1 | /* RAxML-VI-HPC (version 2.2) a program for sequential and parallel estimation of phylogenetic trees |
---|
2 | * Copyright August 2006 by Alexandros Stamatakis |
---|
3 | * |
---|
4 | * Partially derived from |
---|
5 | * fastDNAml, a program for estimation of phylogenetic trees from sequences by Gary J. Olsen |
---|
6 | * |
---|
7 | * and |
---|
8 | * |
---|
9 | * Programs of the PHYLIP package by Joe Felsenstein. |
---|
10 | * |
---|
11 | * This program is free software; you may redistribute it and/or modify its |
---|
12 | * under the terms of the GNU General Public License as published by the Free |
---|
13 | * Software Foundation; either version 2 of the License, or (at your option) |
---|
14 | * any later version. |
---|
15 | * |
---|
16 | * This program is distributed in the hope that it will be useful, but |
---|
17 | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
---|
19 | * for more details. |
---|
20 | * |
---|
21 | * |
---|
22 | * For any other enquiries send an Email to Alexandros Stamatakis |
---|
23 | * Alexandros.Stamatakis@epfl.ch |
---|
24 | * |
---|
25 | * When publishing work that is based on the results from RAxML-VI-HPC please cite: |
---|
26 | * |
---|
27 | * Alexandros Stamatakis:"RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands |
---|
28 | * of taxa and mixed models". |
---|
29 | * Bioinformatics 2006; doi: 10.1093/bioinformatics/btl446 |
---|
30 | */ |
---|
31 | |
---|
32 | #ifndef WIN32 |
---|
33 | #include <unistd.h> |
---|
34 | #endif |
---|
35 | |
---|
36 | #include <math.h> |
---|
37 | #include <time.h> |
---|
38 | #include <stdlib.h> |
---|
39 | #include <stdio.h> |
---|
40 | #include <ctype.h> |
---|
41 | #include <string.h> |
---|
42 | #include "axml.h" |
---|
43 | |
---|
44 | |
---|
45 | static const double MNBRAK_GOLD = 1.618034; |
---|
46 | static const double MNBRAK_TINY = 1.e-20; |
---|
47 | static const double MNBRAK_GLIMIT = 100.0; |
---|
48 | static const double BRENT_ZEPS = 1.e-5; |
---|
49 | static const double BRENT_CGOLD = 0.3819660; |
---|
50 | |
---|
51 | extern int optimizeRatesInvocations; |
---|
52 | extern int optimizeRateCategoryInvocations; |
---|
53 | extern int optimizeAlphaInvocations; |
---|
54 | extern int optimizeInvarInvocations; |
---|
55 | extern double masterTime; |
---|
56 | extern char ratesFileName[1024]; |
---|
57 | extern char workdir[1024]; |
---|
58 | extern char run_id[128]; |
---|
59 | extern char lengthFileName[1024]; |
---|
60 | extern char lengthFileNameModel[1024]; |
---|
61 | extern char *protModels[NUM_PROT_MODELS]; |
---|
62 | |
---|
63 | |
---|
64 | #ifdef _USE_PTHREADS |
---|
65 | extern volatile int NumberOfThreads; |
---|
66 | extern volatile double *reductionBuffer; |
---|
67 | #endif |
---|
68 | |
---|
69 | /* TODO remove at some point */ |
---|
70 | #define _DEBUG_MODEL_OPTIMIZATION |
---|
71 | |
---|
72 | static void brentGeneric(double *ax, double *bx, double *cx, double *fb, double tol, double *xmin, double *result, int numberOfModels, |
---|
73 | int whichFunction, int rateNumber, tree *tr, linkageList *ll, double lim_inf, double lim_sup); |
---|
74 | |
---|
75 | static int brakGeneric(double *param, double *ax, double *bx, double *cx, double *fa, double *fb, |
---|
76 | double *fc, double lim_inf, double lim_sup, |
---|
77 | int numberOfModels, int rateNumber, int whichFunction, tree *tr, linkageList *ll, double modelEpsilon); |
---|
78 | |
---|
79 | /*********************FUNCTIONS FOOR EXACT MODEL OPTIMIZATION UNDER GTRGAMMA ***************************************/ |
---|
80 | |
---|
81 | |
---|
82 | static void setRateModel(tree *tr, int model, double rate, int position) |
---|
83 | { |
---|
84 | int |
---|
85 | states = tr->partitionData[model].states, |
---|
86 | numRates = (states * states - states) / 2; |
---|
87 | |
---|
88 | if(tr->partitionData[model].dataType == DNA_DATA) |
---|
89 | assert(position >= 0 && position < (numRates - 1)); |
---|
90 | else |
---|
91 | assert(position >= 0 && position < numRates); |
---|
92 | |
---|
93 | assert(tr->partitionData[model].dataType != BINARY_DATA); |
---|
94 | |
---|
95 | if(!(tr->partitionData[model].dataType == SECONDARY_DATA || |
---|
96 | tr->partitionData[model].dataType == SECONDARY_DATA_6 || |
---|
97 | tr->partitionData[model].dataType == SECONDARY_DATA_7)) |
---|
98 | assert(rate >= RATE_MIN && rate <= RATE_MAX); |
---|
99 | |
---|
100 | if(tr->partitionData[model].nonGTR) |
---|
101 | { |
---|
102 | int |
---|
103 | i, |
---|
104 | k = tr->partitionData[model].symmetryVector[position]; |
---|
105 | |
---|
106 | assert(tr->partitionData[model].dataType == SECONDARY_DATA || |
---|
