1 | /* RAxML-HPC, a program for sequential and parallel estimation of phylogenetic trees |
---|
2 | * Copyright March 2006 by Alexandros Stamatakis |
---|
3 | * |
---|
4 | * Partially derived from |
---|
5 | * fastDNAml, a program for estimation of phylogenetic trees from sequences by Gary J. Olsen |
---|
6 | * |
---|
7 | * and |
---|
8 | * |
---|
9 | * Programs of the PHYLIP package by Joe Felsenstein. |
---|
10 | * |
---|
11 | * This program is free software; you may redistribute it and/or modify its |
---|
12 | * under the terms of the GNU General Public License as published by the Free |
---|
13 | * Software Foundation; either version 2 of the License, or (at your option) |
---|
14 | * any later version. |
---|
15 | * |
---|
16 | * This program is distributed in the hope that it will be useful, but |
---|
17 | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
---|
19 | * for more details. |
---|
20 | * |
---|
21 | * |
---|
22 | * For any other enquiries send an Email to Alexandros Stamatakis |
---|
23 | * stamatak@ics.forth.gr |
---|
24 | * |
---|
25 | * When publishing work that is based on the results from RAxML-VI-HPC please cite: |
---|
26 | * |
---|
27 | * Alexandros Stamatakis: "An Efficient Program for phylogenetic Inference Using Simulated Annealing". |
---|
28 | * Proceedings of IPDPS2005, Denver, Colorado, April 2005. |
---|
29 | * |
---|
30 | * AND |
---|
31 | * |
---|
32 | * Alexandros Stamatakis:"RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models". |
---|
33 | * Bioinformatics 2006; doi: 10.1093/bioinformatics/btl446 |
---|
34 | */ |
---|
35 | |
---|
36 | |
---|
37 | #ifndef WIN32 |
---|
38 | #include <sys/times.h> |
---|
39 | #include <sys/types.h> |
---|
40 | #include <sys/time.h> |
---|
41 | #include <unistd.h> |
---|
42 | #endif |
---|
43 | |
---|
44 | #include <limits.h> |
---|
45 | #include <math.h> |
---|
46 | #include <time.h> |
---|
47 | #include <stdlib.h> |
---|
48 | #include <stdio.h> |
---|
49 | #include <ctype.h> |
---|
50 | #include <string.h> |
---|
51 | #include <stdint.h> |
---|
52 | #include "axml.h" |
---|
53 | |
---|
54 | #ifdef __SIM_SSE3 |
---|
55 | |
---|
56 | #include <xmmintrin.h> |
---|
57 | #include <pmmintrin.h> |
---|
58 | |
---|
59 | #endif |
---|
60 | |
---|
61 | #ifdef _USE_PTHREADS |
---|
62 | #include <pthread.h> |
---|
63 | #endif |
---|
64 | |
---|
65 | #ifdef _WAYNE_MPI |
---|
66 | #include <mpi.h> |
---|
67 | extern int processID; |
---|
68 | extern int processes; |
---|
69 | #endif |
---|
70 | |
---|
71 | #define _NEW_MRE |
---|
72 | |
---|
73 | extern FILE *INFILE; |
---|
74 | extern char run_id[128]; |
---|
75 | extern char workdir[1024]; |
---|
76 | extern char bootStrapFile[1024]; |
---|
77 | extern char tree_file[1024]; |
---|
78 | extern char infoFileName[1024]; |
---|
79 | extern char resultFileName[1024]; |
---|
80 | extern char verboseSplitsFileName[1024]; |
---|
81 | |
---|
82 | extern double masterTime; |
---|
83 | |
---|
84 | extern const unsigned int mask32[32]; |
---|
85 | |
---|
86 | extern volatile branchInfo **branchInfos; |
---|
87 | extern volatile int NumberOfThreads; |
---|
88 | extern volatile int NumberOfJobs; |
---|
89 | |
---|
90 | |
---|
91 | static void mre(hashtable *h, boolean icp, entry*** sbi, int* len, int which, int n, unsigned int vectorLength, boolean sortp, tree *tr, boolean bootStopping); |
---|
92 | |
---|
93 | |
---|
94 | entry *initEntry(void) |
---|
95 | { |
---|
96 | entry *e = (entry*)rax_malloc(sizeof(entry)); |
---|
97 | |
---|
98 | e->bitVector = (unsigned int*)NULL; |
---|
99 | e->treeVector = (unsigned int*)NULL; |
---|
100 | e->supportVector = (int*)NULL; |
---|
101 | e->bipNumber = 0; |
---|
102 | e->bipNumber2 = 0; |
---|
103 | e->supportFromTreeset[0] = 0; |
---|
104 | e->supportFromTreeset[1] = 0; |
---|
105 | e->next = (entry*)NULL; |
---|
106 | |
---|
107 | return e; |
---|
108 | } |
---|
109 | |
---|
110 | |
---|
111 | |
---|
112 | |
---|
113 | hashtable *initHashTable(hashNumberType n) |
---|
114 | { |
---|
115 | /* |
---|
116 | init with primes |
---|
117 | |
---|
118 | static const hashNumberType initTable[] = {53, 97, 193, 389, 769, 1543, 3079, 6151, 12289, 24593, 49157, 98317, |
---|
119 | 196613, 393241, 786433, 1572869, 3145739, 6291469, 12582917, 25165843, |
---|
120 | 50331653, 100663319, 201326611, 402653189, 805306457, 1610612741}; |
---|
121 | */ |
---|
122 | |
---|
123 | /* init with powers of two */ |
---|
124 | |
---|
125 | static const hashNumberType initTable[] = {64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, |
---|
126 | 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, |
---|
127 | 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, |
---|
128 | 268435456, 536870912, 1073741824, 2147483648U}; |
---|
129 | |
---|
130 | hashtable *h = (hashtable*)rax_malloc(sizeof(hashtable)); |
---|
131 | |
---|
132 | hashNumberType |
---|
133 | tableSize, |
---|
134 | i, |
---|
135 | primeTableLength = sizeof(initTable)/sizeof(initTable[0]), |
---|
136 | maxSize = (hashNumberType)-1; |
---|
137 | |
---|
138 | assert(n <= maxSize); |
---|
139 | |
---|
140 | i = 0; |
---|
141 | |
---|
142 | while(initTable[i] < n && i < primeTableLength) |
---|
143 | i++; |
---|
144 | |
---|
145 | assert(i < primeTableLength); |
---|
146 | |
---|
147 | tableSize = initTable[i]; |
---|
148 | |
---|
149 | /* printf("Hash table init with size %u\n", tableSize); */ |
---|
150 | |
---|
151 | h->table = (entry**)rax_calloc(tableSize, sizeof(entry*)); |
---|
152 | h->tableSize = tableSize; |
---|
153 | h->entryCount = 0; |
---|
154 | |
---|
155 | return h; |
---|
156 | } |
---|
157 | |
---|
158 | |
---|
159 | |
---|
160 | |
---|
161 | void freeHashTable(hashtable *h) |
---|
162 | { |
---|
163 | hashNumberType |
---|
164 | i, |
---|
165 | entryCount = 0; |
---|
166 | |
---|
167 | |
---|
168 | for(i = 0; i < h->tableSize; i++) |
---|
169 | { |
---|
170 | if(h->table[i] != NULL) |
---|
171 | { |
---|
172 | entry *e = h->table[i]; |
---|
173 | entry *previous; |
---|
174 | |
---|
175 | do |
---|
176 | { |
---|
177 | previous = e; |
---|
178 | e = e->next; |
---|
179 | |
---|
180 | if(previous->bitVector) |
---|
181 | rax_free(previous->bitVector); |
---|
182 | |
---|
183 | if(previous->treeVector) |
---|
184 | rax_free(previous->treeVector); |
---|
185 | |
---|
186 | if(previous->supportVector) |
---|
187 | rax_free(previous->supportVector); |
---|
188 | |
---|
189 | rax_free(previous); |
---|
190 | entryCount++; |
---|
191 | } |
---|
192 | while(e != NULL); |
---|
193 | } |
---|
194 | |
---|
195 | } |
---|
196 | |
---|
197 | assert(entryCount == h->entryCount); |
---|
198 | |
---|
199 | rax_free(h->table); |
---|
200 | } |
---|
201 | |
---|
202 | |
---|
203 | |
---|
204 | void cleanupHashTable(hashtable *h, int state) |
---|
205 | { |
---|
206 | hashNumberType |
---|
207 | k, |
---|
208 | entryCount = 0, |
---|
209 | removeCount = 0; |
---|
210 | |
---|
211 | assert(state == 1 || state == 0); |
---|
212 | |
---|
213 | for(k = 0, entryCount = 0; k < h->tableSize; k++) |
---|
214 | { |
---|
215 | if(h->table[k] != NULL) |
---|
216 | { |
---|
217 | entry *e = h->table[k]; |
---|
218 | entry *start = (entry*)NULL; |
---|
219 | entry *lastValid = (entry*)NULL; |
---|
220 | |
---|
221 | do |
---|
222 | { |
---|
223 | if(state == 0) |
---|
224 | { |
---|
225 | e->treeVector[0] = e->treeVector[0] & 2; |
---|
226 | assert(!(e->treeVector[0] & 1)); |
---|
227 | } |
---|
228 | else |
---|
229 | { |
---|
230 | e->treeVector[0] = e->treeVector[0] & 1; |
---|
231 | assert(!(e->treeVector[0] & 2)); |
---|
232 | } |
---|
233 | |
---|
234 | if(e->treeVector[0] != 0) |
---|
235 | { |
---|
236 | if(!start) |
---|
237 | start = e; |
---|
238 | lastValid = e; |
---|
239 | e = e->next; |
---|
240 | } |
---|
241 | else |
---|
242 | { |
---|
243 | entry *remove = e; |
---|
244 | e = e->next; |
---|
245 | |
---|
246 | removeCount++; |
---|
247 | |
---|
248 | if(lastValid) |
---|
249 | lastValid->next = remove->next; |
---|
250 | |
---|
251 | if(remove->bitVector) |
---|
252 | rax_free(remove->bitVector); |
---|
253 | if(remove->treeVector) |
---|
254 | rax_free(remove->treeVector); |
---|
255 | if(remove->supportVector) |
---|
256 | rax_free(remove->supportVector); |
---|
257 | rax_free(remove); |
---|
258 | } |
---|
259 | |
---|
260 | entryCount++; |
---|
261 | } |
---|
262 | while(e != NULL); |
---|
263 | |
---|
264 | if(!start) |
---|
265 | { |
---|
266 | assert(!lastValid); |
---|
267 | h->table[k] = NULL; |
---|
268 | } |
---|
269 | else |
---|
270 | { |
---|
271 | h->table[k] = start; |
---|
272 | } |
---|
273 | } |
---|
274 | } |
---|
275 | |
---|
276 | assert(entryCount == h->entryCount); |
---|
277 | |
---|
278 | h->entryCount -= removeCount; |
---|
279 | } |
---|
280 | |
---|
281 | |
---|
282 | |
---|
283 | |
---|
284 | |
---|
285 | |
---|
286 | |
---|
287 | |
---|
288 | |
---|
289 | |
---|
290 | |
---|
291 | unsigned int **initBitVector(tree *tr, unsigned int *vectorLength) |
---|
292 | { |
---|
293 | unsigned int **bitVectors = (unsigned int **)rax_malloc(sizeof(unsigned int*) * 2 * tr->mxtips); |
---|
294 | int i; |
---|
295 | |
---|
296 | if(tr->mxtips % MASK_LENGTH == 0) |
---|
297 | *vectorLength = tr->mxtips / MASK_LENGTH; |
---|
298 | else |
---|
299 | *vectorLength = 1 + (tr->mxtips / MASK_LENGTH); |
---|
300 | |
---|
301 | for(i = 1; i <= tr->mxtips; i++) |
---|
302 | { |
---|
303 | bitVectors[i] = (unsigned int *)rax_calloc(*vectorLength, sizeof(unsigned int)); |
---|
304 | bitVectors[i][(i - 1) / MASK_LENGTH] |= mask32[(i - 1) % MASK_LENGTH]; |
---|
305 | } |
---|
306 | |
---|
307 | for(i = tr->mxtips + 1; i < 2 * tr->mxtips; i++) |
---|
308 | bitVectors[i] = (unsigned int *)rax_malloc(sizeof(unsigned int) * *vectorLength); |
---|
309 | |
---|
310 | return bitVectors; |
---|
311 | } |
---|
312 | |
---|
313 | void freeBitVectors(unsigned int **v, int n) |
---|
314 | { |
---|
315 | int i; |
---|
316 | |
---|
317 | for(i = 1; i < n; i++) |
---|
318 | rax_free(v[i]); |
---|
319 | } |
---|
320 | |
---|
321 | |
---|
322 | |
---|
323 | |
---|
324 | |
---|
325 | static void newviewBipartitions(unsigned int **bitVectors, nodeptr p, int numsp, unsigned int vectorLength) |
---|
326 | { |
---|
327 | if(isTip(p->number, numsp)) |
---|
328 | return; |
---|
329 | { |
---|
330 | nodeptr |
---|
331 | q = p->next->back, |
---|
332 | r = p->next->next->back; |
---|
333 | unsigned int |
---|
334 | *vector = bitVectors[p->number], |
---|
335 | *left = bitVectors[q->number], |
---|
336 | *right = bitVectors[r->number]; |
---|
337 | unsigned |
---|
338 | int i; |
---|
339 | |
---|
340 | while(!p->x) |
---|
341 | { |
---|
342 | if(!p->x) |
---|
343 | getxnode(p); |
---|
344 | } |
---|
345 | |
---|
346 | p->hash = q->hash ^ r->hash; |
---|
347 | |
---|
348 | if(isTip(q->number, numsp) && isTip(r->number, numsp)) |
---|
349 | { |
---|
350 | for(i = 0; i < vectorLength; i++) |
---|
351 | vector[i] = left[i] | right[i]; |
---|
352 | } |
---|
353 | else |
---|
354 | { |
---|
355 | if(isTip(q->number, numsp) || isTip(r->number, numsp)) |
---|
356 | { |
---|
357 | if(isTip(r->number, numsp)) |
---|
358 | { |
---|
359 | nodeptr tmp = r; |
---|
360 | r = q; |
---|
361 | q = tmp; |
---|
362 | } |
---|
363 | |
---|
364 | while(!r->x) |
---|
365 | { |
---|
366 | if(!r->x) |
---|
367 | newviewBipartitions(bitVectors, r, numsp, vectorLength); |
---|
368 | } |
---|
369 | |
---|
370 | for(i = 0; i < vectorLength; i++) |
---|
371 | vector[i] = left[i] | right[i]; |
---|
372 | } |
---|
373 | else |
---|
374 | { |
---|
375 | while((!r->x) || (!q->x)) |
---|
376 | { |
---|
377 | if(!q->x) |
---|
378 | newviewBipartitions(bitVectors, q, numsp, vectorLength); |
---|
379 | if(!r->x) |
---|
380 | newviewBipartitions(bitVectors, r, numsp, vectorLength); |
---|
381 | } |
---|
382 | |
---|
383 | for(i = 0; i < vectorLength; i++) |
---|
384 | vector[i] = left[i] | right[i]; |
---|
385 | } |
---|
386 | |
---|
387 | } |
---|
388 | } |
---|
389 | } |
---|
390 | |
---|
391 | |
---|
392 | /* compute bit-vectors representing bipartitions/splits for a multi-furcating tree */ |
---|
393 | |
---|
394 | static void newviewBipartitionsMultifurcating(unsigned int **bitVectors, nodeptr p, int numsp, unsigned int vectorLength) |
---|
395 | { |
---|
396 | if(isTip(p->number, numsp)) |
---|
397 | return; |
---|
398 | { |
---|
399 | nodeptr |
---|
400 | q, |
---|
401 | firstDescendant; |
---|
402 | |
---|
403 | unsigned int |
---|
404 | *vector = bitVectors[p->number]; |
---|
405 | |
---|
406 | unsigned |
---|
407 | int i; |
---|
408 | |
---|
409 | int |
---|
410 | x_set = 0, |
---|
411 | number; |
---|
412 | |
---|
413 | /* Set the directional x token to the correct element in the |
---|
414 | cyclically linked list representing an inner node */ |
---|
415 | |
---|
416 | q = p->next; |
---|
417 | |
---|
418 | if(p->x) |
---|
419 | x_set++; |
---|
420 | |
---|
421 | p->x = 1; |
---|
422 | number = p->number; |
---|
423 | |
---|
424 | while(q != p) |
---|
425 | { |
---|
426 | if(q->x) |
---|
427 | x_set++; |
---|
428 | q->x = 0; |
---|
429 | assert(q->number == number); |
---|
430 | q = q->next; |
---|
431 | } |
---|
432 | |
---|
433 | assert(x_set == 1); |
---|
434 | |
---|
435 | /* get the first connecting branch of the node to initialize the |
---|
436 | bipartition hash value and the bit vector representing this split. |
---|
437 | */ |
---|
438 | |
---|
439 | firstDescendant = p->next->back; |
---|
440 | |
---|
441 | /* if this is not a tip, we first need to recursively |
---|
442 | compute the hash values and bit-vectors for the subtree rooted at |
---|
443 | firstDescendant */ |
---|
444 | |
---|
445 | if(!isTip(firstDescendant->number, numsp)) |
---|
446 | { |
---|
447 | if(!firstDescendant->x) |
---|
448 | newviewBipartitionsMultifurcating(bitVectors, firstDescendant, numsp, vectorLength); |
---|
449 | } |
---|
450 | |
---|
451 | /* initialize the bit vector of the current split by the bit vector of the first descandant */ |
---|
452 | |
---|
453 | for(i = 0; i < vectorLength; i++) |
---|
454 | vector[i] = bitVectors[firstDescendant->number][i]; |
---|
455 | |
---|
456 | /* initialize the hash key of the current split by the hash key of the first descandant */ |
---|
457 | |
---|
458 | p->hash = firstDescendant->hash; |
---|
459 | |
---|
460 | /* handle all other descendants of this inner node potentially representing a multi-furcation */ |
---|
461 | |
---|
462 | q = p->next->next; |
---|
463 | |
---|
464 | while(q != p) |
---|
465 | { |
---|
466 | /* update the has key by xoring with the current hash with the hash of this descendant */ |
---|
467 | |
---|
468 | p->hash = p->hash ^ q->back->hash; |
---|
469 | |
---|
470 | if(!isTip(q->back->number, numsp)) |
---|
471 | { |
---|
472 | if(!q->back->x) |
---|
473 | newviewBipartitionsMultifurcating(bitVectors, q->back, numsp, vectorLength); |
---|
474 | } |
---|
475 | |
---|
476 | /* update the bit-vector representing the current split by applying a bitwise with the bit vector of the descendant */ |
---|
477 | |
---|
478 | for(i = 0; i < vectorLength; i++) |
---|
479 | vector[i] = bitVectors[q->back->number][i] | vector[i]; |
---|
480 | |
---|
481 | q = q->next; |
---|
482 | } |
---|
483 | } |
---|
484 | } |
---|
485 | |
---|
486 | |
---|
487 | static void insertHash(unsigned int *bitVector, hashtable *h, unsigned int vectorLength, int bipNumber, hashNumberType position) |
---|
488 | { |
---|
489 | entry *e = initEntry(); |
---|
490 | |
---|
491 | e->bipNumber = bipNumber; |
---|
492 | /*e->bitVector = (unsigned int*)rax_calloc(vectorLength, sizeof(unsigned int)); */ |
---|
493 | |
---|
494 | e->bitVector = (unsigned int*)rax_malloc(vectorLength * sizeof(unsigned int)); |
---|
495 | memset(e->bitVector, 0, vectorLength * sizeof(unsigned int)); |
---|
496 | |
---|
497 | memcpy(e->bitVector, bitVector, sizeof(unsigned int) * vectorLength); |
---|
498 | |
---|
499 | if(h->table[position] != NULL) |
---|
500 | { |
---|
501 | e->next = h->table[position]; |
---|
502 | h->table[position] = e; |
---|
503 | } |
---|
504 | else |
---|
505 | h->table[position] = e; |
---|
506 | |
---|
507 | h->entryCount = h->entryCount + 1; |
---|
508 | } |
---|
509 | |
---|
510 | |
---|
511 | |
---|
512 | static int countHash(unsigned int *bitVector, hashtable *h, unsigned int vectorLength, hashNumberType position) |
---|
513 | { |
---|
514 | if(h->table[position] == NULL) |
---|
515 | return -1; |
---|
516 | { |
---|
517 | entry *e = h->table[position]; |
---|
518 | |
---|
519 | do |
---|
520 | { |
---|
521 | unsigned int i; |
---|
522 | |
---|
523 | for(i = 0; i < vectorLength; i++) |
---|
524 | if(bitVector[i] != e->bitVector[i]) |
---|
525 | goto NEXT; |
---|
526 | |
---|
527 | return (e->bipNumber); |
---|
528 | NEXT: |
---|
529 | e = e->next; |
---|
530 | } |
---|
531 | while(e != (entry*)NULL); |
---|
532 | |
---|
533 | return -1; |
---|
534 | } |
---|
535 | |
---|
536 | } |
---|
537 | |
---|
538 | static void insertHashAll(unsigned int *bitVector, hashtable *h, unsigned int vectorLength, int treeNumber, hashNumberType position) |
---|
539 | { |
---|
540 | if(h->table[position] != NULL) |
---|
541 | { |
---|
542 | entry *e = h->table[position]; |
---|
543 | |
---|
544 | do |
---|
545 | { |
---|
546 | unsigned int i; |
---|
547 | |
---|
548 | for(i = 0; i < vectorLength; i++) |
---|
549 | if(bitVector[i] != e->bitVector[i]) |
---|
550 | break; |
---|
551 | |
---|
552 | if(i == vectorLength) |
---|
553 | { |
---|
554 | if(treeNumber == 0) |
---|
555 | e->bipNumber = e->bipNumber + 1; |
---|
556 | else |
---|
557 | e->bipNumber2 = e->bipNumber2 + 1; |
---|
558 | return; |
---|
559 | } |
---|
560 | |
---|
561 | e = e->next; |
---|
562 | } |
---|
563 | while(e != (entry*)NULL); |
---|
564 | |
---|
565 | e = initEntry(); |
---|
566 | |
---|
567 | /*e->bitVector = (unsigned int*)rax_calloc(vectorLength, sizeof(unsigned int)); */ |
---|
568 | e->bitVector = (unsigned int*)rax_malloc(vectorLength * sizeof(unsigned int)); |
---|
569 | memset(e->bitVector, 0, vectorLength * sizeof(unsigned int)); |
---|
570 | |
---|
571 | |
---|
572 | memcpy(e->bitVector, bitVector, sizeof(unsigned int) * vectorLength); |
---|
573 | |
---|
574 | if(treeNumber == 0) |
---|
575 | e->bipNumber = 1; |
---|
576 | else |
---|
577 | e->bipNumber2 = 1; |
---|
578 | |
---|
579 | e->next = h->table[position]; |
---|
580 | h->table[position] = e; |
---|
581 | } |
---|
582 | else |
---|
583 | { |
---|
584 | entry *e = initEntry(); |
---|
585 | |
---|
586 | /*e->bitVector = (unsigned int*)rax_calloc(vectorLength, sizeof(unsigned int)); */ |
---|
587 | |
---|
588 | e->bitVector = (unsigned int*)rax_malloc(vectorLength * sizeof(unsigned int)); |
---|
589 | memset(e->bitVector, 0, vectorLength * sizeof(unsigned int)); |
---|
590 | |
---|
591 | memcpy(e->bitVector, bitVector, sizeof(unsigned int) * vectorLength); |
---|
592 | |
---|
593 | if(treeNumber == 0) |
---|
594 | e->bipNumber = 1; |
---|
595 | else |
---|
596 | e->bipNumber2 = 1; |
---|
597 | |
---|
598 | h->table[position] = e; |
---|
599 | } |
---|
600 | |
---|
601 | h->entryCount = h->entryCount + 1; |
---|
602 | } |
---|
603 | |
---|
604 | |
---|
605 | |
---|
606 | static void insertHashBootstop(unsigned int *bitVector, hashtable *h, unsigned int vectorLength, int treeNumber, int treeVectorLength, hashNumberType position) |
---|
607 | { |
---|
608 | if(h->table[position] != NULL) |
---|
609 | { |
---|
610 | entry *e = h->table[position]; |
---|
611 | |
---|
612 | do |
---|
613 | { |
---|
614 | unsigned int i; |
---|
615 | |
---|
616 | for(i = 0; i < vectorLength; i++) |
---|
617 | if(bitVector[i] != e->bitVector[i]) |
---|
618 | break; |
---|
619 | |
---|
620 | if(i == vectorLength) |
---|
621 | { |
---|
622 | e->treeVector[treeNumber / MASK_LENGTH] |= mask32[treeNumber % MASK_LENGTH]; |
---|
623 | return; |
---|
624 | } |
---|
625 | |
---|
626 | e = e->next; |
---|
627 | } |
---|
628 | while(e != (entry*)NULL); |
---|
629 | |
---|
630 | e = initEntry(); |
---|
631 | |
---|
632 | e->bipNumber = h->entryCount; |
---|
633 | |
---|
634 | /*e->bitVector = (unsigned int*)rax_calloc(vectorLength, sizeof(unsigned int));*/ |
---|
635 | e->bitVector = (unsigned int*)rax_malloc(vectorLength * sizeof(unsigned int)); |
---|
636 | memset(e->bitVector, 0, vectorLength * sizeof(unsigned int)); |
---|
637 | |
---|
638 | |
---|
639 | e->treeVector = (unsigned int*)rax_calloc(treeVectorLength, sizeof(unsigned int)); |
---|
640 | |
