inverse. Works only for positive definite A */ |
---|
433 | long i, j, k; |
---|
434 | double temp, sum; |
---|
435 | |
---|
436 | sum = 0.0; |
---|
437 | for (i = 0; i < chars; i++) { |
---|
438 | if (a[i][i] == 0.0) { /* debug make fabs() < 1.0E-37 instead? */ |
---|
439 | printf("ERROR: tried to invert singular matrix.\n"); |
---|
440 | exxit(-1); |
---|
441 | } |
---|
442 | sum += log(a[i][i]); |
---|
443 | temp = 1.0 / a[i][i]; |
---|
444 | a[i][i] = 1.0; |
---|
445 | for (j = 0; j < chars; j++) |
---|
446 | a[i][j] *= temp; |
---|
447 | for (j = 0; j < chars; j++) { |
---|
448 | if (j != i) { |
---|
449 | temp = a[j][i]; |
---|
450 | a[j][i] = 0.0; |
---|
451 | for (k = 0; k < chars; k++) |
---|
452 | a[j][k] -= temp * a[i][k]; |
---|
453 | } |
---|
454 | } |
---|
455 | } |
---|
456 | return(sum); |
---|
457 | } /* lodget */ |
---|
458 | |
---|
459 | |
---|
460 | void invert(double **a) |
---|
461 | { |
---|
462 | /* Gauss-Jordan reduction -- invert chars x chars matrix a |
---|
463 | in place, overwriting previous contents of a. On exit, |
---|
464 | matrix a contains the inverse.*/ |
---|
465 | long i, j, k; |
---|
466 | double temp; |
---|
467 | |
---|
468 | for (i = 0; i < chars; i++) { |
---|
469 | if (a[i][i] == 0.0) { /* debug make fabs() < 1.0E-37 instead? */ |
---|
470 | printf("ERROR: tried to invert singular matrix.\n"); |
---|
471 | exxit(-1); |
---|
472 | } |
---|
473 | temp = 1.0 / a[i][i]; |
---|
474 | a[i][i] = 1.0; |
---|
475 | for (j = 0; j < chars; j++) |
---|
476 | a[i][j] *= temp; |
---|
477 | for (j = 0; j < chars; j++) { |
---|
478 | if (j != i) { |
---|
479 | temp = a[j][i]; |
---|
480 | a[j][i] = 0.0; |
---|
481 | for (k = 0; k < chars; k++) |
---|
482 | a[j][k] -= temp * a[i][k]; |
---|
483 | } |
---|
484 | } |
---|
485 | } |
---|
486 | } /*invert*/ |
---|
487 | |
---|
488 | |
---|
489 | void initcovars(boolean novara) |
---|
490 | { |
---|
491 | /* Initialize covariance estimates */ |
---|
492 | long i, j, k, l, contswithin; |
---|
493 | |
---|
494 | /* zero the matrices */ |
---|
495 | for (i = 0; i < chars; i++) |
---|
496 | for (j = 0; j < chars; j++) { |
---|
497 | vara[i][j] = 0.0; |
---|
498 | vare[i][j] = 0.0; |
---|
499 | } |
---|
500 | /* estimate VE from within contrasts -- unbiasedly */ |
---|
501 | contswithin = 0; |
---|
502 | for (i = 0; i < spp; i++) { |
---|
503 | for (j = 1; j < sample[i]; j++) { |
---|
504 | contswithin++; |
---|
505 | for (k = 0; k < chars; k++) |
---|
506 | for (l = 0; l < chars; l++) |
---|
507 | vare[k][l] += cntrast[i][j][k]*cntrast[i][j][l]; |
---|
508 | } |
---|
509 | } |
---|
510 | /* estimate VA from between contrasts -- biasedly: does not take out VE */ |
---|
511 | if (!novara) { /* leave VarA = 0 if no A component assumed present */ |
---|
512 | for (i = 0; i < spp-1; i++) { |
---|
513 | for (j = 0; j < chars; j++) |
---|
514 | for (k = 0; k < chars; k++) |
---|
515 | if (ssqcont[i][0] <= 0.0) |
---|
516 | vara[j][k] += cntrast[i][0][j]*cntrast[i][0][k]; |
---|
517 | else |
---|