107 | tr->partitionData[model].dataType == SECONDARY_DATA_6 || |
---|
108 | tr->partitionData[model].dataType == SECONDARY_DATA_7); |
---|
109 | |
---|
110 | if(k == -1) |
---|
111 | tr->partitionData[model].substRates[position] = 0.0; |
---|
112 | else |
---|
113 | { |
---|
114 | if(k == tr->partitionData[model].symmetryVector[numRates - 1]) |
---|
115 | { |
---|
116 | for(i = 0; i < numRates - 1; i++) |
---|
117 | if(tr->partitionData[model].symmetryVector[i] == k) |
---|
118 | tr->partitionData[model].substRates[position] = 1.0; |
---|
119 | } |
---|
120 | else |
---|
121 | { |
---|
122 | for(i = 0; i < numRates - 1; i++) |
---|
123 | { |
---|
124 | if(tr->partitionData[model].symmetryVector[i] == k) |
---|
125 | tr->partitionData[model].substRates[i] = rate; |
---|
126 | } |
---|
127 | } |
---|
128 | } |
---|
129 | } |
---|
130 | else |
---|
131 | tr->partitionData[model].substRates[position] = rate; |
---|
132 | } |
---|
133 | |
---|
134 | |
---|
135 | |
---|
136 | |
---|
137 | |
---|
138 | static linkageList* initLinkageList(int *linkList, tree *tr) |
---|
139 | { |
---|
140 | int |
---|
141 | k, |
---|
142 | partitions, |
---|
143 | numberOfModels = 0, |
---|
144 | i, |
---|
145 | pos; |
---|
146 | linkageList* ll = (linkageList*)rax_malloc(sizeof(linkageList)); |
---|
147 | |
---|
148 | for(i = 0; i < tr->NumberOfModels; i++) |
---|
149 | { |
---|
150 | if(linkList[i] > numberOfModels) |
---|
151 | numberOfModels = linkList[i]; |
---|
152 | } |
---|
153 | |
---|
154 | numberOfModels++; |
---|
155 | |
---|
156 | ll->entries = numberOfModels; |
---|
157 | ll->ld = (linkageData*)rax_malloc(sizeof(linkageData) * numberOfModels); |
---|
158 | |
---|
159 | |
---|
160 | for(i = 0; i < numberOfModels; i++) |
---|
161 | { |
---|
162 | ll->ld[i].valid = TRUE; |
---|
163 | partitions = 0; |
---|
164 | |
---|
165 | for(k = 0; k < tr->NumberOfModels; k++) |
---|
166 | if(linkList[k] == i) |
---|
167 | partitions++; |
---|
168 | |
---|
169 | ll->ld[i].partitions = partitions; |
---|
170 | ll->ld[i].partitionList = (int*)rax_malloc(sizeof(int) * partitions); |
---|
171 | |
---|
172 | for(k = 0, pos = 0; k < tr->NumberOfModels; k++) |
---|
173 | if(linkList[k] == i) |
---|
174 | ll->ld[i].partitionList[pos++] = k; |
---|
175 | } |
---|
176 | |
---|
177 | return ll; |
---|
178 | } |
---|
179 | |
---|
180 | |
---|
181 | static linkageList* initLinkageListGTR(tree *tr) |
---|
182 | { |
---|
183 | int |
---|
184 | i, |
---|
185 | *links = (int*)rax_malloc(sizeof(int) * tr->NumberOfModels), |
---|
186 | firstAA = tr->NumberOfModels + 2, |
---|
187 | countGTR = 0, |
---|
188 | countUnlinkedGTR = 0, |
---|
189 | countOtherModel = 0; |
---|
190 | |
---|
191 | linkageList* |
---|
192 | ll; |
---|
193 | |
---|
194 | for(i = 0; i < tr->NumberOfModels; i++) |
---|
195 | { |
---|
196 | if(tr->partitionData[i].dataType == AA_DATA) |
---|
197 | { |
---|
198 | if(tr->partitionData[i].protModels == GTR) |
---|
199 | { |
---|
200 | if(i < firstAA) |
---|
201 | firstAA = i; |
---|
202 | countGTR++; |
---|
203 | } |
---|
204 | else |
---|
205 | { |
---|
206 | if(tr->partitionData[i].protModels == GTR_UNLINKED) |
---|
207 | countUnlinkedGTR++; |
---|
208 | else |
---|
209 | countOtherModel++; |
---|
210 | } |
---|
211 | } |
---|
212 | } |
---|
213 | |
---|
214 | /* |
---|
215 | TODO need to think what we actually want here ! |
---|
216 | Shall we mix everything: linked, unlinked WAG etc? |
---|
217 | */ |
---|
218 | |
---|
219 | assert((countGTR > 0 && countOtherModel == 0) || (countGTR == 0 && countOtherModel > 0) || (countGTR == 0 && countOtherModel == 0)); |
---|
220 | |
---|
221 | if(countGTR == 0) |
---|
222 | { |
---|
223 | for(i = 0; i < tr->NumberOfModels; i++) |
---|
224 | links[i] = i; |
---|
225 | } |
---|
226 | else |
---|
227 | { |
---|
228 | for(i = 0; i < tr->NumberOfModels; i++) |
---|
229 | { |
---|
230 | switch(tr->partitionData[i].dataType) |
---|
231 | { |
---|
232 | case DNA_DATA: |
---|
233 | case BINARY_DATA: |
---|
234 | case GENERIC_32: |
---|
235 | case GENERIC_64: |
---|
236 | case SECONDARY_DATA: |
---|
237 | case SECONDARY_DATA_6: |
---|
238 | case SECONDARY_DATA_7: |
---|
239 | links[i] = i; |
---|
240 | break; |
---|
241 | case AA_DATA: |
---|
242 | links[i] = firstAA; |
---|
243 | break; |
---|
244 | default: |
---|
245 | assert(0); |
---|
246 | } |
---|
247 | } |
---|
248 | } |
---|
249 | |
---|
250 | |
---|
251 | ll = initLinkageList(links, tr); |
---|
252 | |
---|
253 | rax_free(links); |
---|
254 | |
---|
255 | return ll; |
---|
256 | } |
---|
257 | |
---|
258 | |
---|
259 | |
---|
260 | static void freeLinkageList( linkageList* ll) |
---|
261 | { |
---|
262 | int i; |
---|
263 | |
---|