---|
641 | e->treeVector[treeNumber / MASK_LENGTH] |= mask32[treeNumber % MASK_LENGTH]; |
---|
642 | memcpy(e->bitVector, bitVector, sizeof(unsigned int) * vectorLength); |
---|
643 | |
---|
644 | e->next = h->table[position]; |
---|
645 | h->table[position] = e; |
---|
646 | } |
---|
647 | else |
---|
648 | { |
---|
649 | entry *e = initEntry(); |
---|
650 | |
---|
651 | e->bipNumber = h->entryCount; |
---|
652 | |
---|
653 | /*e->bitVector = (unsigned int*)rax_calloc(vectorLength, sizeof(unsigned int));*/ |
---|
654 | |
---|
655 | e->bitVector = (unsigned int*)rax_malloc(vectorLength * sizeof(unsigned int)); |
---|
656 | memset(e->bitVector, 0, vectorLength * sizeof(unsigned int)); |
---|
657 | |
---|
658 | e->treeVector = (unsigned int*)rax_calloc(treeVectorLength, sizeof(unsigned int)); |
---|
659 | |
---|
660 | e->treeVector[treeNumber / MASK_LENGTH] |= mask32[treeNumber % MASK_LENGTH]; |
---|
661 | memcpy(e->bitVector, bitVector, sizeof(unsigned int) * vectorLength); |
---|
662 | |
---|
663 | h->table[position] = e; |
---|
664 | } |
---|
665 | |
---|
666 | h->entryCount = h->entryCount + 1; |
---|
667 | } |
---|
668 | |
---|
669 | static void insertHashRF(unsigned int *bitVector, hashtable *h, unsigned int vectorLength, int treeNumber, int treeVectorLength, hashNumberType position, int support, |
---|
670 | boolean computeWRF) |
---|
671 | { |
---|
672 | if(h->table[position] != NULL) |
---|
673 | { |
---|
674 | entry *e = h->table[position]; |
---|
675 | |
---|
676 | do |
---|
677 | { |
---|
678 | unsigned int i; |
---|
679 | |
---|
680 | for(i = 0; i < vectorLength; i++) |
---|
681 | if(bitVector[i] != e->bitVector[i]) |
---|
682 | break; |
---|
683 | |
---|
684 | if(i == vectorLength) |
---|
685 | { |
---|
686 | e->treeVector[treeNumber / MASK_LENGTH] |= mask32[treeNumber % MASK_LENGTH]; |
---|
687 | if(computeWRF) |
---|
688 | { |
---|
689 | e->supportVector[treeNumber] = support; |
---|
690 | |
---|
691 | assert(0 <= treeNumber && treeNumber < treeVectorLength * MASK_LENGTH); |
---|
692 | } |
---|
693 | return; |
---|
694 | } |
---|
695 | |
---|
696 | e = e->next; |
---|
697 | } |
---|
698 | while(e != (entry*)NULL); |
---|
699 | |
---|
700 | e = initEntry(); |
---|
701 | |
---|
702 | /*e->bitVector = (unsigned int*)rax_calloc(vectorLength, sizeof(unsigned int));*/ |
---|
703 | e->bitVector = (unsigned int*)rax_malloc(vectorLength * sizeof(unsigned int)); |
---|
704 | memset(e->bitVector, 0, vectorLength * sizeof(unsigned int)); |
---|
705 | |
---|
706 | |
---|
707 | e->treeVector = (unsigned int*)rax_calloc(treeVectorLength, sizeof(unsigned int)); |
---|
708 | if(computeWRF) |
---|
709 | e->supportVector = (int*)rax_calloc(treeVectorLength * MASK_LENGTH, sizeof(int)); |
---|
710 | |
---|
711 | e->treeVector[treeNumber / MASK_LENGTH] |= mask32[treeNumber % MASK_LENGTH]; |
---|
712 | if(computeWRF) |
---|
713 | { |
---|
714 | e->supportVector[treeNumber] = support; |
---|
715 | |
---|
716 | assert(0 <= treeNumber && treeNumber < treeVectorLength * MASK_LENGTH); |
---|
717 | } |
---|
718 | |
---|
719 | memcpy(e->bitVector, bitVector, sizeof(unsigned int) * vectorLength); |
---|
720 | |
---|
721 | e->next = h->table[position]; |
---|
722 | h->table[position] = e; |
---|
723 | } |
---|
724 | else |
---|
725 | { |
---|
726 | entry *e = initEntry(); |
---|
727 | |
---|
728 | /*e->bitVector = (unsigned int*)rax_calloc(vectorLength, sizeof(unsigned int)); */ |
---|
729 | |
---|
730 | e->bitVector = (unsigned int*)rax_malloc(vectorLength * sizeof(unsigned int)); |
---|
731 | memset(e->bitVector, 0, vectorLength * sizeof(unsigned int)); |
---|
732 | |
---|
733 | e->treeVector = (unsigned int*)rax_calloc(treeVectorLength, sizeof(unsigned int)); |
---|
734 | if(computeWRF) |
---|
735 | e->supportVector = (int*)rax_calloc(treeVectorLength * MASK_LENGTH, sizeof(int)); |
---|
736 | |
---|
737 | |
---|
738 | e->treeVector[treeNumber / MASK_LENGTH] |= mask32[treeNumber % MASK_LENGTH]; |
---|
739 | if(computeWRF) |
---|
740 | { |
---|
741 | e->supportVector[treeNumber] = support; |
---|
742 | |
---|
743 | assert(0 <= treeNumber && treeNumber < treeVectorLength * MASK_LENGTH); |
---|
744 | } |
---|
745 | |
---|
746 | memcpy(e->bitVector, bitVector, sizeof(unsigned int) * vectorLength); |
---|
747 | |
---|
748 | h->table[position] = e; |
---|
749 | } |
---|
750 | |
---|
751 | h->entryCount = h->entryCount + 1; |
---|
752 | } |
---|
753 | |
---|
754 | |
---|
755 | |
---|
756 | void bitVectorInitravSpecial(unsigned int **bitVectors, nodeptr p, int numsp, unsigned int vectorLength, hashtable *h, int treeNumber, int function, branchInfo *bInf, |
---|
757 | int *countBranches, int treeVectorLength, boolean traverseOnly, boolean computeWRF) |
---|
758 | { |
---|
759 | if(isTip(p->number, numsp)) |
---|
760 | return; |
---|
761 | else |
---|
762 | { |
---|
763 | nodeptr q = p->next; |
---|
764 | |
---|
765 | do |
---|
766 | { |
---|
767 | bitVectorInitravSpecial(bitVectors, q->back, numsp, vectorLength, h, treeNumber, function, bInf, countBranches, treeVectorLength, traverseOnly, computeWRF); |
---|
768 | q = q->next; |
---|
769 | } |
---|
770 | while(q != p); |
---|
771 | |
---|
772 | newviewBipartitions(bitVectors, p, numsp, vectorLength); |
---|
773 | |
---|
774 | assert(p->x); |
---|
775 | |
---|
776 | if(traverseOnly) |
---|
777 | { |
---|
778 | if(!(isTip(p->back->number, numsp))) |
---|
779 | *countBranches = *countBranches + 1; |
---|
780 | return; |
---|
781 | } |
---|
782 | |
---|
783 | if(!(isTip(p->back->number, numsp))) |
---|
784 | { |
---|
785 | unsigned int *toInsert = bitVectors[p->number]; |
---|
786 | hashNumberType position = p->hash % h->tableSize; |
---|
787 | |
---|
788 | assert(!(toInsert[0] & 1)); |
---|
789 | |
---|
790 | switch(function) |
---|
791 | { |
---|
792 | case BIPARTITIONS_ALL: |
---|
793 | insertHashAll(toInsert, h, vectorLength, treeNumber, position); |
---|
794 | *countBranches = *countBranches + 1; |
---|
795 | break; |
---|
796 | case GET_BIPARTITIONS_BEST: |
---|
797 | insertHash(toInsert, h, vectorLength, *countBranches, position); |
---|
798 | |
---|
799 | p->bInf = &bInf[*countBranches]; |
---|
800 | p->back->bInf = &bInf[*countBranches]; |
---|
801 | p->bInf->support = 0; |
---|
802 | p->bInf->oP = p; |
---|
803 | p->bInf->oQ = p->back; |
---|
804 | |
---|
805 | *countBranches = *countBranches + 1; |
---|
806 | break; |
---|
807 | case DRAW_BIPARTITIONS_BEST: |
---|
808 | { |
---|
809 | int found = countHash(toInsert, h, vectorLength, position); |
---|
810 | if(found >= 0) |
---|
811 | bInf[found].support = bInf[found].support + 1; |
---|
812 | *countBranches = *countBranches + 1; |
---|
813 | } |
---|
814 | break; |
---|
815 | case BIPARTITIONS_BOOTSTOP: |
---|
816 | insertHashBootstop(toInsert, h, vectorLength, treeNumber, treeVectorLength, position); |
---|
817 | *countBranches = *countBranches + 1; |
---|
818 | break; |
---|
819 | case BIPARTITIONS_RF: |
---|
820 | if(computeWRF) |
---|
821 | assert(p->support == p->back->support); |
---|
822 | insertHashRF(toInsert, h, vectorLength, treeNumber, treeVectorLength, position, p->support, computeWRF); |
---|
823 | *countBranches = *countBranches + 1; |
---|
824 | break; |
---|
825 | default: |
---|
826 | assert(0); |
---|
827 | } |
---|
828 | } |
---|
829 | |
---|
830 | } |
---|
831 | } |
---|
832 | |
---|
833 | static void linkBipartitions(nodeptr p, tree *tr, branchInfo *bInf, int *counter, int numberOfTrees) |
---|
834 | { |
---|
835 | if(isTip(p->number, tr->mxtips)) |
---|
836 | { |
---|
837 | assert(p->bInf == (branchInfo*) NULL && p->back->bInf == (branchInfo*) NULL); |
---|
838 | return; |
---|
839 | } |
---|
840 | else |
---|
841 | { |
---|
842 | nodeptr q; |
---|
843 | |
---|
844 | q = p->next; |
---|
845 | |
---|
846 | while(q != p) |
---|
847 | { |
---|
848 | linkBipartitions(q->back, tr, bInf, counter, numberOfTrees); |
---|
849 | q = q->next; |
---|
850 | } |
---|
851 | |
---|
852 | if(!(isTip(p->back->number, tr->mxtips))) |
---|
853 | { |
---|
854 | double support; |
---|
855 | |
---|
856 | p->bInf = &bInf[*counter]; |
---|
857 | p->back->bInf = &bInf[*counter]; |
---|
858 | |
---|
859 | support = ((double)(p->bInf->support)) / ((double) (numberOfTrees)); |
---|
860 | p->bInf->support = (int)(0.5 + support * 100.0); |
---|
861 | |
---|
862 | assert(p->bInf->oP == p); |
---|
863 | assert(p->bInf->oQ == p->back); |
---|
864 | |
---|
865 | *counter = *counter + 1; |
---|
866 | } |
---|
867 | |
---|
868 | |
---|
869 | return; |
---|
870 | } |
---|
871 | } |
---|
872 | |
---|
873 | |
---|
874 | static int readSingleTree(tree *tr, char *fileName, analdef *adef, boolean readBranches, boolean readNodeLabels, boolean completeTree) |
---|
875 | { |
---|
876 | FILE |
---|
877 | *f = myfopen(fileName, "r"); |
---|
878 | |
---|
879 | int |
---|
880 | numberOfTaxa, |
---|
881 | ch, |
---|
882 | trees = 0; |
---|
883 | |
---|
884 | while((ch = fgetc(f)) != EOF) |
---|
885 | if(ch == ';') |
---|
886 | trees++; |
---|
887 | |
---|
888 | assert(trees == 1); |
---|
889 | |
---|
890 | printBothOpen("\n\nFound 1 tree in File %s\n\n", fileName); |
---|
891 | |
---|
892 | rewind(f); |
---|
893 | |
---|
894 | treeReadLen(f, tr, readBranches, readNodeLabels, TRUE, adef, completeTree, FALSE); |
---|
895 | |
---|
896 | numberOfTaxa = tr->ntips; |
---|
897 | |
---|
898 | fclose(f); |
---|
899 | |
---|
900 | return numberOfTaxa; |
---|
901 | } |
---|
902 | |
---|
903 | /*************** function for drawing bipartitions on a bifurcating tree ***********/ |
---|
904 | |
---|
905 | void calcBipartitions(tree *tr, analdef *adef, char *bestTreeFileName, char *bootStrapFileName) |
---|
906 | { |
---|
907 | branchInfo |
---|
908 | *bInf; |
---|
909 | unsigned int vLength; |
---|
910 | |
---|
911 | int |
---|
912 | numberOfTaxa = 0, |
---|
913 | branchCounter = 0, |
---|
914 | counter = 0, |
---|
915 | numberOfTrees = 0, |
---|
916 | i; |
---|
917 | |
---|
918 | unsigned int |
---|
919 | **bitVectors = initBitVector(tr, &vLength); |
---|
920 | |
---|
921 | hashtable *h = |
---|
922 | initHashTable(tr->mxtips * 10); |
---|
923 | |
---|
924 | FILE |
---|
925 | *treeFile; |
---|
926 | |
---|
927 | numberOfTaxa = readSingleTree(tr, bestTreeFileName, adef, FALSE, FALSE, TRUE); |
---|
928 | |
---|
929 | bInf = (branchInfo*)rax_malloc(sizeof(branchInfo) * (tr->mxtips - 3)); |
---|
930 | |
---|
931 | bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vLength, h, 0, GET_BIPARTITIONS_BEST, bInf, &branchCounter, 0, FALSE, FALSE); |
---|
932 | |
---|
933 | if(numberOfTaxa != tr->mxtips) |
---|
934 | { |
---|
935 | printBothOpen("The number of taxa in the reference tree file \"%s\" is %d and\n", bestTreeFileName, numberOfTaxa); |
---|
936 | printBothOpen("is not equal to the number of taxa in the bootstrap tree file \"%s\" which is %d.\n", bootStrapFileName, tr->mxtips); |
---|
937 | printBothOpen("RAxML will exit now with an error ....\n\n"); |
---|
938 | } |
---|
939 | |
---|
940 | assert((int)h->entryCount == (tr->mxtips - 3)); |
---|
941 | assert(branchCounter == (tr->mxtips - 3)); |
---|
942 | |
---|
943 | treeFile = getNumberOfTrees(tr, bootStrapFileName, adef); |
---|
944 | |
---|
945 | numberOfTrees = tr->numberOfTrees; |
---|
946 | |
---|
947 | for(i = 0; i < numberOfTrees; i++) |
---|
948 | { |
---|
949 | int |
---|
950 | bCount = 0; |
---|
951 | |
---|
952 | treeReadLen(treeFile, tr, FALSE, FALSE, TRUE, adef, TRUE, FALSE); |
---|
953 | assert(tr->ntips == tr->mxtips); |
---|
954 | |
---|
955 | bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vLength, h, 0, DRAW_BIPARTITIONS_BEST, bInf, &bCount, 0, FALSE, FALSE); |
---|
956 | assert(bCount == tr->mxtips - 3); |
---|
957 | } |
---|
958 | |
---|
959 | fclose(treeFile); |
---|
960 | |
---|
961 | readSingleTree(tr, bestTreeFileName, adef, TRUE, FALSE, TRUE); |
---|
962 | |
---|
963 | linkBipartitions(tr->nodep[1]->back, tr, bInf, &counter, numberOfTrees); |
---|
964 | |
---|
965 | assert(counter == branchCounter); |
---|
966 | |
---|
967 | printBipartitionResult(tr, adef, TRUE, FALSE); |
---|
968 | |
---|
969 | freeBitVectors(bitVectors, 2 * tr->mxtips); |
---|
970 | rax_free(bitVectors); |
---|
971 | freeHashTable(h); |
---|
972 | rax_free(h); |
---|
973 | |
---|
974 | rax_free(bInf); |
---|
975 | } |
---|
976 | |
---|
977 | |
---|
978 | /****** functions for IC computation ***********************************************/ |
---|
979 | |
---|
980 | static void insertHash_IC(unsigned int *bitVector, hashtable *h, unsigned int vectorLength, hashNumberType position) |
---|
981 | { |
---|
982 | if(h->table[position] != NULL) |
---|
983 | { |
---|
984 | entry |
---|
985 | *e = h->table[position]; |
---|
986 | |
---|
987 | do |
---|
988 | { |
---|
989 | unsigned int |
---|
990 | i; |
---|
991 | |
---|
992 | for(i = 0; i < vectorLength; i++) |
---|
993 | if(bitVector[i] != e->bitVector[i]) |
---|
994 | break; |
---|
995 | |
---|
996 | if(i == vectorLength) |
---|
997 | { |
---|
998 | e->bipNumber = e->bipNumber + 1; |
---|
999 | return; |
---|
1000 | } |
---|
1001 | |
---|
1002 | e = e->next; |
---|
1003 | } |
---|
1004 | while(e != (entry*)NULL); |
---|
1005 | |
---|
1006 | e = initEntry(); |
---|
1007 | |
---|
1008 | e->bitVector = (unsigned int*)rax_malloc(vectorLength * sizeof(unsigned int)); |
---|
1009 | memset(e->bitVector, 0, vectorLength * sizeof(unsigned int)); |
---|
1010 | memcpy(e->bitVector, bitVector, sizeof(unsigned int) * vectorLength); |
---|
1011 | |
---|
1012 | e->bipNumber = 1; |
---|
1013 | |
---|
1014 | e->next = h->table[position]; |
---|
1015 | h->table[position] = e; |
---|
1016 | } |
---|
1017 | else |
---|
1018 | { |
---|
1019 | entry |
---|
1020 | *e = initEntry(); |
---|
1021 | |
---|
1022 | e->bitVector = (unsigned int*)rax_malloc(vectorLength * sizeof(unsigned int)); |
---|
1023 | memset(e->bitVector, 0, vectorLength * sizeof(unsigned int)); |
---|
1024 | memcpy(e->bitVector, bitVector, sizeof(unsigned int) * vectorLength); |
---|
1025 | |
---|
1026 | |
---|
1027 | e->bipNumber = 1; |
---|
1028 | |
---|
1029 | h->table[position] = e; |
---|
1030 | } |
---|
1031 | |
---|
1032 | h->entryCount = h->entryCount + 1; |
---|
1033 | } |
---|
1034 | |
---|
1035 | |
---|
1036 | |
---|
1037 | static unsigned int findHash_IC(unsigned int *bitVector, hashtable *h, unsigned int vectorLength, hashNumberType position) |
---|
1038 | { |
---|
1039 | if(h->table[position] == NULL) |
---|
1040 | return 0; |
---|
1041 | { |
---|
1042 | entry *e = h->table[position]; |
---|
1043 | |
---|
1044 | do |
---|
1045 | { |
---|
1046 | unsigned int |
---|
1047 | i; |
---|
1048 | |
---|
1049 | for(i = 0; i < vectorLength; i++) |
---|
1050 | if(bitVector[i] != e->bitVector[i]) |
---|
1051 | goto NEXT; |
---|
1052 | |
---|
1053 | return e->bipNumber; |
---|
1054 | NEXT: |
---|
1055 | e = e->next; |
---|
1056 | } |
---|
1057 | while(e != (entry*)NULL); |
---|
1058 | |
---|
1059 | return 0; |
---|
1060 | } |
---|
1061 | } |
---|
1062 | |
---|
1063 | static boolean compatibleIC(unsigned int *A, unsigned int *C, unsigned int bvlen) |
---|
1064 | { |
---|
1065 | unsigned int |
---|
1066 | i; |
---|
1067 | |
---|
1068 | for(i = 0; i < bvlen; i++) |
---|
1069 | if(A[i] & C[i]) |
---|
1070 | break; |
---|
1071 | |
---|
1072 | if(i == bvlen) |
---|
1073 | return TRUE; |
---|
1074 | |
---|
1075 | for(i = 0; i < bvlen; i++) |
---|
1076 | if(A[i] & ~C[i]) |
---|
1077 | break; |
---|
1078 | |
---|
1079 | if(i == bvlen) |
---|
1080 | return TRUE; |
---|
1081 | |
---|
1082 | /* |
---|
1083 | not required -> ask Andre |
---|
1084 | for(i = 0; i < bvlen; i++) |
---|
1085 | if(~A[i] & ~C[i]) |
---|
1086 | break; |
---|
1087 | |
---|
1088 | if(i == bvlen) |
---|
1089 | return TRUE; */ |
---|
1090 | |
---|
1091 | |
---|
1092 | for(i = 0; i < bvlen; i++) |
---|
1093 | if(~A[i] & C[i]) |
---|
1094 | break; |
---|
1095 | |
---|
1096 | if(i == bvlen) |
---|
1097 | return TRUE; |
---|
1098 | else |
---|
1099 | return FALSE; |
---|
1100 | } |
---|
1101 | |
---|
1102 | static int sortByBipNumber(const void *a, const void *b) |
---|
1103 | { |
---|
1104 | int |
---|
1105 | ca = ((*((entry **)a))->bipNumber), |
---|
1106 | cb = ((*((entry **)b))->bipNumber); |
---|
1107 | |
---|
1108 | if (ca == cb) |
---|
1109 | return 0; |
---|
1110 | |
---|
1111 | return ((ca < cb)?1:-1); |
---|
1112 | } |
---|
1113 | |
---|
1114 | static int sortByTreeSet(const void *a, const void *b) |
---|
1115 | { |
---|
1116 | int |
---|
1117 | ca = ((*((entry **)a))->supportFromTreeset)[0], |
---|
1118 | cb = ((*((entry **)b))->supportFromTreeset)[0]; |
---|
1119 | |
---|
1120 | if (ca == cb) |
---|
1121 | return 0; |
---|
1122 | |
---|
1123 | return ((ca < cb)?1:-1); |
---|
1124 | } |
---|
1125 | |
---|
1126 | |
---|
1127 | static unsigned int countIncompatibleBipartitions(unsigned int *toInsert, hashtable *h, hashNumberType vectorLength, unsigned int *maxima, unsigned int *maxCounter, boolean bipNumber, |
---|
1128 | unsigned int numberOfTrees, unsigned int **maximaBitVectors) |
---|
1129 | { |
---|
1130 | unsigned int |
---|
1131 | threshold = numberOfTrees / 20, |
---|
1132 | max = 0, |
---|
1133 | entryVectorSize = h->entryCount, |
---|
1134 | entryVectorElements = 0, |
---|
1135 | k, |
---|
1136 | uncompatible = 0; |
---|
1137 | |
---|
1138 | entry |
---|
1139 | **entryVector = (entry**)rax_malloc(sizeof(entry*) * entryVectorSize); |
---|
1140 | |
---|
1141 | for(k = 0; k < entryVectorSize; k++) |
---|
1142 | entryVector[k] = (entry*)NULL; |
---|
1143 | |
---|
1144 | for(k = 0; k < h->tableSize; k++) |
---|
1145 | { |
---|
1146 | if(h->table[k] != NULL) |
---|
1147 | { |
---|
1148 | entry |
---|
1149 | *e = h->table[k]; |
---|
1150 | |
---|
1151 | do |
---|
1152 | { |
---|
1153 | if(!compatibleIC(toInsert, e->bitVector, vectorLength)) |
---|
1154 | { |
---|
1155 | unsigned int |
---|
1156 | support; |
---|
1157 | |
---|
1158 | if(bipNumber) |
---|
1159 | support = e->bipNumber; |
---|
1160 | else |
---|
1161 | support = e->supportFromTreeset[0]; |
---|
1162 | |
---|
1163 | if(support > max) |
---|
1164 | max = support; |
---|
1165 | |
---|
1166 | uncompatible += support; |
---|
1167 | |
---|
1168 | entryVector[entryVectorElements] = e; |
---|
1169 | entryVectorElements++; |
---|
1170 | assert(entryVectorElements < entryVectorSize); |
---|
1171 | } |
---|
1172 | |
---|
1173 | e = e->next; |
---|
1174 | } |
---|
1175 | while(e != NULL); |
---|
1176 | } |
---|
1177 | } |
---|
1178 | |
---|
1179 | if(bipNumber) |
---|
1180 | { |
---|
1181 | qsort(entryVector, entryVectorElements, sizeof(entry *), sortByBipNumber); |
---|
1182 | assert(max == entryVector[0]->bipNumber); |
---|
1183 | } |
---|
1184 | else |
---|
1185 | { |
---|
1186 | qsort(entryVector, entryVectorElements, sizeof(entry *), sortByTreeSet); |
---|
1187 | assert(max == entryVector[0]->supportFromTreeset[0]); |
---|
1188 | } |
---|
1189 | |
---|
1190 | for(k = 0; k < entryVectorElements; k++) |
---|
1191 | { |
---|
1192 | unsigned int |
---|
1193 | j, |
---|
1194 | support; |
---|
1195 | |
---|
1196 | boolean |
---|
1197 | uncompat = TRUE; |
---|
1198 | |
---|
1199 | entry |
---|
1200 | *referenceEntry = entryVector[k]; |
---|
1201 | |
---|
1202 | if(bipNumber) |
---|
1203 | support = entryVector[k]->bipNumber; |
---|
1204 | else |
---|
1205 | support = entryVector[k]->supportFromTreeset[0]; |
---|
1206 | |
---|
1207 | if(k > 0) |
---|
1208 | { |
---|
1209 | if(support > threshold) |
---|
1210 | { |
---|
1211 | for(j = 0; j < k; j++) |
---|
1212 | { |
---|
1213 | entry |
---|
1214 | *checkEntry = entryVector[j]; |
---|
1215 | |
---|
1216 | if(compatibleIC(checkEntry->bitVector, referenceEntry->bitVector, vectorLength)) |
---|
1217 | { |
---|
1218 | uncompat = FALSE; |
---|
1219 | break; |
---|
1220 | } |
---|
1221 | } |
---|
1222 | } |
---|
1223 | else |
---|
1224 | uncompat = FALSE; |
---|
1225 | } |
---|
1226 | |
---|
1227 | if(uncompat) |
---|
1228 | { |
---|
1229 | maximaBitVectors[*maxCounter] = entryVector[k]->bitVector; |
---|
1230 | maxima[*maxCounter] = support; |
---|
1231 | *maxCounter = *maxCounter + 1; |
---|
1232 | } |
---|
1233 | } |
---|
1234 | |
---|
1235 | rax_free(entryVector); |
---|
1236 | |
---|
1237 | return uncompatible; |
---|
1238 | } |
---|
1239 | |
---|
1240 | static double computeIC_Value(unsigned int supportedBips, unsigned int *maxima, unsigned int numberOfTrees, unsigned int maxCounter, boolean computeIC_All, boolean warnNegativeIC) |
---|
1241 | { |
---|
1242 | unsigned int |