518 | vara[j][k] += cntrast[i][0][j]*cntrast[i][0][k] |
---|
519 | / ((long)(spp-1)*ssqcont[i][0]); |
---|
520 | } |
---|
521 | } |
---|
522 | for (k = 0; k < chars; k++) |
---|
523 | for (l = 0; l < chars; l++) |
---|
524 | if (contswithin > 0) |
---|
525 | vare[k][l] /= contswithin; |
---|
526 | else { |
---|
527 | if (!novara) { |
---|
528 | vara[k][l] = 0.5 * vara[k][l]; |
---|
529 | vare[k][l] = vara[k][l]; |
---|
530 | } |
---|
531 | } |
---|
532 | } /* initcovars */ |
---|
533 | |
---|
534 | |
---|
535 | double normdiff(boolean novara) |
---|
536 | { |
---|
537 | /* Get relative norm of difference between old, new covariances */ |
---|
538 | double s; |
---|
539 | long i, j; |
---|
540 | |
---|
541 | s = 0.0; |
---|
542 | for (i = 0; i < chars; i++) |
---|
543 | for (j = 0; j < chars; j++) { |
---|
544 | if (!novara) { |
---|
545 | if (fabs(oldvara[i][j]) <= 0.00000001) |
---|
546 | s += vara[i][j]; |
---|
547 | else |
---|
548 | s += fabs(vara[i][j]/oldvara[i][j]-1.0); |
---|
549 | } |
---|
550 | if (fabs(oldvare[i][j]) <= 0.00000001) |
---|
551 | s += vare[i][j]; |
---|
552 | else |
---|
553 | s += fabs(vare[i][j]/oldvare[i][j]-1.0); |
---|
554 | } |
---|
555 | return s/((double)(chars*chars)); |
---|
556 | } /* normdiff */ |
---|
557 | |
---|
558 | |
---|
559 | void matcopy(double **a, double **b) |
---|
560 | { |
---|
561 | /* Copy matrices chars x chars: a to b */ |
---|
562 | long i; |
---|
563 | |
---|
564 | for (i = 0; i < chars; i++) { |
---|
565 | memcpy(b[i], a[i], chars*sizeof(double)); |
---|
566 | } |
---|
567 | } /* matcopy */ |
---|
568 | |
---|
569 | |
---|
570 | void newcovars(boolean novara) |
---|
571 | { |
---|
572 | /* one EM update of covariances, compute old likelihood too */ |
---|
573 | long i, j, k, l, m; |
---|
574 | double sum, sum2, sum3, sqssq; |
---|
575 | |
---|
576 | if (!novara) |
---|
577 | matcopy(vara, oldvara); |
---|
578 | matcopy(vare, oldvare); |
---|
579 | sum2 = 0.0; /* log likelihood of old parameters accumulates here */ |
---|
580 | for (i = 0; i < chars; i++) /* zero out vara and vare */ |
---|
581 | for (j = 0; j < chars; j++) { |
---|
582 | if (!novara) |
---|
583 | vara[i][j] = 0.0; |
---|
584 | vare[i][j] = 0.0; |
---|
585 | } |
---|
586 | for (i = 0; i < spp-1; i++) { /* accumulate over contrasts ... */ |
---|
587 | if (i <= spp-2) { /* E(aa'|x) and E(ee'|x) for "between" contrasts */ |
---|
588 | sqssq = sqrt(ssqcont[i][0]); |
---|
589 | for (k = 0; k < chars; k++) /* compute (dA+E) for this contrast */ |
---|
590 | for (l = 0; l < chars; l++) |
---|
591 | if (!novara) |
---|
592 | temp1[k][l] = ssqcont[i][0] * oldvara[k][l] + oldvare[k][l]; |
---|
593 | else |
---|
594 | temp1[k][l] = oldvare[k][l]; |
---|
595 | matcopy(temp1, temp2); |
---|
596 | invert(temp2); /* compute (dA+E)^(-1) */ |
---|
597 | /* sum of - x (dA+E)^(-1) x'/2 for old A, E */ |
---|
598 | for (k = 0; k < chars; k++) |
---|
599 | for (l = 0; l < chars; l++) |
---|
600 | sum2 -= cntrast[i][0][k]*temp2[k][l]*cntrast[i][0][l]/2.0; |
---|
601 | matcopy(temp1, temp3); |
---|