264 | for(i = 0; i < ll->entries; i++) |
---|
265 | rax_free(ll->ld[i].partitionList); |
---|
266 | |
---|
267 | rax_free(ll->ld); |
---|
268 | rax_free(ll); |
---|
269 | } |
---|
270 | |
---|
271 | #define ALPHA_F 0 |
---|
272 | #define INVAR_F 1 |
---|
273 | #define RATE_F 2 |
---|
274 | #define SCALER_F 3 |
---|
275 | #define LXRATE_F 4 |
---|
276 | #define LXWEIGHT_F 5 |
---|
277 | |
---|
278 | static void updateWeights(tree *tr, int model, int rate, double value) |
---|
279 | { |
---|
280 | int |
---|
281 | j; |
---|
282 | |
---|
283 | double |
---|
284 | w = 0.0; |
---|
285 | |
---|
286 | tr->partitionData[model].weightExponents[rate] = value; |
---|
287 | |
---|
288 | for(j = 0; j < 4; j++) |
---|
289 | w += exp(tr->partitionData[model].weightExponents[j]); |
---|
290 | |
---|
291 | for(j = 0; j < 4; j++) |
---|
292 | tr->partitionData[model].weights[j] = exp(tr->partitionData[model].weightExponents[j]) / w; |
---|
293 | } |
---|
294 | |
---|
295 | static void optLG4X_Weights(tree *tr, linkageList *ll, int numberOfModels, int weightNumber, double modelEpsilon) |
---|
296 | { |
---|
297 | int |
---|
298 | pos, |
---|
299 | i; |
---|
300 | |
---|
301 | double |
---|
302 | lim_inf = -1000000.0, |
---|
303 | lim_sup = 200.0, |
---|
304 | *startLH = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
305 | *endLH = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
306 | *startWeights = (double *)rax_malloc(sizeof(double) * numberOfModels * 4), |
---|
307 | *startExponents = (double *)rax_malloc(sizeof(double) * numberOfModels * 4), |
---|
308 | *endWeights = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
309 | *endExponents = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
310 | *_a = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
311 | *_b = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
312 | *_c = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
313 | *_fa = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
314 | *_fb = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
315 | *_fc = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
316 | *_param = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
317 | *result = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
318 | *_x = (double *)rax_malloc(sizeof(double) * numberOfModels); |
---|
319 | |
---|
320 | evaluateGeneric(tr, tr->start); |
---|
321 | |
---|
322 | #ifdef _DEBUG_MODEL_OPTIMIZATION |
---|
323 | double |
---|
324 | initialLH = tr->likelihood; |
---|
325 | #endif |
---|
326 | |
---|
327 | assert(weightNumber >= 0 && weightNumber < 4); |
---|
328 | |
---|
329 | /* |
---|
330 | at this point here every worker has the traversal data it needs for the |
---|
331 | search, so we won't re-distribute it he he :-) |
---|
332 | */ |
---|
333 | |
---|
334 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
335 | { |
---|
336 | if(ll->ld[i].valid) |
---|
337 | { |
---|
338 | int |
---|
339 | index = ll->ld[i].partitionList[0]; |
---|
340 | |
---|
341 | |
---|
342 | assert(ll->ld[i].partitions == 1); |
---|
343 | |
---|
344 | memcpy(&startWeights[pos * 4], tr->partitionData[index].weights, 4 * sizeof(double)); |
---|
345 | memcpy(&startExponents[pos * 4], tr->partitionData[index].weightExponents, 4 * sizeof(double)); |
---|
346 | |
---|
347 | _a[pos] = startExponents[pos * 4 + weightNumber] + 0.1; |
---|
348 | _b[pos] = startExponents[pos * 4 + weightNumber] - 0.1; |
---|
349 | |
---|
350 | if(_a[pos] < lim_inf) |
---|
351 | _a[pos] = lim_inf; |
---|
352 | |
---|
353 | if(_a[pos] > lim_sup) |
---|
354 | _a[pos] = lim_sup; |
---|
355 | |
---|
356 | if(_b[pos] < lim_inf) |
---|
357 | _b[pos] = lim_inf; |
---|
358 | |
---|
359 | if(_b[pos] > lim_sup) |
---|
360 | _b[pos] = lim_sup; |
---|
361 | |
---|
362 | startLH[pos] = tr->perPartitionLH[index]; |
---|
363 | endLH[pos] = unlikely; |
---|
364 | |
---|
365 | pos++; |
---|
366 | } |
---|
367 | } |
---|
368 | #ifdef _USE_PTHREADS |
---|
369 | masterBarrier(THREAD_COPY_LG4X_RATES, tr); |
---|
370 | #endif |
---|
371 | assert(pos == numberOfModels); |
---|
372 | |
---|
373 | brakGeneric(_param, _a, _b, _c, _fa, _fb, _fc, lim_inf, lim_sup, numberOfModels, weightNumber, LXWEIGHT_F, tr, ll, modelEpsilon); |
---|
374 | brentGeneric(_a, _b, _c, _fb, modelEpsilon, _x, result, numberOfModels, LXWEIGHT_F, weightNumber, tr, ll, lim_inf, lim_sup); |
---|
375 | |
---|
376 | /* now calculate the likelihood with the optimized rate */ |
---|
377 | |
---|
378 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
379 | { |
---|
380 | if(ll->ld[i].valid) |
---|
381 | { |
---|
382 | int |
---|
383 | index = ll->ld[i].partitionList[0]; |
---|
384 | |
---|