---|
1243 | loopLength, |
---|
1244 | i, |
---|
1245 | totalBipsAll = supportedBips; |
---|
1246 | |
---|
1247 | double |
---|
1248 | ic, |
---|
1249 | n = 1 + (double)maxCounter, |
---|
1250 | supportFreq; |
---|
1251 | |
---|
1252 | boolean |
---|
1253 | negativeIC = FALSE; |
---|
1254 | |
---|
1255 | if(computeIC_All) |
---|
1256 | { |
---|
1257 | loopLength = maxCounter; |
---|
1258 | n = 1 + (double)maxCounter; |
---|
1259 | } |
---|
1260 | else |
---|
1261 | { |
---|
1262 | loopLength = 1; |
---|
1263 | n = 2.0; |
---|
1264 | } |
---|
1265 | |
---|
1266 | // should never enter this function when the bip is supported by 100% |
---|
1267 | |
---|
1268 | assert(supportedBips < numberOfTrees); |
---|
1269 | |
---|
1270 | // must be larger than 0 in this case |
---|
1271 | |
---|
1272 | //assert(maxCounter > 0); |
---|
1273 | |
---|
1274 | // figure out if the competing bipartition is higher support |
---|
1275 | // can happen for MRE and when drawing IC values on best ML tree |
---|
1276 | |
---|
1277 | if(maxima[0] > supportedBips) |
---|
1278 | { |
---|
1279 | negativeIC = TRUE; |
---|
1280 | |
---|
1281 | if(warnNegativeIC) |
---|
1282 | { |
---|
1283 | printBothOpen("\nMax conflicting bipartition frequency: %d is larger than frequency of the included bipartition: %d\n", maxima[0], supportedBips); |
---|
1284 | printBothOpen("This is interesting, but not unexpected when computing extended Majority Rule consensus trees.\n"); |
---|
1285 | printBothOpen("Please send an email with the input files and command line\n"); |
---|
1286 | printBothOpen("to Alexandros.Stamatakis@gmail.com.\n"); |
---|
1287 | printBothOpen("Thank you :-)\n\n"); |
---|
1288 | } |
---|
1289 | } |
---|
1290 | |
---|
1291 | for(i = 0; i < loopLength; i++) |
---|
1292 | totalBipsAll += maxima[i]; |
---|
1293 | |
---|
1294 | //neither support for the actual bipartition, nor for the conflicting ones |
---|
1295 | //I am not sure that this will happen, but anyway |
---|
1296 | if(totalBipsAll == 0) |
---|
1297 | return 0.0; |
---|
1298 | |
---|
1299 | supportFreq = (double)supportedBips / (double)totalBipsAll; |
---|
1300 | |
---|
1301 | if(supportedBips == 0) |
---|
1302 | ic = log(n); |
---|
1303 | else |
---|
1304 | ic = log(n) + supportFreq * log(supportFreq); |
---|
1305 | |
---|
1306 | for(i = 0; i < loopLength; i++) |
---|
1307 | { |
---|
1308 | assert(maxima[i] > 0); |
---|
1309 | |
---|
1310 | supportFreq = (double)maxima[i] / (double)totalBipsAll; |
---|
1311 | |
---|
1312 | if(maxima[i] != 0) |
---|
1313 | ic += supportFreq * log(supportFreq); |
---|
1314 | } |
---|
1315 | |
---|
1316 | ic /= log(n); |
---|
1317 | |
---|
1318 | if(negativeIC) |
---|
1319 | return (-ic); |
---|
1320 | else |
---|
1321 | return ic; |
---|
1322 | } |
---|
1323 | |
---|
1324 | static void printSplit(FILE *f, FILE *v, unsigned int *bitVector, tree *tr, double support, double ic, unsigned int frequency) |
---|
1325 | { |
---|
1326 | int |
---|
1327 | i, |
---|
1328 | countLeftTaxa = 0, |
---|
1329 | countRightTaxa = 0, |
---|
1330 | taxa = 0, |
---|
1331 | totalTaxa = 0; |
---|
1332 | |
---|
1333 | for(i = 0; i < tr->mxtips; i++) |
---|
1334 | if((bitVector[i / MASK_LENGTH] & mask32[i % MASK_LENGTH])) |
---|
1335 | countLeftTaxa++; |
---|
1336 | |
---|
1337 | countRightTaxa = tr->mxtips - countLeftTaxa; |
---|
1338 | |
---|
1339 | fprintf(f, "(("); |
---|
1340 | |
---|
1341 | for(i = 0; i < tr->mxtips; i++) |
---|
1342 | { |
---|
1343 | if((bitVector[i / MASK_LENGTH] & mask32[i % MASK_LENGTH])) |
---|
1344 | { |
---|
1345 | fprintf(v, "*"); |
---|
1346 | fprintf(f, "%s", tr->nameList[i+1]); |
---|
1347 | taxa++; |
---|
1348 | totalTaxa++; |
---|
1349 | if(taxa < countLeftTaxa) |
---|
1350 | fprintf(f, ", "); |
---|
1351 | } |
---|
1352 | else |
---|
1353 | fprintf(v, "-"); |
---|
1354 | } |
---|
1355 | |
---|
1356 | fprintf(v, "\t%u/%f/%f\n", frequency, support * 100.0, ic); |
---|
1357 | |
---|
1358 | fprintf(f, "),("); |
---|
1359 | |
---|
1360 | taxa = 0; |
---|
1361 | |
---|
1362 | for(i = 0; i < tr->mxtips; i++) |
---|
1363 | { |
---|
1364 | if(!(bitVector[i / MASK_LENGTH] & mask32[i % MASK_LENGTH])) |
---|
1365 | { |
---|
1366 | fprintf(f, "%s", tr->nameList[i+1]); |
---|
1367 | taxa++; |
---|
1368 | totalTaxa++; |
---|
1369 | if(taxa < countRightTaxa) |
---|
1370 | fprintf(f, ", "); |
---|
1371 | } |
---|
1372 | } |
---|
1373 | |
---|
1374 | assert(totalTaxa == tr->mxtips); |
---|
1375 | |
---|
1376 | fprintf(f, "));\n"); |
---|
1377 | } |
---|
1378 | |
---|
1379 | static void printFullySupportedSplit(tree *tr, unsigned int *bitVector, unsigned int numberOfTrees) |
---|
1380 | { |
---|
1381 | FILE |
---|
1382 | *v = myfopen(verboseSplitsFileName, "a"); |
---|
1383 | |
---|
1384 | int |
---|
1385 | i; |
---|
1386 | |
---|
1387 | fprintf(v, "partition: \n"); |
---|
1388 | |
---|
1389 | for(i = 0; i < tr->mxtips; i++) |
---|
1390 | { |
---|
1391 | if((bitVector[i / MASK_LENGTH] & mask32[i % MASK_LENGTH])) |
---|
1392 | fprintf(v, "*"); |
---|
1393 | else |
---|
1394 | fprintf(v, "-"); |
---|
1395 | } |
---|
1396 | |
---|
1397 | fprintf(v, "\t%u/%f/%f\n\n\n", numberOfTrees, 100.0, 1.0); |
---|
1398 | |
---|
1399 | fclose(v); |
---|
1400 | } |
---|
1401 | |
---|
1402 | static void printVerboseTaxonNames(tree *tr) |
---|
1403 | { |
---|
1404 | FILE |
---|
1405 | *f = myfopen(verboseSplitsFileName, "w"); |
---|
1406 | |
---|
1407 | int |
---|
1408 | i; |
---|
1409 | |
---|
1410 | fprintf(f, "\n"); |
---|
1411 | |
---|
1412 | for(i = 1; i <= tr->mxtips; i++) |
---|
1413 | fprintf(f, "%s \n", tr->nameList[i]); |
---|
1414 | |
---|
1415 | fprintf(f, "\n"); |
---|
1416 | |
---|
1417 | fclose(f); |
---|
1418 | |
---|
1419 | } |
---|
1420 | |
---|
1421 | static void printVerboseIC(tree *tr, unsigned int supportedBips, unsigned int *toInsert, unsigned int maxCounter, unsigned int *maxima, |
---|
1422 | unsigned int **maximaBitVectors, unsigned int numberOfTrees, int counter, double ic) |
---|
1423 | { |
---|
1424 | unsigned int |
---|
1425 | i; |
---|
1426 | |
---|
1427 | double |
---|
1428 | support = (double)supportedBips / (double)numberOfTrees; |
---|
1429 | |
---|
1430 | FILE |
---|
1431 | *f, |
---|
1432 | *v = myfopen(verboseSplitsFileName, "a"); |
---|
1433 | |
---|
1434 | char |
---|
1435 | fileName[1024], |
---|
1436 | id[64]; |
---|
1437 | |
---|
1438 | sprintf(id, "%d", counter); |
---|
1439 | strcpy(fileName, workdir); |
---|
1440 | strcat(fileName, "RAxML_verboseIC."); |
---|
1441 | strcat(fileName, run_id); |
---|
1442 | strcat(fileName, "."); |
---|
1443 | strcat(fileName, id); |
---|
1444 | |
---|
1445 | f = myfopen(fileName, "w"); |
---|
1446 | |
---|
1447 | printBothOpen("Support for split number %d in tree: %f\n", counter, support); |
---|
1448 | |
---|
1449 | fprintf(v, "partition: \n"); |
---|
1450 | |
---|
1451 | printSplit(f, v, toInsert, tr, support, ic, supportedBips); |
---|
1452 | |
---|
1453 | for(i = 0; i < maxCounter; i++) |
---|
1454 | { |
---|
1455 | support = (double)maxima[i] / (double)numberOfTrees; |
---|
1456 | |
---|
1457 | printBothOpen("Support for conflicting split number %u: %f\n", i, support); |
---|
1458 | |
---|
1459 | printSplit(f, v, maximaBitVectors[i], tr, support, ic, maxima[i]); |
---|
1460 | } |
---|
1461 | |
---|
1462 | printBothOpen("All Newick-formatted splits for this bipartition have been written to file %s\n", fileName); |
---|
1463 | printBothOpen("\n\n"); |
---|
1464 | |
---|
1465 | fprintf(v, "\n\n"); |
---|
1466 | |
---|
1467 | fclose(f); |
---|
1468 | fclose(v); |
---|
1469 | } |
---|
1470 | |
---|
1471 | |
---|
1472 | |
---|
1473 | |
---|
1474 | static void bitVectorInitravIC(tree *tr, unsigned int **bitVectors, nodeptr p, int numsp, unsigned int vectorLength, hashtable *h, int treeNumber, int function, branchInfo *bInf, |
---|
1475 | int *countBranches, int treeVectorLength, boolean traverseOnly, boolean computeWRF, double *tc, double *tcAll, boolean verboseIC) |
---|
1476 | { |
---|
1477 | if(isTip(p->number, numsp)) |
---|
1478 | return; |
---|
1479 | else |
---|
1480 | { |
---|
1481 | nodeptr q = p->next; |
---|
1482 | |
---|
1483 | do |
---|
1484 | { |
---|
1485 | bitVectorInitravIC(tr, bitVectors, q->back, numsp, vectorLength, h, treeNumber, function, bInf, countBranches, treeVectorLength, traverseOnly, computeWRF, tc, tcAll, verboseIC); |
---|
1486 | q = q->next; |
---|
1487 | } |
---|
1488 | while(q != p); |
---|
1489 | |
---|
1490 | newviewBipartitions(bitVectors, p, numsp, vectorLength); |
---|
1491 | |
---|
1492 | assert(p->x); |
---|
1493 | |
---|
1494 | if(traverseOnly) |
---|
1495 | { |
---|
1496 | if(!(isTip(p->back->number, numsp))) |
---|
1497 | *countBranches = *countBranches + 1; |
---|
1498 | return; |
---|
1499 | } |
---|
1500 | |
---|
1501 | if(!(isTip(p->back->number, numsp))) |
---|
1502 | { |
---|
1503 | unsigned int *toInsert = bitVectors[p->number]; |
---|
1504 | hashNumberType position = p->hash % h->tableSize; |
---|
1505 | |
---|
1506 | assert(!(toInsert[0] & 1)); |
---|
1507 | |
---|
1508 | switch(function) |
---|
1509 | { |
---|
1510 | case GATHER_BIPARTITIONS_IC: |
---|
1511 | insertHash_IC(toInsert, h, vectorLength, position); |
---|
1512 | *countBranches = *countBranches + 1; |
---|
1513 | break; |
---|
1514 | case FIND_BIPARTITIONS_IC: |
---|
1515 | { |
---|
1516 | unsigned int |
---|
1517 | maxCounter = 0, |
---|
1518 | *maxima = (unsigned int *)rax_calloc(h->entryCount, sizeof(unsigned int)), |
---|
1519 | **maximaBitVectors = (unsigned int **)rax_calloc(h->entryCount, sizeof(unsigned int *)), |
---|
1520 | numberOfTrees = (unsigned int)treeVectorLength, |
---|
1521 | supportedBips; |
---|
1522 | |
---|
1523 | double |
---|
1524 | ic, |
---|
1525 | icAll; |
---|
1526 | |
---|
1527 | //obtain the support for the bipartitions in the tree |
---|
1528 | supportedBips = findHash_IC(toInsert, h, vectorLength, position); |
---|
1529 | |
---|
1530 | if(supportedBips == numberOfTrees) |
---|
1531 | { |
---|
1532 | ic = 1.0; |
---|
1533 | icAll = 1.0; |
---|
1534 | |
---|
1535 | if(verboseIC) |
---|
1536 | printFullySupportedSplit(tr, toInsert, numberOfTrees); |
---|
1537 | } |
---|
1538 | else |
---|
1539 | { |
---|
1540 | //find all incompatible bipartitions in the hash table and also |
---|
1541 | //get the conflicting bipartition with maximum support |
---|
1542 | countIncompatibleBipartitions(toInsert, h, vectorLength, maxima, &maxCounter, TRUE, numberOfTrees, maximaBitVectors); |
---|
1543 | |
---|
1544 | //this number must be smaller or equal to the total number of trees |
---|
1545 | |
---|
1546 | assert(supportedBips + maxima[0] <= numberOfTrees); |
---|
1547 | |
---|
1548 | //now compute the IC score for this bipartition |
---|
1549 | |
---|
1550 | ic = computeIC_Value(supportedBips, maxima, numberOfTrees, maxCounter, FALSE, FALSE); |
---|
1551 | icAll = computeIC_Value(supportedBips, maxima, numberOfTrees, maxCounter, TRUE, FALSE); |
---|
1552 | |
---|
1553 | if(verboseIC) |
---|
1554 | printVerboseIC(tr, supportedBips, toInsert, maxCounter, maxima, maximaBitVectors, numberOfTrees, *countBranches, ic); |
---|
1555 | |
---|
1556 | } |
---|
1557 | |
---|
1558 | //printf("%d %d %d %d IC %f\n", supportedBips, unsupportedBips, max, treeVectorLength, ic); |
---|
1559 | |
---|
1560 | p->bInf = &bInf[*countBranches]; |
---|
1561 | p->back->bInf = &bInf[*countBranches]; |
---|
1562 | p->bInf->oP = p; |
---|
1563 | p->bInf->oQ = p->back; |
---|
1564 | |
---|
1565 | p->bInf->ic = ic; |
---|
1566 | p->bInf->icAll = icAll; |
---|
1567 | |
---|
1568 | //increment tc |
---|
1569 | *tc += ic; |
---|
1570 | *tcAll += icAll; |
---|
1571 | |
---|
1572 | |
---|
1573 | |
---|
1574 | rax_free(maxima); |
---|
1575 | rax_free(maximaBitVectors); |
---|
1576 | } |
---|
1577 | *countBranches = *countBranches + 1; |
---|
1578 | break; |
---|
1579 | default: |
---|
1580 | assert(0); |
---|
1581 | } |
---|
1582 | } |
---|
1583 | |
---|
1584 | } |
---|
1585 | } |
---|
1586 | |
---|
1587 | |
---|
1588 | |
---|
1589 | |
---|
1590 | void calcBipartitions_IC(tree *tr, analdef *adef, char *bestTreeFileName, char *bootStrapFileName) |
---|
1591 | { |
---|
1592 | branchInfo |
---|
1593 | *bInf; |
---|
1594 | |
---|
1595 | unsigned int |
---|
1596 | vLength, |
---|
1597 | **bitVectors = initBitVector(tr, &vLength); |
---|
1598 | |
---|
1599 | int |
---|
1600 | bCount = 0, |
---|
1601 | numberOfTaxa = 0, |
---|
1602 | numberOfTrees = 0, |
---|
1603 | i; |
---|
1604 | |
---|
1605 | hashtable *h = |
---|
1606 | initHashTable(tr->mxtips * 10); |
---|
1607 | |
---|
1608 | FILE |
---|
1609 | *treeFile; |
---|
1610 | |
---|
1611 | double |
---|
1612 | rtc = 0.0, |
---|
1613 | rtcAll = 0.0, |
---|
1614 | tc = 0.0, |
---|
1615 | tcAll = 0.0; |
---|
1616 | |
---|
1617 | numberOfTaxa = readSingleTree(tr, bestTreeFileName, adef, FALSE, FALSE, TRUE); |
---|
1618 | |
---|
1619 | bInf = (branchInfo*)rax_malloc(sizeof(branchInfo) * (tr->mxtips - 3)); |
---|
1620 | |
---|
1621 | if(adef->verboseIC) |
---|
1622 | printVerboseTaxonNames(tr); |
---|
1623 | |
---|
1624 | if(numberOfTaxa != tr->mxtips) |
---|
1625 | { |
---|
1626 | printBothOpen("The number of taxa in the reference tree file \"%s\" is %d and\n", bestTreeFileName, numberOfTaxa); |
---|
1627 | printBothOpen("is not equal to the number of taxa in the bootstrap tree file \"%s\" which is %d.\n", bootStrapFileName, tr->mxtips); |
---|
1628 | printBothOpen("RAxML will exit now with an error ....\n\n"); |
---|
1629 | } |
---|
1630 | |
---|
1631 | treeFile = getNumberOfTrees(tr, bootStrapFileName, adef); |
---|
1632 | |
---|
1633 | numberOfTrees = tr->numberOfTrees; |
---|
1634 | |
---|
1635 | for(i = 0; i < numberOfTrees; i++) |
---|
1636 | { |
---|
1637 | bCount = 0; |
---|
1638 | |
---|
1639 | treeReadLen(treeFile, tr, FALSE, FALSE, TRUE, adef, TRUE, FALSE); |
---|
1640 | assert(tr->ntips == tr->mxtips); |
---|
1641 | |
---|
1642 | bitVectorInitravIC(tr, bitVectors, tr->nodep[1]->back, tr->mxtips, vLength, h, 0, GATHER_BIPARTITIONS_IC, (branchInfo*)NULL, &bCount, 0, FALSE, FALSE, &tc, &tcAll, FALSE); |
---|
1643 | assert(bCount == tr->mxtips - 3); |
---|
1644 | } |
---|
1645 | |
---|
1646 | fclose(treeFile); |
---|
1647 | |
---|
1648 | readSingleTree(tr, bestTreeFileName, adef, TRUE, FALSE, TRUE); |
---|
1649 | |
---|
1650 | bCount = 0; |
---|
1651 | tc = 0.0; |
---|
1652 | |
---|
1653 | bitVectorInitravIC(tr, bitVectors, tr->nodep[1]->back, tr->mxtips, vLength, h, 0, FIND_BIPARTITIONS_IC, bInf, &bCount, numberOfTrees, FALSE, FALSE, &tc, &tcAll, adef->verboseIC); |
---|
1654 | |
---|
1655 | rtc = tc / (double)(tr->mxtips - 3); |
---|
1656 | |
---|
1657 | assert(bCount == tr->mxtips - 3); |
---|
1658 | assert(tc <= (double)(tr->mxtips - 3)); |
---|
1659 | |
---|
1660 | printBothOpen("Tree certainty for this tree: %f\n", tc); |
---|
1661 | printBothOpen("Relative tree certainty for this tree: %f\n\n", rtc); |
---|
1662 | |
---|
1663 | rtcAll = tcAll / (double)(tr->mxtips - 3); |
---|
1664 | |
---|
1665 | printBothOpen("Tree certainty including all conflicting bipartitions (TC-All) for this tree: %f\n", tcAll); |
---|
1666 | printBothOpen("Relative tree certainty including all conflicting bipartitions (TC-All) for this tree: %f\n\n", rtcAll); |
---|
1667 | |
---|
1668 | if(adef->verboseIC) |
---|
1669 | printBothOpen("Verbose PHYLIP-style formatted bipartition information written to file: %s\n\n", verboseSplitsFileName); |
---|
1670 | |
---|
1671 | printBipartitionResult(tr, adef, TRUE, TRUE); |
---|
1672 | |
---|
1673 | freeBitVectors(bitVectors, 2 * tr->mxtips); |
---|
1674 | rax_free(bitVectors); |
---|
1675 | freeHashTable(h); |
---|
1676 | rax_free(h); |
---|
1677 | |
---|
1678 | rax_free(bInf); |
---|
1679 | } |
---|
1680 | |
---|
1681 | |
---|
1682 | |
---|
1683 | |
---|
1684 | /*******************/ |
---|
1685 | |
---|
1686 | static double testFreq(double *vect1, double *vect2, int n); |
---|
1687 | |
---|
1688 | |
---|
1689 | |
---|
1690 | void compareBips(tree *tr, char *bootStrapFileName, analdef *adef) |
---|
1691 | { |
---|
1692 | int |
---|
1693 | numberOfTreesAll = 0, |
---|
1694 | numberOfTreesStop = 0, |
---|
1695 | i; |
---|
1696 | unsigned int k, entryCount; |
---|
1697 | double *vect1, *vect2, p, avg1 = 0.0, avg2 = 0.0, scaleAll, scaleStop; |
---|
1698 | int |
---|
1699 | bipAll = 0, |
---|
1700 | bipStop = 0; |
---|
1701 | char bipFileName[1024]; |
---|
1702 | FILE |
---|
1703 | *outf, |
---|
1704 | *treeFile; |
---|
1705 | |
---|
1706 | unsigned |
---|
1707 | int vLength; |
---|
1708 | |
---|
1709 | unsigned int **bitVectors = initBitVector(tr, &vLength); |
---|
1710 | hashtable *h = initHashTable(tr->mxtips * 100); |
---|
1711 | unsigned long int c1 = 0; |
---|
1712 | unsigned long int c2 = 0; |
---|
1713 | |
---|
1714 | |
---|
1715 | /*********************************************************************************************************/ |
---|
1716 | |
---|
1717 | treeFile = getNumberOfTrees(tr, bootStrapFileName, adef); |
---|
1718 | numberOfTreesAll = tr->numberOfTrees; |
---|
1719 | |
---|
1720 | for(i = 0; i < numberOfTreesAll; i++) |
---|
1721 | { |
---|
1722 | int |
---|
1723 | bCounter = 0; |
---|
1724 | |
---|
1725 | treeReadLen(treeFile, tr, FALSE, FALSE, TRUE, adef, TRUE, FALSE); |
---|
1726 | assert(tr->mxtips == tr->ntips); |
---|
1727 | |
---|
1728 | bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vLength, h, 0, BIPARTITIONS_ALL, (branchInfo*)NULL, &bCounter, 0, FALSE, FALSE); |
---|
1729 | assert(bCounter == tr->mxtips - 3); |
---|
1730 | } |
---|
1731 | |
---|
1732 | fclose(treeFile); |
---|
1733 | |
---|
1734 | |
---|
1735 | /*********************************************************************************************************/ |
---|
1736 | |
---|
1737 | treeFile = getNumberOfTrees(tr, tree_file, adef); |
---|
1738 | |
---|
1739 | numberOfTreesStop = tr->numberOfTrees; |
---|
1740 | |
---|
1741 | for(i = 0; i < numberOfTreesStop; i++) |
---|
1742 | { |
---|
1743 | int |
---|
1744 | bCounter = 0; |
---|
1745 | |
---|
1746 | |
---|
1747 | treeReadLen(treeFile, tr, FALSE, FALSE, TRUE, adef, TRUE, FALSE); |
---|
1748 | assert(tr->mxtips == tr->ntips); |
---|
1749 | |
---|
1750 | bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vLength, h, 1, BIPARTITIONS_ALL, (branchInfo*)NULL, &bCounter, 0, FALSE, FALSE); |
---|
1751 | assert(bCounter == tr->mxtips - 3); |
---|
1752 | } |
---|
1753 | |
---|
1754 | fclose(treeFile); |
---|
1755 | |
---|
1756 | /***************************************************************************************************/ |
---|
1757 | |
---|
1758 | vect1 = (double *)rax_malloc(sizeof(double) * h->entryCount); |
---|
1759 | vect2 = (double *)rax_malloc(sizeof(double) * h->entryCount); |
---|
1760 | |
---|
1761 | strcpy(bipFileName, workdir); |
---|
1762 | strcat(bipFileName, "RAxML_bipartitionFrequencies."); |
---|
1763 | strcat(bipFileName, run_id); |
---|
1764 | |
---|
1765 | outf = myfopen(bipFileName, "wb"); |
---|
1766 | |
---|
1767 | |
---|
1768 | scaleAll = 1.0 / (double)numberOfTreesAll; |
---|
1769 | scaleStop = 1.0 / (double)numberOfTreesStop; |
---|
1770 | |
---|
1771 | for(k = 0, entryCount = 0; k < h->tableSize; k++) |
---|
1772 | { |
---|
1773 | |
---|
1774 | if(h->table[k] != NULL) |
---|
1775 | { |
---|
1776 | entry *e = h->table[k]; |
---|
1777 | |
---|
1778 | do |
---|
1779 | { |
---|
1780 | c1 += e->bipNumber; |
---|
1781 | c2 += e->bipNumber2; |
---|
1782 | vect1[entryCount] = ((double)e->bipNumber) * scaleAll; |
---|
1783 | if(vect1[entryCount] > 0) |
---|
1784 | bipAll++; |
---|
1785 | vect2[entryCount] = ((double)e->bipNumber2) * scaleStop; |
---|
1786 | if(vect2[entryCount] > 0) |
---|
1787 | bipStop++; |
---|
1788 | fprintf(outf, "%f %f\n", vect1[entryCount], vect2[entryCount]); |
---|
1789 | entryCount++; |
---|
1790 | e = e->next; |
---|
1791 | } |
---|
1792 | while(e != NULL); |
---|
1793 | } |
---|
1794 | } |
---|
1795 | |
---|
1796 | printBothOpen("%ld %ld\n", c1, c2); |
---|
1797 | |
---|
1798 | assert(entryCount == h->entryCount); |
---|
1799 | |
---|
1800 | fclose(outf); |
---|
1801 | |
---|
1802 | p = testFreq(vect1, vect2, h->entryCount); |
---|
1803 | |
---|
1804 | for(k = 0; k < h->entryCount; k++) |
---|
1805 | { |
---|
1806 | avg1 += vect1[k]; |
---|
1807 | avg2 += vect2[k]; |
---|
1808 | } |
---|
1809 | |
---|
1810 | avg1 /= ((double)h->entryCount); |
---|
1811 | avg2 /= ((double)h->entryCount); |
---|
1812 | |
---|
1813 | |
---|
