| 1 | #include "spr.h" |
|---|
| 2 | #include "utilities.h" |
|---|
| 3 | #include "lk.h" |
|---|
| 4 | #include "optimiz.h" |
|---|
| 5 | #include "bionj.h" |
|---|
| 6 | #include "models.h" |
|---|
| 7 | #include "free.h" |
|---|
| 8 | #include "help.h" |
|---|
| 9 | #include "simu.h" |
|---|
| 10 | #include "eigen.h" |
|---|
| 11 | #include "pars.h" |
|---|
| 12 | #include "alrt.h" |
|---|
| 13 | #include "mixt.h" |
|---|
| 14 | #include "sergeii.h" |
|---|
| 15 | #ifdef MPI |
|---|
| 16 | #include "mpi_boot.h" |
|---|
| 17 | #endif |
|---|
| 18 | #include <stdlib.h> |
|---|
| 19 | |
|---|
| 20 | |
|---|
| 21 | |
|---|
| 22 | ////////////////////////////////////////////////////////////// |
|---|
| 23 | ////////////////////////////////////////////////////////////// |
|---|
| 24 | void PhyTime_XML(char *xml_file) |
|---|
| 25 | { |
|---|
| 26 | |
|---|
| 27 | FILE *f; |
|---|
| 28 | char **clade, *clade_name, **mon_list; |
|---|
| 29 | phydbl low, up; |
|---|
| 30 | int i, j, n_taxa, clade_size, node_num, n_mon; //rnd_num |
|---|
| 31 | xml_node *n_r, *n_t, *n_m, *n_cur; |
|---|
| 32 | t_cal *last_calib; |
|---|
| 33 | /* t_cal *cur; */ |
|---|
| 34 | align **data, **c_seq; |
|---|
| 35 | option *io; |
|---|
| 36 | calign *cdata; |
|---|
| 37 | t_opt *s_opt; |
|---|
| 38 | t_mod *mod; |
|---|
| 39 | time_t t_beg,t_end; |
|---|
| 40 | int r_seed; |
|---|
| 41 | char *most_likely_tree; |
|---|
| 42 | int user_lk_approx; |
|---|
| 43 | t_tree *tree; |
|---|
| 44 | t_node **a_nodes; //*node; |
|---|
| 45 | m4 *m4mod; |
|---|
| 46 | |
|---|
| 47 | srand(time(NULL)); |
|---|
| 48 | |
|---|
| 49 | i = 0; |
|---|
| 50 | j = 0; |
|---|
| 51 | last_calib = NULL; |
|---|
| 52 | mod = NULL; |
|---|
| 53 | most_likely_tree = NULL; |
|---|
| 54 | n_taxa = 0; |
|---|
| 55 | node_num = -1; |
|---|
| 56 | |
|---|
| 57 | //file can/cannot be open: |
|---|
| 58 | if ((f =(FILE *)fopen(xml_file, "r")) == NULL) |
|---|
| 59 | { |
|---|
| 60 | PhyML_Printf("\n== File '%s' can not be opened...\n",xml_file); |
|---|
| 61 | Exit("\n"); |
|---|
| 62 | } |
|---|
| 63 | |
|---|
| 64 | n_r = XML_Load_File(f); |
|---|
| 65 | |
|---|
| 66 | //XML_Search_Node_Attribute_Value_Clade("id", "clade1", NO, n_r -> child); |
|---|
| 67 | //Exit("\n"); |
|---|
| 68 | |
|---|
| 69 | //memory allocation for model parameters: |
|---|
| 70 | io = (option *)Make_Input(); |
|---|
| 71 | mod = (t_mod *)Make_Model_Basic(); |
|---|
| 72 | s_opt = (t_opt *)Make_Optimiz(); |
|---|
| 73 | m4mod = (m4 *)M4_Make_Light(); |
|---|
| 74 | Set_Defaults_Input(io); |
|---|
| 75 | Set_Defaults_Model(mod); |
|---|
| 76 | Set_Defaults_Optimiz(s_opt); |
|---|
| 77 | io -> mod = mod; |
|---|
| 78 | mod = io -> mod; |
|---|
| 79 | mod -> s_opt = s_opt; |
|---|
| 80 | clade_size = -1; |
|---|
| 81 | |
|---|
| 82 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 83 | //////////////////////reading tree topology://////////////////////////////// |
|---|
| 84 | |
|---|
| 85 | //looking for a node <topology> |
|---|
| 86 | n_t = XML_Search_Node_Name("topology", YES, n_r); |
|---|
| 87 | |
|---|
| 88 | //setting tree: |
|---|
| 89 | tree = (t_tree *)mCalloc(1,sizeof(t_tree)); |
|---|
| 90 | n_cur = XML_Search_Node_Name("instance", YES, n_t); |
|---|
| 91 | if(n_cur != NULL) |
|---|
| 92 | { |
|---|
| 93 | if(XML_Search_Attribute(n_cur, "user.tree") != NULL) |
|---|
| 94 | { |
|---|
| 95 | strcpy(io -> out_tree_file, XML_Search_Attribute(n_cur, "user.tree") -> value); |
|---|
| 96 | io -> fp_out_tree = Openfile(io -> out_tree_file, 1); |
|---|
| 97 | io -> tree = Read_Tree_File_Phylip(io -> fp_in_tree); |
|---|
| 98 | } |
|---|
| 99 | else |
|---|
| 100 | { |
|---|
| 101 | PhyML_Printf("\n==Tree was not found. \n"); |
|---|
| 102 | PhyML_Printf("\n==Either specify tree file name or enter the whole tree. \n"); |
|---|
| 103 | Exit("\n"); |
|---|
| 104 | } |
|---|
| 105 | } |
|---|
| 106 | else io -> tree = Read_Tree(&n_t -> value); |
|---|
| 107 | io -> n_otu = io -> tree -> n_otu; |
|---|
| 108 | tree = io -> tree; |
|---|
| 109 | |
|---|
| 110 | |
|---|
| 111 | //setting initial values to n_calib: |
|---|
| 112 | For(i, 2 * tree -> n_otu - 2) |
|---|
| 113 | { |
|---|
| 114 | tree -> a_nodes[i] -> n_calib = 0; |
|---|
| 115 | //PhyML_Printf("\n. '%d' \n", tree -> a_nodes[i] -> n_calib); |
|---|
| 116 | } |
|---|
| 117 | |
|---|
| 118 | |
|---|
| 119 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 120 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 121 | |
|---|
| 122 | //memory for nodes: |
|---|
| 123 | a_nodes = (t_node **)mCalloc(2 * io -> n_otu - 1,sizeof(t_node *)); |
|---|
| 124 | For(i, 2 * io -> n_otu - 2) a_nodes[i] = (t_node *)mCalloc(1,sizeof(t_node)); |
|---|
| 125 | |
|---|
| 126 | //setting a model: |
|---|
| 127 | tree -> rates = RATES_Make_Rate_Struct(io -> n_otu); |
|---|
| 128 | RATES_Init_Rate_Struct(tree -> rates, io -> rates, tree -> n_otu); |
|---|
| 129 | |
|---|
| 130 | //reading seed: |
|---|
| 131 | if(XML_Search_Attribute(n_r, "seed")) io -> r_seed = String_To_Dbl(XML_Search_Attribute(n_r, "seed") -> value); |
|---|
| 132 | |
|---|
| 133 | //TO DO: check that the tree has a root... |
|---|
| 134 | Update_Ancestors(io -> tree -> n_root, io -> tree -> n_root -> v[2], io -> tree); |
|---|
| 135 | Update_Ancestors(io -> tree -> n_root, io -> tree -> n_root -> v[1], io -> tree); |
|---|
| 136 | |
|---|
| 137 | |
|---|
| 138 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 139 | //////////////////////memory allocation for temp parameters///////////////// |
|---|
| 140 | |
|---|
| 141 | //memory for monitor flag: |
|---|
| 142 | io -> mcmc -> monitor = (int *)mCalloc(2 * io -> n_otu - 1,sizeof(int)); |
|---|
| 143 | |
|---|
| 144 | |
|---|
| 145 | //memory for sequences: |
|---|
| 146 | n_cur = XML_Search_Node_Name("alignment", YES, n_r); |
|---|
| 147 | |
|---|
| 148 | data = (align **)mCalloc(io -> n_otu,sizeof(align *)); |
|---|
| 149 | For(i, io -> n_otu) |
|---|
| 150 | { |
|---|
| 151 | data[i] = (align *)mCalloc(1,sizeof(align)); |
|---|
| 152 | data[i] -> name = (char *)mCalloc(T_MAX_NAME,sizeof(char)); |
|---|
| 153 | if(n_cur -> child -> value != NULL) data[i] -> state = (char *)mCalloc(strlen(n_cur -> child -> value) + 1,sizeof(char)); |
|---|
| 154 | else data[i] -> state = (char *)mCalloc(T_MAX_SEQ,sizeof(char)); |
|---|
| 155 | } |
|---|
| 156 | io -> data = data; |
|---|
| 157 | //tree -> data = data; |
|---|
| 158 | |
|---|
| 159 | |
|---|
| 160 | //memory for clade: |
|---|
| 161 | clade_name = (char *)mCalloc(T_MAX_NAME,sizeof(char)); |
|---|
| 162 | clade = (char **)mCalloc(tree -> n_otu, sizeof(char *)); |
|---|
| 163 | For(i, tree -> n_otu) |
|---|
| 164 | { |
|---|
| 165 | clade[i] = (char *)mCalloc(T_MAX_NAME,sizeof(char)); |
|---|
| 166 | } |
|---|
| 167 | |
|---|
| 168 | //memory for list of clades to be monitored |
|---|
| 169 | mon_list = (char **)mCalloc(T_MAX_FILE,sizeof(char *)); |
|---|
| 170 | For(i, T_MAX_FILE) |
|---|
| 171 | { |
|---|
| 172 | mon_list[i] = (char *)mCalloc(T_MAX_NAME,sizeof(char)); |
|---|
| 173 | } |
|---|
| 174 | |
|---|
| 175 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 176 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 177 | |
|---|
| 178 | //reading monitor node: |
|---|
| 179 | i = 0; |
|---|
| 180 | n_m = XML_Search_Node_Name("monitor", YES, n_r); |
|---|
| 181 | if(n_m != NULL) |
|---|
| 182 | { |
|---|
| 183 | do |
|---|
| 184 | { |
|---|
| 185 | strcpy(mon_list[i], n_m -> child -> attr -> value); |
|---|
| 186 | i++; |
|---|
| 187 | if(n_m -> child) n_m -> child = n_m -> child -> next; |
|---|
| 188 | else break; |
|---|
| 189 | } |
|---|
| 190 | while(n_m -> child); |
|---|
| 191 | n_mon = i; |
|---|
| 192 | } |
|---|
| 193 | else |
|---|
| 194 | { |
|---|
| 195 | n_mon = 0; |
|---|
| 196 | PhyML_Printf("\n. There is no clade to be monitored. \n"); |
|---|
| 197 | } |
|---|
| 198 | |
|---|
| 199 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 200 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 201 | |
|---|
| 202 | //chekcing for calibration node (upper or lower bound) to exist: |
|---|
| 203 | n_cur = XML_Search_Node_Name("calibration", YES, n_r); |
|---|
| 204 | |
|---|
| 205 | if(n_cur == NULL) |
|---|
| 206 | { |
|---|
| 207 | PhyML_Printf("\n==There is no calibration information provided. \n"); |
|---|
| 208 | PhyML_Printf("\n==Please check your data. \n"); |
|---|
| 209 | Exit("\n"); |
|---|
| 210 | } |
|---|
| 211 | else |
|---|
| 212 | { |
|---|
| 213 | if(XML_Search_Node_Name("upper", NO, n_cur -> child) == NULL && XML_Search_Node_Name("lower", NO, n_cur -> child) == NULL) |
|---|
| 214 | { |
|---|
| 215 | PhyML_Printf("\n==There is no calibration information provided. \n"); |
|---|
| 216 | PhyML_Printf("\n==Please check your data. \n"); |
|---|
| 217 | Exit("\n"); |
|---|
| 218 | } |
|---|
| 219 | } |
|---|
| 220 | |
|---|
| 221 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 222 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 223 | if(XML_Search_Attribute(n_r, "use_data") != NULL) |
|---|
| 224 | { |
|---|
| 225 | if(XML_Search_Attribute(n_r, "use_data") -> value != NULL && (!strcmp(XML_Search_Attribute(n_r, "use_data") -> value, "YES"))) |
|---|
| 226 | io -> mcmc -> use_data = YES; |
|---|
| 227 | if(XML_Search_Attribute(n_r, "use_data") -> value != NULL && (!strcmp(XML_Search_Attribute(n_r, "use_data") -> value, "NO"))) |
|---|
| 228 | io -> mcmc -> use_data = NO; |
|---|
| 229 | } |
|---|
| 230 | |
|---|
| 231 | n_r = n_r -> child; |
|---|
| 232 | tree -> rates -> tot_num_cal = 0; |
|---|
| 233 | do |
|---|
| 234 | { |
|---|
| 235 | if(!strcmp(n_r -> name, "alignment"))//looking for a node <alignment>. |
|---|
| 236 | { |
|---|
| 237 | if(!n_r -> attr -> value) |
|---|
| 238 | { |
|---|
| 239 | PhyML_Printf("\n==Not found sequence type (nt / aa). \n"); |
|---|
| 240 | PhyML_Printf("\n==Please, include data to node <%s> attribute value. \n", n_r -> name); |
|---|
| 241 | Exit("\n"); |
|---|
| 242 | } |
|---|
| 243 | if(!strcmp(To_Upper_String(n_r -> attr -> value), "NT")) |
|---|
| 244 | { |
|---|
| 245 | io -> datatype = 0; |
|---|
| 246 | io -> mod -> ns = 4; |
|---|
| 247 | } |
|---|
| 248 | if(!strcmp(To_Upper_String(n_r -> attr -> value), "AA")) |
|---|
| 249 | { |
|---|
| 250 | io -> datatype = 1; |
|---|
| 251 | io -> mod -> ns = 20; |
|---|
| 252 | } |
|---|
| 253 | |
|---|
| 254 | n_cur = XML_Search_Node_Name("instance", YES, n_r); |
|---|
| 255 | if(n_cur != NULL) |
|---|
| 256 | { |
|---|
| 257 | if(XML_Search_Attribute(n_cur, "user.alignment") != NULL) |
|---|
| 258 | { |
|---|
| 259 | strcpy(io -> in_align_file, XML_Search_Attribute(n_cur, "user.alignment") -> value); |
|---|
| 260 | io -> fp_in_align = Openfile(io -> in_align_file, 1); |
|---|
| 261 | Detect_Align_File_Format(io); |
|---|
| 262 | io -> data = Get_Seq(io); |
|---|
| 263 | } |
|---|
| 264 | } |
|---|
| 265 | else |
|---|
| 266 | { |
|---|
| 267 | i = 0; |
|---|
| 268 | do |
|---|
| 269 | { |
|---|
| 270 | strcpy(io -> in_align_file, "sergeii"); |
|---|
| 271 | strcpy(io -> data[i] -> name, n_r -> child -> attr -> value); |
|---|
| 272 | strcpy(io -> data[i] -> state, To_Upper_String(n_r -> child -> value)); |
|---|
| 273 | i++; |
|---|
| 274 | if(n_r -> child -> next) n_r -> child = n_r -> child -> next; |
|---|
| 275 | else break; |
|---|
| 276 | } |
|---|
| 277 | while(n_r -> child); |
|---|
| 278 | n_taxa = i; |
|---|
| 279 | } |
|---|
| 280 | |
|---|
| 281 | //checking if a sequences of the same lengths: |
|---|
| 282 | |
|---|
| 283 | i = 1; |
|---|
| 284 | For(i, n_taxa) if(strlen(io -> data[0] -> state) != strlen(io -> data[i] -> state)) |
|---|
| 285 | { |
|---|
| 286 | printf("\n. Sequences are of different length. Please check your data...\n"); |
|---|
| 287 | Exit("\n"); |
|---|
| 288 | break; |
|---|
| 289 | } |
|---|
| 290 | |
|---|
| 291 | //checking sequence names: |
|---|
| 292 | i = 0; |
|---|
| 293 | For(i, n_taxa) Check_Sequence_Name(io -> data[i] -> name); |
|---|
| 294 | |
|---|
| 295 | //check if a number of tips is equal to a number of taxa: |
|---|