385 | assert(ll->ld[i].partitions == 1); |
---|
386 | |
---|
387 | tr->executeModel[index] = TRUE; |
---|
388 | |
---|
389 | updateWeights(tr, index, weightNumber, _x[pos]); |
---|
390 | |
---|
391 | pos++; |
---|
392 | } |
---|
393 | } |
---|
394 | |
---|
395 | #ifdef _USE_PTHREADS |
---|
396 | masterBarrier(THREAD_COPY_LG4X_RATES, tr); |
---|
397 | #endif |
---|
398 | |
---|
399 | evaluateGeneric(tr, tr->start); |
---|
400 | |
---|
401 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
402 | { |
---|
403 | if(ll->ld[i].valid) |
---|
404 | { |
---|
405 | int |
---|
406 | index = ll->ld[i].partitionList[0]; |
---|
407 | |
---|
408 | assert(ll->ld[i].partitions == 1); |
---|
409 | |
---|
410 | if(tr->executeModel[index]) |
---|
411 | { |
---|
412 | endLH[pos] = tr->perPartitionLH[index]; |
---|
413 | |
---|
414 | if(startLH[pos] > endLH[pos]) |
---|
415 | { |
---|
416 | memcpy(tr->partitionData[index].weights, &startWeights[pos * 4], sizeof(double) * 4); |
---|
417 | memcpy(tr->partitionData[index].weightExponents, &startExponents[pos * 4], sizeof(double) * 4); |
---|
418 | } |
---|
419 | } |
---|
420 | |
---|
421 | pos++; |
---|
422 | } |
---|
423 | } |
---|
424 | |
---|
425 | assert(pos == numberOfModels); |
---|
426 | |
---|
427 | #ifdef _USE_PTHREADS |
---|
428 | masterBarrier(THREAD_COPY_LG4X_RATES, tr); |
---|
429 | #endif |
---|
430 | |
---|
431 | |
---|
432 | #ifdef _DEBUG_MODEL_OPTIMIZATION |
---|
433 | evaluateGeneric(tr, tr->start); |
---|
434 | |
---|
435 | if(tr->likelihood < initialLH) |
---|
436 | printf("%f %f\n", tr->likelihood, initialLH); |
---|
437 | assert(tr->likelihood >= initialLH); |
---|
438 | #endif |
---|
439 | |
---|
440 | rax_free(endExponents); |
---|
441 | rax_free(startExponents); |
---|
442 | rax_free(startLH); |
---|
443 | rax_free(endLH); |
---|
444 | rax_free(startWeights); |
---|
445 | rax_free(endWeights); |
---|
446 | rax_free(result); |
---|
447 | rax_free(_a); |
---|
448 | rax_free(_b); |
---|
449 | rax_free(_c); |
---|
450 | rax_free(_fa); |
---|
451 | rax_free(_fb); |
---|
452 | rax_free(_fc); |
---|
453 | rax_free(_param); |
---|
454 | rax_free(_x); |
---|
455 | } |
---|
456 | |
---|
457 | static void optimizeWeights(tree *tr, double modelEpsilon, linkageList *ll, int numberOfModels) |
---|
458 | { |
---|
459 | int |
---|
460 | i; |
---|
461 | |
---|
462 | double |
---|
463 | initialLH = 0.0, |
---|
464 | finalLH = 0.0; |
---|
465 | |
---|
466 | evaluateGeneric(tr, tr->start); |
---|
467 | |
---|
468 | initialLH = tr->likelihood; |
---|
469 | //printf("W: %f %f [%f] ->", tr->perPartitionLH[0], tr->perPartitionLH[1], initialLH); |
---|
470 | |
---|
471 | for(i = 0; i < 4; i++) |
---|
472 | optLG4X_Weights(tr, ll, numberOfModels, i, modelEpsilon); |
---|
473 | |
---|
474 | #ifdef _USE_PTHREADS |
---|
475 | masterBarrier(THREAD_COPY_LG4X_RATES, tr); |
---|
476 | #endif |
---|
477 | |
---|
478 | evaluateGenericInitrav(tr, tr->start); |
---|
479 | |
---|
480 | finalLH = tr->likelihood; |
---|
481 | |
---|
482 | if(finalLH < initialLH) |
---|
483 | printf("Final: %f initial: %f\n", finalLH, initialLH); |
---|
484 | assert(finalLH >= initialLH); |
---|
485 | |
---|
486 | //printf("%f %f [%f]\n", tr->perPartitionLH[0], tr->perPartitionLH[1], finalLH); |
---|
487 | } |
---|
488 | |
---|
489 | static void evaluateChange(tree *tr, int rateNumber, double *value, double *result, boolean* converged, int whichFunction, int numberOfModels, linkageList *ll, double modelEpsilon) |
---|
490 | { |
---|
491 | int i, k, pos; |
---|
492 | |
---|
493 | switch(whichFunction) |
---|
494 | { |
---|
495 | case ALPHA_F: |
---|
496 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
497 | { |
---|
498 | int |
---|
499 | index = ll->ld[i].partitionList[0]; |
---|
500 | |
---|
501 | assert(ll->ld[i].partitions == 1); |
---|
502 | |
---|
503 | if(ll->ld[i].valid) |
---|
504 | { |
---|
505 | if(converged[pos]) |
---|
506 | tr->executeModel[index] = FALSE; |
---|
507 | else |
---|
508 | { |
---|
509 | tr->executeModel[index] = TRUE; |
---|
510 | tr->partitionData[index].alpha = value[pos]; |
---|
511 | makeGammaCats(tr->partitionData[index].alpha, tr->partitionData[index].gammaRates, 4, tr->useGammaMedian); |
---|
512 | } |
---|
513 | |
---|
514 | pos++; |
---|
515 | } |
---|
516 | else |
---|
517 | tr->executeModel[index] = FALSE; |
---|
518 | } |
---|
519 | |
---|
520 | assert(pos == numberOfModels); |
---|
521 | |
---|
522 | #ifdef _USE_PTHREADS |
---|
523 | { |
---|
524 | volatile double result; |
---|
525 | |
---|
526 | masterBarrier(THREAD_OPT_ALPHA, tr); |
---|
527 | if(tr->NumberOfModels == 1) |
---|
528 | { |
---|
529 | for(i = 0, result = 0.0; i < NumberOfThreads; i++) |
---|