1814 | printBothOpen("Average [%s]: %1.40f [%s]: %1.40f\n", bootStrapFileName, avg1, tree_file, avg2); |
---|
1815 | printBothOpen("Pearson: %f Bipartitions in [%s]: %d Bipartitions in [%s]: %d Total Bipartitions: %d\n", p, bootStrapFileName, bipAll, tree_file, bipStop, h->entryCount); |
---|
1816 | |
---|
1817 | printBothOpen("\nFile containing pair-wise bipartition frequencies written to %s\n\n", bipFileName); |
---|
1818 | |
---|
1819 | freeBitVectors(bitVectors, 2 * tr->mxtips); |
---|
1820 | rax_free(bitVectors); |
---|
1821 | freeHashTable(h); |
---|
1822 | rax_free(h); |
---|
1823 | |
---|
1824 | rax_free(vect1); |
---|
1825 | rax_free(vect2); |
---|
1826 | |
---|
1827 | exit(0); |
---|
1828 | } |
---|
1829 | |
---|
1830 | /*************************************************************************************************************/ |
---|
1831 | |
---|
1832 | void computeRF(tree *tr, char *bootStrapFileName, analdef *adef) |
---|
1833 | { |
---|
1834 | int |
---|
1835 | treeVectorLength, |
---|
1836 | numberOfTrees = 0, |
---|
1837 | i, |
---|
1838 | j, |
---|
1839 | *rfMat, |
---|
1840 | *wrfMat, |
---|
1841 | *wrf2Mat; |
---|
1842 | |
---|
1843 | unsigned int |
---|
1844 | vLength; |
---|
1845 | |
---|
1846 | unsigned int |
---|
1847 | k, |
---|
1848 | entryCount, |
---|
1849 | **bitVectors = initBitVector(tr, &vLength); |
---|
1850 | |
---|
1851 | char rfFileName[1024]; |
---|
1852 | |
---|
1853 | boolean computeWRF = FALSE; |
---|
1854 | |
---|
1855 | double |
---|
1856 | maxRF, |
---|
1857 | avgRF, |
---|
1858 | avgWRF, |
---|
1859 | avgWRF2; |
---|
1860 | |
---|
1861 | FILE |
---|
1862 | *outf, |
---|
1863 | *treeFile = getNumberOfTrees(tr, bootStrapFileName, adef); |
---|
1864 | |
---|
1865 | hashtable *h = (hashtable *)NULL; |
---|
1866 | |
---|
1867 | numberOfTrees = tr->numberOfTrees; |
---|
1868 | |
---|
1869 | h = initHashTable(tr->mxtips * 2 * numberOfTrees); |
---|
1870 | |
---|
1871 | if(numberOfTrees % MASK_LENGTH == 0) |
---|
1872 | treeVectorLength = numberOfTrees / MASK_LENGTH; |
---|
1873 | else |
---|
1874 | treeVectorLength = 1 + (numberOfTrees / MASK_LENGTH); |
---|
1875 | |
---|
1876 | |
---|
1877 | rfMat = (int*)rax_calloc(numberOfTrees * numberOfTrees, sizeof(int)); |
---|
1878 | wrfMat = (int*)rax_calloc(numberOfTrees * numberOfTrees, sizeof(int)); |
---|
1879 | wrf2Mat = (int*)rax_calloc(numberOfTrees * numberOfTrees, sizeof(int)); |
---|
1880 | |
---|
1881 | for(i = 0; i < numberOfTrees; i++) |
---|
1882 | { |
---|
1883 | int |
---|
1884 | bCounter = 0, |
---|
1885 | lcount = 0; |
---|
1886 | |
---|
1887 | lcount = treeReadLen(treeFile, tr, FALSE, TRUE, TRUE, adef, TRUE, FALSE); |
---|
1888 | |
---|
1889 | |
---|
1890 | |
---|
1891 | assert(tr->mxtips == tr->ntips); |
---|
1892 | |
---|
1893 | if(i == 0) |
---|
1894 | { |
---|
1895 | assert(lcount == 0 || lcount == tr->mxtips - 3); |
---|
1896 | if(lcount == 0) |
---|
1897 | computeWRF = FALSE; |
---|
1898 | else |
---|
1899 | computeWRF = TRUE; |
---|
1900 | } |
---|
1901 | |
---|
1902 | if(computeWRF) |
---|
1903 | assert(lcount == tr->mxtips - 3); |
---|
1904 | |
---|
1905 | bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vLength, h, i, BIPARTITIONS_RF, (branchInfo *)NULL, |
---|
1906 | &bCounter, treeVectorLength, FALSE, computeWRF); |
---|
1907 | |
---|
1908 | assert(bCounter == tr->mxtips - 3); |
---|
1909 | } |
---|
1910 | |
---|
1911 | fclose(treeFile); |
---|
1912 | |
---|
1913 | for(k = 0, entryCount = 0; k < h->tableSize; k++) |
---|
1914 | { |
---|
1915 | if(h->table[k] != NULL) |
---|
1916 | { |
---|
1917 | entry *e = h->table[k]; |
---|
1918 | |
---|
1919 | do |
---|
1920 | { |
---|
1921 | unsigned int *vector = e->treeVector; |
---|
1922 | |
---|
1923 | if(!computeWRF) |
---|
1924 | { |
---|
1925 | i = 0; |
---|
1926 | while(i < numberOfTrees) |
---|
1927 | { |
---|
1928 | if(vector[i / MASK_LENGTH] == 0) |
---|
1929 | i += MASK_LENGTH; |
---|
1930 | else |
---|
1931 | { |
---|
1932 | if((vector[i / MASK_LENGTH] & mask32[i % MASK_LENGTH]) > 0) |
---|
1933 | { |
---|
1934 | int *r = &rfMat[i * numberOfTrees]; |
---|
1935 | |
---|
1936 | for(j = 0; j < numberOfTrees; j++) |
---|
1937 | if((vector[j / MASK_LENGTH] & mask32[j % MASK_LENGTH]) == 0) |
---|
1938 | r[j]++; |
---|
1939 | } |
---|
1940 | i++; |
---|
1941 | } |
---|
1942 | } |
---|
1943 | } |
---|
1944 | else |
---|
1945 | { |
---|
1946 | int *supportVector = e->supportVector; |
---|
1947 | |
---|
1948 | i = 0; |
---|
1949 | |
---|
1950 | while(i < numberOfTrees) |
---|
1951 | { |
---|
1952 | if(vector[i / MASK_LENGTH] == 0) |
---|
1953 | i += MASK_LENGTH; |
---|
1954 | else |
---|
1955 | { |
---|
1956 | if((vector[i / MASK_LENGTH] & mask32[i % MASK_LENGTH]) > 0) |
---|
1957 | { |
---|
1958 | int |
---|
1959 | *r = &rfMat[i * numberOfTrees], |
---|
1960 | *w = &wrfMat[i * numberOfTrees], |
---|
1961 | *w2 = &wrf2Mat[i * numberOfTrees], |
---|
1962 | support = supportVector[i]; |
---|
1963 | |
---|
1964 | |
---|
1965 | |
---|
1966 | for(j = 0; j < numberOfTrees; j++) |
---|
1967 | { |
---|
1968 | if((vector[j / MASK_LENGTH] & mask32[j % MASK_LENGTH]) == 0) |
---|
1969 | { |
---|
1970 | r[j]++; |
---|
1971 | w[j] += ABS(support - supportVector[j]); |
---|
1972 | w2[j] += ABS(support - supportVector[j]); |
---|
1973 | } |
---|
1974 | else |
---|
1975 | { |
---|
1976 | w2[j] += ABS(support - supportVector[j]); |
---|
1977 | } |
---|
1978 | |
---|
1979 | } |
---|
1980 | } |
---|
1981 | i++; |
---|
1982 | } |
---|
1983 | } |
---|
1984 | } |
---|
1985 | |
---|
1986 | entryCount++; |
---|
1987 | e = e->next; |
---|
1988 | } |
---|
1989 | while(e != NULL); |
---|
1990 | } |
---|
1991 | |
---|
1992 | |
---|
1993 | } |
---|
1994 | assert(entryCount == h->entryCount); |
---|
1995 | |
---|
1996 | |
---|
1997 | strcpy(rfFileName, workdir); |
---|
1998 | strcat(rfFileName, "RAxML_RF-Distances."); |
---|
1999 | strcat(rfFileName, run_id); |
---|
2000 | |
---|
2001 | outf = myfopen(rfFileName, "wb"); |
---|
2002 | |
---|
2003 | maxRF = ((double)(2 * (tr->mxtips - 3))); |
---|
2004 | avgRF = 0.0; |
---|
2005 | avgWRF = 0.0; |
---|
2006 | avgWRF2 = 0.0; |
---|
2007 | |
---|
2008 | if(!computeWRF) |
---|
2009 | { |
---|
2010 | for(i = 0; i < numberOfTrees; i++) |
---|
2011 | for(j = i + 1; j < numberOfTrees; j++) |
---|
2012 | rfMat[i * numberOfTrees + j] += rfMat[j * numberOfTrees + i]; |
---|
2013 | } |
---|
2014 | else |
---|
2015 | { |
---|
2016 | for(i = 0; i < numberOfTrees; i++) |
---|
2017 | for(j = i + 1; j < numberOfTrees; j++) |
---|
2018 | { |
---|
2019 | rfMat[i * numberOfTrees + j] += rfMat[j * numberOfTrees + i]; |
---|
2020 | wrfMat[i * numberOfTrees + j] += wrfMat[j * numberOfTrees + i]; |
---|
2021 | wrf2Mat[i * numberOfTrees + j] += wrf2Mat[j * numberOfTrees + i]; |
---|
2022 | } |
---|
2023 | } |
---|
2024 | |
---|
2025 | for(i = 0; i < numberOfTrees; i++) |
---|
2026 | for(j = i + 1; j < numberOfTrees; j++) |
---|
2027 | { |
---|
2028 | int rf = rfMat[i * numberOfTrees + j]; |
---|
2029 | double rrf = (double)rf / maxRF; |
---|
2030 | if(computeWRF) |
---|
2031 | { |
---|
2032 | double wrf = wrfMat[i * numberOfTrees + j] / 100.0; |
---|
2033 | double rwrf = wrf / maxRF; |
---|
2034 | double wrf2 = wrf2Mat[i * numberOfTrees + j] / 100.0; |
---|
2035 | double rwrf2 = wrf2 / maxRF; |
---|
2036 | |
---|
2037 | fprintf(outf, "%d %d: %d %f, %f %f, %f %f\n", i, j, rf, rrf, wrf, rwrf, wrf2, rwrf2); |
---|
2038 | avgWRF += rwrf; |
---|
2039 | avgWRF2 += rwrf2; |
---|
2040 | } |
---|
2041 | else |
---|
2042 | fprintf(outf, "%d %d: %d %f\n", i, j, rf, rrf); |
---|
2043 | |
---|
2044 | avgRF += rrf; |
---|
2045 | } |
---|
2046 | |
---|
2047 | fclose(outf); |
---|
2048 | |
---|
2049 | |
---|
2050 | printBothOpen("\n\nAverage relative RF in this set: %f\n", avgRF / ((double)((numberOfTrees * numberOfTrees - numberOfTrees) / 2))); |
---|
2051 | if(computeWRF) |
---|
2052 | { |
---|
2053 | printBothOpen("\n\nAverage relative WRF in this set: %f\n", avgWRF / ((double)((numberOfTrees * numberOfTrees - numberOfTrees) / 2))); |
---|
2054 | printBothOpen("\n\nAverage relative WRF2 in this set: %f\n", avgWRF2 / ((double)((numberOfTrees * numberOfTrees - numberOfTrees) / 2))); |
---|
2055 | printBothOpen("\nFile containing all %d pair-wise RF, WRF and WRF2 distances written to file %s\n\n", (numberOfTrees * numberOfTrees - numberOfTrees) / 2, rfFileName); |
---|
2056 | } |
---|
2057 | else |
---|
2058 | printBothOpen("\nFile containing all %d pair-wise RF distances written to file %s\n\n", (numberOfTrees * numberOfTrees - numberOfTrees) / 2, rfFileName); |
---|
2059 | |
---|
2060 | rax_free(rfMat); |
---|
2061 | rax_free(wrfMat); |
---|
2062 | rax_free(wrf2Mat); |
---|
2063 | freeBitVectors(bitVectors, 2 * tr->mxtips); |
---|
2064 | rax_free(bitVectors); |
---|
2065 | freeHashTable(h); |
---|
2066 | rax_free(h); |
---|
2067 | |
---|
2068 | exit(0); |
---|
2069 | } |
---|
2070 | |
---|
2071 | /********************plausibility checker **********************************/ |
---|
2072 | |
---|
2073 | /* function to extract the bit mask for the taxa that are present in the small tree */ |
---|
2074 | |
---|
2075 | static void setupMask(unsigned int *smallTreeMask, nodeptr p, int numsp) |
---|
2076 | { |
---|
2077 | if(isTip(p->number, numsp)) |
---|
2078 | smallTreeMask[(p->number - 1) / MASK_LENGTH] |= mask32[(p->number - 1) % MASK_LENGTH]; |
---|
2079 | else |
---|
2080 | { |
---|
2081 | nodeptr |
---|
2082 | q = p->next; |
---|
2083 | |
---|
2084 | /* I had to change this function to account for mult-furcating trees. |
---|
2085 | In this case an inner node can have more than 3 cyclically linked |
---|
2086 | elements, because there might be more than 3 outgoing branches |
---|
2087 | from an inner node */ |
---|
2088 | |
---|
2089 | while(q != p) |
---|
2090 | { |
---|
2091 | setupMask(smallTreeMask, q->back, numsp); |
---|
2092 | q = q->next; |
---|
2093 | } |
---|
2094 | |
---|
2095 | //old code below |
---|
2096 | //setupMask(smallTreeMask, p->next->back, numsp); |
---|
2097 | //setupMask(smallTreeMask, p->next->next->back, numsp); |
---|
2098 | } |
---|
2099 | } |
---|
2100 | |
---|
2101 | /* we can not use the default hash numbers generated e.g., in the RF code, based on the tree shape. |
---|
2102 | we need to compute a hash on the large/long vector that has as many bits as the big tree has taxa */ |
---|
2103 | |
---|
2104 | static hashNumberType oat_hash(unsigned char *p, int len) |
---|
2105 | { |
---|
2106 | unsigned int |
---|
2107 | h = 0; |
---|
2108 | int |
---|
2109 | i; |
---|
2110 | |
---|
2111 | for(i = 0; i < len; i++) |
---|
2112 | { |
---|
2113 | h += p[i]; |
---|
2114 | h += ( h << 10 ); |
---|
2115 | h ^= ( h >> 6 ); |
---|
2116 | } |
---|
2117 | |
---|
2118 | h += ( h << 3 ); |
---|
2119 | h ^= ( h >> 11 ); |
---|
2120 | h += ( h << 15 ); |
---|
2121 | |
---|
2122 | return h; |
---|
2123 | } |
---|
2124 | |
---|
2125 | /* function that re-hashes bipartitions from the large tree into the new hash table */ |
---|
2126 | |
---|
2127 | static void insertHashPlausibility(unsigned int *bitVector, hashtable *h, unsigned int vectorLength, hashNumberType position) |
---|
2128 | { |
---|
2129 | if(h->table[position] != NULL) |
---|
2130 | { |
---|
2131 | entry |
---|
2132 | *e = h->table[position]; |
---|
2133 | |
---|
2134 | do |
---|
2135 | { |
---|
2136 | unsigned int |
---|
2137 | i; |
---|
2138 | |
---|
2139 | for(i = 0; i < vectorLength; i++) |
---|
2140 | if(bitVector[i] != e->bitVector[i]) |
---|
2141 | break; |
---|
2142 | |
---|
2143 | if(i == vectorLength) |
---|
2144 | return; |
---|
2145 | |
---|
2146 | e = e->next; |
---|
2147 | } |
---|
2148 | while(e != (entry*)NULL); |
---|
2149 | |
---|
2150 | e = initEntry(); |
---|
2151 | |
---|
2152 | e->bitVector = (unsigned int*)rax_malloc(vectorLength * sizeof(unsigned int)); |
---|
2153 | memcpy(e->bitVector, bitVector, sizeof(unsigned int) * vectorLength); |
---|
2154 | |
---|
2155 | e->next = h->table[position]; |
---|
2156 | h->table[position] = e; |
---|
2157 | } |
---|
2158 | else |
---|
2159 | { |
---|
2160 | entry |
---|
2161 | *e = initEntry(); |
---|
2162 | |
---|
2163 | e->bitVector = (unsigned int*)rax_malloc(vectorLength * sizeof(unsigned int)); |
---|
2164 | memcpy(e->bitVector, bitVector, sizeof(unsigned int) * vectorLength); |
---|
2165 | |
---|
2166 | h->table[position] = e; |
---|
2167 | } |
---|
2168 | |
---|
2169 | h->entryCount = h->entryCount + 1; |
---|
2170 | } |
---|
2171 | |
---|
2172 | /* this function is called while we parse the small trees and extract the bipartitions, it will just look |
---|
2173 | if the bipartition stored in bitVector is already in the hastable, if it is in there this means that |
---|
2174 | this bipartition is also present in the big tree */ |
---|
2175 | |
---|
2176 | static int findHash(unsigned int *bitVector, hashtable *h, unsigned int vectorLength, hashNumberType position) |
---|
2177 | { |
---|
2178 | if(h->table[position] == NULL) |
---|
2179 | return 0; |
---|
2180 | { |
---|
2181 | entry *e = h->table[position]; |
---|
2182 | |
---|
2183 | do |
---|
2184 | { |
---|
2185 | unsigned int i; |
---|
2186 | |
---|
2187 | for(i = 0; i < vectorLength; i++) |
---|
2188 | if(bitVector[i] != e->bitVector[i]) |
---|
2189 | goto NEXT; |
---|
2190 | |
---|
2191 | return 1; |
---|
2192 | NEXT: |
---|
2193 | e = e->next; |
---|
2194 | } |
---|
2195 | while(e != (entry*)NULL); |
---|
2196 | |
---|
2197 | return 0; |
---|
2198 | } |
---|
2199 | } |
---|
2200 | |
---|
2201 | /* this function actually traverses the small tree, generates the bit vectors for all |
---|
2202 | non-trivial bipartitions and simultaneously counts how many bipartitions (already stored in the has table) are shared with the big tree |
---|
2203 | */ |
---|
2204 | |
---|
2205 | static int bitVectorTraversePlausibility(unsigned int **bitVectors, nodeptr p, int numsp, unsigned int vectorLength, hashtable *h, |
---|
2206 | int *countBranches, int firstTaxon, tree *tr, boolean multifurcating) |
---|
2207 | { |
---|
2208 | |
---|
2209 | /* trivial bipartition */ |
---|
2210 | |
---|
2211 | if(isTip(p->number, numsp)) |
---|
2212 | return 0; |
---|
2213 | else |
---|
2214 | { |
---|
2215 | int |
---|
2216 | found = 0; |
---|
2217 | |
---|
2218 | nodeptr |
---|
2219 | q = p->next; |
---|
2220 | |
---|
2221 | /* recursively descend into the tree and get the bips of all subtrees first */ |
---|
2222 | |
---|
2223 | do |
---|
2224 | { |
---|
2225 | found = found + bitVectorTraversePlausibility(bitVectors, q->back, numsp, vectorLength, h, countBranches, firstTaxon, tr, multifurcating); |
---|
2226 | q = q->next; |
---|
2227 | } |
---|
2228 | while(q != p); |
---|
2229 | |
---|
2230 | /* compute the bipartition induced by the current branch p, p->back, |
---|
2231 | here we invoke two different functions, depending on whether we are dealing with |
---|
2232 | a multi-furcating or bifurcating tree. |
---|
2233 | */ |
---|
2234 | |
---|
2235 | if(multifurcating) |
---|
2236 | newviewBipartitionsMultifurcating(bitVectors, p, numsp, vectorLength); |
---|
2237 | else |
---|
2238 | newviewBipartitions(bitVectors, p, numsp, vectorLength); |
---|
2239 | |
---|
2240 | assert(p->x); |
---|
2241 | |
---|
2242 | /* if p->back does not lead to a tip this is an inner branch that induces a non-trivial bipartition. |
---|
2243 | in this case we need to lookup if the induced bipartition is already contained in the hash table |
---|
2244 | */ |
---|
2245 | |
---|
2246 | if(!(isTip(p->back->number, numsp))) |
---|
2247 | { |
---|
2248 | /* this is the bit vector to insert into the hash table */ |
---|
2249 | unsigned int |
---|
2250 | *toInsert = bitVectors[p->number]; |
---|
2251 | |
---|
2252 | /* compute the hash number on that bit vector */ |
---|
2253 | hashNumberType |
---|
2254 | position = oat_hash((unsigned char *)toInsert, sizeof(unsigned int) * vectorLength) % h->tableSize; |
---|
2255 | |
---|
2256 | /* each bipartition can be stored in two forms (the two bit-wise complements |
---|
2257 | we always canonically store that version of the bit-vector that does not contain the |
---|
2258 | first taxon of the small tree, we use an assertion to make sure that all is correct */ |
---|
2259 | |
---|
2260 | assert(!(toInsert[(firstTaxon - 1) / MASK_LENGTH] & mask32[(firstTaxon - 1) % MASK_LENGTH])); |
---|
2261 | |
---|
2262 | /* increment the branch counter to assure that all inner branches are traversed */ |
---|
2263 | |
---|
2264 | *countBranches = *countBranches + 1; |
---|
2265 | |
---|
2266 | /* now look up this bipartition in the hash table, If it is present the number of |
---|
2267 | shared bipartitions between the small and the big tree is incremented by 1 */ |
---|
2268 | |
---|
2269 | found = found + findHash(toInsert, h, vectorLength, position); |
---|
2270 | } |
---|
2271 | return found; |
---|
2272 | } |
---|
2273 | } |
---|
2274 | |
---|
2275 | #define _ONLY_BIFURCATING_TREES |
---|
2276 | |
---|
2277 | #ifdef _ONLY_BIFURCATING_TREES |
---|
2278 | |
---|
2279 | void plausibilityChecker(tree *tr, analdef *adef) |
---|
2280 | { |
---|
2281 | FILE |
---|
2282 | *treeFile, |
---|
2283 | *rfFile; |
---|
2284 | |
---|
2285 | char |
---|
2286 | rfFileName[1024]; |
---|
2287 | |
---|
2288 | /* init has table for big reference tree */ |
---|
2289 | |
---|
2290 | hashtable |
---|
2291 | *h = initHashTable(tr->mxtips * 2 * 2); |
---|
2292 | |
---|
2293 | |
---|
2294 | /* init the bit vectors we need for computing and storing bipartitions during |
---|
2295 | the tree traversal */ |
---|
2296 | unsigned int |
---|
2297 | vLength, |
---|
2298 | **bitVectors = initBitVector(tr, &vLength); |
---|
2299 | |
---|
2300 | int |
---|
2301 | branchCounter = 0, |
---|
2302 | i; |
---|
2303 | |
---|
2304 | double |
---|
2305 | avgRF = 0.0; |
---|
2306 | |
---|
2307 | /* set up an output file name */ |
---|
2308 | |
---|
2309 | strcpy(rfFileName, workdir); |
---|
2310 | strcat(rfFileName, "RAxML_RF-Distances."); |
---|
2311 | strcat(rfFileName, run_id); |
---|
2312 | |
---|
2313 | rfFile = myfopen(rfFileName, "wb"); |
---|
2314 | |
---|
2315 | assert(adef->mode == PLAUSIBILITY_CHECKER); |
---|
2316 | |
---|
2317 | /* open the big reference tree file and parse it */ |
---|
2318 | |
---|
2319 | treeFile = myfopen(tree_file, "r"); |
---|
2320 | |
---|
2321 | printBothOpen("Parsing reference tree %s\n", tree_file); |
---|
2322 | |
---|
2323 | treeReadLen(treeFile, tr, FALSE, TRUE, TRUE, adef, TRUE, FALSE); |
---|
2324 | |
---|
2325 | assert(tr->mxtips == tr->ntips); |
---|
2326 | |
---|
2327 | printBothOpen("The reference tree has %d tips\n", tr->ntips); |
---|
2328 | |
---|
2329 | fclose(treeFile); |
---|
2330 | |
---|
2331 | /* extract all induced bipartitions from the big tree and store them in the hastable */ |
---|
2332 | |
---|
2333 | bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vLength, h, 0, BIPARTITIONS_RF, (branchInfo *)NULL, |
---|
2334 | &branchCounter, 1, FALSE, FALSE); |
---|
2335 | |
---|
2336 | assert(branchCounter == tr->mxtips - 3); |
---|
2337 | |
---|
2338 | /* now see how many small trees we have */ |
---|
2339 | |
---|
2340 | treeFile = getNumberOfTrees(tr, bootStrapFile, adef); |
---|
2341 | |
---|
2342 | /* loop over all small trees */ |
---|
2343 | |
---|
2344 | for(i = 0; i < tr->numberOfTrees; i++) |
---|
2345 | { |
---|
2346 | unsigned int |
---|
2347 | entryCount = 0, |
---|
2348 | k, |
---|
2349 | j, |
---|
2350 | *masked = (unsigned int *)rax_calloc(vLength, sizeof(unsigned int)), |
---|
2351 | *smallTreeMask = (unsigned int *)rax_calloc(vLength, sizeof(unsigned int)); |
---|
2352 | |
---|
2353 | int |
---|
2354 | bCounter = 0, |
---|
2355 | bips, |
---|
2356 | firstTaxon, |
---|
2357 | taxa = 0; |
---|
2358 | |
---|
2359 | /* allocate a has table for re-hashing the bipartitions of the big tree */ |
---|
2360 | |
---|
2361 | hashtable |
---|
2362 | *rehash = initHashTable(tr->mxtips * 2 * 2); |
---|
2363 | |
---|
2364 | double |
---|
2365 | rf, |
---|
2366 | maxRF; |
---|
2367 | |
---|
2368 | /* parse the small tree */ |
---|
2369 | |
---|
2370 | treeReadLen(treeFile, tr, FALSE, TRUE, TRUE, adef, TRUE, FALSE); |
---|
2371 | printBothOpen("Small tree %d has %d tips\n", i, tr->ntips); |
---|
2372 | |
---|
2373 | /* compute the maximum RF distance for computing the relative RF distance later-on */ |
---|
2374 | |
---|
2375 | maxRF = ((double)(2 * (tr->ntips - 3))); |
---|
2376 | |
---|