| 296 | if(n_taxa != io -> n_otu) |
|---|
| 297 | { |
|---|
| 298 | PhyML_Printf("\n==Number of taxa is not the same as a number of tips. Check your data...\n"); |
|---|
| 299 | Exit("\n"); |
|---|
| 300 | } |
|---|
| 301 | |
|---|
| 302 | //deleting '-', etc. from sequences: |
|---|
| 303 | io -> data[0] -> len = strlen(io -> data[0] -> state); |
|---|
| 304 | Post_Process_Data(io); |
|---|
| 305 | n_r = n_r -> next; |
|---|
| 306 | } |
|---|
| 307 | else if(!strcmp(n_r -> name, "calibration"))//looking for a node <calibration>. |
|---|
| 308 | { |
|---|
| 309 | tree -> rates -> tot_num_cal++; |
|---|
| 310 | if (tree -> rates -> calib == NULL) tree -> rates -> calib = Make_Calib(tree -> n_otu); |
|---|
| 311 | if(last_calib) |
|---|
| 312 | { |
|---|
| 313 | last_calib -> next = tree -> rates -> calib; |
|---|
| 314 | tree -> rates -> calib -> prev = last_calib; |
|---|
| 315 | } |
|---|
| 316 | last_calib = tree -> rates -> calib; |
|---|
| 317 | |
|---|
| 318 | low = -BIG; |
|---|
| 319 | up = BIG; |
|---|
| 320 | n_cur = XML_Search_Node_Name("lower", YES, n_r); |
|---|
| 321 | if(n_cur != NULL) low = String_To_Dbl(n_cur -> value); |
|---|
| 322 | n_cur = XML_Search_Node_Name("upper", YES, n_r); |
|---|
| 323 | if(n_cur != NULL) up = String_To_Dbl(n_cur -> value); |
|---|
| 324 | do |
|---|
| 325 | { |
|---|
| 326 | if(!strcmp("appliesto", n_r -> child -> name)) |
|---|
| 327 | { |
|---|
| 328 | //case of internal node: |
|---|
| 329 | strcpy(clade_name, n_r -> child -> attr -> value);//reached clade names n_r -> child -> attr -> value |
|---|
| 330 | if(!strcmp("root", clade_name)) |
|---|
| 331 | { |
|---|
| 332 | node_num = io -> tree -> n_root -> num; |
|---|
| 333 | //printf("\n. Node number [%d] \n", node_num); |
|---|
| 334 | } |
|---|
| 335 | else if(strcmp("NO_CLADE", clade_name) && strcmp("root", clade_name)) |
|---|
| 336 | { |
|---|
| 337 | xml_node *n_clade, *nd2; |
|---|
| 338 | nd2 = n_r -> parent; |
|---|
| 339 | /* n_clade = XML_Search_Node_Attribute_Value_Clade("id", clade_name, NO, n_r -> parent -> child); */ |
|---|
| 340 | n_clade = XML_Search_Node_Generic("clade", "id", clade_name, YES, nd2); |
|---|
| 341 | if(n_clade) //found clade with a given name |
|---|
| 342 | { |
|---|
| 343 | i = 0; |
|---|
| 344 | xml_node *nd; |
|---|
| 345 | nd = n_clade -> child; |
|---|
| 346 | /* do */ |
|---|
| 347 | /* { */ |
|---|
| 348 | /* strcpy(clade[i], nd -> attr -> value); */ |
|---|
| 349 | /* i++; */ |
|---|
| 350 | /* nd = nd -> next; */ |
|---|
| 351 | /* if(!nd) break; */ |
|---|
| 352 | /* } */ |
|---|
| 353 | /* while(n_clade -> child); */ |
|---|
| 354 | /* clade_size = i; */ |
|---|
| 355 | clade = XML_Reading_Clade(nd, tree); |
|---|
| 356 | clade_size = XML_Number_Of_Taxa_In_Clade(nd); |
|---|
| 357 | node_num = Find_Clade(clade, clade_size, io -> tree); |
|---|
| 358 | /* printf("\n. Clade size [%d] \n", clade_size); */ |
|---|
| 359 | /* printf("\n. Node number [%d] \n", node_num); */ |
|---|
| 360 | } |
|---|
| 361 | else |
|---|
| 362 | { |
|---|
| 363 | PhyML_Printf("==Calibration information on the clade [%s] was not found. \n", clade_name); |
|---|
| 364 | PhyML_Printf("\n. Err in file %s at line %d\n",__FILE__,__LINE__); |
|---|
| 365 | Exit("\n"); |
|---|
| 366 | } |
|---|
| 367 | } |
|---|
| 368 | if(strcmp("NO_CLADE", clade_name)) |
|---|
| 369 | { |
|---|
| 370 | For(j, n_mon) |
|---|
| 371 | { |
|---|
| 372 | if(!strcmp(clade_name, mon_list[j])) io -> mcmc -> monitor[node_num] = YES; |
|---|
| 373 | } |
|---|
| 374 | } |
|---|
| 375 | /* For(i, clade_size) PhyML_Printf("\n. Clade name [%s] Taxon name: [%s]", clade_name, clade[i]); */ |
|---|
| 376 | if(strcmp("NO_CLADE", clade_name)) |
|---|
| 377 | { |
|---|
| 378 | tree -> rates -> calib -> proba[node_num] = String_To_Dbl(n_r -> child -> attr -> next -> value); |
|---|
| 379 | |
|---|
| 380 | if(!n_r -> child -> attr -> next && n_r -> child -> next == NULL) tree -> rates -> calib -> proba[node_num] = 1.; |
|---|
| 381 | if(!n_r -> child -> attr -> next && n_r -> child -> next) |
|---|
| 382 | { |
|---|
| 383 | PhyML_Printf("==You either need to provide information about probability with which calibration \n"); |
|---|
| 384 | PhyML_Printf("==applies to a node or you need to apply calibartion only to one node. \n"); |
|---|
| 385 | PhyML_Printf("\n. Err in file %s at line %d\n",__FILE__,__LINE__); |
|---|
| 386 | Exit("\n"); |
|---|
| 387 | } |
|---|
| 388 | |
|---|
| 389 | tree -> rates -> calib -> all_applies_to[tree -> rates -> calib -> n_all_applies_to] -> num = node_num; |
|---|
| 390 | } |
|---|
| 391 | else tree -> rates -> calib -> proba[2 * tree -> n_otu - 1] = String_To_Dbl(n_r -> child -> attr -> next -> value); |
|---|
| 392 | tree -> rates -> calib -> n_all_applies_to++; |
|---|
| 393 | tree -> rates -> calib -> lower = low; |
|---|
| 394 | tree -> rates -> calib -> upper = up; |
|---|
| 395 | /* printf("\n. Porbability [%f] \n", String_To_Dbl(n_r -> child -> attr -> next -> value)); */ |
|---|
| 396 | |
|---|
| 397 | ///////////////////////////////////////////////////////////////////////////////////////////////////// |
|---|
| 398 | PhyML_Printf("\n. ......................................................................."); |
|---|
| 399 | PhyML_Printf("\n"); |
|---|
| 400 | if(strcmp(clade_name, "NO_CLADE")) PhyML_Printf("\n. Clade name: [%s]", clade_name); |
|---|
| 401 | else |
|---|
| 402 | { |
|---|
| 403 | PhyML_Printf("\n. Calibration with:"); |
|---|
| 404 | PhyML_Printf("\n. Lower bound set to: %15f time units.", low); |
|---|
| 405 | PhyML_Printf("\n. Upper bound set to: %15f time units.", up); |
|---|
| 406 | PhyML_Printf("\n. DOES NOT apply with probability [%f]", String_To_Dbl(n_r -> child -> attr -> next -> value)); |
|---|
| 407 | PhyML_Printf("\n. ......................................................................."); |
|---|
| 408 | } |
|---|
| 409 | |
|---|
| 410 | if(strcmp(clade_name, "root") && strcmp(clade_name, "NO_CLADE")) |
|---|
| 411 | { |
|---|
| 412 | For(i, clade_size) PhyML_Printf("\n. Taxon name: [%s]", clade[i]); |
|---|
| 413 | } |
|---|
| 414 | if(strcmp(clade_name, "NO_CLADE")) |
|---|
| 415 | { |
|---|
| 416 | PhyML_Printf("\n. Node number to which calibration applies to is [%d] with probability [%f]", node_num, String_To_Dbl(n_r -> child -> attr -> next -> value)); |
|---|
| 417 | PhyML_Printf("\n. Lower bound set to: %15f time units.", low); |
|---|
| 418 | PhyML_Printf("\n. Upper bound set to: %15f time units.", up); |
|---|
| 419 | PhyML_Printf("\n. ......................................................................."); |
|---|
| 420 | } |
|---|
| 421 | ///////////////////////////////////////////////////////////////////////////////////////////////////// |
|---|
| 422 | if(n_r -> child -> next) n_r -> child = n_r -> child -> next; |
|---|
| 423 | else break; |
|---|
| 424 | } |
|---|
| 425 | else if(n_r -> child -> next) n_r -> child = n_r -> child -> next; |
|---|
| 426 | else break; |
|---|
| 427 | } |
|---|
| 428 | while(n_r -> child); |
|---|
| 429 | //PhyML_Printf("\n. '%d'\n", tree -> rates -> calib -> n_all_applies_to); |
|---|
| 430 | tree -> rates -> calib = tree -> rates -> calib -> next; |
|---|
| 431 | n_r = n_r -> next; |
|---|
| 432 | } |
|---|
| 433 | else if(!strcmp(n_r -> name, "ratematrices"))//initializing rate matrix: |
|---|
| 434 | { |
|---|
| 435 | if(n_r -> child) |
|---|
| 436 | { |
|---|
| 437 | Make_Ratematrice_From_XML_Node(n_r -> child, io, mod); |
|---|
| 438 | n_r = n_r -> next; |
|---|
| 439 | } |
|---|
| 440 | else n_r = n_r -> next; |
|---|
| 441 | } |
|---|
| 442 | else if(!strcmp(n_r -> name, "equfreqs"))//initializing frequencies: |
|---|
| 443 | { |
|---|
| 444 | if(n_r -> child) |
|---|
| 445 | { |
|---|
| 446 | Make_Efrq_From_XML_Node(n_r -> child , io, mod); |
|---|
| 447 | n_r = n_r -> next; |
|---|
| 448 | } |
|---|
| 449 | else n_r = n_r -> next; |
|---|
| 450 | } |
|---|
| 451 | else if(!strcmp(n_r -> name, "siterates"))//initializing site rates: |
|---|
| 452 | { |
|---|
| 453 | if(n_r -> child) |
|---|
| 454 | { |
|---|
| 455 | Make_RAS_From_XML_Node(n_r, io -> mod); |
|---|
| 456 | n_r = n_r -> next; |
|---|
| 457 | } |
|---|
| 458 | else n_r = n_r -> next; |
|---|
| 459 | } |
|---|
| 460 | else if (n_r -> next) n_r = n_r -> next; |
|---|
| 461 | else break; |
|---|
| 462 | } |
|---|
| 463 | while(1); |
|---|
| 464 | |
|---|
| 465 | tree -> rates -> calib = last_calib; |
|---|
| 466 | while(tree -> rates -> calib -> prev) tree -> rates -> calib = tree -> rates -> calib -> prev; |
|---|
| 467 | //////////////////////////////////////////////////////////////////////////////////////////////// |
|---|
| 468 | //Check for the sum of probabilities for one calibration add up to one |
|---|
| 469 | do |
|---|
| 470 | { |
|---|
| 471 | phydbl p = 0.0; |
|---|
| 472 | for(i = tree -> n_otu; i < 2 * tree -> n_otu; i++) |
|---|
| 473 | { |
|---|
| 474 | p = p + tree -> rates -> calib -> proba[i]; |
|---|
| 475 | /* PhyML_Printf("\n. # applies to %d \n", tree -> rates -> calib -> n_all_applies_to); */ |
|---|
| 476 | /* PhyML_Printf("\n. %f \n", tree -> rates -> calib -> proba[i]); */ |
|---|
| 477 | } |
|---|
| 478 | if(!Are_Equal(p, 1.0, 1.E-10)) |
|---|
| 479 | { |
|---|
| 480 | PhyML_Printf("\n. ......................................................................."); |
|---|
| 481 | PhyML_Printf("\n. WARNING! The sum of the probabilities for the calibration with:"); |
|---|
| 482 | PhyML_Printf("\n. Lower bound set to: %15f time units.", tree -> rates -> calib -> lower); |
|---|
| 483 | PhyML_Printf("\n. Upper bound set to: %15f time units.", tree -> rates -> calib -> upper); |
|---|
| 484 | PhyML_Printf("\n. IS NOT equal to 1."); |
|---|
| 485 | PhyML_Printf("\n. The probability of NOT applying this calibration will be set to [%f].", 1.0 - p); |
|---|
| 486 | PhyML_Printf("\n. ......................................................................."); |
|---|
| 487 | tree -> rates -> calib -> proba[2 * tree -> n_otu - 1] = 1.0 - p; |
|---|
| 488 | tree -> rates -> calib -> n_all_applies_to++; |
|---|
| 489 | /* PhyML_Printf("\n==You need to provide proper probabilities for the calibration. \n"); */ |
|---|
| 490 | /* PhyML_Printf("\n. Err in file %s at line %d\n",__FILE__,__LINE__); */ |
|---|
| 491 | /* Exit("\n"); */ |
|---|
| 492 | } |
|---|
| 493 | if(tree -> rates -> calib -> next) tree -> rates -> calib = tree -> rates -> calib -> next; |
|---|
| 494 | else break; |
|---|
| 495 | } |
|---|
| 496 | while(tree -> rates -> calib); |
|---|
| 497 | while(tree -> rates -> calib -> prev) tree -> rates -> calib = tree -> rates -> calib -> prev; |
|---|
| 498 | //////////////////////////////////////////////////////////////////////////////////////////////// |
|---|
| 499 | //Set_Current_Calibration(0, tree); |
|---|
| 500 | //TIMES_Set_All_Node_Priors(tree); |
|---|
| 501 | //Slicing_Calibrations(tree); |
|---|
| 502 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 503 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 504 | //clear memory: |
|---|
| 505 | free(clade_name); |
|---|
| 506 | For(i, tree -> n_otu) |
|---|
| 507 | { |
|---|
| 508 | free(clade[i]); |
|---|
| 509 | } |
|---|
| 510 | free(clade); |
|---|
| 511 | For(i, T_MAX_FILE) |
|---|
| 512 | { |
|---|
| 513 | free(mon_list[i]); |
|---|
| 514 | } |
|---|
| 515 | free(mon_list); |
|---|
| 516 | |
|---|
| 517 | //Exit("\n"); |
|---|
| 518 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 519 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 520 | //START analysis: |
|---|
| 521 | r_seed = (io -> r_seed < 0)?(time(NULL)):(io -> r_seed); |
|---|
| 522 | srand(r_seed); |
|---|
| 523 | rand(); |
|---|
| 524 | PhyML_Printf("\n. Seed: %d\n", r_seed); |
|---|
| 525 | PhyML_Printf("\n. Pid: %d\n",getpid()); |
|---|
| 526 | PhyML_Printf("\n. Compressing sequences...\n"); |
|---|
| 527 | data = io -> data; |
|---|
| 528 | data[0] -> len = strlen(data[0] -> state); |
|---|
| 529 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 530 | //memory for compressed sequences: |