602 | sum2 -= 0.5 * logdet(temp3); /* log determinant term too */ |
---|
603 | if (!novara) { |
---|
604 | for (k = 0; k < chars; k++) |
---|
605 | for (l = 0; l < chars; l++) { |
---|
606 | sum = 0.0; |
---|
607 | for (j = 0; j < chars; j++) |
---|
608 | sum += temp2[k][j] * sqssq * oldvara[j][l]; |
---|
609 | Bax[k][l] = sum; /* Bax = (dA+E)^(-1) * sqrt(d) * A */ |
---|
610 | } |
---|
611 | } |
---|
612 | for (k = 0; k < chars; k++) |
---|
613 | for (l = 0; l < chars; l++) { |
---|
614 | sum = 0.0; |
---|
615 | for (j = 0; j < chars; j++) |
---|
616 | sum += temp2[k][j] * oldvare[j][l]; |
---|
617 | Bex[k][l] = sum; /* Bex = (dA+E)^(-1) * E */ |
---|
618 | } |
---|
619 | if (!novara) { |
---|
620 | for (k = 0; k < chars; k++) |
---|
621 | for (l = 0; l < chars; l++) { |
---|
622 | sum = 0.0; |
---|
623 | for (m = 0; m < chars; m++) |
---|
624 | sum += Bax[m][k] * (cntrast[i][0][m]*cntrast[i][0][l] |
---|
625 | -temp1[m][l]); |
---|
626 | temp2[k][l] = sum; /* Bax'*(xx'-(dA+E)) ... */ |
---|
627 | } |
---|
628 | for (k = 0; k < chars; k++) |
---|
629 | for (l = 0; l < chars; l++) { |
---|
630 | sum = 0.0; |
---|
631 | for (m = 0; m < chars; m++) |
---|
632 | sum += temp2[k][m] * Bax[m][l]; |
---|
633 | vara[k][l] += sum; /* ... * Bax */ |
---|
634 | } |
---|
635 | } |
---|
636 | for (k = 0; k < chars; k++) |
---|
637 | for (l = 0; l < chars; l++) { |
---|
638 | sum = 0.0; |
---|
639 | for (m = 0; m < chars; m++) |
---|
640 | sum += Bex[m][k] * (cntrast[i][0][m]*cntrast[i][0][l] |
---|
641 | -temp1[m][l]); |
---|
642 | temp2[k][l] = sum; /* Bex'*(xx'-(dA+E)) ... */ |
---|
643 | } |
---|
644 | for (k = 0; k < chars; k++) |
---|
645 | for (l = 0; l < chars; l++) { |
---|
646 | sum = 0.0; |
---|
647 | for (m = 0; m < chars; m++) |
---|
648 | sum += temp2[k][m] * Bex[m][l]; |
---|
649 | vare[k][l] += sum; /* ... * Bex */ |
---|
650 | } |
---|
651 | } |
---|
652 | } |
---|
653 | matcopy(oldvare, temp2); |
---|
654 | invert(temp2); /* get E^(-1) */ |
---|
655 | matcopy(oldvare, temp3); |
---|
656 | sum3 = 0.5 * logdet(temp3); /* get 1/2 log det(E) */ |
---|
657 | for (i = 0; i < spp; i++) { |
---|
658 | if (sample[i] > 1) { |
---|
659 | for (j = 1; j < sample[i]; j++) { /* E(aa'|x) (invisibly) and |
---|
660 | E(ee'|x) for within contrasts */ |
---|
661 | for (k = 0; k < chars; k++) |
---|
662 | for (l = 0; l < chars; l++) { |
---|
663 | vare[k][l] += cntrast[i][j][k] * cntrast[i][j][l] - oldvare[k][l]; |
---|
664 | sum2 -= cntrast[i][j][k] * temp2[k][l] * cntrast[i][j][l] / 2.0; |
---|
665 | /* accumulate - x*E^(-1)*x'/2 for old E */ |
---|
666 | } |
---|
667 | sum2 -= sum3; /* log determinant term too */ |
---|
668 | } |
---|
669 | } |
---|
670 | } |
---|
671 | for (i = 0; i < chars; i++) /* complete EM by dividing by denom ... */ |
---|
672 | for (j = 0; j < chars; j++) { /* ... and adding old VA, VE */ |
---|
673 | if (!novara) { |
---|
674 | vara[i][j] /= (double)contnum; |
---|
675 | vara[i][j] += oldvara[i][j]; |
---|
676 | } |
---|
677 | vare[i][j] /= (double)contnum; |
---|