530 | result += reductionBuffer[i]; |
---|
531 | tr->perPartitionLH[0] = result; |
---|
532 | } |
---|
533 | else |
---|
534 | { |
---|
535 | int j; |
---|
536 | volatile double partitionResult; |
---|
537 | |
---|
538 | result = 0.0; |
---|
539 | |
---|
540 | for(j = 0; j < tr->NumberOfModels; j++) |
---|
541 | { |
---|
542 | for(i = 0, partitionResult = 0.0; i < NumberOfThreads; i++) |
---|
543 | partitionResult += reductionBuffer[i * tr->NumberOfModels + j]; |
---|
544 | result += partitionResult; |
---|
545 | tr->perPartitionLH[j] = partitionResult; |
---|
546 | } |
---|
547 | } |
---|
548 | } |
---|
549 | #else |
---|
550 | evaluateGenericInitrav(tr, tr->start); |
---|
551 | #endif |
---|
552 | |
---|
553 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
554 | { |
---|
555 | int |
---|
556 | index = ll->ld[i].partitionList[0]; |
---|
557 | |
---|
558 | assert(ll->ld[i].partitions == 1); |
---|
559 | |
---|
560 | if(ll->ld[i].valid) |
---|
561 | { |
---|
562 | result[pos] = 0.0; |
---|
563 | |
---|
564 | assert(tr->perPartitionLH[index] <= 0.0); |
---|
565 | |
---|
566 | result[pos] -= tr->perPartitionLH[index]; |
---|
567 | |
---|
568 | pos++; |
---|
569 | } |
---|
570 | |
---|
571 | tr->executeModel[index] = TRUE; |
---|
572 | } |
---|
573 | |
---|
574 | assert(pos == numberOfModels); |
---|
575 | |
---|
576 | break; |
---|
577 | case INVAR_F: |
---|
578 | |
---|
579 | for(i = 0; i < ll->entries; i++) |
---|
580 | { |
---|
581 | if(converged[i]) |
---|
582 | { |
---|
583 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
584 | tr->executeModel[ll->ld[i].partitionList[k]] = FALSE; |
---|
585 | } |
---|
586 | else |
---|
587 | { |
---|
588 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
589 | { |
---|
590 | int index = ll->ld[i].partitionList[k]; |
---|
591 | tr->executeModel[index] = TRUE; |
---|
592 | tr->partitionData[index].propInvariant = value[i]; |
---|
593 | } |
---|
594 | } |
---|
595 | } |
---|
596 | |
---|
597 | #ifdef _USE_PTHREADS |
---|
598 | { |
---|
599 | volatile double result; |
---|
600 | |
---|
601 | masterBarrier(THREAD_OPT_INVAR, tr); |
---|
602 | if(tr->NumberOfModels == 1) |
---|
603 | { |
---|
604 | for(i = 0, result = 0.0; i < NumberOfThreads; i++) |
---|
605 | result += reductionBuffer[i]; |
---|
606 | tr->perPartitionLH[0] = result; |
---|
607 | } |
---|
608 | else |
---|
609 | { |
---|
610 | int j; |
---|
611 | volatile double partitionResult; |
---|
612 | |
---|
613 | result = 0.0; |
---|
614 | |
---|
615 | for(j = 0; j < tr->NumberOfModels; j++) |
---|
616 | { |
---|
617 | for(i = 0, partitionResult = 0.0; i < NumberOfThreads; i++) |
---|
618 | partitionResult += reductionBuffer[i * tr->NumberOfModels + j]; |
---|
619 | result += partitionResult; |
---|
620 | tr->perPartitionLH[j] = partitionResult; |
---|
621 | } |
---|
622 | } |
---|
623 | } |
---|
624 | #else |
---|
625 | evaluateGeneric(tr, tr->start); |
---|
626 | #endif |
---|
627 | |
---|
628 | for(i = 0; i < ll->entries; i++) |
---|
629 | { |
---|
630 | result[i] = 0.0; |
---|
631 | |
---|
632 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
633 | { |
---|
634 | int index = ll->ld[i].partitionList[k]; |
---|
635 | |
---|
636 | assert(tr->perPartitionLH[index] <= 0.0); |
---|
637 | |
---|
638 | result[i] -= tr->perPartitionLH[index]; |
---|
639 | tr->executeModel[index] = TRUE; |
---|
640 | } |
---|
641 | } |
---|
642 | |
---|
643 | break; |
---|
644 | case RATE_F: |
---|
645 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
646 | { |
---|
647 | if(ll->ld[i].valid) |
---|
648 | { |
---|
649 | if(converged[pos]) |
---|
650 | { |
---|
651 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
652 | tr->executeModel[ll->ld[i].partitionList[k]] = FALSE; |
---|
653 | } |
---|
654 | else |
---|
655 | { |
---|
656 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
657 | { |
---|
658 | int index = ll->ld[i].partitionList[k]; |
---|
659 | setRateModel(tr, index, value[pos], rateNumber); |
---|
660 | initReversibleGTR(tr, index); |
---|
661 | } |
---|
662 | } |
---|
663 | pos++; |
---|
664 | } |
---|
665 | else |
---|
666 | { |
---|
667 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
668 | tr->executeModel[ll->ld[i].partitionList[k]] = FALSE; |
---|
669 | } |
---|
670 | |
---|
671 | } |
---|
672 | |
---|
673 | assert(pos == numberOfModels); |
---|
674 | |
---|
675 | if(tr->useBrLenScaler) |
---|
676 | determineFullTraversal(tr->start, tr); |
---|
677 | |
---|
678 | #ifdef _USE_PTHREADS |
---|
679 | { |
---|
680 | volatile double result; |
---|
681 | |
---|
682 | masterBarrier(THREAD_OPT_RATE, tr); |
---|
683 | if(tr->NumberOfModels == 1) |
---|
684 | { |
---|