|---|
| 531 | cdata = (calign *)mCalloc(1,sizeof(calign)); |
|---|
| 532 | c_seq = (align **)mCalloc(io -> n_otu,sizeof(align *)); |
|---|
| 533 | For(i, io -> n_otu) |
|---|
| 534 | { |
|---|
| 535 | c_seq[i] = (align *)mCalloc(1,sizeof(align)); |
|---|
| 536 | c_seq[i] -> name = (char *)mCalloc(T_MAX_NAME,sizeof(char)); |
|---|
| 537 | c_seq[i] -> state = (char *)mCalloc(data[0] -> len + 1,sizeof(char)); |
|---|
| 538 | } |
|---|
| 539 | cdata -> c_seq = c_seq; |
|---|
| 540 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 541 | cdata = Compact_Data(data, io); |
|---|
| 542 | Free_Seq(io -> data, cdata -> n_otu); |
|---|
| 543 | io -> mod -> io = io; |
|---|
| 544 | Check_Ambiguities(cdata, io -> mod -> io -> datatype, io -> state_len); |
|---|
| 545 | Make_Model_Complete(mod); |
|---|
| 546 | Init_Model(cdata, mod, io); |
|---|
| 547 | if(io -> mod -> use_m4mod) M4_Init_Model(mod -> m4mod, cdata, mod); |
|---|
| 548 | time(&(t_beg)); |
|---|
| 549 | |
|---|
| 550 | tree -> mod = mod; |
|---|
| 551 | tree -> io = io; |
|---|
| 552 | tree -> data = cdata; |
|---|
| 553 | tree -> n_pattern = tree -> data -> crunch_len / tree -> io -> state_len; |
|---|
| 554 | |
|---|
| 555 | Set_Both_Sides(YES, tree); |
|---|
| 556 | Prepare_Tree_For_Lk(tree); |
|---|
| 557 | |
|---|
| 558 | //calculate the probabilities of each combination of calibrations: |
|---|
| 559 | TIMES_Calib_Partial_Proba(tree); |
|---|
| 560 | int cal_numb = 0; |
|---|
| 561 | do |
|---|
| 562 | { |
|---|
| 563 | if(!Are_Equal(tree -> rates -> times_partial_proba[cal_numb], 0.0, 1.E-10)) break; |
|---|
| 564 | else cal_numb += 1; |
|---|
| 565 | } |
|---|
| 566 | while(1); |
|---|
| 567 | /* printf("\n. Calib number [%d] \n", cal_numb); */ |
|---|
| 568 | Set_Current_Calibration(cal_numb, tree); |
|---|
| 569 | int tot_num_comb; |
|---|
| 570 | tot_num_comb = Number_Of_Comb(tree -> rates -> calib); |
|---|
| 571 | PhyML_Printf("\n. The total number of calibration combinations is going to be considered is %d.\n", tot_num_comb); |
|---|
| 572 | TIMES_Set_All_Node_Priors(tree); |
|---|
| 573 | |
|---|
| 574 | |
|---|
| 575 | //set initial value for Hastings ratio for conditional jump: |
|---|
| 576 | tree -> rates -> c_lnL_Hastings_ratio = 0.0; |
|---|
| 577 | |
|---|
| 578 | TIMES_Get_Number_Of_Time_Slices(tree); |
|---|
| 579 | TIMES_Label_Edges_With_Calibration_Intervals(tree); |
|---|
| 580 | |
|---|
| 581 | |
|---|
| 582 | tree -> write_br_lens = NO; |
|---|
| 583 | |
|---|
| 584 | |
|---|
| 585 | PhyML_Printf("\n. Input tree with calibration information ('almost' compatible with MCMCtree).\n"); |
|---|
| 586 | PhyML_Printf("\n. %s \n", Write_Tree(tree, YES)); |
|---|
| 587 | |
|---|
| 588 | tree -> write_br_lens = YES; |
|---|
| 589 | |
|---|
| 590 | |
|---|
| 591 | // Work with log of branch lengths? |
|---|
| 592 | if(tree -> mod -> log_l == YES) Log_Br_Len(tree); |
|---|
| 593 | |
|---|
| 594 | if(io -> mcmc -> use_data == YES) |
|---|
| 595 | { |
|---|
| 596 | // Force the exact likelihood score |
|---|
| 597 | user_lk_approx = tree -> io -> lk_approx; |
|---|
| 598 | tree -> io -> lk_approx = EXACT; |
|---|
| 599 | |
|---|
| 600 | // MLE for branch lengths |
|---|
| 601 | /* printf("\n. %s",Write_Tree(tree,NO)); */ |
|---|
| 602 | /* printf("\n. alpha %f",tree->mod->ras->alpha->v); */ |
|---|
| 603 | /* printf("\n. %f %f %f %f",tree->mod->e_frq->pi->v[0],tree->mod->e_frq->pi->v[1],tree->mod->e_frq->pi->v[2],tree->mod->e_frq->pi->v[3]); */ |
|---|
| 604 | /* Lk(NULL,tree); */ |
|---|
| 605 | /* printf("\n. %f",tree->c_lnL); */ |
|---|
| 606 | /* Exit("\n"); */ |
|---|
| 607 | |
|---|
| 608 | PhyML_Printf("\n"); |
|---|
| 609 | Round_Optimize(tree, tree -> data, ROUND_MAX); |
|---|
| 610 | |
|---|
| 611 | // Set vector of mean branch lengths for the Normal approximation of the likelihood |
|---|
| 612 | RATES_Set_Mean_L(tree); |
|---|
| 613 | |
|---|
| 614 | // Estimate the matrix of covariance for the Normal approximation of the likelihood |
|---|
| 615 | PhyML_Printf("\n"); |
|---|
| 616 | PhyML_Printf("\n. Computing Hessian..."); |
|---|
| 617 | tree -> rates -> bl_from_rt = 0; |
|---|
| 618 | Free(tree -> rates -> cov_l); |
|---|
| 619 | tree -> rates -> cov_l = Hessian_Seo(tree); |
|---|
| 620 | |
|---|
| 621 | // tree->rates->cov_l = Hessian_Log(tree); |
|---|
| 622 | For(i, (2 * tree -> n_otu - 3) * (2 * tree -> n_otu - 3)) tree -> rates -> cov_l[i] *= -1.0; |
|---|
| 623 | if(!Iter_Matinv(tree -> rates -> cov_l, 2 * tree -> n_otu - 3, 2 * tree -> n_otu - 3, YES)) Exit("\n"); |
|---|
| 624 | tree -> rates -> covdet = Matrix_Det(tree -> rates -> cov_l, 2 * tree -> n_otu - 3, YES); |
|---|
| 625 | For(i,(2 * tree -> n_otu - 3) * (2 * tree -> n_otu - 3)) tree -> rates -> invcov[i] = tree -> rates -> cov_l[i]; |
|---|
| 626 | if(!Iter_Matinv(tree -> rates -> invcov, 2 * tree -> n_otu - 3, 2 * tree -> n_otu - 3, YES)) Exit("\n"); |
|---|
| 627 | tree -> rates -> grad_l = Gradient(tree); |
|---|
| 628 | |
|---|
| 629 | // Pre-calculation of conditional variances to speed up calculations |
|---|
| 630 | RATES_Bl_To_Ml(tree); |
|---|
| 631 | RATES_Get_Conditional_Variances(tree); |
|---|
| 632 | RATES_Get_All_Reg_Coeff(tree); |
|---|
| 633 | RATES_Get_Trip_Conditional_Variances(tree); |
|---|
| 634 | RATES_Get_All_Trip_Reg_Coeff(tree); |
|---|
| 635 | |
|---|
| 636 | Lk(NULL, tree); |
|---|
| 637 | PhyML_Printf("\n"); |
|---|
| 638 | PhyML_Printf("\n. p(data|model) [exact ] ~ %.2f",tree -> c_lnL); |
|---|
| 639 | tree -> io -> lk_approx = NORMAL; |
|---|
| 640 | For(i,2 * tree -> n_otu - 3) tree -> rates -> u_cur_l[i] = tree -> rates -> mean_l[i] ; |
|---|
| 641 | tree -> c_lnL = Lk(NULL,tree); |
|---|
| 642 | PhyML_Printf("\n. p(data|model) [approx] ~ %.2f",tree -> c_lnL); |
|---|
| 643 | |
|---|
| 644 | tree -> io -> lk_approx = user_lk_approx; |
|---|
| 645 | |
|---|
| 646 | } |
|---|
| 647 | |
|---|
| 648 | |
|---|
| 649 | tree -> rates -> model = io -> rates -> model; |
|---|
| 650 | |
|---|
| 651 | PhyML_Printf("\n. Selected model '%s' \n", RATES_Get_Model_Name(io -> rates -> model)); |
|---|
| 652 | |
|---|
| 653 | if(tree -> rates -> model == GUINDON) tree -> mod -> gamma_mgf_bl = YES; |
|---|
| 654 | |
|---|
| 655 | tree -> rates -> bl_from_rt = YES; |
|---|
| 656 | |
|---|
| 657 | if(tree -> io -> cstr_tree) Find_Surviving_Edges_In_Small_Tree(tree, tree -> io -> cstr_tree); |
|---|
| 658 | time(&t_beg); |
|---|
| 659 | |
|---|
| 660 | tree -> mcmc = MCMC_Make_MCMC_Struct(); |
|---|
| 661 | |
|---|
| 662 | MCMC_Copy_MCMC_Struct(tree -> io -> mcmc, tree -> mcmc, "phytime"); |
|---|
| 663 | |
|---|
| 664 | tree -> mod -> m4mod = m4mod; |
|---|
| 665 | |
|---|
| 666 | MCMC_Complete_MCMC(tree -> mcmc, tree); |
|---|
| 667 | |
|---|
| 668 | tree -> mcmc -> is_burnin = NO; |
|---|
| 669 | |
|---|
| 670 | //PhyML_Printf("\n"); |
|---|
| 671 | //PhyML_Printf("\n. Computing Normalizing Constant(s) for the Node Times Prior Density...\n"); |
|---|
| 672 | //tree -> K = Norm_Constant_Prior_Times(tree); |
|---|
| 673 | //Exit("\n"); |
|---|
| 674 | |
|---|
| 675 | MCMC(tree); |
|---|
| 676 | |
|---|
| 677 | MCMC_Close_MCMC(tree -> mcmc); |
|---|
| 678 | MCMC_Free_MCMC(tree -> mcmc); |
|---|
| 679 | PhyML_Printf("\n"); |
|---|
| 680 | |
|---|
| 681 | Free_Tree_Pars(tree); |
|---|
| 682 | Free_Tree_Lk(tree); |
|---|
| 683 | Free_Tree(tree); |
|---|
| 684 | Free_Cseq(cdata); |
|---|
| 685 | Free_Model(mod); |
|---|
| 686 | if(io -> fp_in_align) fclose(io -> fp_in_align); |
|---|
| 687 | if(io -> fp_in_tree) fclose(io -> fp_in_tree); |
|---|
| 688 | if(io -> fp_out_lk) fclose(io -> fp_out_lk); |
|---|
| 689 | if(io -> fp_out_tree) fclose(io -> fp_out_tree); |
|---|
| 690 | if(io -> fp_out_trees) fclose(io -> fp_out_trees); |
|---|
| 691 | if(io -> fp_out_stats) fclose(io -> fp_out_stats); |
|---|
| 692 | fclose(f); |
|---|
| 693 | Free(most_likely_tree); |
|---|
| 694 | Free_Input(io); |
|---|
| 695 | Free_Calib(tree -> rates -> calib); |
|---|
| 696 | time(&t_end); |
|---|
| 697 | Print_Time_Info(t_beg,t_end); |
|---|
| 698 | |
|---|
| 699 | /* return 1; */ |
|---|
| 700 | } |
|---|
| 701 | |
|---|
| 702 | |
|---|
| 703 | ////////////////////////////////////////////////////////////// |
|---|
| 704 | ////////////////////////////////////////////////////////////// |
|---|
| 705 | //Calculate the prior probability for node times taking into account the |
|---|
| 706 | //probailitis with which each calibration applies to the particular node. |
|---|
| 707 | phydbl TIMES_Calib_Cond_Prob(t_tree *tree) |
|---|
| 708 | { |
|---|
| 709 | |
|---|
| 710 | phydbl times_lk, *Yule_val, *times_partial_proba, times_tot_proba, *t_prior_min, *t_prior_max, c, constant, ln_t; |
|---|
| 711 | short int *t_has_prior; |
|---|
| 712 | int i, j, k, tot_num_comb; |
|---|
| 713 | t_cal *calib; |
|---|
| 714 | |
|---|
| 715 | |
|---|
| 716 | times_tot_proba = 0.0; |
|---|
| 717 | calib = tree -> rates -> calib; |
|---|
| 718 | t_prior_min = tree -> rates -> t_prior_min; |
|---|
| 719 | t_prior_max = tree -> rates -> t_prior_max; |
|---|
| 720 | t_has_prior = tree -> rates -> t_has_prior; |
|---|
| 721 | times_partial_proba = tree -> rates -> times_partial_proba; |
|---|
| 722 | /* constant = tree -> K; */ |
|---|
| 723 | |
|---|
| 724 | tot_num_comb = Number_Of_Comb(calib); |
|---|
| 725 | |
|---|
| 726 | |
|---|
| 727 | Yule_val = (phydbl *)mCalloc(tot_num_comb, sizeof(phydbl)); |
|---|
| 728 | /* times_partial_proba = (phydbl *)mCalloc(tot_num_comb, sizeof(phydbl)); */ |
|---|
| 729 | |
|---|
| 730 | For(i, tot_num_comb) |
|---|
| 731 | { |
|---|
| 732 | for(j = tree -> n_otu; j < 2 * tree -> n_otu - 1; j++) |
|---|
| 733 | { |
|---|
| 734 | t_prior_min[j] = -BIG; |
|---|
| 735 | t_prior_max[j] = BIG; |
|---|
| 736 | t_has_prior[j] = NO; |
|---|
| 737 | } |
|---|
| 738 | do |
|---|
| 739 | { |
|---|
| 740 | k = (i % Number_Of_Comb(calib)) / Number_Of_Comb(calib -> next); |
|---|
| 741 | if(calib -> all_applies_to[k] -> num) |
|---|
| 742 | { |
|---|
| 743 | t_prior_min[calib -> all_applies_to[k] -> num] = MAX(t_prior_min[calib -> all_applies_to[k] -> num], calib -> lower); |
|---|
| 744 | t_prior_max[calib -> all_applies_to[k] -> num] = MIN(t_prior_max[calib -> all_applies_to[k] -> num], calib -> upper); |
|---|
| 745 | t_has_prior[calib -> all_applies_to[k] -> num] = YES; |
|---|
| 746 | /* if((t_prior_min[calib -> all_applies_to[k] -> num] > t_prior_max[calib -> all_applies_to[k] -> num])) times_partial_proba[i] = 0.0; */ |
|---|
| 747 | /* else times_partial_proba[i] *= calib -> proba[calib -> all_applies_to[k] -> num]; */ |
|---|
| 748 | } |
|---|
| 749 | else |
|---|
| 750 | { |
|---|
| 751 | if(calib -> next) calib = calib -> next; |
|---|
| 752 | else break; |
|---|
| 753 | } |
|---|
| 754 | if(calib -> next) calib = calib -> next; |
|---|
| 755 | else break; |
|---|
| 756 | } |
|---|
| 757 | while(calib); |
|---|
| 758 | |
|---|
| 759 | int result; |
|---|
| 760 | result = TRUE; |
|---|
| 761 | TIMES_Set_All_Node_Priors_S(&result, tree); |
|---|
| 762 | /* printf("\n\n"); */ |
|---|
| 763 | /* For(j, 2 * tree -> n_otu - 1) printf("\n. [1] Node [%d] min [%f] max [%f] node time [%f]\n", j, tree -> rates -> t_prior_min[j], tree -> rates -> t_prior_max[j], tree -> rates -> nd_t[j]); */ |
|---|
| 764 | /* printf("\n. p[%i] = %f \n", i + 1, times_partial_proba[i]); */ |
|---|
| 765 | /* printf("\n\n"); */ |
|---|
| 766 | |
|---|
| 767 | //tree -> rates -> birth_rate = 4.0; |
|---|
| 768 | times_lk = TIMES_Lk_Yule_Order(tree); |
|---|
| 769 | /* if(result != FALSE) times_lk = TIMES_Lk_Yule_Order(tree); */ |
|---|
| 770 | /* else times_lk = 1.0; */ |
|---|
| 771 | |
|---|
| 772 | constant = 1.0; |
|---|
| 773 | if(times_lk > -INFINITY && result != FALSE) constant = Slicing_Calibrations(tree); |
|---|
| 774 | /* else */ |
|---|
| 775 | /* { */ |
|---|
| 776 | /* times_lk = 0.0; */ |
|---|
| 777 | /* times_partial_proba[i] = 0.0; */ |
|---|
| 778 | /* } */ |
|---|
| 779 | |
|---|
| 780 | /* printf("\n. K = [%f] \n", constant); */ |
|---|
| 781 | /* K = Norm_Constant_Prior_Times(tree); */ |
|---|