678 | vare[i][j] += oldvare[i][j]; |
---|
679 | } |
---|
680 | logL = sum2; /* log likelihood for old values */ |
---|
681 | } /* newcovars */ |
---|
682 | |
---|
683 | |
---|
684 | void printcovariances(boolean novara) |
---|
685 | { |
---|
686 | /* print out ML covariances and regressions in the error-covariance case */ |
---|
687 | long i, j; |
---|
688 | |
---|
689 | fprintf(outfile, "\n\n"); |
---|
690 | if (novara) |
---|
691 | fprintf(outfile, "Estimates when VarA is not in the model\n\n"); |
---|
692 | else |
---|
693 | fprintf(outfile, "Estimates when VarA is in the model\n\n"); |
---|
694 | if (!novara) { |
---|
695 | fprintf(outfile, "Estimate of VarA\n"); |
---|
696 | fprintf(outfile, "-------- -- ----\n"); |
---|
697 | fprintf(outfile, "\n"); |
---|
698 | for (i = 0; i < chars; i++) { |
---|
699 | for (j = 0; j < chars; j++) |
---|
700 | fprintf(outfile, " %12.6f ", vara[i][j]); |
---|
701 | fprintf(outfile, "\n"); |
---|
702 | } |
---|
703 | fprintf(outfile, "\n"); |
---|
704 | } |
---|
705 | fprintf(outfile, "Estimate of VarE\n"); |
---|
706 | fprintf(outfile, "-------- -- ----\n"); |
---|
707 | fprintf(outfile, "\n"); |
---|
708 | for (i = 0; i < chars; i++) { |
---|
709 | for (j = 0; j < chars; j++) |
---|
710 | fprintf(outfile, " %12.6f ", vare[i][j]); |
---|
711 | fprintf(outfile, "\n"); |
---|
712 | } |
---|
713 | fprintf(outfile, "\n"); |
---|
714 | if (!novara) { |
---|
715 | fprintf(outfile, "VarA Regressions (columns on rows)\n"); |
---|
716 | fprintf(outfile, "---- ----------- -------- -- -----\n\n"); |
---|
717 | for (i = 0; i < chars; i++) { |
---|
718 | for (j = 0; j < chars; j++) |
---|
719 | fprintf(outfile, "%10.4f", vara[i][j] / vara[i][i]); |
---|
720 | putc('\n', outfile); |
---|
721 | } |
---|
722 | fprintf(outfile, "\n"); |
---|
723 | fprintf(outfile, "VarA Correlations\n"); |
---|
724 | fprintf(outfile, "---- ------------\n\n"); |
---|
725 | for (i = 0; i < chars; i++) { |
---|
726 | for (j = 0; j < chars; j++) |
---|
727 | fprintf(outfile, "%10.4f", |
---|
728 | vara[i][j] / sqrt(vara[i][i] * vara[j][j])); |
---|
729 | putc('\n', outfile); |
---|
730 | } |
---|
731 | fprintf(outfile, "\n"); |
---|
732 | } |
---|
733 | fprintf(outfile, "VarE Regressions (columns on rows)\n"); |
---|
734 | fprintf(outfile, "---- ----------- -------- -- -----\n\n"); |
---|
735 | for (i = 0; i < chars; i++) { |
---|
736 | for (j = 0; j < chars; j++) |
---|
737 | fprintf(outfile, "%10.4f", vare[i][j] / vare[i][i]); |
---|
738 | putc('\n', outfile); |
---|
739 | } |
---|
740 | fprintf(outfile, "\n"); |
---|
741 | fprintf(outfile, "\nVarE Correlations\n"); |
---|
742 | fprintf(outfile, "---- ------------\n\n"); |
---|
743 | for (i = 0; i < chars; i++) { |
---|
744 | for (j = 0; j < chars; j++) |
---|
745 | fprintf(outfile, "%10.4f", |
---|
746 | vare[i][j] / sqrt(vare[i][i] * vare[j][j])); |
---|
747 | putc('\n', outfile); |
---|
748 | } |
---|
749 | fprintf(outfile, "\n\n"); |
---|
750 | } /* printcovariances */ |
---|
751 | |
---|
752 | |
---|
753 | void emiterate(boolean novara) |