685 | for(i = 0, result = 0.0; i < NumberOfThreads; i++) |
---|
686 | result += reductionBuffer[i]; |
---|
687 | tr->perPartitionLH[0] = result; |
---|
688 | } |
---|
689 | else |
---|
690 | { |
---|
691 | int j; |
---|
692 | volatile double partitionResult; |
---|
693 | |
---|
694 | result = 0.0; |
---|
695 | |
---|
696 | for(j = 0; j < tr->NumberOfModels; j++) |
---|
697 | { |
---|
698 | for(i = 0, partitionResult = 0.0; i < NumberOfThreads; i++) |
---|
699 | partitionResult += reductionBuffer[i * tr->NumberOfModels + j]; |
---|
700 | result += partitionResult; |
---|
701 | tr->perPartitionLH[j] = partitionResult; |
---|
702 | } |
---|
703 | } |
---|
704 | } |
---|
705 | #else |
---|
706 | evaluateGenericInitrav(tr, tr->start); |
---|
707 | #endif |
---|
708 | |
---|
709 | |
---|
710 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
711 | { |
---|
712 | if(ll->ld[i].valid) |
---|
713 | { |
---|
714 | result[pos] = 0.0; |
---|
715 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
716 | { |
---|
717 | int index = ll->ld[i].partitionList[k]; |
---|
718 | |
---|
719 | assert(tr->perPartitionLH[index] <= 0.0); |
---|
720 | |
---|
721 | result[pos] -= tr->perPartitionLH[index]; |
---|
722 | |
---|
723 | } |
---|
724 | pos++; |
---|
725 | } |
---|
726 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
727 | { |
---|
728 | int index = ll->ld[i].partitionList[k]; |
---|
729 | tr->executeModel[index] = TRUE; |
---|
730 | } |
---|
731 | } |
---|
732 | |
---|
733 | assert(pos == numberOfModels); |
---|
734 | break; |
---|
735 | case SCALER_F: |
---|
736 | assert(ll->entries == tr->NumberOfModels); |
---|
737 | assert(ll->entries == tr->numBranches); |
---|
738 | for(i = 0; i < ll->entries; i++) |
---|
739 | { |
---|
740 | if(converged[i]) |
---|
741 | { |
---|
742 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
743 | tr->executeModel[ll->ld[i].partitionList[k]] = FALSE; |
---|
744 | } |
---|
745 | else |
---|
746 | { |
---|
747 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
748 | { |
---|
749 | int |
---|
750 | index = ll->ld[i].partitionList[k]; |
---|
751 | |
---|
752 | tr->executeModel[index] = TRUE; |
---|
753 | tr->partitionData[index].brLenScaler = value[i]; |
---|
754 | scaleBranches(tr, FALSE); |
---|
755 | } |
---|
756 | } |
---|
757 | } |
---|
758 | |
---|
759 | #ifdef _USE_PTHREADS |
---|
760 | { |
---|
761 | volatile |
---|
762 | double result; |
---|
763 | |
---|
764 | /* need to call this here because we need to copy the changed branch lengths |
---|
765 | (due to changed) scalers into the traversal descriptor */ |
---|
766 | |
---|
767 | determineFullTraversal(tr->start, tr); |
---|
768 | |
---|
769 | masterBarrier(THREAD_OPT_SCALER, tr); |
---|
770 | if(tr->NumberOfModels == 1) |
---|
771 | { |
---|
772 | for(i = 0, result = 0.0; i < NumberOfThreads; i++) |
---|
773 | result += reductionBuffer[i]; |
---|
774 | tr->perPartitionLH[0] = result; |
---|
775 | } |
---|
776 | else |
---|
777 | { |
---|
778 | int j; |
---|
779 | volatile double partitionResult; |
---|
780 | |
---|
781 | result = 0.0; |
---|
782 | |
---|
783 | for(j = 0; j < tr->NumberOfModels; j++) |
---|
784 | { |
---|
785 | for(i = 0, partitionResult = 0.0; i < NumberOfThreads; i++) |
---|
786 | partitionResult += reductionBuffer[i * tr->NumberOfModels + j]; |
---|
787 | result += partitionResult; |
---|
788 | tr->perPartitionLH[j] = partitionResult; |
---|
789 | } |
---|
790 | } |
---|
791 | } |
---|
792 | #else |
---|
793 | evaluateGenericInitrav(tr, tr->start); |
---|
794 | #endif |
---|
795 | |
---|
796 | for(i = 0; i < ll->entries; i++) |
---|
797 | { |
---|
798 | result[i] = 0.0; |
---|
799 | |
---|
800 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
801 | { |
---|
802 | int index = ll->ld[i].partitionList[k]; |
---|
803 | |
---|
804 | assert(tr->perPartitionLH[index] <= 0.0); |
---|
805 | |
---|
806 | result[i] -= tr->perPartitionLH[index]; |
---|
807 | tr->executeModel[index] = TRUE; |
---|
808 | } |
---|
809 | } |
---|
810 | break; |
---|
811 | case LXRATE_F: |
---|
812 | { |
---|
813 | boolean |
---|
814 | atLeastOnePartition = FALSE; |
---|
815 | |
---|
816 | assert(rateNumber != -1); |
---|
817 | |
---|
818 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
819 | { |
---|
820 | int |
---|
821 | index = ll->ld[i].partitionList[0]; |
---|
822 | |
---|
823 | assert(ll->ld[i].partitions == 1); |
---|
824 | |
---|
825 | if(ll->ld[i].valid) |
---|
826 | { |
---|
827 | if(converged[pos]) |
---|
828 | tr->executeModel[index] = FALSE; |
---|
829 | else |
---|
830 | { |
---|
831 | atLeastOnePartition = TRUE; |
---|
832 | tr->executeModel[index] = TRUE; |
---|