| 782 | /* Yule_val[i] = K[i] * TIMES_Lk_Yule_Order(tree); */ |
|---|
| 783 | |
|---|
| 784 | /* For(j, 2 * tree -> n_otu - 1) printf("\n. [2] Node [%d] time [%f]\n", j, tree -> rates -> nd_t[j]); */ |
|---|
| 785 | |
|---|
| 786 | Yule_val[i] = LOG(constant) + times_lk; |
|---|
| 787 | |
|---|
| 788 | /* printf("\n. Yule = %f \n", Yule_val[i]); */ |
|---|
| 789 | |
|---|
| 790 | while(calib -> prev) calib = calib -> prev; |
|---|
| 791 | } |
|---|
| 792 | |
|---|
| 793 | /* min_value = 0.0; */ |
|---|
| 794 | /* For(i, tot_num_comb) if(Yule_val[i] < min_value && Yule_val[i] > -INFINITY) min_value = Yule_val[i]; */ |
|---|
| 795 | /* c = -600. - min_value; */ |
|---|
| 796 | |
|---|
| 797 | |
|---|
| 798 | c = .0; |
|---|
| 799 | times_tot_proba = 0.0; |
|---|
| 800 | For(i, tot_num_comb) |
|---|
| 801 | { |
|---|
| 802 | times_tot_proba += times_partial_proba[i] * EXP(Yule_val[i] + c); |
|---|
| 803 | /* printf("\n. Proba = [%f] \n", times_partial_proba[i]); */ |
|---|
| 804 | } |
|---|
| 805 | |
|---|
| 806 | For(i, 2 * tree -> n_otu - 1) t_has_prior[i] = NO; |
|---|
| 807 | |
|---|
| 808 | ln_t = -c + LOG(times_tot_proba); |
|---|
| 809 | /* printf("\n. Prior for node times = [%f] \n", ln_t); */ |
|---|
| 810 | /* Set_Current_Calibration(1, tree); */ |
|---|
| 811 | /* printf("\n\n"); */ |
|---|
| 812 | free(Yule_val); |
|---|
| 813 | /* free(times_partial_proba); */ |
|---|
| 814 | /* Exit("\n"); */ |
|---|
| 815 | return(ln_t); |
|---|
| 816 | } |
|---|
| 817 | |
|---|
| 818 | |
|---|
| 819 | |
|---|
| 820 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 821 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 822 | //Function calculates the normalizing constant K of the joint distribution Yule_Order. |
|---|
| 823 | //Use the fact that density Yule_Order can be used streight forward only in case of the complete |
|---|
| 824 | //overlap of the calibration intervals for all of the nodes or in case of no overlap. |
|---|
| 825 | phydbl Slicing_Calibrations(t_tree *tree) |
|---|
| 826 | { |
|---|
| 827 | int i, j, k, f, n_otu, *indic, *n_slice, *slice_numbers; |
|---|
| 828 | phydbl K, buf, chop_bound, *t_prior_min, *t_prior_max, *t_slice, *t_slice_min, *t_slice_max; |
|---|
| 829 | |
|---|
| 830 | |
|---|
| 831 | t_prior_min = tree -> rates -> t_prior_min; |
|---|
| 832 | t_prior_max = tree -> rates -> t_prior_max; |
|---|
| 833 | n_otu = tree -> n_otu; |
|---|
| 834 | |
|---|
| 835 | t_slice = (phydbl *)mCalloc(2 * (n_otu - 1), sizeof(phydbl)); //the vector of the union of lower and upper bounds, lined up in incresing order. |
|---|
| 836 | t_slice_min = (phydbl *)mCalloc(2 * n_otu - 3, sizeof(phydbl)); //vector of the lower bounds of the sliced intervals. |
|---|
| 837 | t_slice_max = (phydbl *)mCalloc(2 * n_otu - 3, sizeof(phydbl)); //vector of the upper bounds of the sliced intervals. |
|---|
| 838 | indic = (int *)mCalloc((n_otu - 1) * (2 * n_otu - 3), sizeof(int)); //vector of the indicators, columns - node numbers (i + n_otu), rows - the number of the sliced interval. |
|---|
| 839 | slice_numbers = (int *)mCalloc((n_otu - 1) * (2 * n_otu - 3), sizeof(int )); //vecor of the slice intervals numbers, columns node numbers (i + n_otu), rows - the number of the sliced interval. |
|---|
| 840 | n_slice = (int *)mCalloc(n_otu - 1, sizeof(int)); //vector of the numbers of sliced intervals that apply to one node with number (i + n_otu). |
|---|
| 841 | |
|---|
| 842 | i = 0; |
|---|
| 843 | K = 0; |
|---|
| 844 | j = n_otu; |
|---|
| 845 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 846 | //Put prior bounds in one vector t_slice. Excluding tips. |
|---|
| 847 | For(i, n_otu - 1) |
|---|
| 848 | { |
|---|
| 849 | t_slice[i] = t_prior_min[j]; |
|---|
| 850 | j++; |
|---|
| 851 | } |
|---|
| 852 | |
|---|
| 853 | j = n_otu; |
|---|
| 854 | for(i = n_otu - 1; i < 2 * n_otu - 3; i++) |
|---|
| 855 | { |
|---|
| 856 | t_slice[i] = t_prior_max[j]; |
|---|
| 857 | j++; |
|---|
| 858 | } |
|---|
| 859 | if(tree -> rates -> nd_t[tree -> n_root -> num] > t_prior_min[tree -> n_root -> num]) chop_bound = MIN(tree -> rates -> nd_t[tree -> n_root -> num], t_prior_max[tree -> n_root -> num]); |
|---|
| 860 | else chop_bound = t_prior_min[tree -> n_root -> num]; |
|---|
| 861 | t_slice[2 * n_otu - 3] = chop_bound; |
|---|
| 862 | //printf("\n. Chop bound [%f] \n", chop_bound); |
|---|
| 863 | //t_slice[2 * n_otu - 3] = -1.1; |
|---|
| 864 | //For(j, 2 * n_otu - 2) printf("\n. Slice bound [%f] \n", t_slice[j]); |
|---|
| 865 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 866 | //Get slices in increasing order. Excluding tips. |
|---|
| 867 | do |
|---|
| 868 | { |
|---|
| 869 | f = NO; |
|---|
| 870 | For(j, 2 * n_otu - 3) |
|---|
| 871 | { |
|---|
| 872 | if(t_slice[j] > t_slice[j + 1]) |
|---|
| 873 | { |
|---|
| 874 | buf = t_slice[j]; |
|---|
| 875 | t_slice[j] = t_slice[j + 1]; |
|---|
| 876 | t_slice[j + 1] = buf; |
|---|
| 877 | f = YES; |
|---|
| 878 | } |
|---|
| 879 | } |
|---|
| 880 | } |
|---|
| 881 | while(f); |
|---|
| 882 | //For(j, 2 * n_otu - 2) printf("\n. [1] Slice bound [%f] \n", t_slice[j]); |
|---|
| 883 | for(j = 1; j < 2 * n_otu - 2; j++) t_slice[j] = MAX(chop_bound, t_slice[j]); |
|---|
| 884 | //for(j = 1; j < 2 * n_otu - 2; j++) t_slice[j] = MAX(-1.1, t_slice[j]); |
|---|
| 885 | //For(j, 2 * n_otu - 2) printf("\n. [2] Slice bound [%f] \n", t_slice[j]); |
|---|
| 886 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 887 | //Get the intervals with respect to slices. Total number of t_slice_min(max) - 2 * n_otu - 3. Excluding tips. |
|---|
| 888 | i = 0; |
|---|
| 889 | For(j, 2 * n_otu - 3) |
|---|
| 890 | { |
|---|
| 891 | t_slice_min[j] = t_slice[i]; |
|---|
| 892 | t_slice_max[j] = t_slice[i + 1]; |
|---|
| 893 | i++; |
|---|
| 894 | } |
|---|
| 895 | |
|---|
| 896 | //For(j, 2 * n_otu - 3) printf("\n. The interval number [%d] min [%f] max[%f] \n", j, t_slice_min[j], t_slice_max[j]); |
|---|
| 897 | |
|---|
| 898 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 899 | //Getting indicators for the node number [i + n_otu] to have slice. i = i + n_otu is the node number on the tree and j is the slice number, total |
|---|
| 900 | //number of intervals is 2 * n_otu - 3. Excluding tips. |
|---|
| 901 | For(i, n_otu - 1) |
|---|
| 902 | { |
|---|
| 903 | For(j, 2 * n_otu - 3) |
|---|
| 904 | { |
|---|
| 905 | |
|---|
| 906 | if(Are_Equal(t_prior_min[i + n_otu], t_slice_min[j], 1.E-10) && t_prior_max[i + n_otu] > t_slice_max[j] && t_prior_min[i + n_otu] < t_slice_max[j] && !Are_Equal(t_slice_max[j], t_slice_min[j], 1.E-10)) indic[i * (2 * n_otu - 3) + j] = 1; |
|---|
| 907 | else if(Are_Equal(t_prior_max[i + n_otu], t_slice_max[j], 1.E-10) && t_prior_min[i + n_otu] < t_slice_min[j] && t_prior_max[i + n_otu] > t_slice_min[j] && !Are_Equal(t_slice_max[j], t_slice_min[j], 1.E-10)) indic[i * (2 * n_otu - 3) + j] = 1; |
|---|
| 908 | else if(t_prior_min[i + n_otu] < t_slice_min[j] && t_prior_max[i + n_otu] > t_slice_max[j] && !Are_Equal(t_slice_max[j], t_slice_min[j], 1.E-10)) indic[i * (2 * n_otu - 3) + j] = 1; |
|---|
| 909 | else if(Are_Equal(t_prior_min[i + n_otu], t_slice_min[j], 1.E-10) && Are_Equal(t_prior_max[i + n_otu], t_slice_max[j], 1.E-10)) indic[i * (2 * n_otu - 3) + j] = 1; |
|---|
| 910 | } |
|---|
| 911 | } |
|---|
| 912 | |
|---|
| 913 | |
|---|
| 914 | For(i, n_otu - 2) |
|---|
| 915 | { |
|---|
| 916 | indic[i * (2 * n_otu - 3)] = 0; |
|---|
| 917 | } |
|---|
| 918 | |
|---|
| 919 | for(j = 1; j < 2 * n_otu - 3; j++) |
|---|
| 920 | { |
|---|
| 921 | indic[(n_otu - 2) * (2 * n_otu - 3) + j] = 0; |
|---|
| 922 | } |
|---|
| 923 | |
|---|
| 924 | /* For(i, n_otu - 2) */ |
|---|
| 925 | /* { */ |
|---|
| 926 | /* indic[i * (2 * n_otu - 3)] = 0; */ |
|---|
| 927 | /* } */ |
|---|
| 928 | |
|---|
| 929 | /* For(i, n_otu - 1) */ |
|---|
| 930 | /* { */ |
|---|
| 931 | /* indic[i * (2 * n_otu - 3) + 1] = 0; */ |
|---|
| 932 | /* } */ |
|---|
| 933 | |
|---|
| 934 | |
|---|
| 935 | /* printf("\n"); */ |
|---|
| 936 | /* For(i, n_otu - 1) */ |
|---|
| 937 | /* { */ |
|---|
| 938 | /* printf(" ['%d]' ", i + n_otu); */ |
|---|
| 939 | /* For(j, 2 * n_otu - 3) */ |
|---|
| 940 | /* { */ |
|---|
| 941 | /* printf(". '%d' ", indic[i * (2 * n_otu - 3) + j]); */ |
|---|
| 942 | /* } */ |
|---|
| 943 | /* printf("\n"); */ |
|---|
| 944 | /* } */ |
|---|
| 945 | |
|---|
| 946 | |
|---|
| 947 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 948 | //Get the number of slices that can be applied for each node and the vectors of slice numbers for each node. |
|---|
| 949 | For(i, n_otu - 1) |
|---|
| 950 | { |
|---|
| 951 | k = 0; |
|---|
| 952 | For(j, 2 * n_otu - 3) |
|---|
| 953 | { |
|---|
| 954 | if(indic[i * (2 * n_otu - 3) + j] == 1) |
|---|
| 955 | { |
|---|
| 956 | slice_numbers[i * (2 * n_otu - 3) + k] = j; //printf("\n. Node [%d] slice'%d' ", i + n_otu, slice_numbers[i * (2 * n_otu - 3) + j]); |
|---|
| 957 | n_slice[i]++; |
|---|
| 958 | k++; |
|---|
| 959 | } |
|---|
| 960 | } |
|---|
| 961 | //printf(" Number of slices'%d' \n", n_slice[i]); |
|---|
| 962 | } |
|---|
| 963 | /* |
|---|
| 964 | printf("\n"); |
|---|
| 965 | For(i, n_otu - 1) |
|---|
| 966 | { |
|---|
| 967 | printf(" ['%d]' ", i + n_otu); |
|---|
| 968 | For(j, n_slice[i]) |
|---|
| 969 | { |
|---|
| 970 | printf(". '%d' ", slice_numbers[i * (2 * n_otu - 3) + j]); |
|---|
| 971 | } |
|---|
| 972 | printf("\n"); |
|---|
| 973 | } |
|---|
| 974 | */ |
|---|
| 975 | |
|---|
| 976 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 977 | //Running through all of the combinations of slices |
|---|
| 978 | int l, tot_num_comb, *cur_slices, *cur_slices_shr, shr_num_slices; |
|---|
| 979 | phydbl P, *t_cur_slice_min, *t_cur_slice_max; |
|---|
| 980 | phydbl k_part; |
|---|
| 981 | |
|---|
| 982 | tot_num_comb = 1; |
|---|
| 983 | P = 0.0; |
|---|
| 984 | |
|---|
| 985 | |
|---|
| 986 | t_cur_slice_min = (phydbl *)mCalloc(n_otu - 1, sizeof(phydbl)); |
|---|
| 987 | t_cur_slice_max = (phydbl *)mCalloc(n_otu - 1, sizeof(phydbl)); |
|---|
| 988 | cur_slices = (int *)mCalloc(n_otu - 1, sizeof(int)); //the vector of the current slices with repetition. |
|---|
| 989 | cur_slices_shr = (int *)mCalloc(n_otu - 1, sizeof(int)); //the vector of the current slices without repetition. |
|---|
| 990 | |
|---|
| 991 | For(i, n_otu - 1) tot_num_comb = tot_num_comb * n_slice[i]; //printf("\n. Total number of combinations of slices [%d] \n", tot_num_comb); |
|---|
| 992 | |
|---|
| 993 | For(k, tot_num_comb) |
|---|
| 994 | { |
|---|
| 995 | shr_num_slices = 0; |
|---|
| 996 | //printf("\n"); |
|---|
| 997 | For(i, n_otu - 1) //node number i + n_otu |
|---|
| 998 | { |
|---|
| 999 | //printf(" ['%d]' ", i + n_otu); |
|---|
| 1000 | l = (k % Number_Of_Comb_Slices(i, n_otu - 1, n_slice)) / Number_Of_Comb_Slices(i+1, n_otu - 1, n_slice); //printf(" Slice number'%d' ", slice_numbers[i * (2 * n_otu - 3) + l]); |
|---|
| 1001 | t_cur_slice_min[i] = t_slice_min[slice_numbers[i * (2 * n_otu - 3) + l]]; //printf(" '%f' ", t_cur_slice_min[i]); |
|---|
| 1002 | t_cur_slice_max[i] = t_slice_max[slice_numbers[i * (2 * n_otu - 3) + l]]; //printf(" '%f' ", t_cur_slice_max[i]); |
|---|
| 1003 | cur_slices[i] = slice_numbers[i * (2 * n_otu - 3) + l]; |
|---|
| 1004 | //printf("\n"); |
|---|
| 1005 | } |
|---|
| 1006 | //printf("\n"); |
|---|
| 1007 | //For(i, n_otu - 1) printf(" Slice number'%d' ", cur_slices[i]); |
|---|
| 1008 | //printf("\n"); |
|---|
| 1009 | |
|---|
| 1010 | /////////////////////////////////////////////////////////////////////////// |
|---|
| 1011 | //Taking away duplicated slices |
|---|
| 1012 | For(i, n_otu - 1) |
|---|
| 1013 | { |
|---|
| 1014 | for(j = i + 1; j < n_otu - 1; j++) |
|---|
| 1015 | { |
|---|
| 1016 | if(cur_slices[i] == cur_slices[j]) cur_slices[j] = -1; |
|---|
| 1017 | } |
|---|
| 1018 | } |
|---|
| 1019 | //For(i, n_otu - 1) printf(" Slice number'%d' \n", cur_slices[i]); |
|---|
| 1020 | |
|---|
| 1021 | /////////////////////////////////////////////////////////////////////////// |
|---|