2377 | /* now set up a bit mask where only the bits are set to one for those |
---|
2378 | taxa that are actually present in the small tree we just read */ |
---|
2379 | |
---|
2380 | setupMask(smallTreeMask, tr->start, tr->mxtips); |
---|
2381 | setupMask(smallTreeMask, tr->start->back, tr->mxtips); |
---|
2382 | |
---|
2383 | /* now get the index of the first taxon of the small tree. |
---|
2384 | we will use this to unambiguously store the bipartitions |
---|
2385 | */ |
---|
2386 | |
---|
2387 | firstTaxon = tr->start->number; |
---|
2388 | |
---|
2389 | /* make sure that this bit vector is set up correctly, i.e., that |
---|
2390 | it contains as many non-zero bits as there are taxa in this small tree |
---|
2391 | */ |
---|
2392 | |
---|
2393 | for(j = 0; j < vLength; j++) |
---|
2394 | taxa += BIT_COUNT(smallTreeMask[j]); |
---|
2395 | assert(taxa == tr->ntips); |
---|
2396 | |
---|
2397 | /* now re-hash the big tree by applying the above bit mask */ |
---|
2398 | |
---|
2399 | |
---|
2400 | /* loop over hash table */ |
---|
2401 | |
---|
2402 | for(k = 0, entryCount = 0; k < h->tableSize; k++) |
---|
2403 | { |
---|
2404 | if(h->table[k] != NULL) |
---|
2405 | { |
---|
2406 | entry *e = h->table[k]; |
---|
2407 | |
---|
2408 | /* we resolve collisions by chaining, hence the loop here */ |
---|
2409 | |
---|
2410 | do |
---|
2411 | { |
---|
2412 | unsigned int |
---|
2413 | *bitVector = e->bitVector; |
---|
2414 | |
---|
2415 | hashNumberType |
---|
2416 | position; |
---|
2417 | |
---|
2418 | int |
---|
2419 | count = 0; |
---|
2420 | |
---|
2421 | /* double check that our tree mask contains the first taxon of the small tree */ |
---|
2422 | |
---|
2423 | assert(smallTreeMask[(firstTaxon - 1) / MASK_LENGTH] & mask32[(firstTaxon - 1) % MASK_LENGTH]); |
---|
2424 | |
---|
2425 | /* if the first taxon is set then we will re-hash the bit-wise complement of the |
---|
2426 | bit vector. |
---|
2427 | The count variable is used for a small optimization */ |
---|
2428 | |
---|
2429 | if(bitVector[(firstTaxon - 1) / MASK_LENGTH] & mask32[(firstTaxon - 1) % MASK_LENGTH]) |
---|
2430 | { |
---|
2431 | //hash complement |
---|
2432 | |
---|
2433 | for(j = 0; j < vLength; j++) |
---|
2434 | { |
---|
2435 | masked[j] = (~bitVector[j]) & smallTreeMask[j]; |
---|
2436 | count += BIT_COUNT(masked[j]); |
---|
2437 | } |
---|
2438 | } |
---|
2439 | else |
---|
2440 | { |
---|
2441 | //hash this vector |
---|
2442 | |
---|
2443 | for(j = 0; j < vLength; j++) |
---|
2444 | { |
---|
2445 | masked[j] = bitVector[j] & smallTreeMask[j]; |
---|
2446 | count += BIT_COUNT(masked[j]); |
---|
2447 | } |
---|
2448 | } |
---|
2449 | |
---|
2450 | /* note that padding the last bits is not required because they are set to 0 automatically by smallTreeMask */ |
---|
2451 | |
---|
2452 | /* make sure that we will re-hash the canonic representation of the bipartition |
---|
2453 | where the bit for firstTaxon is set to 0! |
---|
2454 | */ |
---|
2455 | |
---|
2456 | assert(!(masked[(firstTaxon - 1) / MASK_LENGTH] & mask32[(firstTaxon - 1) % MASK_LENGTH])); |
---|
2457 | |
---|
2458 | /* only if the masked bipartition of the large tree is a non-trivial bipartition (two or more bits set to 1 |
---|
2459 | will we re-hash it */ |
---|
2460 | |
---|
2461 | if(count > 1) |
---|
2462 | { |
---|
2463 | /* compute hash */ |
---|
2464 | position = oat_hash((unsigned char *)masked, sizeof(unsigned int) * vLength); |
---|
2465 | position = position % rehash->tableSize; |
---|
2466 | |
---|
2467 | /* re-hash to the new hash table that contains the bips of the large tree, pruned down |
---|
2468 | to the taxa contained in the small tree |
---|
2469 | */ |
---|
2470 | insertHashPlausibility(masked, rehash, vLength, position); |
---|
2471 | } |
---|
2472 | |
---|
2473 | entryCount++; |
---|
2474 | |
---|
2475 | e = e->next; |
---|
2476 | } |
---|
2477 | while(e != NULL); |
---|
2478 | } |
---|
2479 | } |
---|
2480 | |
---|
2481 | /* make sure that we tried to re-hash all bipartitions of the original tree */ |
---|
2482 | |
---|
2483 | assert(entryCount == (unsigned int)(tr->mxtips - 3)); |
---|
2484 | |
---|
2485 | /* now traverse the small tree and count how many bipartitions it shares |
---|
2486 | with the corresponding induced tree from the large tree */ |
---|
2487 | |
---|
2488 | bips = bitVectorTraversePlausibility(bitVectors, tr->start->back, tr->mxtips, vLength, rehash, &bCounter, firstTaxon, tr, FALSE); |
---|
2489 | |
---|
2490 | /* compute the relative RF */ |
---|
2491 | |
---|
2492 | rf = (double)(2 * ((tr->ntips - 3) - bips)) / maxRF; |
---|
2493 | |
---|
2494 | avgRF += rf; |
---|
2495 | |
---|
2496 | printBothOpen("Relative RF tree %d: %f\n\n", i, rf); |
---|
2497 | |
---|
2498 | fprintf(rfFile, "%d %f\n", i, rf); |
---|
2499 | assert(bCounter == tr->ntips - 3); |
---|
2500 | |
---|
2501 | /* free masks and hast table for this iteration */ |
---|
2502 | |
---|
2503 | rax_free(smallTreeMask); |
---|
2504 | rax_free(masked); |
---|
2505 | freeHashTable(rehash); |
---|
2506 | } |
---|
2507 | |
---|
2508 | printBothOpen("Average RF distance %f\n\n", avgRF / (double)tr->numberOfTrees); |
---|
2509 | |
---|
2510 | printBothOpen("Total execution time: %f secs\n\n", gettime() - masterTime); |
---|
2511 | |
---|
2512 | printBothOpen("\nFile containing all %d pair-wise RF distances written to file %s\n\n", tr->numberOfTrees, rfFileName); |
---|
2513 | |
---|
2514 | fclose(treeFile); |
---|
2515 | fclose(rfFile); |
---|
2516 | |
---|
2517 | freeBitVectors(bitVectors, 2 * tr->mxtips); |
---|
2518 | rax_free(bitVectors); |
---|
2519 | |
---|
2520 | freeHashTable(h); |
---|
2521 | rax_free(h); |
---|
2522 | } |
---|
2523 | |
---|
2524 | #else |
---|
2525 | |
---|
2526 | void plausibilityChecker(tree *tr, analdef *adef) |
---|
2527 | { |
---|
2528 | FILE |
---|
2529 | *treeFile, |
---|
2530 | *rfFile; |
---|
2531 | |
---|
2532 | tree |
---|
2533 | *smallTree = (tree *)rax_malloc(sizeof(tree)); |
---|
2534 | |
---|
2535 | char |
---|
2536 | rfFileName[1024]; |
---|
2537 | |
---|
2538 | /* init hash table for big reference tree */ |
---|
2539 | |
---|
2540 | hashtable |
---|
2541 | *h = initHashTable(tr->mxtips * 2 * 2); |
---|
2542 | |
---|
2543 | /* init the bit vectors we need for computing and storing bipartitions during |
---|
2544 | the tree traversal */ |
---|
2545 | unsigned int |
---|
2546 | vLength, |
---|
2547 | **bitVectors = initBitVector(tr, &vLength); |
---|
2548 | |
---|
2549 | int |
---|
2550 | branchCounter = 0, |
---|
2551 | i; |
---|
2552 | |
---|
2553 | double |
---|
2554 | avgRF = 0.0; |
---|
2555 | |
---|
2556 | /* set up an output file name */ |
---|
2557 | |
---|
2558 | strcpy(rfFileName, workdir); |
---|
2559 | strcat(rfFileName, "RAxML_RF-Distances."); |
---|
2560 | strcat(rfFileName, run_id); |
---|
2561 | |
---|
2562 | rfFile = myfopen(rfFileName, "wb"); |
---|
2563 | |
---|
2564 | assert(adef->mode == PLAUSIBILITY_CHECKER); |
---|
2565 | |
---|
2566 | /* open the big reference tree file and parse it */ |
---|
2567 | |
---|
2568 | treeFile = myfopen(tree_file, "r"); |
---|
2569 | |
---|
2570 | printBothOpen("Parsing reference tree %s\n", tree_file); |
---|
2571 | |
---|
2572 | treeReadLen(treeFile, tr, FALSE, TRUE, TRUE, adef, TRUE, FALSE); |
---|
2573 | |
---|
2574 | assert(tr->mxtips == tr->ntips); |
---|
2575 | |
---|
2576 | printBothOpen("The reference tree has %d tips\n", tr->ntips); |
---|
2577 | |
---|
2578 | fclose(treeFile); |
---|
2579 | |
---|
2580 | /* extract all induced bipartitions from the big tree and store them in the hastable */ |
---|
2581 | |
---|
2582 | bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vLength, h, 0, BIPARTITIONS_RF, (branchInfo *)NULL, |
---|
2583 | &branchCounter, 1, FALSE, FALSE); |
---|
2584 | |
---|
2585 | assert(branchCounter == tr->mxtips - 3); |
---|
2586 | |
---|
2587 | /* now see how many small trees we have */ |
---|
2588 | |
---|
2589 | treeFile = getNumberOfTrees(tr, bootStrapFile, adef); |
---|
2590 | |
---|
2591 | /* allocate a data structure for parsing the potentially mult-furcating tree */ |
---|
2592 | |
---|
2593 | allocateMultifurcations(tr, smallTree); |
---|
2594 | |
---|
2595 | /* loop over all small trees */ |
---|
2596 | |
---|
2597 | for(i = 0; i < tr->numberOfTrees; i++) |
---|
2598 | { |
---|
2599 | unsigned int |
---|
2600 | entryCount = 0, |
---|
2601 | k, |
---|
2602 | j, |
---|
2603 | *masked = (unsigned int *)rax_calloc(vLength, sizeof(unsigned int)), |
---|
2604 | *smallTreeMask = (unsigned int *)rax_calloc(vLength, sizeof(unsigned int)); |
---|
2605 | |
---|
2606 | int |
---|
2607 | numberOfSplits = 0, |
---|
2608 | bCounter = 0, |
---|
2609 | bips, |
---|
2610 | firstTaxon, |
---|
2611 | taxa = 0; |
---|
2612 | |
---|
2613 | /* allocate a has table for re-hashing the bipartitions of the big tree */ |
---|
2614 | |
---|
2615 | hashtable |
---|
2616 | *rehash = initHashTable(tr->mxtips * 2 * 2); |
---|
2617 | |
---|
2618 | double |
---|
2619 | rf, |
---|
2620 | maxRF; |
---|
2621 | |
---|
2622 | /* parse the small tree */ |
---|
2623 | |
---|
2624 | /* |
---|
2625 | instead of the standard tree parsing function, we parse a multi-furcating tree here. |
---|
2626 | the function returns the number of inner branches/splits in the multi-furcating tree which can, |
---|
2627 | of course be smaller than n-3, where n is the number of taxa in the tree. |
---|
2628 | */ |
---|
2629 | |
---|
2630 | numberOfSplits = readMultifurcatingTree(treeFile, smallTree, adef); |
---|
2631 | printBothOpen("Small tree %d has %d tips\n", i, smallTree->ntips); |
---|
2632 | |
---|
2633 | /* compute the maximum RF distance for computing the relative RF distance later-on */ |
---|
2634 | |
---|
2635 | /* note that here we need to pay attention, since the RF distance is not normalized |
---|
2636 | by 2 * (n-3) but we need to account for the fact that the multifurcating small tree |
---|
2637 | will potentially contain less bipartitions. |
---|
2638 | Hence the normalization factor is obtained as n-3 + numberOfSplits, where n-3 is the number |
---|
2639 | of bipartitions of the pruned down large reference tree for which we know that it is |
---|
2640 | bifurcating/strictly binary */ |
---|
2641 | |
---|
2642 | maxRF = (double)((smallTree->ntips - 3) + numberOfSplits); |
---|
2643 | |
---|
2644 | /* now set up a bit mask where only the bits are set to one for those |
---|
2645 | taxa that are actually present in the small tree we just read */ |
---|
2646 | |
---|
2647 | /* note that I had to apply some small changes to this function to make it work for |
---|
2648 | multi-furcating trees ! */ |
---|
2649 | |
---|
2650 | setupMask(smallTreeMask, smallTree->start, smallTree->mxtips); |
---|
2651 | setupMask(smallTreeMask, smallTree->start->back, smallTree->mxtips); |
---|
2652 | |
---|
2653 | /* now get the index of the first taxon of the small tree. |
---|
2654 | we will use this to unambiguously store the bipartitions |
---|
2655 | */ |
---|
2656 | |
---|
2657 | firstTaxon = smallTree->start->number; |
---|
2658 | |
---|
2659 | /* make sure that this bit vector is set up correctly, i.e., that |
---|
2660 | it contains as many non-zero bits as there are taxa in this small tree |
---|
2661 | */ |
---|
2662 | |
---|
2663 | for(j = 0; j < vLength; j++) |
---|
2664 | taxa += BIT_COUNT(smallTreeMask[j]); |
---|
2665 | assert(taxa == smallTree->ntips); |
---|
2666 | |
---|
2667 | /* now re-hash the big tree by applying the above bit mask */ |
---|
2668 | |
---|
2669 | |
---|
2670 | /* loop over hash table */ |
---|
2671 | |
---|
2672 | for(k = 0, entryCount = 0; k < h->tableSize; k++) |
---|
2673 | { |
---|
2674 | if(h->table[k] != NULL) |
---|
2675 | { |
---|
2676 | entry *e = h->table[k]; |
---|
2677 | |
---|
2678 | /* we resolve collisions by chaining, hence the loop here */ |
---|
2679 | |
---|
2680 | do |
---|
2681 | { |
---|
2682 | unsigned int |
---|
2683 | *bitVector = e->bitVector; |
---|
2684 | |
---|
2685 | hashNumberType |
---|
2686 | position; |
---|
2687 | |
---|
2688 | int |
---|
2689 | count = 0; |
---|
2690 | |
---|
2691 | /* double check that our tree mask contains the first taxon of the small tree */ |
---|
2692 | |
---|
2693 | assert(smallTreeMask[(firstTaxon - 1) / MASK_LENGTH] & mask32[(firstTaxon - 1) % MASK_LENGTH]); |
---|
2694 | |
---|
2695 | /* if the first taxon is set then we will re-hash the bit-wise complement of the |
---|
2696 | bit vector. |
---|
2697 | The count variable is used for a small optimization */ |
---|
2698 | |
---|
2699 | if(bitVector[(firstTaxon - 1) / MASK_LENGTH] & mask32[(firstTaxon - 1) % MASK_LENGTH]) |
---|
2700 | { |
---|
2701 | //hash complement |
---|
2702 | |
---|
2703 | for(j = 0; j < vLength; j++) |
---|
2704 | { |
---|
2705 | masked[j] = (~bitVector[j]) & smallTreeMask[j]; |
---|
2706 | count += BIT_COUNT(masked[j]); |
---|
2707 | } |
---|
2708 | } |
---|
2709 | else |
---|
2710 | { |
---|
2711 | //hash this vector |
---|
2712 | |
---|
2713 | for(j = 0; j < vLength; j++) |
---|
2714 | { |
---|
2715 | masked[j] = bitVector[j] & smallTreeMask[j]; |
---|
2716 | count += BIT_COUNT(masked[j]); |
---|
2717 | } |
---|
2718 | } |
---|
2719 | |
---|
2720 | /* note that padding the last bits is not required because they are set to 0 automatically by smallTreeMask */ |
---|
2721 | |
---|
2722 | /* make sure that we will re-hash the canonic representation of the bipartition |
---|
2723 | where the bit for firstTaxon is set to 0! |
---|
2724 | */ |
---|
2725 | |
---|
2726 | assert(!(masked[(firstTaxon - 1) / MASK_LENGTH] & mask32[(firstTaxon - 1) % MASK_LENGTH])); |
---|
2727 | |
---|
2728 | /* only if the masked bipartition of the large tree is a non-trivial bipartition (two or more bits set to 1 |
---|
2729 | will we re-hash it */ |
---|
2730 | |
---|
2731 | if(count > 1) |
---|
2732 | { |
---|
2733 | /* compute hash */ |
---|
2734 | position = oat_hash((unsigned char *)masked, sizeof(unsigned int) * vLength); |
---|
2735 | position = position % rehash->tableSize; |
---|
2736 | |
---|
2737 | /* re-hash to the new hash table that contains the bips of the large tree, pruned down |
---|
2738 | to the taxa contained in the small tree |
---|
2739 | */ |
---|
2740 | insertHashPlausibility(masked, rehash, vLength, position); |
---|
2741 | } |
---|
2742 | |
---|
2743 | entryCount++; |
---|
2744 | |
---|
2745 | e = e->next; |
---|
2746 | } |
---|
2747 | while(e != NULL); |
---|
2748 | } |
---|
2749 | } |
---|
2750 | |
---|
2751 | /* make sure that we tried to re-hash all bipartitions of the original tree */ |
---|
2752 | |
---|
2753 | assert(entryCount == (unsigned int)(tr->mxtips - 3)); |
---|
2754 | |
---|
2755 | /* now traverse the small tree and count how many bipartitions it shares |
---|
2756 | with the corresponding induced tree from the large tree */ |
---|
2757 | |
---|
2758 | /* the following function also had to be modified to account for multi-furcating trees ! */ |
---|
2759 | |
---|
2760 | bips = bitVectorTraversePlausibility(bitVectors, smallTree->start->back, smallTree->mxtips, vLength, rehash, &bCounter, firstTaxon, smallTree, TRUE); |
---|
2761 | |
---|
2762 | /* compute the relative RF */ |
---|
2763 | |
---|
2764 | rf = (double)(2 * ((smallTree->ntips - 3) - bips)) / maxRF; |
---|
2765 | |
---|
2766 | avgRF += rf; |
---|
2767 | |
---|
2768 | printBothOpen("Relative RF tree %d: %f\n\n", i, rf); |
---|
2769 | |
---|
2770 | fprintf(rfFile, "%d %f\n", i, rf); |
---|
2771 | |
---|
2772 | /* I also modified this assertion, we nee to make sure here that we checked all non-trivial splits/bipartitions |
---|
2773 | in the multi-furcating tree whech can be less than n - 3 ! */ |
---|
2774 | |
---|
2775 | assert(bCounter == numberOfSplits); |
---|
2776 | |
---|
2777 | /* free masks and hast table for this iteration */ |
---|
2778 | |
---|
2779 | rax_free(smallTreeMask); |
---|
2780 | rax_free(masked); |
---|
2781 | freeHashTable(rehash); |
---|
2782 | rax_free(rehash); |
---|
2783 | } |
---|
2784 | |
---|
2785 | printBothOpen("Average RF distance %f\n\n", avgRF / (double)tr->numberOfTrees); |
---|
2786 | |
---|
2787 | printBothOpen("Total execution time: %f secs\n\n", gettime() - masterTime); |
---|
2788 | |
---|
2789 | printBothOpen("\nFile containing all %d pair-wise RF distances written to file %s\n\n", tr->numberOfTrees, rfFileName); |
---|
2790 | |
---|
2791 | fclose(treeFile); |
---|
2792 | fclose(rfFile); |
---|
2793 | |
---|
2794 | /* free the data structure used for parsing the potentially multi-furcating tree */ |
---|
2795 | |
---|
2796 | freeMultifurcations(smallTree); |
---|
2797 | rax_free(smallTree); |
---|
2798 | |
---|
2799 | freeBitVectors(bitVectors, 2 * tr->mxtips); |
---|
2800 | rax_free(bitVectors); |
---|
2801 | |
---|
2802 | freeHashTable(h); |
---|
2803 | rax_free(h); |
---|
2804 | } |
---|
2805 | |
---|
2806 | #endif |
---|
2807 | |
---|
2808 | /********************************************************/ |
---|
2809 | |
---|
2810 | double convergenceCriterion(hashtable *h, int mxtips) |
---|
2811 | { |
---|
2812 | int |
---|
2813 | rf = 0; |
---|
2814 | |
---|
2815 | unsigned int |
---|
2816 | k = 0, |
---|
2817 | entryCount = 0; |
---|
2818 | |
---|
2819 | double |
---|
2820 | rrf; |
---|
2821 | |
---|
2822 | for(k = 0, entryCount = 0; k < h->tableSize; k++) |
---|
2823 | { |
---|
2824 | if(h->table[k] != NULL) |
---|
2825 | { |
---|
2826 | entry *e = h->table[k]; |
---|
2827 | |
---|
2828 | do |
---|
2829 | { |
---|
2830 | unsigned int *vector = e->treeVector; |
---|
2831 | if(((vector[0] & 1) > 0) + ((vector[0] & 2) > 0) == 1) |
---|
2832 | rf++; |
---|
2833 | |
---|
2834 | entryCount++; |
---|
2835 | e = e->next; |
---|
2836 | } |
---|
2837 | while(e != NULL); |
---|
2838 | } |
---|
2839 | } |
---|
2840 | |
---|
2841 | assert(entryCount == h->entryCount); |
---|
2842 | |
---|
2843 | rrf = (double)rf/((double)(2 * (mxtips - 3))); |
---|
2844 | |
---|
2845 | return rrf; |
---|
2846 | } |
---|
2847 | |
---|
2848 | |
---|
2849 | |
---|
2850 | |
---|
2851 | /*************************************************************************************************************/ |
---|
2852 | |
---|
2853 | static void permute(unsigned int *perm, unsigned int n, long *seed) |
---|
2854 | { |
---|
2855 | unsigned int i, j, k; |
---|
2856 | |
---|
2857 | for (i = 0; i < n; i++) |
---|
2858 | { |
---|
2859 | k = (int)((double)(n - i) * randum(seed)); |
---|
2860 | j = perm[i]; |
---|
2861 | perm[i] = perm[i + k]; |
---|
2862 | perm[i + k] = j; |
---|
2863 | /*assert(i + k < n);*/ |
---|
2864 | } |
---|
2865 | } |
---|
2866 | |
---|
2867 | |
---|
2868 | |
---|
2869 | |
---|
2870 | |
---|
2871 | static double testFreq(double *vect1, double *vect2, int n) |
---|
2872 | { |
---|
2873 | int |
---|
2874 | i; |
---|
2875 | |
---|
2876 | boolean |
---|
2877 | allEqual = TRUE; |
---|
2878 | |
---|
2879 | double |
---|
2880 | avg1 = 0.0, |
---|
2881 | avg2 = 0.0, |
---|
2882 | sum_xy = 0.0, |
---|
2883 | sum_x = 0.0, |
---|
2884 | sum_y = 0.0, |
---|
2885 | corr = 0.0; |
---|
2886 | |
---|
2887 | for(i = 0; i < n; i++) |
---|
2888 | { |
---|
2889 | allEqual = allEqual && (vect1[i] == vect2[i]); |
---|
2890 | |
---|
2891 | avg1 += vect1[i]; |
---|
2892 | avg2 += vect2[i]; |
---|
2893 | } |
---|
2894 | |
---|
2895 | avg1 /= ((double)n); |
---|
2896 | avg2 /= ((double)n); |
---|
2897 | |
---|
2898 | for(i = 0; i < n; i++) |
---|
2899 | { |
---|
2900 | sum_xy += ((vect1[i] - avg1) * (vect2[i] - avg2)); |
---|
2901 | sum_x += ((vect1[i] - avg1) * (vect1[i] - avg1)); |
---|
2902 | sum_y += ((vect2[i] - avg2) * (vect2[i] - avg2)); |
---|
2903 | } |
---|
2904 | |
---|
2905 | if(allEqual) |
---|
2906 | return 1.0; |
---|
2907 | |
---|
2908 | if(sum_x == 0.0 || sum_y == 0.0) |
---|
2909 | return 0.0; |
---|
2910 | |
---|
2911 | corr = sum_xy / (sqrt(sum_x) * sqrt(sum_y)); |
---|
2912 | |
---|
2913 | /* |
---|
2914 | #ifndef WIN32 |
---|
2915 | if(isnan(corr)) |
---|
2916 | { |
---|
2917 | printf("Numerical Error pearson correlation is not a number\n"); |
---|
2918 | assert(0); |
---|
2919 | } |
---|
2920 | #endif |
---|
2921 | */ |
---|
2922 | |
---|
2923 | return corr; |
---|
2924 | } |
---|
2925 | |
---|
2926 | static double frequencyCriterion(int numberOfTrees, hashtable *h, int *countBetter, int bootstopPermutations) |
---|
2927 | { |
---|
2928 | int |
---|
2929 | k, |
---|
2930 | l; |
---|
2931 | |
---|
2932 | long |
---|
2933 | seed = 12345; |
---|
2934 | |
---|