833 | tr->partitionData[index].gammaRates[rateNumber] = value[pos]; |
---|
834 | } |
---|
835 | |
---|
836 | pos++; |
---|
837 | } |
---|
838 | else |
---|
839 | tr->executeModel[index] = FALSE; |
---|
840 | } |
---|
841 | |
---|
842 | assert(pos == numberOfModels); |
---|
843 | |
---|
844 | #ifdef _USE_PTHREADS |
---|
845 | { |
---|
846 | volatile double result; |
---|
847 | |
---|
848 | masterBarrier(THREAD_OPT_LG4X_RATES, tr); |
---|
849 | |
---|
850 | if(tr->NumberOfModels == 1) |
---|
851 | { |
---|
852 | for(i = 0, result = 0.0; i < NumberOfThreads; i++) |
---|
853 | result += reductionBuffer[i]; |
---|
854 | tr->perPartitionLH[0] = result; |
---|
855 | } |
---|
856 | else |
---|
857 | { |
---|
858 | int j; |
---|
859 | volatile double partitionResult; |
---|
860 | |
---|
861 | result = 0.0; |
---|
862 | |
---|
863 | for(j = 0; j < tr->NumberOfModels; j++) |
---|
864 | { |
---|
865 | for(i = 0, partitionResult = 0.0; i < NumberOfThreads; i++) |
---|
866 | partitionResult += reductionBuffer[i * tr->NumberOfModels + j]; |
---|
867 | result += partitionResult; |
---|
868 | tr->perPartitionLH[j] = partitionResult; |
---|
869 | } |
---|
870 | } |
---|
871 | } |
---|
872 | |
---|
873 | #else |
---|
874 | evaluateGenericInitrav(tr, tr->start); |
---|
875 | #endif |
---|
876 | |
---|
877 | if(atLeastOnePartition) |
---|
878 | { |
---|
879 | boolean |
---|
880 | *buffer = (boolean*)rax_malloc(tr->NumberOfModels * sizeof(boolean)); |
---|
881 | |
---|
882 | memcpy(buffer, tr->executeModel, sizeof(boolean) * tr->NumberOfModels); |
---|
883 | |
---|
884 | for(i = 0; i < tr->NumberOfModels; i++) |
---|
885 | tr->executeModel[i] = FALSE; |
---|
886 | |
---|
887 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
888 | { |
---|
889 | int |
---|
890 | index = ll->ld[i].partitionList[0]; |
---|
891 | |
---|
892 | if(ll->ld[i].valid) |
---|
893 | tr->executeModel[index] = TRUE; |
---|
894 | } |
---|
895 | |
---|
896 | optimizeWeights(tr, modelEpsilon, ll, numberOfModels); |
---|
897 | |
---|
898 | memcpy(tr->executeModel, buffer, sizeof(boolean) * tr->NumberOfModels); |
---|
899 | |
---|
900 | rax_free(buffer); |
---|
901 | } |
---|
902 | |
---|
903 | |
---|
904 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
905 | { |
---|
906 | int |
---|
907 | index = ll->ld[i].partitionList[0]; |
---|
908 | |
---|
909 | assert(ll->ld[i].partitions == 1); |
---|
910 | |
---|
911 | if(ll->ld[i].valid) |
---|
912 | { |
---|
913 | result[pos] = 0.0; |
---|
914 | |
---|
915 | assert(tr->perPartitionLH[index] <= 0.0); |
---|
916 | |
---|
917 | result[pos] -= tr->perPartitionLH[index]; |
---|
918 | |
---|
919 | pos++; |
---|
920 | } |
---|
921 | |
---|
922 | tr->executeModel[index] = TRUE; |
---|
923 | } |
---|
924 | |
---|
925 | assert(pos == numberOfModels); |
---|
926 | } |
---|
927 | break; |
---|
928 | case LXWEIGHT_F: |
---|
929 | assert(rateNumber != -1); |
---|
930 | |
---|
931 | //printf("%d %d\n", tr->executeModel[0], tr->executeModel[1]); |
---|
932 | |
---|
933 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
934 | { |
---|
935 | int |
---|
936 | index = ll->ld[i].partitionList[0]; |
---|
937 | |
---|
938 | assert(ll->ld[i].partitions == 1); |
---|
939 | |
---|
940 | if(ll->ld[i].valid) |
---|
941 | { |
---|
942 | if(converged[pos]) |
---|
943 | tr->executeModel[index] = FALSE; |
---|
944 | else |
---|
945 | { |
---|
946 | tr->executeModel[index] = TRUE; |
---|
947 | updateWeights(tr, index, rateNumber, value[pos]); |
---|
948 | } |
---|
949 | |
---|
950 | pos++; |
---|
951 | } |
---|
952 | else |
---|
953 | tr->executeModel[index] = FALSE; |
---|
954 | } |
---|
955 | |
---|
956 | assert(pos == numberOfModels); |
---|
957 | |
---|
958 | #ifdef _USE_PTHREADS |
---|
959 | { |
---|
960 | volatile double result; |
---|
961 | |
---|
962 | masterBarrier(THREAD_OPT_LG4X_RATES, tr); |
---|
963 | |
---|
964 | if(tr->NumberOfModels == 1) |
---|
965 | { |
---|
966 | for(i = 0, result = 0.0; i < NumberOfThreads; i++) |
---|
967 | result += reductionBuffer[i]; |
---|
968 | tr->perPartitionLH[0] = result; |
---|
969 | } |
---|
970 | else |
---|
971 | { |
---|
972 | int j; |
---|
973 | volatile double partitionResult; |
---|
974 | |
---|
975 | result = 0.0; |
---|
976 | |
---|
977 | for(j = 0; j < tr->NumberOfModels; j++) |
---|
978 | { |
---|
979 | for(i = 0, partitionResult = 0.0; i < NumberOfThreads; i++) |
---|
980 | partitionResult += reductionBuffer[i * tr->NumberOfModels + j]; |
---|
981 | result += partitionResult; |
---|
982 | tr->perPartitionLH[j] = partitionResult; |
---|
983 | } |
---|
984 | } |
---|
985 | } |
---|
986 | #else |
---|
987 | evaluateGeneric(tr, tr->start); |
---|
988 | #endif |
---|
989 | |
---|