| 1022 | //Getting a vector of all of the slices without duplicates. |
|---|
| 1023 | For(i, n_otu -1) |
|---|
| 1024 | { |
|---|
| 1025 | if(cur_slices[i] >= 0) |
|---|
| 1026 | { |
|---|
| 1027 | cur_slices_shr[shr_num_slices] = cur_slices[i]; |
|---|
| 1028 | shr_num_slices++; |
|---|
| 1029 | } |
|---|
| 1030 | } |
|---|
| 1031 | //printf("\n"); |
|---|
| 1032 | //For(i, shr_num_slices) printf("\n. Slice number'%d' \n", cur_slices_shr[i]); |
|---|
| 1033 | //printf("\n"); |
|---|
| 1034 | |
|---|
| 1035 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 1036 | //Check for the time slices to be set properly |
|---|
| 1037 | int result; |
|---|
| 1038 | |
|---|
| 1039 | result = TRUE; |
|---|
| 1040 | |
|---|
| 1041 | Check_Time_Slices(tree -> n_root, tree -> n_root -> v[1], &result, t_cur_slice_min, t_cur_slice_max, tree); |
|---|
| 1042 | Check_Time_Slices(tree -> n_root, tree -> n_root -> v[2], &result, t_cur_slice_min, t_cur_slice_max, tree); |
|---|
| 1043 | //printf("\n. '%d' \n", result); |
|---|
| 1044 | |
|---|
| 1045 | //For(i, n_otu - 1) printf("\n. Node [%d] min [%f] max [%f] \n", i + n_otu, t_cur_slice_min[i], t_cur_slice_max[i]); |
|---|
| 1046 | |
|---|
| 1047 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 1048 | //Calculating k_part |
|---|
| 1049 | |
|---|
| 1050 | k_part = 1.0; |
|---|
| 1051 | |
|---|
| 1052 | if(result != TRUE) k_part = 0.0; |
|---|
| 1053 | else |
|---|
| 1054 | { |
|---|
| 1055 | int n_1, n_2; |
|---|
| 1056 | |
|---|
| 1057 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 1058 | //Getting the root node in a given slice |
|---|
| 1059 | int *root_nodes; |
|---|
| 1060 | int num_elem; |
|---|
| 1061 | |
|---|
| 1062 | num_elem = 0; |
|---|
| 1063 | |
|---|
| 1064 | root_nodes = (int *)mCalloc(n_otu - 1, sizeof(int)); |
|---|
| 1065 | |
|---|
| 1066 | //printf("\n. Number of slices shrinked [%d] \n", shr_num_slices); |
|---|
| 1067 | |
|---|
| 1068 | For(i, shr_num_slices) |
|---|
| 1069 | { |
|---|
| 1070 | //printf("\n. Hello [%d] \n", i); |
|---|
| 1071 | //printf("\n. The number of the shrinked interval [%d] min [%f] max [%f] \n", cur_slices_shr[i], t_slice_min[cur_slices_shr[i]], t_slice_max[cur_slices_shr[i]]); |
|---|
| 1072 | Search_Root_Node_In_Slice(tree -> n_root, tree -> n_root -> v[1], root_nodes, &num_elem, t_slice_min[cur_slices_shr[i]], t_slice_max[cur_slices_shr[i]], t_cur_slice_min, t_cur_slice_max, tree); |
|---|
| 1073 | Search_Root_Node_In_Slice(tree -> n_root, tree -> n_root -> v[2], root_nodes, &num_elem, t_slice_min[cur_slices_shr[i]], t_slice_max[cur_slices_shr[i]], t_cur_slice_min, t_cur_slice_max, tree); |
|---|
| 1074 | } |
|---|
| 1075 | //printf("\n. Number of elements in a vector of the nodes [%d] \n", num_elem); |
|---|
| 1076 | //For(j, num_elem) printf("\n. Root node number [%d] \n", root_nodes[j] + n_otu); |
|---|
| 1077 | For(j, num_elem) |
|---|
| 1078 | { |
|---|
| 1079 | //printf("\n. Root node number [%d] \n", tree -> a_nodes[root_nodes[j] + n_otu] -> num); |
|---|
| 1080 | |
|---|
| 1081 | n_1 = 0; |
|---|
| 1082 | n_2 = 0; |
|---|
| 1083 | Number_Of_Nodes_In_Slice(tree -> a_nodes[root_nodes[j] + n_otu], tree -> a_nodes[root_nodes[j] + n_otu] -> v[1], &n_1, t_cur_slice_min, t_cur_slice_max, tree); |
|---|
| 1084 | Number_Of_Nodes_In_Slice(tree -> a_nodes[root_nodes[j] + n_otu], tree -> a_nodes[root_nodes[j] + n_otu] -> v[2], &n_2, t_cur_slice_min, t_cur_slice_max, tree); |
|---|
| 1085 | //printf("\n. n_1 [%d] n_2 [%d]\n", n_1, n_2); |
|---|
| 1086 | k_part = k_part * Factorial(n_1 + n_2) / ((phydbl)Factorial(n_1 + n_2 + 1) * Factorial(n_1) * Factorial(n_2)); |
|---|
| 1087 | } |
|---|
| 1088 | //printf("\n. k_part [%f] \n", k_part); |
|---|
| 1089 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 1090 | //Calculating PRODUCT over all of the time slices k_part * (exp(-lmbd*l) - exp(-lmbd*u))/(exp(-lmbd*l) - exp(-lmbd*u)) |
|---|
| 1091 | phydbl num, denom, lmbd; |
|---|
| 1092 | |
|---|
| 1093 | lmbd = tree -> rates -> birth_rate; |
|---|
| 1094 | num = 1; |
|---|
| 1095 | denom = 1; |
|---|
| 1096 | //lmbd = 4.0; |
|---|
| 1097 | /* For(j, n_otu - 1) num = num * (EXP(-lmbd * t_cur_slice_min[j]) - EXP(-lmbd * t_cur_slice_max[j])); */ |
|---|
| 1098 | /* for(j = n_otu; j < 2 * n_otu - 1; j++) denom = denom * (EXP(-lmbd * t_prior_min[j]) - EXP(-lmbd * t_prior_max[j])); */ |
|---|
| 1099 | For(j, n_otu - 2) num = num * (EXP(lmbd * t_cur_slice_max[j]) - EXP(lmbd * t_cur_slice_min[j])); |
|---|
| 1100 | for(j = n_otu; j < 2 * n_otu - 2; j++) denom = denom * (EXP(lmbd * t_prior_max[j]) - EXP(lmbd * t_prior_min[j])); |
|---|
| 1101 | k_part = (k_part * num) / denom; |
|---|
| 1102 | //printf("\n. [2] k_part of the tree for one combination of slices [%f] \n", k_part); |
|---|
| 1103 | } |
|---|
| 1104 | P = P + k_part; |
|---|
| 1105 | } |
|---|
| 1106 | //printf("\n. [P] of the tree for one combination of slices [%f] \n", P); |
|---|
| 1107 | K = 1 / P; |
|---|
| 1108 | //printf("\n. [K] of the tree for one combination of slices [%f] \n", K); |
|---|
| 1109 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 1110 | free(t_cur_slice_min); |
|---|
| 1111 | free(t_cur_slice_max); |
|---|
| 1112 | free(cur_slices); |
|---|
| 1113 | free(cur_slices_shr); |
|---|
| 1114 | free(t_slice); |
|---|
| 1115 | free(t_slice_min); |
|---|
| 1116 | free(t_slice_max); |
|---|
| 1117 | free(indic); |
|---|
| 1118 | free(slice_numbers); |
|---|
| 1119 | free(n_slice); |
|---|
| 1120 | //free(tree -> K); |
|---|
| 1121 | |
|---|
| 1122 | return(K); |
|---|
| 1123 | } |
|---|
| 1124 | |
|---|
| 1125 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 1126 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 1127 | int Number_Of_Comb_Slices(int m, int num_elem, int *n_slice) |
|---|
| 1128 | { |
|---|
| 1129 | int i, num_comb; |
|---|
| 1130 | |
|---|
| 1131 | i = 0; |
|---|
| 1132 | num_comb = 1; |
|---|
| 1133 | |
|---|
| 1134 | for(i = m; i < num_elem; i++) num_comb = num_comb * n_slice[i]; |
|---|
| 1135 | |
|---|
| 1136 | return(num_comb); |
|---|
| 1137 | } |
|---|
| 1138 | |
|---|
| 1139 | |
|---|
| 1140 | |
|---|
| 1141 | ////////////////////////////////////////////////////////////// |
|---|
| 1142 | ////////////////////////////////////////////////////////////// |
|---|
| 1143 | //Check the combination of the time slices to be set correctly. |
|---|
| 1144 | void Check_Time_Slices(t_node *a, t_node *d, int *result, phydbl *t_cur_slice_min, phydbl *t_cur_slice_max, t_tree *tree) |
|---|
| 1145 | { |
|---|
| 1146 | int n_otu; |
|---|
| 1147 | |
|---|
| 1148 | n_otu = tree -> n_otu; |
|---|
| 1149 | |
|---|
| 1150 | |
|---|
| 1151 | d -> anc = a; |
|---|
| 1152 | if(d -> tax) return; |
|---|
| 1153 | else |
|---|
| 1154 | { |
|---|
| 1155 | if(t_cur_slice_max[d -> num - n_otu] < t_cur_slice_max[a -> num - n_otu]) |
|---|
| 1156 | { |
|---|
| 1157 | *result = FALSE; |
|---|
| 1158 | } |
|---|
| 1159 | |
|---|
| 1160 | int i; |
|---|
| 1161 | For(i,3) |
|---|
| 1162 | if((d -> v[i] != d -> anc) && (d -> b[i] != tree -> e_root)) |
|---|
| 1163 | Check_Time_Slices(d, d -> v[i], result, t_cur_slice_min, t_cur_slice_max, tree); |
|---|
| 1164 | } |
|---|
| 1165 | } |
|---|
| 1166 | |
|---|
| 1167 | ////////////////////////////////////////////////////////////// |
|---|
| 1168 | ///////////////////////////////////////////////////////////// |
|---|
| 1169 | //Getting the number of nodes on both sides from the node d_start, that are in the slice of that node. |
|---|
| 1170 | void Number_Of_Nodes_In_Slice(t_node *d_start, t_node *d, int *n, phydbl *t_cur_slice_min, phydbl *t_cur_slice_max, t_tree *tree) |
|---|
| 1171 | { |
|---|
| 1172 | int n_otu; |
|---|
| 1173 | |
|---|
| 1174 | n_otu = tree -> n_otu; |
|---|
| 1175 | |
|---|
| 1176 | |
|---|
| 1177 | if(d -> tax) return; |
|---|
| 1178 | else |
|---|
| 1179 | { |
|---|
| 1180 | if(Are_Equal(t_cur_slice_max[d_start -> num - n_otu], t_cur_slice_max[d -> num - n_otu], 1.E-10) && Are_Equal(t_cur_slice_min[d_start -> num - n_otu], t_cur_slice_min[d -> num - n_otu], 1.E-10)) |
|---|
| 1181 | { |
|---|
| 1182 | (*n)++; |
|---|
| 1183 | int i; |
|---|
| 1184 | For(i,3) |
|---|
| 1185 | if((d -> v[i] != d -> anc) && (d -> b[i] != tree -> e_root)) |
|---|
| 1186 | Number_Of_Nodes_In_Slice(d_start, d -> v[i], n, t_cur_slice_min, t_cur_slice_max, tree); |
|---|
| 1187 | } |
|---|
| 1188 | } |
|---|
| 1189 | } |
|---|
| 1190 | |
|---|
| 1191 | |
|---|
| 1192 | ////////////////////////////////////////////////////////////// |
|---|
| 1193 | ///////////////////////////////////////////////////////////// |
|---|
| 1194 | //Returnig the root node in the given slice. |
|---|
| 1195 | void Search_Root_Node_In_Slice(t_node *d_start, t_node *d, int *root_nodes, int *num_elem, phydbl t_slice_min, phydbl t_slice_max, phydbl *t_cur_slice_min, phydbl *t_cur_slice_max, t_tree *tree) |
|---|
| 1196 | { |
|---|
| 1197 | int j, n_otu, f; |
|---|
| 1198 | j = 0; |
|---|
| 1199 | f = FALSE; |
|---|
| 1200 | n_otu = tree -> n_otu; //printf("\n. Node number 1 [%d] \n", d_start -> num);printf("\n. Node number 1 [%d] \n", d -> num); |
|---|
| 1201 | |
|---|
| 1202 | if(Are_Equal(t_cur_slice_max[d_start -> num - n_otu], t_slice_max, 1.E-10) && Are_Equal(t_cur_slice_min[d_start -> num - n_otu], t_slice_min, 1.E-10)) |
|---|
| 1203 | { |
|---|
| 1204 | For(j, *num_elem) if(d_start -> num - n_otu == (root_nodes[j])) f = TRUE; |
|---|
| 1205 | if(f != TRUE) |
|---|
| 1206 | { |
|---|
| 1207 | (root_nodes[(*num_elem)]) = d_start -> num - n_otu; //printf("\n. Node number 2_2 [%d] \n", root_nodes[(*num_elem)] + n_otu); |
|---|
| 1208 | (*num_elem)++; //printf("\n. Number of elements 2_2 [%d] \n", *num_elem); |
|---|
| 1209 | return; |
|---|
| 1210 | } |
|---|
| 1211 | |
|---|
| 1212 | } |
|---|
| 1213 | else |
|---|
| 1214 | { |
|---|
| 1215 | d -> anc = d_start; |
|---|
| 1216 | if(d -> tax) return; |
|---|
| 1217 | else |
|---|
| 1218 | { |
|---|
| 1219 | if(Are_Equal(t_cur_slice_max[d -> num - n_otu], t_slice_max, 1.E-10) && Are_Equal(t_cur_slice_min[d -> num - n_otu], t_slice_min, 1.E-10)) |
|---|
| 1220 | { |
|---|
| 1221 | (root_nodes[*num_elem]) = d -> num - n_otu; //printf("\n. Node number 3_2 [%d] \n", root_nodes[*num_elem] + n_otu); |
|---|
| 1222 | (*num_elem)++; //printf("\n. Number of elements 3_2 [%d] \n", *num_elem); |
|---|
| 1223 | return; |
|---|
| 1224 | } |
|---|
| 1225 | |
|---|
| 1226 | int i; |
|---|
| 1227 | For(i,3) |
|---|
| 1228 | if((d -> v[i] != d -> anc) && (d -> b[i] != tree -> e_root)) |
|---|
| 1229 | Search_Root_Node_In_Slice(d, d -> v[i], root_nodes, num_elem, t_slice_min, t_slice_max, t_cur_slice_min, t_cur_slice_max, tree); |
|---|
| 1230 | } |
|---|
| 1231 | } |
|---|
| 1232 | } |
|---|
| 1233 | |
|---|
| 1234 | |
|---|
| 1235 | ////////////////////////////////////////////////////////////// |
|---|
| 1236 | ////////////////////////////////////////////////////////////// |
|---|
| 1237 | int Factorial(int base) |
|---|
| 1238 | { |
|---|
| 1239 | if(base == 0) return(1); |
|---|
| 1240 | if(base == 1) return(1); |
|---|
| 1241 | return(base * Factorial(base-1)); |
|---|
| 1242 | } |
|---|
| 1243 | |
|---|
| 1244 | |
|---|
| 1245 | ////////////////////////////////////////////////////////////// |
|---|
| 1246 | ////////////////////////////////////////////////////////////// |
|---|
| 1247 | //Calculate the vector of the norm.constants for prior on node times. |
|---|
| 1248 | //The length of the vector is the total number of combinations of calibrations. |
|---|
| 1249 | phydbl *Norm_Constant_Prior_Times(t_tree *tree) |
|---|
| 1250 | { |
|---|
| 1251 | |
|---|
| 1252 | phydbl *t_prior_min, *t_prior_max, *K; |
|---|
| 1253 | short int *t_has_prior; |
|---|
| 1254 | int i, j, k, tot_num_comb; |
|---|
| 1255 | t_cal *calib; |
|---|
| 1256 | |
|---|
| 1257 | |
|---|
| 1258 | |
|---|
| 1259 | |
|---|
| 1260 | calib = tree -> rates -> calib; |
|---|
| 1261 | t_prior_min = tree -> rates -> t_prior_min; |
|---|
| 1262 | t_prior_max = tree -> rates -> t_prior_max; |
|---|
| 1263 | t_has_prior = tree -> rates -> t_has_prior; |
|---|
| 1264 | |
|---|