2935 | double |
---|
2936 | result, |
---|
2937 | avg = 0, |
---|
2938 | *vect1, |
---|
2939 | *vect2; |
---|
2940 | |
---|
2941 | unsigned int |
---|
2942 | *perm = (unsigned int *)rax_malloc(sizeof(unsigned int) * numberOfTrees), |
---|
2943 | j; |
---|
2944 | |
---|
2945 | assert(*countBetter == 0); |
---|
2946 | |
---|
2947 | #ifdef _WAYNE_MPI |
---|
2948 | seed = seed + 10000 * processID; |
---|
2949 | #endif |
---|
2950 | |
---|
2951 | for(j = 0; j < (unsigned int)numberOfTrees; j++) |
---|
2952 | perm[j] = j; |
---|
2953 | |
---|
2954 | for(k = 0; k < bootstopPermutations; k++) |
---|
2955 | { |
---|
2956 | unsigned int entryCount = 0; |
---|
2957 | |
---|
2958 | permute(perm, numberOfTrees, &seed); |
---|
2959 | |
---|
2960 | |
---|
2961 | |
---|
2962 | vect1 = (double *)rax_calloc(h->entryCount, sizeof(double)); |
---|
2963 | vect2 = (double *)rax_calloc(h->entryCount, sizeof(double)); |
---|
2964 | |
---|
2965 | |
---|
2966 | |
---|
2967 | for(j = 0; j < h->tableSize; j++) |
---|
2968 | { |
---|
2969 | if(h->table[j] != NULL) |
---|
2970 | { |
---|
2971 | entry *e = h->table[j]; |
---|
2972 | |
---|
2973 | do |
---|
2974 | { |
---|
2975 | unsigned int *set = e->treeVector; |
---|
2976 | |
---|
2977 | for(l = 0; l < numberOfTrees; l++) |
---|
2978 | { |
---|
2979 | if((set[l / MASK_LENGTH] != 0) && (set[l / MASK_LENGTH] & mask32[l % MASK_LENGTH])) |
---|
2980 | { |
---|
2981 | if(perm[l] % 2 == 0) |
---|
2982 | vect1[entryCount] = vect1[entryCount] + 1.0; |
---|
2983 | else |
---|
2984 | vect2[entryCount] = vect2[entryCount] + 1.0; |
---|
2985 | } |
---|
2986 | } |
---|
2987 | entryCount++; |
---|
2988 | e = e->next; |
---|
2989 | } |
---|
2990 | while(e != NULL); |
---|
2991 | } |
---|
2992 | } |
---|
2993 | |
---|
2994 | |
---|
2995 | |
---|
2996 | |
---|
2997 | assert(entryCount == h->entryCount); |
---|
2998 | |
---|
2999 | |
---|
3000 | |
---|
3001 | result = testFreq(vect1, vect2, entryCount); |
---|
3002 | |
---|
3003 | |
---|
3004 | |
---|
3005 | if(result >= FC_LOWER) |
---|
3006 | *countBetter = *countBetter + 1; |
---|
3007 | |
---|
3008 | avg += result; |
---|
3009 | |
---|
3010 | rax_free(vect1); |
---|
3011 | rax_free(vect2); |
---|
3012 | } |
---|
3013 | |
---|
3014 | rax_free(perm); |
---|
3015 | |
---|
3016 | avg /= bootstopPermutations; |
---|
3017 | |
---|
3018 | |
---|
3019 | |
---|
3020 | return avg; |
---|
3021 | } |
---|
3022 | |
---|
3023 | |
---|
3024 | |
---|
3025 | |
---|
3026 | static double wcCriterion(int numberOfTrees, hashtable *h, int *countBetter, double *wrf_thresh_avg, double *wrf_avg, tree *tr, unsigned int vectorLength, int bootstopPermutations) |
---|
3027 | { |
---|
3028 | int |
---|
3029 | k, |
---|
3030 | l, |
---|
3031 | wrf, |
---|
3032 | mr_thresh = ((double)numberOfTrees/4.0); |
---|
3033 | |
---|
3034 | unsigned int |
---|
3035 | *perm = (unsigned int *)rax_malloc(sizeof(unsigned int) * numberOfTrees), |
---|
3036 | j; |
---|
3037 | |
---|
3038 | long seed = 12345; |
---|
3039 | |
---|
3040 | double |
---|
3041 | wrf_thresh = 0.0, |
---|
3042 | pct_avg = 0.0; |
---|
3043 | |
---|
3044 | #ifdef _WAYNE_MPI |
---|
3045 | seed = seed + 10000 * processID; |
---|
3046 | #endif |
---|
3047 | |
---|
3048 | assert(*countBetter == 0 && *wrf_thresh_avg == 0.0 && *wrf_avg == 0.0); |
---|
3049 | |
---|
3050 | for(j = 0; j < (unsigned int)numberOfTrees; j++) |
---|
3051 | perm[j] = j; |
---|
3052 | |
---|
3053 | for(k = 0; k < bootstopPermutations; k++) |
---|
3054 | { |
---|
3055 | int mcnt1 = 0; |
---|
3056 | int mcnt2 = 0; |
---|
3057 | unsigned int entryCount = 0; |
---|
3058 | double halfOfConsideredBips = 0.0; |
---|
3059 | |
---|
3060 | entry ** sortedByKeyA = (entry **)NULL; |
---|
3061 | entry ** sortedByKeyB = (entry **)NULL; |
---|
3062 | int lenA, lenB; |
---|
3063 | boolean ignoreCompatibilityP; |
---|
3064 | |
---|
3065 | int iA, iB; |
---|
3066 | wrf = 0; |
---|
3067 | |
---|
3068 | permute(perm, numberOfTrees, &seed); |
---|
3069 | |
---|
3070 | for(j = 0; j < h->tableSize; j++) |
---|
3071 | { |
---|
3072 | if(h->table[j] != NULL) |
---|
3073 | { |
---|
3074 | entry *e = h->table[j]; |
---|
3075 | |
---|
3076 | do |
---|
3077 | { |
---|
3078 | int cnt1 = 0; |
---|
3079 | int cnt2 = 0; |
---|
3080 | |
---|
3081 | unsigned int *set = e->treeVector; |
---|
3082 | |
---|
3083 | for(l = 0; l < numberOfTrees; l++) |
---|
3084 | { |
---|
3085 | if((set[l / MASK_LENGTH] != 0) && (set[l / MASK_LENGTH] & mask32[l % MASK_LENGTH])) |
---|
3086 | { |
---|
3087 | if(perm[l] % 2 == 0) |
---|
3088 | cnt1++; |
---|
3089 | else |
---|
3090 | cnt2++; |
---|
3091 | } |
---|
3092 | } |
---|
3093 | |
---|
3094 | switch(tr->bootStopCriterion) |
---|
3095 | { |
---|
3096 | case MR_STOP: |
---|
3097 | if(cnt1 <= mr_thresh) |
---|
3098 | cnt1 = 0; |
---|
3099 | |
---|
3100 | if(cnt2 <= mr_thresh) |
---|
3101 | cnt2 = 0; |
---|
3102 | |
---|
3103 | if(cnt1 > 0) |
---|
3104 | mcnt1++; |
---|
3105 | |
---|
3106 | if(cnt2 > 0) |
---|
3107 | mcnt2++; |
---|
3108 | |
---|
3109 | wrf += ((cnt1 > cnt2) ? cnt1 - cnt2 : cnt2 - cnt1); |
---|
3110 | break; |
---|
3111 | case MRE_STOP: |
---|
3112 | case MRE_IGN_STOP: |
---|
3113 | e->supportFromTreeset[0] = cnt1; |
---|
3114 | e->supportFromTreeset[1] = cnt2; |
---|
3115 | break; |
---|
3116 | default: |
---|
3117 | assert(0); |
---|
3118 | } |
---|
3119 | |
---|
3120 | entryCount++; |
---|
3121 | e = e->next; |
---|
3122 | } |
---|
3123 | while(e != NULL); |
---|
3124 | } |
---|
3125 | } |
---|
3126 | |
---|
3127 | assert(entryCount == h->entryCount); |
---|
3128 | |
---|
3129 | if((tr->bootStopCriterion == MRE_STOP) || (tr->bootStopCriterion == MRE_IGN_STOP)) |
---|
3130 | { |
---|
3131 | |
---|
3132 | |
---|
3133 | if (tr->bootStopCriterion == MRE_IGN_STOP) |
---|
3134 | ignoreCompatibilityP = TRUE; |
---|
3135 | else |
---|
3136 | ignoreCompatibilityP = FALSE; |
---|
3137 | |
---|
3138 | |
---|
3139 | |
---|
3140 | mre(h, ignoreCompatibilityP, &sortedByKeyA, &lenA, 0, tr->mxtips, vectorLength, TRUE, tr, TRUE); |
---|
3141 | mre(h, ignoreCompatibilityP, &sortedByKeyB, &lenB, 1, tr->mxtips, vectorLength, TRUE, tr, TRUE); |
---|
3142 | |
---|
3143 | |
---|
3144 | mcnt1 = lenA; |
---|
3145 | mcnt2 = lenB; |
---|
3146 | |
---|
3147 | iA = iB = 0; |
---|
3148 | |
---|
3149 | while(iA < mcnt1 || iB < mcnt2) |
---|
3150 | { |
---|
3151 | if( iB == mcnt2 || (iA < mcnt1 && sortedByKeyA[iA] < sortedByKeyB[iB]) ) |
---|
3152 | { |
---|
3153 | wrf += sortedByKeyA[iA]->supportFromTreeset[0]; |
---|
3154 | iA++; |
---|
3155 | } |
---|
3156 | else |
---|
3157 | { |
---|
3158 | if( iA == mcnt1 || (iB < mcnt2 && sortedByKeyB[iB] < sortedByKeyA[iA]) ) |
---|
3159 | { |
---|
3160 | wrf += sortedByKeyB[iB]->supportFromTreeset[1]; |
---|
3161 | iB++; |
---|
3162 | } |
---|
3163 | else |
---|
3164 | { |
---|
3165 | int cnt1, cnt2; |
---|
3166 | |
---|
3167 | assert (sortedByKeyA[iA] == sortedByKeyB[iB]); |
---|
3168 | |
---|
3169 | cnt1 = sortedByKeyA[iA]->supportFromTreeset[0]; |
---|
3170 | cnt2 = sortedByKeyB[iB]->supportFromTreeset[1]; |
---|
3171 | |
---|
3172 | wrf += ((cnt1 > cnt2) ? cnt1 - cnt2 : cnt2 - cnt1); |
---|
3173 | |
---|
3174 | iA++; |
---|
3175 | iB++; |
---|
3176 | } |
---|
3177 | } |
---|
3178 | } |
---|
3179 | |
---|
3180 | rax_free(sortedByKeyA); |
---|
3181 | rax_free(sortedByKeyB); |
---|
3182 | |
---|
3183 | assert (iA == mcnt1); |
---|
3184 | assert (iB == mcnt2); |
---|
3185 | } |
---|
3186 | |
---|
3187 | halfOfConsideredBips = ( ((((double)numberOfTrees/2.0) * (double)mcnt1)) + ((((double)numberOfTrees/2.0) * (double)mcnt2)) ); |
---|
3188 | |
---|
3189 | /* |
---|
3190 | wrf_thresh is the 'custom' threshold computed for this pair |
---|
3191 | of majority rules trees (i.e. one of the BS_PERMS splits), |
---|
3192 | and simply takes into account the resolution of the two trees |
---|
3193 | */ |
---|
3194 | |
---|
3195 | wrf_thresh = (tr->wcThreshold) * halfOfConsideredBips; |
---|
3196 | |
---|
3197 | /* |
---|
3198 | we count this random split as 'succeeding' when |
---|
3199 | the wrf between maj rules trees is exceeded |
---|
3200 | by its custom threshold |
---|
3201 | */ |
---|
3202 | |
---|
3203 | if((double)wrf <= wrf_thresh) |
---|
3204 | *countBetter = *countBetter + 1; |
---|
3205 | |
---|
3206 | /* |
---|
3207 | here we accumulate outcomes and thresholds, because |
---|
3208 | we're not going to stop until the avg dist is less |
---|
3209 | than the avg threshold |
---|
3210 | */ |
---|
3211 | |
---|
3212 | pct_avg += (double)wrf / halfOfConsideredBips * 100.0; |
---|
3213 | *wrf_avg += (double)wrf; |
---|
3214 | *wrf_thresh_avg += wrf_thresh; |
---|
3215 | } |
---|
3216 | |
---|
3217 | rax_free(perm); |
---|
3218 | |
---|
3219 | pct_avg /= (double)bootstopPermutations; |
---|
3220 | *wrf_avg /= (double)bootstopPermutations; |
---|
3221 | *wrf_thresh_avg /= (double)bootstopPermutations; |
---|
3222 | |
---|
3223 | /*printf("%d \t\t %f \t\t %d \t\t\t\t %f\n", numberOfTrees, *wrf_avg, *countBetter, *wrf_thresh_avg); */ |
---|
3224 | |
---|
3225 | return pct_avg; |
---|
3226 | } |
---|
3227 | |
---|
3228 | |
---|
3229 | |
---|
3230 | |
---|
3231 | |
---|
3232 | |
---|
3233 | void computeBootStopOnly(tree *tr, char *bootStrapFileName, analdef *adef) |
---|
3234 | { |
---|
3235 | int numberOfTrees = 0, i; |
---|
3236 | boolean stop = FALSE; |
---|
3237 | double avg; |
---|
3238 | int checkEvery; |
---|
3239 | int treesAdded = 0; |
---|
3240 | hashtable *h = initHashTable(tr->mxtips * FC_INIT * 10); |
---|
3241 | unsigned int |
---|
3242 | treeVectorLength, |
---|
3243 | vectorLength; |
---|
3244 | unsigned int **bitVectors = initBitVector(tr, &vectorLength); |
---|
3245 | |
---|
3246 | |
---|
3247 | FILE |
---|
3248 | *treeFile = getNumberOfTrees(tr, bootStrapFileName, adef); |
---|
3249 | |
---|
3250 | assert((FC_SPACING % 2 == 0) && (FC_THRESHOLD < BOOTSTOP_PERMUTATIONS)); |
---|
3251 | |
---|
3252 | numberOfTrees = tr->numberOfTrees; |
---|
3253 | |
---|
3254 | |
---|
3255 | printBothOpen("\n\nFound %d trees in File %s\n\n", numberOfTrees, bootStrapFileName); |
---|
3256 | |
---|
3257 | assert(sizeof(unsigned char) == 1); |
---|
3258 | |
---|
3259 | if(numberOfTrees % MASK_LENGTH == 0) |
---|
3260 | treeVectorLength = numberOfTrees / MASK_LENGTH; |
---|
3261 | else |
---|
3262 | treeVectorLength = 1 + (numberOfTrees / MASK_LENGTH); |
---|
3263 | |
---|
3264 | checkEvery = FC_SPACING; |
---|
3265 | |
---|
3266 | switch(tr->bootStopCriterion) |
---|
3267 | { |
---|
3268 | case FREQUENCY_STOP: |
---|
3269 | printBothOpen("# Trees \t Average Pearson Coefficient \t # Permutations: pearson >= %f\n", |
---|
3270 | FC_LOWER); |
---|
3271 | break; |
---|
3272 | case MR_STOP: |
---|
3273 | case MRE_STOP: |
---|
3274 | case MRE_IGN_STOP: |
---|
3275 | printBothOpen("# Trees \t Avg WRF in %s \t # Perms: wrf <= %1.2f %s\n","%", 100.0 * tr->wcThreshold, "%"); |
---|
3276 | break; |
---|
3277 | default: |
---|
3278 | assert(0); |
---|
3279 | } |
---|
3280 | |
---|
3281 | for(i = 1; i <= numberOfTrees && !stop; i++) |
---|
3282 | { |
---|
3283 | int |
---|
3284 | bCount = 0; |
---|
3285 | |
---|
3286 | |
---|
3287 | treeReadLen(treeFile, tr, FALSE, FALSE, TRUE, adef, TRUE, FALSE); |
---|
3288 | assert(tr->mxtips == tr->ntips); |
---|
3289 | |
---|
3290 | bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vectorLength, h, (i - 1), BIPARTITIONS_BOOTSTOP, (branchInfo *)NULL, |
---|
3291 | &bCount, treeVectorLength, FALSE, FALSE); |
---|
3292 | |
---|
3293 | assert(bCount == tr->mxtips - 3); |
---|
3294 | |
---|
3295 | treesAdded++; |
---|
3296 | |
---|
3297 | if((i > START_BSTOP_TEST) && (i % checkEvery == 0)) |
---|
3298 | { |
---|
3299 | int countBetter = 0; |
---|
3300 | |
---|
3301 | switch(tr->bootStopCriterion) |
---|
3302 | { |
---|
3303 | case FREQUENCY_STOP: |
---|
3304 | avg = frequencyCriterion(i, h, &countBetter, BOOTSTOP_PERMUTATIONS); |
---|
3305 | printBothOpen("%d \t\t\t %f \t\t\t\t %d\n", i, avg, countBetter); |
---|
3306 | |
---|
3307 | stop = (countBetter >= FC_THRESHOLD && avg >= FC_LOWER); |
---|
3308 | break; |
---|
3309 | case MR_STOP: |
---|
3310 | case MRE_STOP: |
---|
3311 | case MRE_IGN_STOP: |
---|
3312 | { |
---|
3313 | double |
---|
3314 | wrf_thresh_avg = 0.0, |
---|
3315 | wrf_avg = 0.0; |
---|
3316 | avg = wcCriterion(i, h, &countBetter, &wrf_thresh_avg, &wrf_avg, tr, vectorLength, BOOTSTOP_PERMUTATIONS); |
---|
3317 | printBothOpen("%d \t\t %1.2f \t\t\t %d\n", i, avg, countBetter); |
---|
3318 | |
---|
3319 | stop = (countBetter >= FC_THRESHOLD && wrf_avg <= wrf_thresh_avg); |
---|
3320 | } |
---|
3321 | break; |
---|
3322 | default: |
---|
3323 | assert(0); |
---|
3324 | } |
---|
3325 | } |
---|
3326 | |
---|
3327 | } |
---|
3328 | |
---|
3329 | |
---|
3330 | |
---|
3331 | if(stop) |
---|
3332 | printBothOpen("Converged after %d replicates\n", treesAdded); |
---|
3333 | else |
---|
3334 | printBothOpen("Bootstopping test did not converge after %d trees\n", treesAdded); |
---|
3335 | |
---|
3336 | fclose(treeFile); |
---|
3337 | |
---|
3338 | freeBitVectors(bitVectors, 2 * tr->mxtips); |
---|
3339 | rax_free(bitVectors); |
---|
3340 | freeHashTable(h); |
---|
3341 | rax_free(h); |
---|
3342 | |
---|
3343 | |
---|
3344 | |
---|
3345 | |
---|
3346 | exit(0); |
---|
3347 | } |
---|
3348 | |
---|
3349 | #ifdef _WAYNE_MPI |
---|
3350 | |
---|
3351 | boolean computeBootStopMPI(tree *tr, char *bootStrapFileName, analdef *adef, double *pearsonAverage) |
---|
3352 | { |
---|
3353 | boolean |
---|
3354 | stop = FALSE; |
---|
3355 | |
---|
3356 | int |
---|
3357 | bootStopPermutations = 0, |
---|
3358 | numberOfTrees = 0, |
---|
3359 | i, |
---|
3360 | countBetter = 0; |
---|
3361 | |
---|
3362 | unsigned int |
---|
3363 | treeVectorLength, |
---|
3364 | vectorLength; |
---|
3365 | |
---|
3366 | double |
---|
3367 | avg; |
---|
3368 | |
---|
3369 | hashtable |
---|
3370 | *h = initHashTable(tr->mxtips * FC_INIT * 10); |
---|
3371 | |
---|
3372 | unsigned |
---|
3373 | int **bitVectors = initBitVector(tr, &vectorLength); |
---|
3374 | |
---|
3375 | |
---|
3376 | FILE |
---|
3377 | *treeFile = getNumberOfTrees(tr, bootStrapFileName, adef); |
---|
3378 | |
---|
3379 | numberOfTrees = tr->numberOfTrees; |
---|
3380 | |
---|
3381 | if(numberOfTrees % 2 != 0) |
---|
3382 | numberOfTrees--; |
---|
3383 | |
---|
3384 | /*printf("\n\nProcess %d Found %d trees in File %s\n\n", processID, numberOfTrees, bootStrapFileName);*/ |
---|
3385 | |
---|
3386 | assert(sizeof(unsigned char) == 1); |
---|
3387 | |
---|
3388 | |
---|
3389 | if(BOOTSTOP_PERMUTATIONS % processes == 0) |
---|
3390 | bootStopPermutations = BOOTSTOP_PERMUTATIONS / processes; |
---|
3391 | else |
---|
3392 | bootStopPermutations = 1 + (BOOTSTOP_PERMUTATIONS / processes); |
---|
3393 | |
---|
3394 | /*printf("Perms %d\n", bootStopPermutations);*/ |
---|
3395 | |
---|
3396 | if(numberOfTrees % MASK_LENGTH == 0) |
---|
3397 | treeVectorLength = numberOfTrees / MASK_LENGTH; |
---|
3398 | else |
---|
3399 | treeVectorLength = 1 + (numberOfTrees / MASK_LENGTH); |
---|
3400 | |
---|
3401 | for(i = 1; i <= numberOfTrees; i++) |
---|
3402 | { |
---|
3403 | int |
---|
3404 | bCount = 0; |
---|
3405 | |
---|
3406 | treeReadLen(treeFile, tr, FALSE, FALSE, TRUE, adef, TRUE, FALSE); |
---|
3407 | assert(tr->mxtips == tr->ntips); |
---|
3408 | |
---|
3409 | bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vectorLength, h, (i - 1), BIPARTITIONS_BOOTSTOP, (branchInfo *)NULL, |
---|
3410 | &bCount, treeVectorLength, FALSE, FALSE); |
---|
3411 | assert(bCount == tr->mxtips - 3); |
---|
3412 | } |
---|
3413 | |
---|
3414 | switch(tr->bootStopCriterion) |
---|
3415 | { |
---|
3416 | case FREQUENCY_STOP: |
---|
3417 | { |
---|
3418 | double |
---|
3419 | allOut[2], |
---|
3420 | allIn[2]; |
---|
3421 | |
---|
3422 | avg = frequencyCriterion(numberOfTrees, h, &countBetter, bootStopPermutations); |
---|
3423 | |
---|
3424 | /*printf("%d \t\t\t %f \t\t\t\t %d\n", numberOfTrees, avg, countBetter);*/ |
---|
3425 | |
---|
3426 | allOut[0] = (double)countBetter; |
---|
3427 | allOut[1] = avg; |
---|
3428 | |
---|
3429 | MPI_Allreduce(allOut, allIn, 2, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
---|
3430 | |
---|
3431 | /*printf("%d %f %f\n", processID, allIn[0], allIn[1]);*/ |
---|
3432 | |
---|
3433 | stop = (((int)allIn[0]) >= FC_THRESHOLD && (allIn[1] / ((double)processes)) >= FC_LOWER); |
---|
3434 | |
---|
3435 | *pearsonAverage = (allIn[1] / ((double)processes)); |
---|
3436 | } |
---|
3437 | break; |
---|
3438 | case MR_STOP: |
---|
3439 | case MRE_STOP: |
---|
3440 | case MRE_IGN_STOP: |
---|
3441 | { |
---|
3442 | double |
---|
3443 | allOut[4], |
---|
3444 | allIn[4]; |
---|
3445 | |
---|
3446 | double |
---|
3447 | wrf_thresh_avg = 0.0, |
---|
3448 | wrf_avg = 0.0; |
---|
3449 | |
---|
3450 | avg = wcCriterion(numberOfTrees, h, &countBetter, &wrf_thresh_avg, &wrf_avg, tr, vectorLength, bootStopPermutations); |
---|
3451 | |
---|
3452 | /*printf("%d %1.2f %d %f %f\n", numberOfTrees, avg, countBetter, wrf_thresh_avg, wrf_avg);*/ |
---|
3453 | |
---|
3454 | allOut[0] = (double)countBetter; |
---|
3455 | allOut[1] = wrf_thresh_avg; |
---|
3456 | allOut[2] = wrf_avg; |
---|
3457 | allOut[3] = avg; |
---|
3458 | |
---|
3459 | MPI_Allreduce(allOut, allIn, 4, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
---|
3460 | |
---|
3461 | /*printf("%d %f %f %f\n", processID, allIn[0], allIn[1], allIn[2]);*/ |
---|
3462 | |
---|
3463 | stop = (((int)allIn[0]) >= FC_THRESHOLD && (allIn[2] / ((double)processes)) <= (allIn[1] / ((double)processes))); |
---|
3464 | |
---|
3465 | *pearsonAverage = (allIn[3] / ((double)processes)); |
---|
3466 | } |
---|
3467 | break; |
---|
3468 | default: |
---|
3469 | assert(0); |
---|
3470 | } |
---|
3471 | |
---|
3472 | fclose(treeFile); |
---|
3473 | |
---|
3474 | freeBitVectors(bitVectors, 2 * tr->mxtips); |
---|
3475 | rax_free(bitVectors); |
---|
3476 | freeHashTable(h); |
---|
3477 | rax_free(h); |
---|
3478 | |
---|
3479 | return stop; |
---|
3480 | } |
---|
3481 | |
---|
3482 | #endif |
---|
3483 | |
---|
3484 | boolean bootStop(tree *tr, hashtable *h, int numberOfTrees, double *pearsonAverage, unsigned int **bitVectors, int treeVectorLength, unsigned int vectorLength) |
---|
3485 | { |
---|
3486 | int |
---|
3487 | n = numberOfTrees + 1, |
---|
3488 | bCount = 0; |
---|
3489 | |
---|
3490 | assert((FC_SPACING % 2 == 0) && (FC_THRESHOLD < BOOTSTOP_PERMUTATIONS)); |
---|
3491 | assert(tr->mxtips == tr->rdta->numsp); |
---|
3492 | |
---|
3493 | bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vectorLength, h, numberOfTrees, BIPARTITIONS_BOOTSTOP, (branchInfo *)NULL, |
---|
3494 | &bCount, treeVectorLength, FALSE, FALSE); |
---|
3495 | assert(bCount == tr->mxtips - 3); |
---|
3496 | |
---|
3497 | if((n > START_BSTOP_TEST) && (n % FC_SPACING == 0)) |
---|
3498 | { |
---|
3499 | int countBetter = 0; |
---|
3500 | |
---|
3501 | switch(tr->bootStopCriterion) |
---|
3502 | { |
---|
3503 | case FREQUENCY_STOP: |
---|
3504 | *pearsonAverage = frequencyCriterion(n, h, &countBetter, BOOTSTOP_PERMUTATIONS); |
---|
3505 | |
---|
3506 | if(countBetter >= FC_THRESHOLD && *pearsonAverage >= FC_LOWER) |
---|
3507 | return TRUE; |
---|
3508 | else |
---|
3509 | return FALSE; |
---|
3510 | break; |
---|
3511 | case MR_STOP: |
---|
3512 | case MRE_STOP: |
---|
3513 | case MRE_IGN_STOP: |
---|
3514 | { |
---|
3515 | double |
---|
3516 | wrf_thresh_avg = 0.0, |
---|
3517 | wrf_avg = 0.0; |
---|
3518 | |
---|
3519 | *pearsonAverage = wcCriterion(n, h, &countBetter, &wrf_thresh_avg, &wrf_avg, tr, vectorLength, BOOTSTOP_PERMUTATIONS); |
---|
3520 | |
---|
3521 | if(countBetter >= FC_THRESHOLD && wrf_avg <= wrf_thresh_avg) |
---|
3522 | return TRUE; |
---|
3523 | else |
---|
3524 | return FALSE; |
---|
3525 | } |
---|
3526 | default: |
---|
3527 | assert(0); |
---|
3528 | } |
---|
3529 | } |
---|
3530 | else |
---|
3531 | return FALSE; |
---|
3532 | } |
---|
3533 | |
---|
3534 | |
---|
3535 | |
---|
3536 | |
---|
3537 | /* consensus stuff */ |
---|
3538 | |
---|
3539 | boolean compatible(entry* e1, entry* e2, unsigned int bvlen) |
---|
3540 | { |
---|
3541 | unsigned int i; |
---|
3542 | |
---|
3543 | unsigned int |
---|
3544 | *A = e1->bitVector, |
---|
3545 | *C = e2->bitVector; |
---|
3546 | |
---|
3547 | for(i = 0; i < bvlen; i++) |
---|
3548 | if(A[i] & C[i]) |
---|
3549 | break; |
---|
3550 | |
---|
3551 | if(i == bvlen) |
---|
3552 | return TRUE; |
---|