---|
754 | { |
---|
755 | /* EM iteration of error and phylogenetic covariances */ |
---|
756 | /* How to handle missing values? */ |
---|
757 | long its; |
---|
758 | double relnorm; |
---|
759 | |
---|
760 | initcovars(novara); |
---|
761 | its = 1; |
---|
762 | do { |
---|
763 | newcovars(novara); |
---|
764 | relnorm = normdiff(novara); |
---|
765 | if (its % 100 == 0) |
---|
766 | printf("Iteration no. %ld: ln L = %f, Norm = %f\n", its, logL, relnorm); |
---|
767 | its++; |
---|
768 | } while ((relnorm > 0.00001) && (its < 10000)); |
---|
769 | if (its == 10000) { |
---|
770 | printf("\nWARNING: Iterations did not converge."); |
---|
771 | printf(" Results may be unreliable.\n"); |
---|
772 | } |
---|
773 | } /* emiterate */ |
---|
774 | |
---|
775 | |
---|
776 | void initcontrastnode(node **p, node **grbg, node *q, long len, |
---|
777 | long nodei, long *ntips, long *parens, initops whichinit, |
---|
778 | pointarray treenode, pointarray nodep, Char *str, |
---|
779 | Char *ch, FILE *intree) |
---|
780 | { |
---|
781 | /* initializes a node */ |
---|
782 | boolean minusread; |
---|
783 | double valyew, divisor; |
---|
784 | |
---|
785 | switch (whichinit) { |
---|
786 | case bottom: |
---|
787 | gnu(grbg, p); |
---|
788 | (*p)->index = nodei; |
---|
789 | (*p)->tip = false; |
---|
790 | nodep[(*p)->index - 1] = (*p); |
---|
791 | (*p)->view = (phenotype3)Malloc((long)chars*sizeof(double)); |
---|
792 | break; |
---|
793 | case nonbottom: |
---|
794 | gnu(grbg, p); |
---|
795 | (*p)->index = nodei; |
---|
796 | (*p)->view = (phenotype3)Malloc((long)chars*sizeof(double)); |
---|
797 | break; |
---|
798 | case tip: |
---|
799 | match_names_to_data (str, nodep, p, spp); |
---|
800 | (*p)->view = (phenotype3)Malloc((long)chars*sizeof(double)); |
---|
801 | (*p)->deltav = 0.0; |
---|
802 | break; |
---|
803 | case length: |
---|
804 | processlength(&valyew, &divisor, ch, &minusread, intree, parens); |
---|
805 | (*p)->v = valyew / divisor; |
---|
806 | (*p)->iter = false; |
---|
807 | if ((*p)->back != NULL) { |
---|
808 | (*p)->back->v = (*p)->v; |
---|
809 | (*p)->back->iter = false; |
---|
810 | } |
---|
811 | break; |
---|
812 | default: /* cases of hslength,iter,hsnolength,treewt,unittrwt*/ |
---|
813 | break; /* not handled */ |
---|
814 | } |
---|
815 | } /* initcontrastnode */ |
---|
816 | |
---|
817 | |
---|
818 | void maketree() |
---|
819 | { |
---|
820 | /* set up the tree and use it */ |
---|
821 | long which, nextnode; |
---|
822 | node *q, *r; |
---|
823 | |
---|
824 | alloctree(&curtree.nodep, nonodes); |
---|
825 | setuptree(&curtree, nonodes); |
---|
826 | which = 1; |
---|
827 | while (which <= numtrees) { |
---|
828 | if ((printdata || reg) && numtrees > 1) { |
---|
829 | fprintf(outfile, "Tree number%4ld\n", which); |
---|
830 | fprintf(outfile, "==== ====== ====\n\n"); |
---|
831 | } |
---|
832 | nextnode = 0; |
---|
833 | treeread (intree, &curtree.start, curtree.nodep, &goteof, &first, |
---|
834 | curtree.nodep, &nextnode, &haslengths, &grbg, initcontrastnode); |