| 1265 | tot_num_comb = Number_Of_Comb(calib); |
|---|
| 1266 | |
|---|
| 1267 | //PhyML_Printf("\n. The total number of calibration combinations: [%d]\n", tot_num_comb); |
|---|
| 1268 | |
|---|
| 1269 | K = (phydbl *)mCalloc(tot_num_comb, sizeof(phydbl)); |
|---|
| 1270 | |
|---|
| 1271 | For(i, tot_num_comb) |
|---|
| 1272 | { |
|---|
| 1273 | for(j = tree -> n_otu; j < 2 * tree -> n_otu - 1; j++) |
|---|
| 1274 | { |
|---|
| 1275 | t_prior_min[j] = -BIG; |
|---|
| 1276 | t_prior_max[j] = BIG; |
|---|
| 1277 | t_has_prior[j] = NO; |
|---|
| 1278 | } |
|---|
| 1279 | do |
|---|
| 1280 | { |
|---|
| 1281 | k = (i % Number_Of_Comb(calib)) / Number_Of_Comb(calib -> next); |
|---|
| 1282 | if(calib -> all_applies_to[k] -> num) |
|---|
| 1283 | { |
|---|
| 1284 | t_prior_min[calib -> all_applies_to[k] -> num] = MAX(t_prior_min[calib -> all_applies_to[k] -> num], calib -> lower); |
|---|
| 1285 | t_prior_max[calib -> all_applies_to[k] -> num] = MIN(t_prior_max[calib -> all_applies_to[k] -> num], calib -> upper); |
|---|
| 1286 | t_has_prior[calib -> all_applies_to[k] -> num] = YES; |
|---|
| 1287 | } |
|---|
| 1288 | else |
|---|
| 1289 | { |
|---|
| 1290 | if(calib -> next) calib = calib -> next; |
|---|
| 1291 | else break; |
|---|
| 1292 | } |
|---|
| 1293 | if(calib -> next) calib = calib -> next; |
|---|
| 1294 | else break; |
|---|
| 1295 | } |
|---|
| 1296 | while(calib); |
|---|
| 1297 | TIMES_Set_All_Node_Priors(tree); |
|---|
| 1298 | //for(j = tree -> n_otu; j < 2 * tree -> n_otu - 1; j++) printf("\n. [1] Node [%d] min [%f] max[%f]\n", j, tree -> rates -> t_prior_min[j], tree -> rates -> t_prior_max[j]); |
|---|
| 1299 | //tree -> rates -> birth_rate = 4.0; |
|---|
| 1300 | K[i] = Slicing_Calibrations(tree); |
|---|
| 1301 | //PhyML_Printf("\n. Number [%d] normolizing constant [%f] \n", i+1, K[i]); |
|---|
| 1302 | while(calib -> prev) calib = calib -> prev; |
|---|
| 1303 | } |
|---|
| 1304 | return(K); |
|---|
| 1305 | } |
|---|
| 1306 | |
|---|
| 1307 | |
|---|
| 1308 | ////////////////////////////////////////////////////////////// |
|---|
| 1309 | ////////////////////////////////////////////////////////////// |
|---|
| 1310 | //Sets a vector of the partial probabilities for each combination of calibrations |
|---|
| 1311 | void TIMES_Calib_Partial_Proba(t_tree *tree) |
|---|
| 1312 | { |
|---|
| 1313 | |
|---|
| 1314 | phydbl *times_partial_proba, proba, *t_prior_min, *t_prior_max; |
|---|
| 1315 | int i, j, k, tot_num_comb; |
|---|
| 1316 | t_cal *calib; |
|---|
| 1317 | short int *t_has_prior; |
|---|
| 1318 | |
|---|
| 1319 | proba = 0.0; |
|---|
| 1320 | |
|---|
| 1321 | times_partial_proba = tree -> rates -> times_partial_proba; |
|---|
| 1322 | calib = tree -> rates -> calib; |
|---|
| 1323 | t_prior_min = tree -> rates -> t_prior_min; |
|---|
| 1324 | t_prior_max = tree -> rates -> t_prior_max; |
|---|
| 1325 | t_has_prior = tree -> rates -> t_has_prior; |
|---|
| 1326 | |
|---|
| 1327 | tot_num_comb = Number_Of_Comb(calib); |
|---|
| 1328 | |
|---|
| 1329 | For(i, tot_num_comb) |
|---|
| 1330 | { |
|---|
| 1331 | times_partial_proba[i] = 1.0; |
|---|
| 1332 | for(j = tree -> n_otu; j < 2 * tree -> n_otu - 1; j++) |
|---|
| 1333 | { |
|---|
| 1334 | t_prior_min[j] = -BIG; |
|---|
| 1335 | t_prior_max[j] = BIG; |
|---|
| 1336 | t_has_prior[j] = NO; |
|---|
| 1337 | } |
|---|
| 1338 | do |
|---|
| 1339 | { |
|---|
| 1340 | k = (i % Number_Of_Comb(calib)) / Number_Of_Comb(calib -> next); |
|---|
| 1341 | if(calib -> all_applies_to[k] -> num) |
|---|
| 1342 | { |
|---|
| 1343 | t_prior_min[calib -> all_applies_to[k] -> num] = MAX(t_prior_min[calib -> all_applies_to[k] -> num], calib -> lower); |
|---|
| 1344 | t_prior_max[calib -> all_applies_to[k] -> num] = MIN(t_prior_max[calib -> all_applies_to[k] -> num], calib -> upper); |
|---|
| 1345 | t_has_prior[calib -> all_applies_to[k] -> num] = YES; |
|---|
| 1346 | proba = calib -> proba[calib -> all_applies_to[k] -> num]; |
|---|
| 1347 | times_partial_proba[i] *= proba; |
|---|
| 1348 | /* printf("\n. [1] Proba [%f] \n", proba); */ |
|---|
| 1349 | /* if((t_prior_min[calib -> all_applies_to[k] -> num] > t_prior_max[calib -> all_applies_to[k] -> num])) times_partial_proba[i] = 0.0; */ |
|---|
| 1350 | /* else times_partial_proba[i] *= calib -> proba[calib -> all_applies_to[k] -> num]; */ |
|---|
| 1351 | } |
|---|
| 1352 | else |
|---|
| 1353 | { |
|---|
| 1354 | proba = calib -> proba[2 * tree -> n_otu - 1]; |
|---|
| 1355 | times_partial_proba[i] *= proba; |
|---|
| 1356 | /* printf("\n. [2] Proba [%f] \n", proba); */ |
|---|
| 1357 | if(calib -> next) calib = calib -> next; |
|---|
| 1358 | else break; |
|---|
| 1359 | } |
|---|
| 1360 | |
|---|
| 1361 | if(calib -> next) calib = calib -> next; |
|---|
| 1362 | else break; |
|---|
| 1363 | } |
|---|
| 1364 | while(calib); |
|---|
| 1365 | |
|---|
| 1366 | int result; |
|---|
| 1367 | |
|---|
| 1368 | result = TRUE; |
|---|
| 1369 | |
|---|
| 1370 | /* printf("\n. [3] Partial Proba [%f] \n", times_partial_proba[i]); */ |
|---|
| 1371 | |
|---|
| 1372 | TIMES_Set_All_Node_Priors_S(&result, tree); |
|---|
| 1373 | |
|---|
| 1374 | if(result != TRUE) times_partial_proba[i] = 0; /* printf("\n. [4] Partial Proba [%f] \n", times_partial_proba[i]); */ |
|---|
| 1375 | /* times_partial_proba[i] = 1.0; */ |
|---|
| 1376 | /* do */ |
|---|
| 1377 | /* { */ |
|---|
| 1378 | /* k = (i % Number_Of_Comb(calib)) / Number_Of_Comb(calib -> next); */ |
|---|
| 1379 | /* if(calib -> all_applies_to[k] -> num) proba = calib -> proba[calib -> all_applies_to[k] -> num]; */ |
|---|
| 1380 | /* else proba = calib -> proba[2 * tree -> n_otu - 1]; */ |
|---|
| 1381 | /* times_partial_proba[i] *= proba; */ |
|---|
| 1382 | /* if(calib -> next) calib = calib -> next; */ |
|---|
| 1383 | /* else break; */ |
|---|
| 1384 | /* } */ |
|---|
| 1385 | /* while(calib); */ |
|---|
| 1386 | while(calib -> prev) calib = calib -> prev; |
|---|
| 1387 | } |
|---|
| 1388 | |
|---|
| 1389 | phydbl sum_proba; |
|---|
| 1390 | sum_proba = 0.0; |
|---|
| 1391 | /* For(i, tot_num_comb) printf("\n. [1] Partial Proba [%f] \n", times_partial_proba[i]); */ |
|---|
| 1392 | For(i, tot_num_comb) sum_proba += times_partial_proba[i]; |
|---|
| 1393 | if(!Are_Equal(sum_proba, 1.0, 1.E-10)) |
|---|
| 1394 | { |
|---|
| 1395 | For(i, tot_num_comb) times_partial_proba[i] = times_partial_proba[i] / sum_proba; |
|---|
| 1396 | } |
|---|
| 1397 | /* For(i, tot_num_comb) printf("\n. [2] Partial Proba [%f] \n", times_partial_proba[i]); */ |
|---|
| 1398 | /* Exit("\n"); */ |
|---|
| 1399 | } |
|---|
| 1400 | |
|---|
| 1401 | |
|---|
| 1402 | |
|---|
| 1403 | ////////////////////////////////////////////////////////////// |
|---|
| 1404 | ////////////////////////////////////////////////////////////// |
|---|
| 1405 | //Function checks if the randomized node times are within the |
|---|
| 1406 | //upper and lower time limits, taken into account the times of |
|---|
| 1407 | //the ancestor and descendent. |
|---|
| 1408 | void Check_Node_Time(t_node *a, t_node *d, int *result, t_tree *tree) |
|---|
| 1409 | { |
|---|
| 1410 | phydbl t_low, t_up; |
|---|
| 1411 | phydbl *t_prior_min, *t_prior_max, *nd_t; |
|---|
| 1412 | |
|---|
| 1413 | t_prior_min = tree -> rates -> t_prior_min; |
|---|
| 1414 | t_prior_max = tree -> rates -> t_prior_max; |
|---|
| 1415 | nd_t = tree -> rates -> nd_t; |
|---|
| 1416 | |
|---|
| 1417 | if(a == tree -> n_root && (nd_t[a -> num] > MIN(t_prior_max[a -> num], MIN(nd_t[a -> v[1] -> num], nd_t[a -> v[2] -> num])))) |
|---|
| 1418 | { |
|---|
| 1419 | *result = FALSE; |
|---|
| 1420 | return; |
|---|
| 1421 | } |
|---|
| 1422 | if(d -> tax) return; |
|---|
| 1423 | else |
|---|
| 1424 | { |
|---|
| 1425 | t_low = MAX(t_prior_min[d -> num], nd_t[d -> anc -> num]); |
|---|
| 1426 | t_up = MIN(t_prior_max[d -> num], MIN(nd_t[d -> v[1] -> num], nd_t[d -> v[2] -> num])); |
|---|
| 1427 | if(nd_t[d -> num] < t_low || nd_t[d -> num] > t_up) |
|---|
| 1428 | { |
|---|
| 1429 | *result = FALSE; |
|---|
| 1430 | } |
|---|
| 1431 | |
|---|
| 1432 | int i; |
|---|
| 1433 | For(i,3) |
|---|
| 1434 | if((d -> v[i] != d -> anc) && (d -> b[i] != tree -> e_root)) |
|---|
| 1435 | Check_Node_Time(d, d -> v[i], result, tree); |
|---|
| 1436 | } |
|---|
| 1437 | } |
|---|
| 1438 | |
|---|
| 1439 | ////////////////////////////////////////////////////////////// |
|---|
| 1440 | ////////////////////////////////////////////////////////////// |
|---|
| 1441 | //Function calculates the TOTAL number of calibration combinations, |
|---|
| 1442 | //given the number of nodes to which each calibartion applies to. |
|---|
| 1443 | int Number_Of_Comb(t_cal *calib) |
|---|
| 1444 | { |
|---|
| 1445 | |
|---|
| 1446 | int num_comb; |
|---|
| 1447 | |
|---|
| 1448 | if(!calib) return(1); |
|---|
| 1449 | num_comb = 1; |
|---|
| 1450 | do |
|---|
| 1451 | { |
|---|
| 1452 | num_comb *= calib -> n_all_applies_to; |
|---|
| 1453 | if(calib -> next) calib = calib -> next; |
|---|
| 1454 | else break; |
|---|
| 1455 | } |
|---|
| 1456 | while(calib); |
|---|
| 1457 | return(num_comb); |
|---|
| 1458 | } |
|---|
| 1459 | |
|---|
| 1460 | |
|---|
| 1461 | ////////////////////////////////////////////////////////////// |
|---|
| 1462 | ////////////////////////////////////////////////////////////// |
|---|
| 1463 | //Function calculates the TOTAL number of calibration combinations, |
|---|
| 1464 | //given the number of nodes to which each calibartion applies to. |
|---|
| 1465 | int Number_Of_Calib(t_cal *calib) |
|---|
| 1466 | { |
|---|
| 1467 | |
|---|
| 1468 | int num_calib; |
|---|
| 1469 | |
|---|
| 1470 | |
|---|
| 1471 | num_calib = 0; |
|---|
| 1472 | do |
|---|
| 1473 | { |
|---|
| 1474 | num_calib++; |
|---|
| 1475 | if(calib -> next) calib = calib -> next; |
|---|
| 1476 | else break; |
|---|
| 1477 | } |
|---|
| 1478 | while(calib); |
|---|
| 1479 | return(num_calib); |
|---|
| 1480 | } |
|---|
| 1481 | |
|---|
| 1482 | |
|---|
| 1483 | ////////////////////////////////////////////////////////////// |
|---|
| 1484 | ////////////////////////////////////////////////////////////// |
|---|
| 1485 | //Function sets current calibartion in the following way: |
|---|
| 1486 | //Suppose we have a vector of calibrations C=(C1, C2, C3), each calibration |
|---|
| 1487 | //applies to a set of nodes. we can reach each node number through the indeces (corresponds |
|---|
| 1488 | //to the number the information was read). C1={0,1,2}, C2={0,1}, C3={0}; |
|---|
| 1489 | //The total number of combinations is 3*2*1=6. The first combination with row number 0 |
|---|
| 1490 | //will be {0,0,0}, the second row will be {0,1,0} and so on. Calling the node numbers with |
|---|
| 1491 | //the above indeces will return current calibration. Also sets the vector of the probabilities |
|---|
| 1492 | //for current calibration combination. |
|---|
| 1493 | void Set_Current_Calibration(int row, t_tree *tree) |
|---|
| 1494 | { |
|---|
| 1495 | |
|---|
| 1496 | t_cal *calib; |
|---|
| 1497 | phydbl *t_prior_min, *t_prior_max; |
|---|
| 1498 | short int *t_has_prior; |
|---|
| 1499 | int k, i, j, *curr_nd_for_cal; |
|---|
| 1500 | |
|---|
| 1501 | calib = tree -> rates -> calib; |
|---|
| 1502 | t_prior_min = tree -> rates -> t_prior_min; |
|---|
| 1503 | t_prior_max = tree -> rates -> t_prior_max; |
|---|
| 1504 | t_has_prior = tree -> rates -> t_has_prior; |
|---|
| 1505 | curr_nd_for_cal = tree -> rates -> curr_nd_for_cal; |
|---|
| 1506 | |
|---|
| 1507 | for(j = tree -> n_otu; j < 2 * tree -> n_otu - 1; j++) |
|---|
| 1508 | { |
|---|
| 1509 | t_prior_min[j] = -BIG; |
|---|
| 1510 | t_prior_max[j] = BIG; |
|---|
| 1511 | t_has_prior[j] = NO; |
|---|
| 1512 | } |
|---|
| 1513 | |
|---|
| 1514 | k = -1; |
|---|
| 1515 | i = 0; |
|---|
| 1516 | do |
|---|
| 1517 | { |
|---|
| 1518 | k = (row % Number_Of_Comb(calib)) / Number_Of_Comb(calib -> next); |
|---|
| 1519 | if(calib -> all_applies_to[k] -> num) |
|---|
| 1520 | { |
|---|
| 1521 | t_prior_min[calib -> all_applies_to[k] -> num] = MAX(t_prior_min[calib -> all_applies_to[k] -> num], calib -> lower); |