3553 | |
---|
3554 | for(i = 0; i < bvlen; i++) |
---|
3555 | if(A[i] & ~C[i]) |
---|
3556 | break; |
---|
3557 | |
---|
3558 | if(i == bvlen) |
---|
3559 | return TRUE; |
---|
3560 | |
---|
3561 | for(i = 0; i < bvlen; i++) |
---|
3562 | if(~A[i] & C[i]) |
---|
3563 | break; |
---|
3564 | |
---|
3565 | if(i == bvlen) |
---|
3566 | return TRUE; |
---|
3567 | else |
---|
3568 | return FALSE; |
---|
3569 | } |
---|
3570 | |
---|
3571 | |
---|
3572 | |
---|
3573 | static int sortByWeight(const void *a, const void *b, int which) |
---|
3574 | { |
---|
3575 | /* recall, we want to sort descending, instead of ascending */ |
---|
3576 | |
---|
3577 | int |
---|
3578 | ca, |
---|
3579 | cb; |
---|
3580 | |
---|
3581 | ca = ((*((entry **)a))->supportFromTreeset)[which]; |
---|
3582 | cb = ((*((entry **)b))->supportFromTreeset)[which]; |
---|
3583 | |
---|
3584 | if (ca == cb) |
---|
3585 | return 0; |
---|
3586 | |
---|
3587 | return ((ca<cb)?1:-1); |
---|
3588 | } |
---|
3589 | |
---|
3590 | static int sortByIndex(const void *a, const void *b) |
---|
3591 | { |
---|
3592 | if ( (*((entry **)a)) == (*((entry **)b)) ) return 0; |
---|
3593 | return (( (*((entry **)a)) < (*((entry **)b)) )?-1:1); |
---|
3594 | } |
---|
3595 | |
---|
3596 | static int _sortByWeight0(const void *a, const void *b) |
---|
3597 | { |
---|
3598 | return sortByWeight(a,b,0); |
---|
3599 | } |
---|
3600 | |
---|
3601 | static int _sortByWeight1(const void *a, const void *b) |
---|
3602 | { |
---|
3603 | return sortByWeight(a,b,1); |
---|
3604 | } |
---|
3605 | |
---|
3606 | boolean issubset(unsigned int* bipA, unsigned int* bipB, unsigned int vectorLen, unsigned int firstIndex) |
---|
3607 | { |
---|
3608 | unsigned int |
---|
3609 | i; |
---|
3610 | |
---|
3611 | for(i = firstIndex; i < vectorLen; i++) |
---|
3612 | if((bipA[i] & bipB[i]) != bipA[i]) |
---|
3613 | return FALSE; |
---|
3614 | |
---|
3615 | return TRUE; |
---|
3616 | } |
---|
3617 | |
---|
3618 | |
---|
3619 | |
---|
3620 | |
---|
3621 | |
---|
3622 | #ifdef _NEW_MRE |
---|
3623 | |
---|
3624 | static void mre(hashtable *h, boolean icp, entry*** sbi, int* len, int which, int n, unsigned int vectorLength, boolean sortp, tree *tr, boolean bootStopping) |
---|
3625 | { |
---|
3626 | entry |
---|
3627 | **sbw; |
---|
3628 | |
---|
3629 | unsigned int |
---|
3630 | i = 0, |
---|
3631 | j = 0; |
---|
3632 | |
---|
3633 | sbw = (entry **) rax_calloc(h->entryCount, sizeof(entry *)); |
---|
3634 | |
---|
3635 | for(i = 0; i < h->tableSize; i++) /* copy hashtable h to list sbw */ |
---|
3636 | { |
---|
3637 | if(h->table[i] != NULL) |
---|
3638 | { |
---|
3639 | entry |
---|
3640 | *e = h->table[i]; |
---|
3641 | |
---|
3642 | do |
---|
3643 | { |
---|
3644 | sbw[j] = e; |
---|
3645 | j++; |
---|
3646 | e = e->next; |
---|
3647 | } |
---|
3648 | |
---|
3649 | while(e != NULL); |
---|
3650 | } |
---|
3651 | } |
---|
3652 | |
---|
3653 | assert(h->entryCount == j); |
---|
3654 | |
---|
3655 | if(which == 0) /* sort the sbw list */ |
---|
3656 | qsort(sbw, h->entryCount, sizeof(entry *), _sortByWeight0); |
---|
3657 | else |
---|
3658 | qsort(sbw, h->entryCount, sizeof(entry *), _sortByWeight1); |
---|
3659 | |
---|
3660 | *sbi = (entry **)rax_calloc(n - 3, sizeof(entry *)); |
---|
3661 | |
---|
3662 | *len = 0; |
---|
3663 | |
---|
3664 | if(icp == FALSE) |
---|
3665 | { |
---|
3666 | |
---|
3667 | #ifdef _USE_PTHREADS |
---|
3668 | /* |
---|
3669 | We only deploy the parallel version of MRE when not using it |
---|
3670 | in conjunction with bootstopping for the time being. |
---|
3671 | When bootstopping it is probably easier and more efficient to |
---|
3672 | parallelize over the permutations |
---|
3673 | */ |
---|
3674 | |
---|
3675 | if(!bootStopping) |
---|
3676 | { |
---|
3677 | //printf("Parallel region \n" ); |
---|
3678 | |
---|
3679 | tr->h = h; |
---|
3680 | NumberOfJobs = tr->h->entryCount; |
---|
3681 | tr->sectionEnd = MIN(NumberOfJobs, NumberOfThreads * MRE_MIN_AMOUNT_JOBS_PER_THREAD); //NumberOfThreads * MRE_MIN_AMOUNT_JOBS_PER_THREAD; |
---|
3682 | tr->len = len; |
---|
3683 | tr->sbi = (*sbi); |
---|
3684 | tr->maxBips = n - 3; |
---|
3685 | tr->recommendedAmountJobs = 1; |
---|
3686 | tr->bitVectorLength = vectorLength; |
---|
3687 | tr->sbw = sbw; |
---|
3688 | tr->entriesOfSection = tr->sbw; |
---|
3689 | tr->bipStatus = (int*)rax_calloc(tr->sectionEnd, sizeof(int)); |
---|
3690 | tr->bipStatusLen = tr->sectionEnd; |
---|
3691 | masterBarrier(THREAD_MRE_COMPUTE, tr); |
---|
3692 | } |
---|
3693 | else |
---|
3694 | #endif |
---|
3695 | { |
---|
3696 | for(i = 0; i < h->entryCount && (*len) < n-3; i++) |
---|
3697 | { |
---|
3698 | boolean |
---|
3699 | compatflag = TRUE; |
---|
3700 | |
---|
3701 | entry |
---|
3702 | *currentEntry = sbw[i]; |
---|
3703 | |
---|
3704 | assert(*len < n-3); |
---|
3705 | |
---|
3706 | if(currentEntry->supportFromTreeset[which] <= ((unsigned int)tr->mr_thresh)) |
---|
3707 | { |
---|
3708 | int k; |
---|
3709 | |
---|
3710 | for(k = (*len); k > 0; k--) |
---|
3711 | { |
---|
3712 | if( ! compatible((*sbi)[k-1], currentEntry, vectorLength)) |
---|
3713 | { |
---|
3714 | compatflag = FALSE; |
---|
3715 | break; |
---|
3716 | } |
---|
3717 | } |
---|
3718 | } |
---|
3719 | |
---|
3720 | if(compatflag) |
---|
3721 | { |
---|
3722 | (*sbi)[*len] = sbw[i]; |
---|
3723 | (*len)++; |
---|
3724 | } |
---|
3725 | } |
---|
3726 | } |
---|
3727 | } |
---|
3728 | else |
---|
3729 | { |
---|
3730 | for(i = 0; i < (unsigned int)(n-3); i++) |
---|
3731 | { |
---|
3732 | (*sbi)[i] = sbw[i]; |
---|
3733 | (*len)++; |
---|
3734 | } |
---|
3735 | } |
---|
3736 | |
---|
3737 | |
---|
3738 | rax_free(sbw); |
---|
3739 | |
---|
3740 | if (sortp == TRUE) |
---|
3741 | qsort(*sbi, (*len), sizeof(entry *), sortByIndex); |
---|
3742 | |
---|
3743 | return; |
---|
3744 | } |
---|
3745 | |
---|
3746 | |
---|
3747 | /* if we encounter the first bits that are set, then we can determine, |
---|
3748 | whether bip a is a subset of bip b. We already know, that A has |
---|
3749 | more bits set than B and that both bips are compatible to each |
---|
3750 | other. Thus, if A & B is true (and A contains bits), then A MUST be |
---|
3751 | a proper subset of B (given the setting). */ |
---|
3752 | |
---|
3753 | /* check different versions of this ! */ |
---|
3754 | |
---|
3755 | |
---|
3756 | |
---|
3757 | |
---|
3758 | static int sortByAmountTips(const void *a, const void *b) |
---|
3759 | { |
---|
3760 | entry |
---|
3761 | *A = (*(entry **)a), |
---|
3762 | *B = (*(entry **)b); |
---|
3763 | |
---|
3764 | if((unsigned int)A->amountTips == (unsigned int)B->amountTips) |
---|
3765 | return 0; |
---|
3766 | |
---|
3767 | return (((unsigned int)A->amountTips < (unsigned int)B->amountTips) ? -1 : 1); |
---|
3768 | } |
---|
3769 | |
---|
3770 | |
---|
3771 | /******* IC function *******************/ |
---|
3772 | |
---|
3773 | |
---|
3774 | static void calculateIC(tree *tr, hashtable *h, unsigned int *bitVector, unsigned int vectorLength, int trees, unsigned int supportedBips, double *ic, double *icAll, boolean verboseIC, int counter) |
---|
3775 | { |
---|
3776 | unsigned int |
---|
3777 | maxCounter = 0, |
---|
3778 | *maxima = (unsigned int *)rax_calloc(h->entryCount, sizeof(unsigned int)), |
---|
3779 | **maximaBitVectors = (unsigned int **)rax_calloc(h->entryCount, sizeof(unsigned int *)), |
---|
3780 | numberOfTrees = (unsigned int)trees; |
---|
3781 | |
---|
3782 | *ic = 0.0, |
---|
3783 | *icAll = 0.0; |
---|
3784 | |
---|
3785 | //if the support is 100% we don't need to consider any conflicting bipartitions and can save some time |
---|
3786 | |
---|
3787 | if(supportedBips == numberOfTrees) |
---|
3788 | { |
---|
3789 | *ic = 1.0; |
---|
3790 | *icAll = 1.0; |
---|
3791 | |
---|
3792 | if(verboseIC) |
---|
3793 | printFullySupportedSplit(tr, bitVector, numberOfTrees); |
---|
3794 | } |
---|
3795 | else |
---|
3796 | { |
---|
3797 | //search conflicting bipartitions |
---|
3798 | |
---|
3799 | countIncompatibleBipartitions(bitVector, h, vectorLength, maxima, &maxCounter, FALSE, numberOfTrees, maximaBitVectors); |
---|
3800 | |
---|
3801 | //make sure that the sum of raw supports is not higher than the number of trees |
---|
3802 | |
---|
3803 | assert(supportedBips + maxima[0] <= numberOfTrees); |
---|
3804 | |
---|
3805 | *ic = computeIC_Value(supportedBips, maxima, numberOfTrees, maxCounter, FALSE, TRUE); |
---|
3806 | *icAll = computeIC_Value(supportedBips, maxima, numberOfTrees, maxCounter, TRUE, FALSE); |
---|
3807 | |
---|
3808 | if(verboseIC) |
---|
3809 | printVerboseIC(tr, supportedBips, bitVector, maxCounter, maxima, maximaBitVectors, numberOfTrees, counter, *ic); |
---|
3810 | } |
---|
3811 | |
---|
3812 | //printf("IC %f %f IC-all %f %fmaxima: %u\n", ic, _ic, icAll, _icAll, maxCounter); |
---|
3813 | |
---|
3814 | rax_free(maxima); |
---|
3815 | rax_free(maximaBitVectors); |
---|
3816 | } |
---|
3817 | |
---|
3818 | /******* IC function end ***************/ |
---|
3819 | |
---|
3820 | static void printBipsRecursive(tree *tr, FILE *outf, int consensusBipLen, entry **consensusBips, int numberOfTrees, |
---|
3821 | int currentBipIdx, List **listOfDirectChildren, int bitVectorLength, int numTips, |
---|
3822 | char **nameList, entry *currentBip, boolean *printed, boolean topLevel, unsigned int *printCounter, hashtable |
---|
3823 | *h, boolean computeIC, double *tc, double *tcAll, boolean verboseIC) |
---|
3824 | { |
---|
3825 | List |
---|
3826 | *idx; |
---|
3827 | |
---|
3828 | int |
---|
3829 | i; |
---|
3830 | |
---|
3831 | unsigned int |
---|
3832 | *currentBitVector = (unsigned int*)rax_malloc(bitVectorLength * sizeof(unsigned int)); |
---|
3833 | |
---|
3834 | /* open bip */ |
---|
3835 | if(*printed) |
---|
3836 | fprintf(outf, ","); |
---|
3837 | *printed = FALSE; |
---|
3838 | |
---|
3839 | if(!topLevel) |
---|
3840 | fprintf(outf, "("); |
---|
3841 | |
---|
3842 | /* determine tips that are not in sub bipartitions */ |
---|
3843 | for(i = 0; i < bitVectorLength; i++) |
---|
3844 | { |
---|
3845 | idx = listOfDirectChildren[currentBipIdx]; |
---|
3846 | currentBitVector[i] = currentBip->bitVector[i]; |
---|
3847 | |
---|
3848 | while(idx) |
---|
3849 | { |
---|
3850 | currentBitVector[i] = currentBitVector[i] & ~ consensusBips[*((int*)idx->value)]->bitVector[i]; |
---|
3851 | idx = idx->next; |
---|
3852 | } |
---|
3853 | } |
---|
3854 | |
---|
3855 | /* print out those tips that are direct leafs of the current bip */ |
---|
3856 | for(i = 0; i < numTips; i++) |
---|
3857 | { |
---|
3858 | if(currentBitVector[i/MASK_LENGTH] & mask32[i%MASK_LENGTH]) |
---|
3859 | { |
---|
3860 | if(*printed){fprintf(outf, ",");}; |
---|
3861 | fprintf(outf, "%s", nameList[i+1]); |
---|
3862 | *printed = TRUE; |
---|
3863 | } |
---|
3864 | } |
---|
3865 | |
---|
3866 | /* process all sub bips */ |
---|
3867 | idx = listOfDirectChildren[currentBipIdx]; |
---|
3868 | while(idx) |
---|
3869 | { |
---|
3870 | |
---|
3871 | if(*printed) |
---|
3872 | { |
---|
3873 | fprintf(outf, ","); |
---|
3874 | *printed = FALSE; |
---|
3875 | } |
---|
3876 | |
---|
3877 | printBipsRecursive(tr, outf, consensusBipLen, consensusBips, numberOfTrees, |
---|
3878 | *((int*)idx->value), listOfDirectChildren, bitVectorLength, numTips, nameList, |
---|
3879 | consensusBips[*((int*)idx->value)], printed, FALSE, printCounter, h, computeIC, tc, tcAll, verboseIC); |
---|
3880 | *printed = TRUE; |
---|
3881 | idx = idx->next; |
---|
3882 | } |
---|
3883 | |
---|
3884 | /* close the bipartition */ |
---|
3885 | if(currentBipIdx != consensusBipLen) |
---|
3886 | { |
---|
3887 | if(computeIC) |
---|
3888 | { |
---|
3889 | double |
---|
3890 | ic, |
---|
3891 | icAll; |
---|
3892 | |
---|
3893 | calculateIC(tr, h, currentBip->bitVector, bitVectorLength, numberOfTrees, currentBip->supportFromTreeset[0], &ic, &icAll, verboseIC, *printCounter); |
---|
3894 | |
---|
3895 | *tc += ic; |
---|
3896 | *tcAll += icAll; |
---|
3897 | |
---|
3898 | fprintf(outf,"):1.0[%1.2f,%1.2f]", ic, icAll); |
---|
3899 | } |
---|
3900 | else |
---|
3901 | { |
---|
3902 | double |
---|
3903 | support = ((double)(currentBip->supportFromTreeset[0])) / ((double) (numberOfTrees)); |
---|
3904 | |
---|
3905 | int |
---|
3906 | branchLabel = (int)(0.5 + support * 100.0); |
---|
3907 | |
---|
3908 | fprintf(outf,"):1.0[%d]", branchLabel); |
---|
3909 | } |
---|
3910 | |
---|
3911 | *printCounter = *printCounter + 1; |
---|
3912 | } |
---|
3913 | else |
---|
3914 | fprintf(outf, ");\n"); |
---|
3915 | |
---|
3916 | rax_free(currentBitVector); |
---|
3917 | } |
---|
3918 | |
---|
3919 | |
---|
3920 | |
---|
3921 | |
---|
3922 | static void printSortedBips(entry **consensusBips, const int consensusBipLen, const int numTips, const unsigned int vectorLen, |
---|
3923 | const int numberOfTrees, FILE *outf, char **nameList , tree *tr, unsigned int *printCounter, hashtable *h, boolean computeIC, boolean verboseIC) |
---|
3924 | { |
---|
3925 | int |
---|
3926 | i; |
---|
3927 | |
---|
3928 | double |
---|
3929 | tc = 0.0, |
---|
3930 | tcAll = 0.0; |
---|
3931 | |
---|
3932 | List |
---|
3933 | **listOfDirectChildren = (List**) rax_calloc(consensusBipLen + 1, sizeof(List*)); /* reserve one more: the last one is the bip with all species */ |
---|
3934 | |
---|
3935 | boolean |
---|
3936 | *hasAncestor = (boolean*) rax_calloc(consensusBipLen, sizeof(boolean)), |
---|
3937 | *printed = (boolean*)rax_calloc(1, sizeof(boolean)); |
---|
3938 | |
---|
3939 | entry |
---|
3940 | *topBip; |
---|
3941 | |
---|
3942 | #ifndef _USE_PTHREADS |
---|
3943 | List |
---|
3944 | *elems = (List*)rax_malloc((size_t)consensusBipLen * sizeof(List)); |
---|
3945 | int |
---|
3946 | *intList = (int*)rax_malloc(sizeof(int) * (size_t)consensusBipLen); |
---|
3947 | #endif |
---|
3948 | |
---|
3949 | /* sort the consensusBips by the amount of tips they contain */ |
---|
3950 | |
---|
3951 | for( i = 0; i < consensusBipLen; i++) |
---|
3952 | consensusBips[i]->amountTips = genericBitCount(consensusBips[i]->bitVector, vectorLen); |
---|
3953 | |
---|
3954 | qsort(consensusBips, consensusBipLen, sizeof(entry *), &sortByAmountTips); |
---|
3955 | |
---|
3956 | /* create an artificial entry for the top */ |
---|
3957 | topBip = (entry *)rax_malloc(sizeof(entry)); |
---|
3958 | topBip->bitVector = rax_malloc(sizeof(unsigned int) * vectorLen); |
---|
3959 | |
---|
3960 | for(i = 1; i < numTips ; i++) |
---|
3961 | topBip->bitVector[i / MASK_LENGTH] |= mask32[i % MASK_LENGTH]; |
---|
3962 | |
---|
3963 | |
---|
3964 | |
---|
3965 | /* find the parent of each bip (in the tree they represent) and construct some kind of hashtable this way */ |
---|
3966 | #ifdef _USE_PTHREADS |
---|
3967 | |
---|
3968 | //printf("Parallel region 2\n"); |
---|
3969 | |
---|
3970 | NumberOfJobs = consensusBipLen; |
---|
3971 | tr->consensusBipLen = consensusBipLen; |
---|
3972 | tr->consensusBips = consensusBips; |
---|
3973 | tr->mxtips = numTips; /* don't need this ? */ |
---|
3974 | tr->hasAncestor = hasAncestor; |
---|
3975 | tr->listOfDirectChildren = listOfDirectChildren; |
---|
3976 | tr->bitVectorLength = vectorLen; |
---|
3977 | tr->mutexesForHashing = (pthread_mutex_t**) rax_malloc(consensusBipLen * sizeof(pthread_mutex_t*)); |
---|
3978 | |
---|
3979 | for(i = 0; i < consensusBipLen; i++) |
---|
3980 | { |
---|
3981 | tr->mutexesForHashing[i] = (pthread_mutex_t*) rax_malloc(sizeof(pthread_mutex_t)); |
---|
3982 | pthread_mutex_init(tr->mutexesForHashing[i], (pthread_mutexattr_t *)NULL); |
---|
3983 | } |
---|
3984 | |
---|
3985 | masterBarrier(THREAD_PREPARE_BIPS_FOR_PRINT, tr); |
---|
3986 | |
---|
3987 | /* cleanup */ |
---|
3988 | for(i = 0; i < consensusBipLen; i++) |
---|
3989 | rax_free(tr->mutexesForHashing[i]); |
---|
3990 | rax_free(tr->mutexesForHashing); |
---|
3991 | |
---|
3992 | /* restore the old variables - necessary? */ |
---|
3993 | |
---|
3994 | hasAncestor = tr->hasAncestor; |
---|
3995 | listOfDirectChildren = tr->listOfDirectChildren; |
---|
3996 | #else |
---|
3997 | { |
---|
3998 | int |
---|
3999 | j, |
---|
4000 | highestId = 0; |
---|
4001 | |
---|
4002 | for(i = 0; i < consensusBipLen; i++) |
---|
4003 | { |
---|
4004 | entry |
---|
4005 | *bipA = consensusBips[i]; |
---|
4006 | |
---|
4007 | /* find first index */ |
---|
4008 | unsigned int |
---|
4009 | firstIndex = 0; |
---|
4010 | |
---|
4011 | while(firstIndex < vectorLen && bipA->bitVector[firstIndex] == 0 ) |
---|
4012 | firstIndex++; |
---|
4013 | |
---|
4014 | for(j = i + 1; j < consensusBipLen; j++) |
---|
4015 | { |
---|
4016 | if((unsigned int)consensusBips[i]->amountTips < (unsigned int)consensusBips[j]->amountTips |
---|
4017 | && issubset(consensusBips[i]->bitVector, consensusBips[j]->bitVector, vectorLen, firstIndex)) |
---|
4018 | { |
---|
4019 | List |
---|
4020 | *elem = &(elems[highestId]); |
---|
4021 | |
---|
4022 | int |
---|
4023 | *nmbr = &(intList[highestId]); |
---|
4024 | |
---|
4025 | highestId++; |
---|
4026 | |
---|
4027 | elem->value = rax_calloc(1, sizeof(int)); |
---|
4028 | |
---|
4029 | *nmbr = i; |
---|
4030 | elem->value = nmbr; |
---|
4031 | elem->next = (listOfDirectChildren[j]) |
---|
4032 | ?listOfDirectChildren[j] |
---|
4033 | :NULL; |
---|
4034 | listOfDirectChildren[j] = elem; |
---|
4035 | hasAncestor[i] = TRUE; |
---|
4036 | break; |
---|
4037 | } |
---|
4038 | } |
---|
4039 | } |
---|
4040 | } |
---|
4041 | #endif |
---|
4042 | |
---|
4043 | /****************************************************************/ |
---|
4044 | /* print the bips during a DFS search on the ancestor hashtable */ |
---|
4045 | /****************************************************************/ |
---|
4046 | |
---|
4047 | /* insert these toplevel bips into the last field of the array */ |
---|
4048 | for(i = 0; i < consensusBipLen; i++) |
---|
4049 | if( ! hasAncestor[i]) |
---|
4050 | { |
---|
4051 | List *elem = (List*) rax_malloc(sizeof(List)); |
---|
4052 | /* elem->value = &i; */ |
---|
4053 | elem->value = rax_calloc(1, sizeof(int)); /* TODO omg this needs refactoring... */ |
---|
4054 | *(int*)elem->value = i; |
---|
4055 | elem->next = (listOfDirectChildren[consensusBipLen]) |
---|
4056 | ? listOfDirectChildren[consensusBipLen] |
---|
4057 | : NULL; |
---|
4058 | listOfDirectChildren[consensusBipLen] = elem; |
---|
4059 | } |
---|
4060 | |
---|
4061 | /* start dfs search at the top level */ |
---|
4062 | printBipsRecursive(tr, outf, |
---|
4063 | consensusBipLen, consensusBips, |
---|
4064 | numberOfTrees, consensusBipLen, |
---|
4065 | listOfDirectChildren, vectorLen, |
---|
4066 | numTips, nameList, |
---|
4067 | topBip, printed, TRUE, printCounter, h, computeIC, &tc, &tcAll, verboseIC); |
---|
4068 | |
---|
4069 | if(computeIC) |
---|
4070 | { |
---|
4071 | double |
---|
4072 | rtcAll = tcAll / (double)(tr->mxtips - 3), |
---|
4073 | rtc = tc / (double)(tr->mxtips - 3); |
---|
4074 | |
---|
4075 | printBothOpen("Tree certainty for this tree: %f\n", tc); |
---|
4076 | |
---|
4077 | /* Leonida: for consensus trees I also calculate the relative tree certainty by dividing |
---|
4078 | the tc by the total number of bipartitions of a tree with n (tr->mxtips) taxa |
---|
4079 | to penalize the consensi for potentially being unresolved */ |
---|
4080 | |
---|
4081 | printBothOpen("Relative tree certainty for this tree: %f\n\n", rtc); |
---|
4082 | |
---|
4083 | printBothOpen("Tree certainty including all conflicting bipartitions (TC-All) for this tree: %f\n", tcAll); |
---|
4084 | printBothOpen("Relative tree certainty including all conflicting bipartitions (TC-All) for this tree: %f\n\n", rtcAll); |
---|
4085 | } |
---|
4086 | |
---|
4087 | rax_free(topBip->bitVector); |
---|
4088 | rax_free(topBip); |
---|
4089 | rax_free(printed); |
---|
4090 | rax_free(hasAncestor); |
---|
4091 | |
---|
4092 | #ifndef _USE_PTHREADS |
---|
4093 | rax_free(elems); |
---|
4094 | rax_free(intList); |
---|
4095 | #endif |
---|
4096 | |
---|
4097 | |
---|
4098 | /* here is a bug, when I try to rax_free the memory on the veryBig (55K) |
---|
4099 | dataset. When rax_freeing the toplevel bips |
---|
4100 | (listOfDirectChildren[consensusBipLen]), he complains of sth like |
---|
4101 | a double rax_free. At this point the value of ptr is not 0, however |
---|
4102 | the memory cannot be accessed. Also got a "bus error" instead of |
---|
4103 | the described error here. This is very strange, I already have |