---|
835 | q = curtree.start; |
---|
836 | r = curtree.start; |
---|
837 | while (!(q->next == curtree.start)) |
---|
838 | q = q->next; |
---|
839 | q->next = curtree.start->next; |
---|
840 | curtree.start = q; |
---|
841 | chuck(&grbg, r); |
---|
842 | curtree.nodep[spp] = q; |
---|
843 | bifurcating = (curtree.start->next->next == curtree.start); |
---|
844 | contwithin(); |
---|
845 | makecontrasts(curtree.start); |
---|
846 | if (!bifurcating) { |
---|
847 | makecontrasts(curtree.start->back); |
---|
848 | contbetween(curtree.start, curtree.start->back); |
---|
849 | } |
---|
850 | if (!varywithin) { |
---|
851 | if (writecont) |
---|
852 | writecontrasts(); |
---|
853 | if (reg) |
---|
854 | regressions(); |
---|
855 | putc('\n', outfile); |
---|
856 | } |
---|
857 | else { |
---|
858 | emiterate(false); |
---|
859 | printcovariances(false); |
---|
860 | if (nophylo) { |
---|
861 | logLvara = logL; |
---|
862 | emiterate(nophylo); |
---|
863 | printcovariances(nophylo); |
---|
864 | logLnovara = logL; |
---|
865 | fprintf(outfile, "\n\n\n Likelihood Ratio Test"); |
---|
866 | fprintf(outfile, " of no VarA component\n"); |
---|
867 | fprintf(outfile, " ---------- ----- ----"); |
---|
868 | fprintf(outfile, " -- -- ---- ---------\n\n"); |
---|
869 | fprintf(outfile, " Log likelihood with varA = %13.5f,", |
---|
870 | logLvara); |
---|
871 | fprintf(outfile, " %ld parameters\n\n", chars*(chars+1)); |
---|
872 | fprintf(outfile, " Log likelihood without varA = %13.5f,", |
---|
873 | logLnovara); |
---|
874 | fprintf(outfile, " %ld parameters\n\n", chars*(chars+1)/2); |
---|
875 | fprintf(outfile, " difference = %13.5f\n\n", |
---|
876 | logLvara-logLnovara); |
---|
877 | fprintf(outfile, " Chi-square value = %13.5f, ", |
---|
878 | 2.0*(logLvara-logLnovara)); |
---|
879 | fprintf(outfile, " %ld degrees of freedom\n\n", chars*(chars+1)/2); |
---|
880 | } |
---|
881 | } |
---|
882 | which++; |
---|
883 | } |
---|
884 | if (progress) |
---|
885 | printf("\nOutput written to file \"%s\"\n\n", outfilename); |
---|
886 | } /* maketree */ |
---|
887 | |
---|
888 | |
---|
889 | int main(int argc, Char *argv[]) |
---|
890 | { /* main program */ |
---|
891 | #ifdef MAC |
---|
892 | argc = 1; /* macsetup("Contrast","Contrast"); */ |
---|
893 | argv[0] = "Contrast"; |
---|
894 | #endif |
---|
895 | init(argc, argv); |
---|
896 | openfile(&infile,INFILE,"input data","r",argv[0],infilename); |
---|
897 | openfile(&intree,INTREE,"input tree", "r",argv[0],intreename); |
---|
898 | openfile(&outfile,OUTFILE,"output", "w",argv[0],outfilename); |
---|
899 | ibmpc = IBMCRT; |
---|
900 | ansi = ANSICRT; |
---|
901 | reg = true; |
---|
902 | numtrees = 1; |
---|
903 | doinit(); |
---|
904 | getdata(); |
---|
905 | maketree(); |
---|
906 | FClose(infile); |
---|
907 | FClose(outfile); |
---|
908 | FClose(intree); |
---|
909 | printf("Done.\n\n"); |
---|
910 | #ifdef WIN32 |
---|
911 | phyRestoreConsoleAttributes(); |
---|
912 | #endif |
---|
913 | return 0; |
---|
914 | } |
---|