|---|
| 1522 | t_prior_max[calib -> all_applies_to[k] -> num] = MIN(t_prior_max[calib -> all_applies_to[k] -> num], calib -> upper); |
|---|
| 1523 | t_has_prior[calib -> all_applies_to[k] -> num] = YES; |
|---|
| 1524 | curr_nd_for_cal[i] = calib -> all_applies_to[k] -> num; |
|---|
| 1525 | i++; |
|---|
| 1526 | } |
|---|
| 1527 | else |
|---|
| 1528 | { |
|---|
| 1529 | if(calib->next) calib = calib->next; |
|---|
| 1530 | else break; |
|---|
| 1531 | } |
|---|
| 1532 | if(calib->next) calib = calib->next; |
|---|
| 1533 | else break; |
|---|
| 1534 | } |
|---|
| 1535 | while(calib); |
|---|
| 1536 | //while(calib -> prev) calib = calib -> prev; |
|---|
| 1537 | } |
|---|
| 1538 | |
|---|
| 1539 | |
|---|
| 1540 | |
|---|
| 1541 | |
|---|
| 1542 | |
|---|
| 1543 | |
|---|
| 1544 | ////////////////////////////////////////////////////////////// |
|---|
| 1545 | ////////////////////////////////////////////////////////////// |
|---|
| 1546 | //Randomly choose a combination of calibrations drawing an index of calibration combination, |
|---|
| 1547 | //used function Set_Cur_Calibration. |
|---|
| 1548 | void Random_Calibration(t_tree *tree) |
|---|
| 1549 | { |
|---|
| 1550 | int rnd, num_comb; |
|---|
| 1551 | t_cal *calib; |
|---|
| 1552 | |
|---|
| 1553 | calib = tree -> rates -> calib; |
|---|
| 1554 | |
|---|
| 1555 | num_comb = Number_Of_Comb(calib); |
|---|
| 1556 | |
|---|
| 1557 | srand(time(NULL)); |
|---|
| 1558 | rnd = rand()%(num_comb); |
|---|
| 1559 | |
|---|
| 1560 | Set_Current_Calibration(rnd, tree); |
|---|
| 1561 | TIMES_Set_All_Node_Priors(tree); |
|---|
| 1562 | |
|---|
| 1563 | } |
|---|
| 1564 | |
|---|
| 1565 | |
|---|
| 1566 | |
|---|
| 1567 | ////////////////////////////////////////////////////////////// |
|---|
| 1568 | ////////////////////////////////////////////////////////////// |
|---|
| 1569 | //Variable curr_nd_for_cal is a vector of node numbers, the length of that vector is a number of calibrations. |
|---|
| 1570 | //Function randomly updates that vector by randomly changing one node and setting times limits with respect |
|---|
| 1571 | //to a new vector. |
|---|
| 1572 | int RND_Calibration_And_Node_Number(t_tree *tree) |
|---|
| 1573 | { |
|---|
| 1574 | int i, j, tot_num_cal, cal_num, node_ind, node_num, *curr_nd_for_cal; |
|---|
| 1575 | phydbl *t_prior_min, *t_prior_max; //*times_partial_proba; |
|---|
| 1576 | short int *t_has_prior; |
|---|
| 1577 | t_cal *cal; |
|---|
| 1578 | |
|---|
| 1579 | tot_num_cal = tree -> rates -> tot_num_cal; |
|---|
| 1580 | t_prior_min = tree -> rates -> t_prior_min; |
|---|
| 1581 | t_prior_max = tree -> rates -> t_prior_max; |
|---|
| 1582 | t_has_prior = tree -> rates -> t_has_prior; |
|---|
| 1583 | //times_partial_proba = tree -> rates -> times_partial_proba; |
|---|
| 1584 | curr_nd_for_cal = tree -> rates -> curr_nd_for_cal; |
|---|
| 1585 | cal = tree -> rates -> calib; |
|---|
| 1586 | |
|---|
| 1587 | cal_num = rand()%(tot_num_cal - 1); |
|---|
| 1588 | |
|---|
| 1589 | i = 0; |
|---|
| 1590 | while (i != cal_num) |
|---|
| 1591 | { |
|---|
| 1592 | cal = cal -> next; |
|---|
| 1593 | i++; |
|---|
| 1594 | } |
|---|
| 1595 | |
|---|
| 1596 | node_ind = rand()%(cal -> n_all_applies_to); |
|---|
| 1597 | node_num = cal -> all_applies_to[node_ind] -> num; |
|---|
| 1598 | |
|---|
| 1599 | curr_nd_for_cal[cal_num] = node_num; |
|---|
| 1600 | |
|---|
| 1601 | for(j = tree -> n_otu; j < 2 * tree -> n_otu - 1; j++) |
|---|
| 1602 | { |
|---|
| 1603 | t_prior_min[j] = -BIG; |
|---|
| 1604 | t_prior_max[j] = BIG; |
|---|
| 1605 | t_has_prior[j] = NO; |
|---|
| 1606 | } |
|---|
| 1607 | |
|---|
| 1608 | while(cal -> prev) cal = cal -> prev; |
|---|
| 1609 | |
|---|
| 1610 | i = 0; |
|---|
| 1611 | do |
|---|
| 1612 | { |
|---|
| 1613 | t_prior_min[curr_nd_for_cal[i]] = cal -> lower; |
|---|
| 1614 | t_prior_max[curr_nd_for_cal[i]] = cal -> upper; |
|---|
| 1615 | t_has_prior[curr_nd_for_cal[i]] = YES; |
|---|
| 1616 | i++; |
|---|
| 1617 | if(cal->next) cal = cal -> next; |
|---|
| 1618 | else break; |
|---|
| 1619 | } |
|---|
| 1620 | while(cal); |
|---|
| 1621 | |
|---|
| 1622 | while(cal -> prev) cal = cal -> prev; |
|---|
| 1623 | |
|---|
| 1624 | TIMES_Set_All_Node_Priors(tree); |
|---|
| 1625 | |
|---|
| 1626 | return(node_num); |
|---|
| 1627 | } |
|---|
| 1628 | |
|---|
| 1629 | |
|---|
| 1630 | |
|---|
| 1631 | ////////////////////////////////////////////////////////////// |
|---|
| 1632 | ////////////////////////////////////////////////////////////// |
|---|
| 1633 | //Return the value uniformly distributed between two values. |
|---|
| 1634 | phydbl Randomize_One_Node_Time(phydbl min, phydbl max) |
|---|
| 1635 | { |
|---|
| 1636 | phydbl u; |
|---|
| 1637 | |
|---|
| 1638 | u = Uni(); |
|---|
| 1639 | u *= (max - min); |
|---|
| 1640 | u += min; |
|---|
| 1641 | |
|---|
| 1642 | return(u); |
|---|
| 1643 | } |
|---|
| 1644 | |
|---|
| 1645 | |
|---|
| 1646 | |
|---|
| 1647 | ////////////////////////////////////////////////////////////// |
|---|
| 1648 | ////////////////////////////////////////////////////////////// |
|---|
| 1649 | //Calculates the Hastings ratio for the analysis. Used in case of |
|---|
| 1650 | //calibration conditional jump. NOT THE RIGHT ONE TO USE! |
|---|
| 1651 | void Lk_Hastings_Ratio_Times(t_node *a, t_node *d, phydbl *tot_prob, t_tree *tree) |
|---|
| 1652 | { |
|---|
| 1653 | phydbl t_low, t_up; |
|---|
| 1654 | phydbl *t_prior_min, *t_prior_max, *nd_t; |
|---|
| 1655 | |
|---|
| 1656 | t_prior_min = tree -> rates -> t_prior_min; |
|---|
| 1657 | t_prior_max = tree -> rates -> t_prior_max; |
|---|
| 1658 | nd_t = tree -> rates -> nd_t; |
|---|
| 1659 | |
|---|
| 1660 | if(d -> tax) return; |
|---|
| 1661 | else |
|---|
| 1662 | { |
|---|
| 1663 | t_low = MAX(t_prior_min[d -> num], nd_t[d -> anc -> num]); |
|---|
| 1664 | t_up = MIN(t_prior_max[d -> num], MIN(nd_t[d -> v[1] -> num], nd_t[d -> v[2] -> num])); |
|---|
| 1665 | |
|---|
| 1666 | (*tot_prob) += LOG(1) - LOG(t_up - t_low); |
|---|
| 1667 | |
|---|
| 1668 | int i; |
|---|
| 1669 | For(i,3) |
|---|
| 1670 | if((d -> v[i] != d -> anc) && (d -> b[i] != tree -> e_root)) |
|---|
| 1671 | { |
|---|
| 1672 | Lk_Hastings_Ratio_Times(d, d -> v[i], tot_prob, tree); |
|---|
| 1673 | } |
|---|
| 1674 | } |
|---|
| 1675 | } |
|---|
| 1676 | |
|---|
| 1677 | |
|---|
| 1678 | |
|---|
| 1679 | ////////////////////////////////////////////////////////////// |
|---|
| 1680 | ////////////////////////////////////////////////////////////// |
|---|
| 1681 | //Updates nodes which are below a randomized node in case if new proposed time |
|---|
| 1682 | //for that node is below the current value. |
|---|
| 1683 | void Update_Descendent_Cond_Jump(t_node *a, t_node *d, phydbl *L_Hast_ratio, t_tree *tree) |
|---|
| 1684 | { |
|---|
| 1685 | int result = TRUE; |
|---|
| 1686 | phydbl t_low, t_up; |
|---|
| 1687 | phydbl *t_prior_min, *t_prior_max, *nd_t; |
|---|
| 1688 | |
|---|
| 1689 | t_prior_min = tree -> rates -> t_prior_min; |
|---|
| 1690 | t_prior_max = tree -> rates -> t_prior_max; |
|---|
| 1691 | nd_t = tree -> rates -> nd_t; |
|---|
| 1692 | |
|---|
| 1693 | Check_Node_Time(tree -> n_root, tree -> n_root -> v[1], &result, tree); |
|---|
| 1694 | Check_Node_Time(tree -> n_root, tree -> n_root -> v[2], &result, tree); |
|---|
| 1695 | |
|---|
| 1696 | if(d -> tax) return; |
|---|
| 1697 | else |
|---|
| 1698 | { |
|---|
| 1699 | if(result != TRUE) |
|---|
| 1700 | { |
|---|
| 1701 | int i; |
|---|
| 1702 | t_low = MAX(nd_t[a -> num], t_prior_min[d -> num]); |
|---|
| 1703 | if(t_low < MIN(nd_t[d -> v[1] -> num], nd_t[d -> v[2] -> num])) t_up = MIN(t_prior_max[d -> num], MIN(nd_t[d -> v[1] -> num], nd_t[d -> v[2] -> num])); |
|---|
| 1704 | else t_up = t_prior_max[d -> num]; |
|---|
| 1705 | nd_t[d -> num] = Randomize_One_Node_Time(t_low, t_up); |
|---|
| 1706 | (*L_Hast_ratio) += LOG(1) - LOG(t_up - t_low); |
|---|
| 1707 | For(i,3) |
|---|
| 1708 | if((d -> v[i] != d -> anc) && (d -> b[i] != tree -> e_root)) |
|---|
| 1709 | Update_Descendent_Cond_Jump(d, d -> v[i], L_Hast_ratio, tree); |
|---|
| 1710 | } |
|---|
| 1711 | else return; |
|---|
| 1712 | } |
|---|
| 1713 | } |
|---|
| 1714 | |
|---|
| 1715 | |
|---|
| 1716 | |
|---|
| 1717 | ////////////////////////////////////////////////////////////// |
|---|
| 1718 | ////////////////////////////////////////////////////////////// |
|---|
| 1719 | //Updates nodes which are above a randomized node in case if new proposed time |
|---|
| 1720 | //for that node is above the current value. |
|---|
| 1721 | void Update_Ancestor_Cond_Jump(t_node *d, phydbl *L_Hast_ratio, t_tree *tree) |
|---|
| 1722 | { |
|---|
| 1723 | int result = TRUE; |
|---|
| 1724 | phydbl t_low, t_up; |
|---|
| 1725 | phydbl *t_prior_min, *t_prior_max, *nd_t; |
|---|
| 1726 | |
|---|
| 1727 | t_prior_min = tree -> rates -> t_prior_min; |
|---|
| 1728 | t_prior_max = tree -> rates -> t_prior_max; |
|---|
| 1729 | nd_t = tree -> rates -> nd_t; |
|---|
| 1730 | |
|---|
| 1731 | Check_Node_Time(tree -> n_root, tree -> n_root -> v[1], &result, tree); |
|---|
| 1732 | Check_Node_Time(tree -> n_root, tree -> n_root -> v[2], &result, tree); |
|---|
| 1733 | |
|---|
| 1734 | if(result != TRUE) |
|---|
| 1735 | { |
|---|
| 1736 | if(d == tree -> n_root) |
|---|
| 1737 | { |
|---|
| 1738 | |
|---|
| 1739 | t_low = t_prior_min[d -> num]; |
|---|
| 1740 | t_up = MIN(t_prior_max[d -> num], MIN(nd_t[d -> v[1] -> num], nd_t[d -> v[2] -> num])); |
|---|
| 1741 | nd_t[d -> num] = Randomize_One_Node_Time(t_low, t_up); |
|---|
| 1742 | (*L_Hast_ratio) += LOG(1) - LOG(t_up - t_low); |
|---|
| 1743 | return; |
|---|
| 1744 | } |
|---|
| 1745 | else |
|---|
| 1746 | { |
|---|
| 1747 | t_up = MIN(t_prior_max[d -> num], MIN(nd_t[d -> v[1] -> num], nd_t[d -> v[2] -> num])); |
|---|
| 1748 | if(nd_t[d -> anc -> num] > t_up) t_low = t_prior_min[d -> num]; |
|---|
| 1749 | else t_low = MAX(t_prior_min[d -> num], nd_t[d -> anc -> num]); |
|---|
| 1750 | nd_t[d -> num] = Randomize_One_Node_Time(t_low, t_up); |
|---|
| 1751 | (*L_Hast_ratio) += LOG(1) - LOG(t_up - t_low); |
|---|
| 1752 | Update_Ancestor_Cond_Jump(d -> anc, L_Hast_ratio, tree); |
|---|
| 1753 | } |
|---|
| 1754 | |
|---|
| 1755 | } |
|---|
| 1756 | else return; |
|---|
| 1757 | } |
|---|
| 1758 | |
|---|
| 1759 | ////////////////////////////////////////////////////////////// |
|---|
| 1760 | ////////////////////////////////////////////////////////////// |
|---|
| 1761 | //when made a calibration conditional jump, updates node times |
|---|
| 1762 | //with respect to the new calibration which was made with respect |
|---|
| 1763 | //to the randomly chosen node, the root is fixed. Updates only those nodes |
|---|
| 1764 | //that are not within new intervals. Traverse up and down. |
|---|
| 1765 | void Update_Times_RND_Node_Ancestor_Descendant(int rnd_node, phydbl *L_Hast_ratio, t_tree *tree) |
|---|
| 1766 | { |
|---|
| 1767 | int i; |
|---|
| 1768 | phydbl *t_prior_min, *t_prior_max, *nd_t; |
|---|
| 1769 | phydbl new_time_rnd_node = 0.0; |
|---|
| 1770 | |
|---|
| 1771 | t_prior_min = tree -> rates -> t_prior_min; |
|---|
| 1772 | t_prior_max = tree -> rates -> t_prior_max; |
|---|
| 1773 | nd_t = tree -> rates -> nd_t; |
|---|
| 1774 | |
|---|
| 1775 | new_time_rnd_node = Randomize_One_Node_Time(t_prior_min[rnd_node], t_prior_max[rnd_node]); |
|---|
| 1776 | |
|---|
| 1777 | nd_t[rnd_node] = new_time_rnd_node; |
|---|
| 1778 | |
|---|
| 1779 | Update_Ancestor_Cond_Jump(tree -> a_nodes[rnd_node] -> anc, L_Hast_ratio, tree); |
|---|
| 1780 | For(i,3) |
|---|
| 1781 | if((tree -> a_nodes[rnd_node] -> v[i] != tree -> a_nodes[rnd_node] -> anc) && (tree -> a_nodes[rnd_node] -> b[i] != tree -> e_root)) |
|---|
| 1782 | Update_Descendent_Cond_Jump(tree -> a_nodes[rnd_node], tree -> a_nodes[rnd_node] -> v[i], L_Hast_ratio, tree); |
|---|
| 1783 | |
|---|
| 1784 | } |
|---|
| 1785 | |
|---|
| 1786 | |
|---|
| 1787 | |
|---|
| 1788 | ////////////////////////////////////////////////////////////// |
|---|