---|
4104 | accessed the stuff I try to rax_free. */ |
---|
4105 | /* for(i = 0; i < consensusBipLen+1; i++) */ |
---|
4106 | /* { */ |
---|
4107 | /* list *ptr = listOfDirectChildren[i]; */ |
---|
4108 | /* while(ptr){ */ |
---|
4109 | /* list *n = ptr->next; */ |
---|
4110 | /* /\* rax_free(ptr); /\\* TODO pthreads: last one *\\/ *\/ */ |
---|
4111 | /* ptr = n; */ |
---|
4112 | /* } */ |
---|
4113 | /* } */ |
---|
4114 | } |
---|
4115 | |
---|
4116 | |
---|
4117 | |
---|
4118 | |
---|
4119 | void computeConsensusOnly(tree *tr, char *treeSetFileName, analdef *adef, boolean computeIC) |
---|
4120 | { |
---|
4121 | hashtable |
---|
4122 | *h = initHashTable(tr->mxtips * FC_INIT * 10); |
---|
4123 | |
---|
4124 | hashNumberType |
---|
4125 | entries = 0; |
---|
4126 | |
---|
4127 | unsigned int |
---|
4128 | printCounter = 0, |
---|
4129 | numberOfTrees = 0, |
---|
4130 | i, |
---|
4131 | j, |
---|
4132 | treeVectorLength, |
---|
4133 | vectorLength; |
---|
4134 | |
---|
4135 | int |
---|
4136 | consensusBipsLen = 0; |
---|
4137 | |
---|
4138 | unsigned int |
---|
4139 | **bitVectors = initBitVector(tr, &vectorLength); |
---|
4140 | |
---|
4141 | entry |
---|
4142 | **consensusBips; |
---|
4143 | |
---|
4144 | char |
---|
4145 | someChar[1024], |
---|
4146 | consensusFileName[1024]; |
---|
4147 | |
---|
4148 | FILE |
---|
4149 | *outf, |
---|
4150 | *treeFile = getNumberOfTrees(tr, treeSetFileName, adef); |
---|
4151 | |
---|
4152 | numberOfTrees = tr->numberOfTrees; |
---|
4153 | |
---|
4154 | tr->mr_thresh = ((double)numberOfTrees / 2.0); |
---|
4155 | |
---|
4156 | assert(sizeof(unsigned char) == 1); |
---|
4157 | |
---|
4158 | treeVectorLength = GET_BITVECTOR_LENGTH(numberOfTrees); |
---|
4159 | |
---|
4160 | /* read the trees and process the bipartitions */ |
---|
4161 | |
---|
4162 | for(i = 1; i <= numberOfTrees; i++) |
---|
4163 | { |
---|
4164 | int |
---|
4165 | bCount = 0; |
---|
4166 | |
---|
4167 | treeReadLen(treeFile, tr, FALSE, FALSE, TRUE, adef, TRUE, FALSE); |
---|
4168 | |
---|
4169 | assert(tr->mxtips == tr->ntips); |
---|
4170 | |
---|
4171 | bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vectorLength, h, (i - 1), BIPARTITIONS_BOOTSTOP, (branchInfo *)NULL, |
---|
4172 | &bCount, treeVectorLength, FALSE, FALSE); |
---|
4173 | |
---|
4174 | assert(bCount == tr->mxtips - 3); |
---|
4175 | } |
---|
4176 | |
---|
4177 | fclose(treeFile); |
---|
4178 | |
---|
4179 | if(tr->consensusType == MR_CONSENSUS || tr->consensusType == STRICT_CONSENSUS || tr->consensusType == USER_DEFINED) |
---|
4180 | { |
---|
4181 | consensusBips = (entry **)rax_calloc(tr->mxtips - 3, sizeof(entry *)); |
---|
4182 | consensusBipsLen = 0; |
---|
4183 | } |
---|
4184 | |
---|
4185 | for(j = 0; j < (unsigned int)h->tableSize; j++) /* determine support of the bips */ |
---|
4186 | { |
---|
4187 | if(h->table[j] != NULL) |
---|
4188 | { |
---|
4189 | entry *e = h->table[j]; |
---|
4190 | |
---|
4191 | do |
---|
4192 | { |
---|
4193 | unsigned int |
---|
4194 | cnt = genericBitCount(e->treeVector, treeVectorLength); |
---|
4195 | |
---|
4196 | if((tr->consensusType == MR_CONSENSUS && cnt > (unsigned int)tr->mr_thresh) || |
---|
4197 | (tr->consensusType == STRICT_CONSENSUS && cnt == numberOfTrees) || |
---|
4198 | (tr->consensusType == USER_DEFINED && cnt > (numberOfTrees * tr->consensusUserThreshold) / 100)) |
---|
4199 | { |
---|
4200 | consensusBips[consensusBipsLen] = e; |
---|
4201 | consensusBipsLen++; |
---|
4202 | } |
---|
4203 | |
---|
4204 | e->supportFromTreeset[0] = cnt; |
---|
4205 | e = e->next; |
---|
4206 | entries++; |
---|
4207 | } |
---|
4208 | while(e != NULL); |
---|
4209 | } |
---|
4210 | } |
---|
4211 | |
---|
4212 | assert(h->entryCount == entries); |
---|
4213 | |
---|
4214 | if(tr->consensusType == MR_CONSENSUS || tr->consensusType == STRICT_CONSENSUS || tr->consensusType == USER_DEFINED) |
---|
4215 | assert(consensusBipsLen <= (tr->mxtips - 3)); |
---|
4216 | |
---|
4217 | if(tr->consensusType == MRE_CONSENSUS) |
---|
4218 | mre(h, FALSE, &consensusBips, &consensusBipsLen, 0, tr->mxtips, vectorLength, FALSE , tr, FALSE); |
---|
4219 | |
---|
4220 | /* printf("Bips NEW %d\n", consensusBipsLen); */ |
---|
4221 | |
---|
4222 | strcpy(consensusFileName, workdir); |
---|
4223 | |
---|
4224 | switch(tr->consensusType) |
---|
4225 | { |
---|
4226 | case MR_CONSENSUS: |
---|
4227 | if(computeIC) |
---|
4228 | strcat(consensusFileName, "RAxML_MajorityRuleConsensusTree_IC."); |
---|
4229 | else |
---|
4230 | strcat(consensusFileName, "RAxML_MajorityRuleConsensusTree."); |
---|
4231 | break; |
---|
4232 | case MRE_CONSENSUS: |
---|
4233 | if(computeIC) |
---|
4234 | strcat(consensusFileName, "RAxML_MajorityRuleExtendedConsensusTree_IC."); |
---|
4235 | else |
---|
4236 | strcat(consensusFileName, "RAxML_MajorityRuleExtendedConsensusTree."); |
---|
4237 | break; |
---|
4238 | case STRICT_CONSENSUS: |
---|
4239 | assert(!computeIC); |
---|
4240 | strcat(consensusFileName, "RAxML_StrictConsensusTree."); |
---|
4241 | break; |
---|
4242 | case USER_DEFINED : |
---|
4243 | if(computeIC) |
---|
4244 | sprintf(someChar, "RAxML_Threshold-%d-ConsensusTree_IC.", tr->consensusUserThreshold); |
---|
4245 | else |
---|
4246 | sprintf(someChar, "RAxML_Threshold-%d-ConsensusTree.", tr->consensusUserThreshold); |
---|
4247 | strcat(consensusFileName, someChar); |
---|
4248 | break; |
---|
4249 | default: |
---|
4250 | assert(0); |
---|
4251 | } |
---|
4252 | |
---|
4253 | strcat(consensusFileName, run_id); |
---|
4254 | |
---|
4255 | outf = myfopen(consensusFileName, "wb"); |
---|
4256 | |
---|
4257 | fprintf(outf, "(%s,", tr->nameList[1]); |
---|
4258 | |
---|
4259 | if(computeIC) |
---|
4260 | { |
---|
4261 | if(adef->verboseIC) |
---|
4262 | printVerboseTaxonNames(tr); |
---|
4263 | printSortedBips(consensusBips, consensusBipsLen, tr->mxtips, vectorLength, numberOfTrees, outf, tr->nameList, tr, &printCounter, h, computeIC, adef->verboseIC); |
---|
4264 | } |
---|
4265 | else |
---|
4266 | printSortedBips(consensusBips, consensusBipsLen, tr->mxtips, vectorLength, numberOfTrees, outf, tr->nameList, tr, &printCounter, h, computeIC, FALSE); |
---|
4267 | |
---|
4268 | assert(printCounter == (unsigned int)consensusBipsLen); |
---|
4269 | |
---|
4270 | /* ????? fprintf(outf, ");\n"); */ |
---|
4271 | |
---|
4272 | fclose(outf); |
---|
4273 | |
---|
4274 | if(adef->verboseIC && computeIC) |
---|
4275 | printBothOpen("Verbose PHYLIP-style formatted bipartition information written to file: %s\n\n", verboseSplitsFileName); |
---|
4276 | |
---|
4277 | switch(tr->consensusType) |
---|
4278 | { |
---|
4279 | case MR_CONSENSUS: |
---|
4280 | if(computeIC) |
---|
4281 | printBothOpen("RAxML Majority Rule consensus tree with IC values written to file: %s\n\n", consensusFileName); |
---|
4282 | else |
---|
4283 | printBothOpen("RAxML Majority Rule consensus tree written to file: %s\n", consensusFileName); |
---|
4284 | break; |
---|
4285 | case MRE_CONSENSUS: |
---|
4286 | if(computeIC) |
---|
4287 | printBothOpen("RAxML extended Majority Rule consensus tree with IC values written to file: %s\n", consensusFileName); |
---|
4288 | else |
---|
4289 | printBothOpen("RAxML extended Majority Rule consensus tree written to file: %s\n", consensusFileName); |
---|
4290 | break; |
---|
4291 | case STRICT_CONSENSUS: |
---|
4292 | printBothOpen("RAxML strict consensus tree written to file: %s\n", consensusFileName); |
---|
4293 | break; |
---|
4294 | case USER_DEFINED: |
---|
4295 | if(computeIC) |
---|
4296 | printBothOpen("RAxML consensus tree with threshold %d with IC values written to file: %s\n", tr->consensusUserThreshold, consensusFileName); |
---|
4297 | else |
---|
4298 | printBothOpen("RAxML consensus tree with threshold %d written to file: %s\n", tr->consensusUserThreshold, consensusFileName); |
---|
4299 | break; |
---|
4300 | default: |
---|
4301 | assert(0); |
---|
4302 | } |
---|
4303 | |
---|
4304 | freeBitVectors(bitVectors, 2 * tr->mxtips); |
---|
4305 | rax_free(bitVectors); |
---|
4306 | freeHashTable(h); |
---|
4307 | rax_free(h); |
---|
4308 | rax_free(consensusBips); |
---|
4309 | |
---|
4310 | exit(0); |
---|
4311 | } |
---|
4312 | |
---|
4313 | |
---|
4314 | #else |
---|
4315 | |
---|
4316 | |
---|
4317 | |
---|
4318 | |
---|
4319 | static void mre(hashtable *h, boolean icp, entry*** sbi, int* len, int which, int n, unsigned int vectorLength, boolean sortp, tree *tr, boolean bootStopping) |
---|
4320 | { |
---|
4321 | entry **sbw; |
---|
4322 | unsigned int |
---|
4323 | i = 0, |
---|
4324 | j = 0, |
---|
4325 | k = 0; |
---|
4326 | |
---|
4327 | sbw = (entry **) rax_calloc(h->entryCount, sizeof(entry *)); |
---|
4328 | |
---|
4329 | for(i = 0; i < h->tableSize; i++) |
---|
4330 | { |
---|
4331 | if(h->table[i] != NULL) |
---|
4332 | { |
---|
4333 | entry *e = h->table[i]; |
---|
4334 | do |
---|
4335 | { |
---|
4336 | sbw[j] = e; |
---|
4337 | j++; |
---|
4338 | e = e->next; |
---|
4339 | } |
---|
4340 | while(e != NULL); |
---|
4341 | } |
---|
4342 | } |
---|
4343 | |
---|
4344 | assert(j == h->entryCount); |
---|
4345 | |
---|
4346 | if(which == 0) |
---|
4347 | qsort(sbw, h->entryCount, sizeof(entry *), _sortByWeight0); |
---|
4348 | else |
---|
4349 | qsort(sbw, h->entryCount, sizeof(entry *), _sortByWeight1); |
---|
4350 | |
---|
4351 | /* *********************************** */ |
---|
4352 | /* SOS SBI is never rax_freed ********************* */ |
---|
4353 | /* ******************************************** */ |
---|
4354 | /**** this will cause problems for repeated invocations */ |
---|
4355 | /**** with the bootstopping MRE VERSION !!!!!! ***/ |
---|
4356 | |
---|
4357 | |
---|
4358 | |
---|
4359 | *sbi = (entry **)rax_calloc(n - 3, sizeof(entry *)); |
---|
4360 | |
---|
4361 | *len = 0; |
---|
4362 | |
---|
4363 | if(icp == FALSE) |
---|
4364 | { |
---|
4365 | for(i = 0; i < h->entryCount && (*len) < n-3; i++) |
---|
4366 | { |
---|
4367 | boolean compatflag = TRUE; |
---|
4368 | |
---|
4369 | assert(*len < n-3); |
---|
4370 | |
---|
4371 | /* for(k = 0; k < (unsigned int)(*len); k++) */ |
---|
4372 | /*if(sbw[i]->supportFromTreeset[which] <= mr_thresh) */ |
---|
4373 | for(k = ((unsigned int)(*len)); k > 0; k--) |
---|
4374 | { |
---|
4375 | /* |
---|
4376 | k indexes sbi |
---|
4377 | j indexes sbw |
---|
4378 | need to compare the two |
---|
4379 | */ |
---|
4380 | |
---|
4381 | if(!compatible((*sbi)[k-1], sbw[i], vectorLength)) |
---|
4382 | { |
---|
4383 | compatflag = FALSE; |
---|
4384 | break; |
---|
4385 | } |
---|
4386 | } |
---|
4387 | |
---|
4388 | if(compatflag) |
---|
4389 | { |
---|
4390 | (*sbi)[*len] = sbw[i]; |
---|
4391 | (*len)++; |
---|
4392 | } |
---|
4393 | } |
---|
4394 | } |
---|
4395 | else |
---|
4396 | { |
---|
4397 | for(i = 0; i < (unsigned int)(n-3); i++) |
---|
4398 | { |
---|
4399 | (*sbi)[i] = sbw[i]; |
---|
4400 | (*len)++; |
---|
4401 | } |
---|
4402 | } |
---|
4403 | |
---|
4404 | rax_free(sbw); |
---|
4405 | |
---|
4406 | if (sortp == TRUE) |
---|
4407 | qsort(*sbi, (*len), sizeof(entry *), sortByIndex); |
---|
4408 | |
---|
4409 | return; |
---|
4410 | } |
---|
4411 | |
---|
4412 | |
---|
4413 | |
---|
4414 | |
---|
4415 | |
---|
4416 | |
---|
4417 | |
---|
4418 | static void printBip(entry *curBip, entry **consensusBips, const unsigned int consensusBipLen, const int numtips, const unsigned int vectorLen, |
---|
4419 | boolean *processed, tree *tr, FILE *outf, const int numberOfTrees, boolean topLevel, unsigned int *printCounter) |
---|
4420 | { |
---|
4421 | int |
---|
4422 | branchLabel, |
---|
4423 | printed = 0; |
---|
4424 | |
---|
4425 | unsigned int |
---|
4426 | i, |
---|
4427 | j; |
---|
4428 | |
---|
4429 | unsigned int *subBip = (unsigned int *)rax_calloc(vectorLen, sizeof(unsigned int)); |
---|
4430 | |
---|
4431 | double |
---|
4432 | support = 0.0; |
---|
4433 | |
---|
4434 | for(i = 0; i < consensusBipLen; i++) |
---|
4435 | { |
---|
4436 | if((!processed[i]) && issubset(consensusBips[i]->bitVector, curBip->bitVector, vectorLen)) |
---|
4437 | { |
---|
4438 | boolean processThisRound = TRUE; |
---|
4439 | |
---|
4440 | for (j = 0; j < consensusBipLen; j++) |
---|
4441 | if(j != i && !processed[j] && issubset(consensusBips[i]->bitVector, consensusBips[j]->bitVector, vectorLen)) |
---|
4442 | processThisRound = FALSE; |
---|
4443 | |
---|
4444 | if(processThisRound == TRUE) |
---|
4445 | { |
---|
4446 | processed[i] = TRUE; |
---|
4447 | |
---|
4448 | for(j = 0; j < vectorLen; j++) |
---|
4449 | subBip[j] |= consensusBips[i]->bitVector[j]; |
---|
4450 | |
---|
4451 | if(printed == 0 && !topLevel) |
---|
4452 | fprintf(outf, "("); |
---|
4453 | else |
---|
4454 | fprintf(outf, ","); |
---|
4455 | |
---|
4456 | printBip(consensusBips[i], consensusBips, consensusBipLen, numtips, vectorLen, processed, tr, outf, numberOfTrees, FALSE, printCounter); |
---|
4457 | |
---|
4458 | printed += 1; |
---|
4459 | } |
---|
4460 | } |
---|
4461 | } |
---|
4462 | |
---|
4463 | for(i = 0; i < ((unsigned int)numtips); i++) |
---|
4464 | { |
---|
4465 | if((((curBip->bitVector[i/MASK_LENGTH] & mask32[i%MASK_LENGTH]) > 0) && ((subBip[i/MASK_LENGTH] & mask32[i%MASK_LENGTH]) == 0) ) == TRUE) |
---|
4466 | { |
---|
4467 | if(printed == 0 && !topLevel) |
---|
4468 | fprintf(outf,"("); |
---|
4469 | else |
---|
4470 | fprintf(outf,","); |
---|
4471 | |
---|
4472 | fprintf(outf,"%s", tr->nameList[i+1]); |
---|
4473 | printed += 1; |
---|
4474 | } |
---|
4475 | } |
---|
4476 | |
---|
4477 | rax_free(subBip); |
---|
4478 | |
---|
4479 | support = ((double)(curBip->supportFromTreeset[0])) / ((double) (numberOfTrees)); |
---|
4480 | branchLabel = (int)(0.5 + support * 100.0); |
---|
4481 | |
---|
4482 | if(!topLevel) |
---|
4483 | { |
---|
4484 | *printCounter = *printCounter + 1; |
---|
4485 | fprintf(outf,"):1.0[%d]", branchLabel); |
---|
4486 | } |
---|
4487 | } |
---|
4488 | |
---|
4489 | void computeConsensusOnly(tree *tr, char *treeSetFileName, analdef *adef) |
---|
4490 | { |
---|
4491 | hashtable |
---|
4492 | *h = initHashTable(tr->mxtips * FC_INIT * 10); |
---|
4493 | |
---|
4494 | hashNumberType |
---|
4495 | entries = 0; |
---|
4496 | |
---|
4497 | int |
---|
4498 | numberOfTrees = 0, |
---|
4499 | i, |
---|
4500 | j, |
---|
4501 | l, |
---|
4502 | treeVectorLength, |
---|
4503 | consensusBipsLen, |
---|
4504 | mr_thresh; |
---|
4505 | |
---|
4506 | unsigned int |
---|
4507 | printCounter = 0, |
---|
4508 | vectorLength, |
---|
4509 | **bitVectors = initBitVector(tr, &vectorLength), |
---|
4510 | *topBip; |
---|
4511 | |
---|
4512 | entry |
---|
4513 | topBipE, |
---|
4514 | **consensusBips; |
---|
4515 | |
---|
4516 | boolean |
---|
4517 | *processed; |
---|
4518 | |
---|
4519 | char |
---|
4520 | consensusFileName[1024]; |
---|
4521 | |
---|
4522 | FILE |
---|
4523 | *outf, |
---|
4524 | *treeFile = getNumberOfTrees(tr, treeSetFileName, adef); |
---|
4525 | |
---|
4526 | |
---|
4527 | numberOfTrees = tr->numberOfTrees; |
---|
4528 | |
---|
4529 | mr_thresh = ((double)numberOfTrees / 2.0); |
---|
4530 | |
---|
4531 | assert(sizeof(unsigned char) == 1); |
---|
4532 | |
---|
4533 | if(numberOfTrees % MASK_LENGTH == 0) |
---|
4534 | treeVectorLength = numberOfTrees / MASK_LENGTH; |
---|
4535 | else |
---|
4536 | treeVectorLength = 1 + (numberOfTrees / MASK_LENGTH); |
---|
4537 | |
---|
4538 | for(i = 1; i <= numberOfTrees; i++) |
---|
4539 | { |
---|
4540 | int |
---|
4541 | bCount = 0; |
---|
4542 | |
---|
4543 | treeReadLen(treeFile, tr, FALSE, FALSE, TRUE, adef, TRUE, FALSE); |
---|
4544 | |
---|
4545 | assert(tr->mxtips == tr->ntips); |
---|
4546 | |
---|
4547 | bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vectorLength, h, (i - 1), BIPARTITIONS_BOOTSTOP, (branchInfo *)NULL, |
---|
4548 | &bCount, treeVectorLength, FALSE, FALSE); |
---|
4549 | |
---|
4550 | assert(bCount == tr->mxtips - 3); |
---|
4551 | } |
---|
4552 | |
---|
4553 | if(tr->consensusType == MR_CONSENSUS || tr->consensusType == STRICT_CONSENSUS) |
---|
4554 | { |
---|
4555 | consensusBips = (entry **)rax_calloc(tr->mxtips - 3, sizeof(entry *)); |
---|
4556 | consensusBipsLen = 0; |
---|
4557 | } |
---|
4558 | |
---|
4559 | for(j = 0; j < (int)h->tableSize; j++) |
---|
4560 | { |
---|
4561 | if(h->table[j] != NULL) |
---|
4562 | { |
---|
4563 | entry *e = h->table[j]; |
---|
4564 | |
---|
4565 | do |
---|
4566 | { |
---|
4567 | int cnt = 0; |
---|
4568 | |
---|
4569 | unsigned int |
---|
4570 | *set = e->treeVector; |
---|
4571 | |
---|
4572 | for(l = 0; l < numberOfTrees; l++) |
---|
4573 | if((set[l / MASK_LENGTH] != 0) && (set[l / MASK_LENGTH] & mask32[l % MASK_LENGTH])) |
---|
4574 | cnt++; |
---|
4575 | |
---|
4576 | if(tr->consensusType == MR_CONSENSUS) |
---|
4577 | { |
---|
4578 | if(cnt > mr_thresh) |
---|
4579 | { |
---|
4580 | consensusBips[consensusBipsLen] = e; |
---|
4581 | consensusBipsLen++; |
---|
4582 | } |
---|
4583 | } |
---|
4584 | |
---|
4585 | if(tr->consensusType == STRICT_CONSENSUS) |
---|
4586 | { |
---|
4587 | if(cnt == numberOfTrees) |
---|
4588 | { |
---|
4589 | consensusBips[consensusBipsLen] = e; |
---|
4590 | consensusBipsLen++; |
---|
4591 | } |
---|
4592 | } |
---|
4593 | |
---|
4594 | e->supportFromTreeset[0] = cnt; |
---|
4595 | e = e->next; |
---|
4596 | entries++; |
---|
4597 | } |
---|
4598 | while(e != NULL); |
---|
4599 | } |
---|
4600 | } |
---|
4601 | |
---|
4602 | fclose(treeFile); |
---|
4603 | assert(entries == h->entryCount); |
---|
4604 | |
---|
4605 | if(tr->consensusType == MR_CONSENSUS || tr->consensusType == STRICT_CONSENSUS) |
---|
4606 | assert(consensusBipsLen <= (tr->mxtips - 3)); |
---|
4607 | |
---|
4608 | if(tr->consensusType == MRE_CONSENSUS) |
---|
4609 | mre(h, FALSE, &consensusBips, &consensusBipsLen, 0, tr->mxtips, vectorLength, FALSE, tr); |
---|
4610 | |
---|
4611 | |
---|
4612 | /* printf("Bips OLD %d\n", consensusBipsLen); */ |
---|
4613 | |
---|
4614 | processed = (boolean *) rax_calloc(consensusBipsLen, sizeof(boolean)); |
---|
4615 | |
---|
4616 | topBip = (unsigned int *) rax_calloc(vectorLength, sizeof(unsigned int)); |
---|
4617 | |
---|
4618 | for(i = 1; i < tr->mxtips; i++) |
---|
4619 | topBip[i / MASK_LENGTH] |= mask32[i % MASK_LENGTH]; |
---|
4620 | |
---|
4621 | topBipE.bitVector = topBip; |
---|
4622 | topBipE.supportFromTreeset[0] = numberOfTrees; |
---|
4623 | |
---|
4624 | strcpy(consensusFileName, workdir); |
---|
4625 | |
---|
4626 | switch(tr->consensusType) |
---|
4627 | { |
---|
4628 | case MR_CONSENSUS: |
---|
4629 | strcat(consensusFileName, "RAxML_MajorityRuleConsensusTree."); |
---|
4630 | break; |
---|
4631 | case MRE_CONSENSUS: |
---|
4632 | strcat(consensusFileName, "RAxML_MajorityRuleExtendedConsensusTree."); |
---|
4633 | break; |
---|
4634 | case STRICT_CONSENSUS: |
---|
4635 | strcat(consensusFileName, "RAxML_StrictConsensusTree."); |
---|
4636 | break; |
---|
4637 | default: |
---|
4638 | assert(0); |
---|
4639 | } |
---|
4640 | |
---|
4641 | strcat(consensusFileName, run_id); |
---|
4642 | |
---|
4643 | outf = myfopen(consensusFileName, "wb"); |
---|
4644 | |
---|
4645 | fprintf(outf, "(%s", tr->nameList[1]); |
---|
4646 | printBip(&topBipE, consensusBips, consensusBipsLen, tr->mxtips, vectorLength, processed, tr, outf, numberOfTrees, TRUE, &printCounter); |
---|
4647 | fprintf(outf, ");\n"); |
---|
4648 | |
---|
4649 | assert(consensusBipsLen == (int)printCounter); |
---|
4650 | |
---|
4651 | fclose(outf); |
---|
4652 | |
---|
4653 | switch(tr->consensusType) |
---|
4654 | { |
---|
4655 | case MR_CONSENSUS: |
---|
4656 | printBothOpen("RAxML Majority Rule consensus tree written to file: %s\n", consensusFileName); |
---|
4657 | break; |
---|
4658 | case MRE_CONSENSUS: |
---|
4659 | printBothOpen("RAxML extended Majority Rule consensus tree written to file: %s\n", consensusFileName); |
---|
4660 | break; |
---|
4661 | case STRICT_CONSENSUS: |
---|
4662 | printBothOpen("RAxML strict consensus tree written to file: %s\n", consensusFileName); |
---|
4663 | break; |
---|
4664 | default: |
---|
4665 | assert(0); |
---|
4666 | } |
---|
4667 | |
---|
4668 | |
---|
4669 | rax_free(topBip); |
---|
4670 | rax_free(processed); |
---|
4671 | |
---|
4672 | freeBitVectors(bitVectors, 2 * tr->mxtips); |
---|
4673 | rax_free(bitVectors); |
---|
4674 | freeHashTable(h); |
---|
4675 | rax_free(h); |
---|
4676 | rax_free(consensusBips); |
---|
4677 | |
---|
4678 | exit(0); |
---|
4679 | } |
---|
4680 | |
---|
4681 | #endif |
---|