| 1789 | ////////////////////////////////////////////////////////////// |
|---|
| 1790 | //when made a calibration conditional jump, updates node times |
|---|
| 1791 | //with respect to the new calibration which was made with respect |
|---|
| 1792 | //to the randomly chosen node, starting from the root down to the tips. |
|---|
| 1793 | //Updates only those nodes that are not within new intervals. |
|---|
| 1794 | void Update_Times_Down_Tree(t_node *a, t_node *d, phydbl *L_Hastings_ratio, t_tree *tree) |
|---|
| 1795 | { |
|---|
| 1796 | int i; |
|---|
| 1797 | phydbl *t_prior_min, *t_prior_max, *nd_t, t_low, t_up; |
|---|
| 1798 | |
|---|
| 1799 | t_prior_min = tree -> rates -> t_prior_min; |
|---|
| 1800 | t_prior_max = tree -> rates -> t_prior_max; |
|---|
| 1801 | nd_t = tree -> rates -> nd_t; |
|---|
| 1802 | |
|---|
| 1803 | |
|---|
| 1804 | t_low = MAX(t_prior_min[d -> num], nd_t[a -> num]); |
|---|
| 1805 | t_up = t_prior_max[d -> num]; |
|---|
| 1806 | |
|---|
| 1807 | //printf("\n. [1] Node number: [%d] \n", d -> num); |
|---|
| 1808 | if(d -> tax) return; |
|---|
| 1809 | else |
|---|
| 1810 | { |
|---|
| 1811 | if(nd_t[d -> num] > t_up || nd_t[d -> num] < t_low) |
|---|
| 1812 | { |
|---|
| 1813 | //printf("\n. [2] Node number: [%d] \n", d -> num); |
|---|
| 1814 | //(*L_Hastings_ratio) += (LOG(1) - LOG(t_up - t_low)); |
|---|
| 1815 | (*L_Hastings_ratio) += (- LOG(t_up - t_low)); |
|---|
| 1816 | nd_t[d -> num] = Randomize_One_Node_Time(t_low, t_up); |
|---|
| 1817 | /* t_prior_min[d -> num] = t_low; */ |
|---|
| 1818 | /* t_prior_max[d -> num] = t_up; */ |
|---|
| 1819 | } |
|---|
| 1820 | |
|---|
| 1821 | For(i,3) |
|---|
| 1822 | if((d -> v[i] != d -> anc) && (d -> b[i] != tree -> e_root)) |
|---|
| 1823 | Update_Times_Down_Tree(d, d -> v[i], L_Hastings_ratio, tree); |
|---|
| 1824 | } |
|---|
| 1825 | } |
|---|
| 1826 | |
|---|
| 1827 | ////////////////////////////////////////////////////////////// |
|---|
| 1828 | ////////////////////////////////////////////////////////////// |
|---|
| 1829 | |
|---|
| 1830 | xml_node *XML_Search_Node_Attribute_Value_Clade(char *attr_name, char *value, int skip, xml_node *node) |
|---|
| 1831 | { |
|---|
| 1832 | xml_node *match; |
|---|
| 1833 | |
|---|
| 1834 | //printf("\n. Node name [%s] Attr name [%s] Attr value [%s] \n", node -> name, attr_name, value); |
|---|
| 1835 | if(!node) |
|---|
| 1836 | { |
|---|
| 1837 | PhyML_Printf("\n== node: %p attr: %p",node,node?node->attr:NULL); |
|---|
| 1838 | PhyML_Printf("\n== Err in file %s at line %d\n",__FILE__,__LINE__); |
|---|
| 1839 | Exit("\n"); |
|---|
| 1840 | } |
|---|
| 1841 | |
|---|
| 1842 | match = NULL; |
|---|
| 1843 | if(skip == NO && node -> attr) |
|---|
| 1844 | { |
|---|
| 1845 | xml_attr *attr; |
|---|
| 1846 | attr = node -> attr; |
|---|
| 1847 | do |
|---|
| 1848 | { |
|---|
| 1849 | if(!strcmp(attr -> name, attr_name) && !strcmp(attr -> value, value)) |
|---|
| 1850 | { |
|---|
| 1851 | match = node; |
|---|
| 1852 | break; |
|---|
| 1853 | } |
|---|
| 1854 | attr = attr->next; |
|---|
| 1855 | if(!attr) break; |
|---|
| 1856 | } |
|---|
| 1857 | while(1); |
|---|
| 1858 | } |
|---|
| 1859 | if(match) return(match); |
|---|
| 1860 | if(node -> next && !match) |
|---|
| 1861 | { |
|---|
| 1862 | match = XML_Search_Node_Attribute_Value_Clade(attr_name, value, NO, node -> next); |
|---|
| 1863 | return match; |
|---|
| 1864 | } |
|---|
| 1865 | return NULL; |
|---|
| 1866 | } |
|---|
| 1867 | |
|---|
| 1868 | ////////////////////////////////////////////////////////////// |
|---|
| 1869 | ////////////////////////////////////////////////////////////// |
|---|
| 1870 | char **XML_Reading_Clade(xml_node *n_clade, t_tree *tree) |
|---|
| 1871 | { |
|---|
| 1872 | int i, n_otu; |
|---|
| 1873 | char **clade; |
|---|
| 1874 | |
|---|
| 1875 | i = 0; |
|---|
| 1876 | n_otu = tree -> n_otu; |
|---|
| 1877 | |
|---|
| 1878 | clade = (char **)mCalloc(n_otu, sizeof(char *)); |
|---|
| 1879 | if(n_clade) |
|---|
| 1880 | { |
|---|
| 1881 | do |
|---|
| 1882 | { |
|---|
| 1883 | clade[i] = n_clade -> attr -> value; |
|---|
| 1884 | i++; |
|---|
| 1885 | if(n_clade -> next) n_clade = n_clade -> next; |
|---|
| 1886 | else break; |
|---|
| 1887 | } |
|---|
| 1888 | while(n_clade); |
|---|
| 1889 | } |
|---|
| 1890 | else |
|---|
| 1891 | { |
|---|
| 1892 | PhyML_Printf("==Clade is empty. \n"); |
|---|
| 1893 | PhyML_Printf("\n. Err in file %s at line %d\n",__FILE__,__LINE__); |
|---|
| 1894 | Exit("\n"); |
|---|
| 1895 | } |
|---|
| 1896 | |
|---|
| 1897 | return(clade); |
|---|
| 1898 | } |
|---|
| 1899 | |
|---|
| 1900 | ////////////////////////////////////////////////////////////// |
|---|
| 1901 | ////////////////////////////////////////////////////////////// |
|---|
| 1902 | int XML_Number_Of_Taxa_In_Clade(xml_node *n_clade) |
|---|
| 1903 | { |
|---|
| 1904 | int clade_size = 0; |
|---|
| 1905 | if(n_clade) |
|---|
| 1906 | { |
|---|
| 1907 | do |
|---|
| 1908 | { |
|---|
| 1909 | clade_size++; |
|---|
| 1910 | if(n_clade -> next) n_clade = n_clade -> next; |
|---|
| 1911 | else break; |
|---|
| 1912 | } |
|---|
| 1913 | while(n_clade); |
|---|
| 1914 | } |
|---|
| 1915 | else |
|---|
| 1916 | { |
|---|
| 1917 | PhyML_Printf("==Clade is empty. \n"); |
|---|
| 1918 | PhyML_Printf("\n. Err in file %s at line %d\n",__FILE__,__LINE__); |
|---|
| 1919 | Exit("\n"); |
|---|
| 1920 | } |
|---|
| 1921 | return(clade_size); |
|---|
| 1922 | } |
|---|
| 1923 | |
|---|
| 1924 | |
|---|
| 1925 | |
|---|
| 1926 | ////////////////////////////////////////////////////////////// |
|---|
| 1927 | ////////////////////////////////////////////////////////////// |
|---|
| 1928 | void TIMES_Set_All_Node_Priors_S(int *result, t_tree *tree) |
|---|
| 1929 | { |
|---|
| 1930 | int i; |
|---|
| 1931 | phydbl min_prior; |
|---|
| 1932 | |
|---|
| 1933 | |
|---|
| 1934 | /* Set all t_prior_max values */ |
|---|
| 1935 | TIMES_Set_All_Node_Priors_Bottom_Up_S(tree->n_root,tree->n_root->v[2], result, tree); |
|---|
| 1936 | TIMES_Set_All_Node_Priors_Bottom_Up_S(tree->n_root,tree->n_root->v[1], result, tree); |
|---|
| 1937 | |
|---|
| 1938 | tree->rates->t_prior_max[tree->n_root->num] = |
|---|
| 1939 | MIN(tree->rates->t_prior_max[tree->n_root->num], |
|---|
| 1940 | MIN(tree->rates->t_prior_max[tree->n_root->v[2]->num], |
|---|
| 1941 | tree->rates->t_prior_max[tree->n_root->v[1]->num])); |
|---|
| 1942 | |
|---|
| 1943 | |
|---|
| 1944 | /* Set all t_prior_min values */ |
|---|
| 1945 | if(!tree->rates->t_has_prior[tree->n_root->num]) |
|---|
| 1946 | { |
|---|
| 1947 | min_prior = 1.E+10; |
|---|
| 1948 | For(i,2*tree->n_otu-2) |
|---|
| 1949 | { |
|---|
| 1950 | if(tree->rates->t_has_prior[i]) |
|---|
| 1951 | { |
|---|
| 1952 | if(tree->rates->t_prior_min[i] < min_prior) |
|---|
| 1953 | min_prior = tree->rates->t_prior_min[i]; |
|---|
| 1954 | } |
|---|
| 1955 | } |
|---|
| 1956 | tree->rates->t_prior_min[tree->n_root->num] = 2.0 * min_prior; |
|---|
| 1957 | /* tree->rates->t_prior_min[tree->n_root->num] = 10. * min_prior; */ |
|---|
| 1958 | } |
|---|
| 1959 | |
|---|
| 1960 | if(tree->rates->t_prior_min[tree->n_root->num] > 0.0) |
|---|
| 1961 | { |
|---|
| 1962 | /* PhyML_Printf("\n== Failed to set the lower bound for the root node."); */ |
|---|
| 1963 | /* PhyML_Printf("\n== Make sure at least one of the calibration interval"); */ |
|---|
| 1964 | /* PhyML_Printf("\n== provides a lower bound."); */ |
|---|
| 1965 | /* Exit("\n"); */ |
|---|
| 1966 | *result = FALSE; |
|---|
| 1967 | } |
|---|
| 1968 | |
|---|
| 1969 | |
|---|
| 1970 | TIMES_Set_All_Node_Priors_Top_Down_S(tree->n_root,tree->n_root->v[2], result, tree); |
|---|
| 1971 | TIMES_Set_All_Node_Priors_Top_Down_S(tree->n_root,tree->n_root->v[1], result, tree); |
|---|
| 1972 | |
|---|
| 1973 | /* Get_Node_Ranks(tree); */ |
|---|
| 1974 | /* TIMES_Set_Floor(tree); */ |
|---|
| 1975 | } |
|---|
| 1976 | |
|---|
| 1977 | ////////////////////////////////////////////////////////////// |
|---|
| 1978 | ////////////////////////////////////////////////////////////// |
|---|
| 1979 | |
|---|
| 1980 | |
|---|
| 1981 | void TIMES_Set_All_Node_Priors_Bottom_Up_S(t_node *a, t_node *d, int *result, t_tree *tree) |
|---|
| 1982 | { |
|---|
| 1983 | int i; |
|---|
| 1984 | phydbl t_sup; |
|---|
| 1985 | |
|---|
| 1986 | if(d->tax) return; |
|---|
| 1987 | else |
|---|
| 1988 | { |
|---|
| 1989 | t_node *v1, *v2; /* the two sons of d */ |
|---|
| 1990 | |
|---|
| 1991 | For(i,3) |
|---|
| 1992 | { |
|---|
| 1993 | if((d->v[i] != a) && (d->b[i] != tree->e_root)) |
|---|
| 1994 | { |
|---|
| 1995 | TIMES_Set_All_Node_Priors_Bottom_Up_S(d,d->v[i], result, tree); |
|---|
| 1996 | } |
|---|
| 1997 | } |
|---|
| 1998 | |
|---|
| 1999 | v1 = v2 = NULL; |
|---|
| 2000 | For(i,3) if((d->v[i] != a) && (d->b[i] != tree->e_root)) |
|---|
| 2001 | { |
|---|
| 2002 | if(!v1) v1 = d->v[i]; |
|---|
| 2003 | else v2 = d->v[i]; |
|---|
| 2004 | } |
|---|
| 2005 | |
|---|
| 2006 | if(tree->rates->t_has_prior[d->num] == YES) |
|---|
| 2007 | { |
|---|
| 2008 | t_sup = MIN(tree->rates->t_prior_max[d->num], |
|---|
| 2009 | MIN(tree->rates->t_prior_max[v1->num], |
|---|
| 2010 | tree->rates->t_prior_max[v2->num])); |
|---|
| 2011 | |
|---|
| 2012 | tree->rates->t_prior_max[d->num] = t_sup; |
|---|
| 2013 | |
|---|
| 2014 | if(tree->rates->t_prior_max[d->num] < tree->rates->t_prior_min[d->num]) |
|---|
| 2015 | { |
|---|
| 2016 | /* PhyML_Printf("\n. prior_min=%f prior_max=%f",tree->rates->t_prior_min[d->num],tree->rates->t_prior_max[d->num]); */ |
|---|
| 2017 | /* PhyML_Printf("\n. Inconsistency in the prior settings detected at t_node %d",d->num); */ |
|---|
| 2018 | /* PhyML_Printf("\n. Err in file %s at line %d\n\n",__FILE__,__LINE__); */ |
|---|
| 2019 | /* Warn_And_Exit("\n"); */ |
|---|
| 2020 | *result = FALSE; |
|---|
| 2021 | /* return; */ |
|---|
| 2022 | } |
|---|
| 2023 | } |
|---|
| 2024 | else |
|---|
| 2025 | { |
|---|
| 2026 | tree->rates->t_prior_max[d->num] = |
|---|
| 2027 | MIN(tree->rates->t_prior_max[v1->num], |
|---|
| 2028 | tree->rates->t_prior_max[v2->num]); |
|---|
| 2029 | } |
|---|
| 2030 | } |
|---|
| 2031 | } |
|---|
| 2032 | |
|---|
| 2033 | ////////////////////////////////////////////////////////////// |
|---|
| 2034 | ////////////////////////////////////////////////////////////// |
|---|
| 2035 | |
|---|
| 2036 | |
|---|
| 2037 | void TIMES_Set_All_Node_Priors_Top_Down_S(t_node *a, t_node *d, int *result, t_tree *tree) |
|---|
| 2038 | { |
|---|
| 2039 | if(d->tax) return; |
|---|
| 2040 | else |
|---|
| 2041 | { |
|---|
| 2042 | int i; |
|---|
| 2043 | |
|---|
| 2044 | if(tree->rates->t_has_prior[d->num] == YES) |
|---|
| 2045 | { |
|---|
| 2046 | tree->rates->t_prior_min[d->num] = MAX(tree->rates->t_prior_min[d->num],tree->rates->t_prior_min[a->num]); |
|---|
| 2047 | |
|---|
| 2048 | if(tree->rates->t_prior_max[d->num] < tree->rates->t_prior_min[d->num]) |
|---|
| 2049 | { |
|---|
| 2050 | /* PhyML_Printf("\n. prior_min=%f prior_max=%f",tree->rates->t_prior_min[d->num],tree->rates->t_prior_max[d->num]); */ |
|---|
| 2051 | /* PhyML_Printf("\n. Inconsistency in the prior settings detected at t_node %d",d->num); */ |
|---|
| 2052 | /* PhyML_Printf("\n. Err in file %s at line %d\n\n",__FILE__,__LINE__); */ |
|---|
| 2053 | /* Warn_And_Exit("\n"); */ |
|---|
| 2054 | *result = FALSE; |
|---|
| 2055 | /* return; */ |
|---|
| 2056 | } |
|---|
| 2057 | } |
|---|
| 2058 | else |
|---|
| 2059 | { |
|---|
| 2060 | tree->rates->t_prior_min[d->num] = tree->rates->t_prior_min[a->num]; |
|---|
| 2061 | } |
|---|
| 2062 | |
|---|
| 2063 | For(i,3) |
|---|
| 2064 | { |
|---|
| 2065 | if((d->v[i] != a) && (d->b[i] != tree->e_root)) |
|---|
| 2066 | { |
|---|
| 2067 | TIMES_Set_All_Node_Priors_Top_Down_S(d,d->v[i], result, tree); |
|---|
| 2068 | } |
|---|
| 2069 | } |
|---|
| 2070 | } |
|---|
| 2071 | } |
|---|
| 2072 | |
|---|
| 2073 | ////////////////////////////////////////////////////////////// |
|---|
| 2074 | ////////////////////////////////////////////////////////////// |
|---|
| 2075 | |
|---|