990 | //printf("weights Like: %f\n", tr->perPartitionLH[0]); |
---|
991 | |
---|
992 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
993 | { |
---|
994 | int |
---|
995 | index = ll->ld[i].partitionList[0]; |
---|
996 | |
---|
997 | assert(ll->ld[i].partitions == 1); |
---|
998 | |
---|
999 | if(ll->ld[i].valid) |
---|
1000 | { |
---|
1001 | result[pos] = 0.0; |
---|
1002 | |
---|
1003 | assert(tr->perPartitionLH[index] <= 0.0); |
---|
1004 | |
---|
1005 | result[pos] -= tr->perPartitionLH[index]; |
---|
1006 | |
---|
1007 | pos++; |
---|
1008 | } |
---|
1009 | |
---|
1010 | tr->executeModel[index] = TRUE; |
---|
1011 | } |
---|
1012 | |
---|
1013 | assert(pos == numberOfModels); |
---|
1014 | |
---|
1015 | break; |
---|
1016 | default: |
---|
1017 | assert(0); |
---|
1018 | } |
---|
1019 | |
---|
1020 | } |
---|
1021 | |
---|
1022 | |
---|
1023 | |
---|
1024 | static void brentGeneric(double *ax, double *bx, double *cx, double *fb, double tol, double *xmin, double *result, int numberOfModels, |
---|
1025 | int whichFunction, int rateNumber, tree *tr, linkageList *ll, double lim_inf, double lim_sup) |
---|
1026 | { |
---|
1027 | int iter, i; |
---|
1028 | double |
---|
1029 | *a = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1030 | *b = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1031 | *d = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1032 | *etemp = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1033 | *fu = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1034 | *fv = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1035 | *fw = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1036 | *fx = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1037 | *p = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1038 | *q = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1039 | *r = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1040 | *tol1 = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1041 | *tol2 = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1042 | *u = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1043 | *v = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1044 | *w = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1045 | *x = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1046 | *xm = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1047 | *e = (double *)rax_malloc(sizeof(double) * numberOfModels); |
---|
1048 | boolean *converged = (boolean *)rax_malloc(sizeof(boolean) * numberOfModels); |
---|
1049 | boolean allConverged; |
---|
1050 | |
---|
1051 | for(i = 0; i < numberOfModels; i++) |
---|
1052 | converged[i] = FALSE; |
---|
1053 | |
---|
1054 | for(i = 0; i < numberOfModels; i++) |
---|
1055 | { |
---|
1056 | e[i] = 0.0; |
---|
1057 | d[i] = 0.0; |
---|
1058 | } |
---|
1059 | |
---|
1060 | for(i = 0; i < numberOfModels; i++) |
---|
1061 | { |
---|
1062 | a[i]=((ax[i] < cx[i]) ? ax[i] : cx[i]); |
---|
1063 | b[i]=((ax[i] > cx[i]) ? ax[i] : cx[i]); |
---|
1064 | x[i] = w[i] = v[i] = bx[i]; |
---|
1065 | fw[i] = fv[i] = fx[i] = fb[i]; |
---|
1066 | } |
---|
1067 | |
---|
1068 | for(i = 0; i < numberOfModels; i++) |
---|
1069 | { |
---|
1070 | assert(a[i] >= lim_inf && a[i] <= lim_sup); |
---|
1071 | assert(b[i] >= lim_inf && b[i] <= lim_sup); |
---|
1072 | assert(x[i] >= lim_inf && x[i] <= lim_sup); |
---|
1073 | assert(v[i] >= lim_inf && v[i] <= lim_sup); |
---|
1074 | assert(w[i] >= lim_inf && w[i] <= lim_sup); |
---|
1075 | } |
---|
1076 | |
---|
1077 | |
---|
1078 | |
---|
1079 | for(iter = 1; iter <= ITMAX; iter++) |
---|
1080 | { |
---|
1081 | allConverged = TRUE; |
---|
1082 | |
---|
1083 | for(i = 0; i < numberOfModels && allConverged; i++) |
---|
1084 | allConverged = allConverged && converged[i]; |
---|
1085 | |
---|
1086 | if(allConverged) |
---|
1087 | { |
---|
1088 | rax_free(converged); |
---|
1089 | rax_free(a); |
---|
1090 | rax_free(b); |
---|
1091 | rax_free(d); |
---|
1092 | rax_free(etemp); |
---|
1093 | rax_free(fu); |
---|
1094 | rax_free(fv); |
---|
1095 | rax_free(fw); |
---|
1096 | rax_free(fx); |
---|
1097 | rax_free(p); |
---|
1098 | rax_free(q); |
---|
1099 | rax_free(r); |
---|
1100 | rax_free(tol1); |
---|
1101 | rax_free(tol2); |
---|
1102 | rax_free(u); |
---|
1103 | rax_free(v); |
---|
1104 | rax_free(w); |
---|
1105 | rax_free(x); |
---|
1106 | rax_free(xm); |
---|
1107 | rax_free(e); |
---|
1108 | return; |
---|
1109 | } |
---|
1110 | |
---|
1111 | for(i = 0; i < numberOfModels; i++) |
---|
1112 | { |
---|
1113 | if(!converged[i]) |
---|
1114 | { |
---|
1115 | assert(a[i] >= lim_inf && a[i] <= lim_sup); |
---|
1116 | assert(b[i] >= lim_inf && b[i] <= lim_sup); |
---|
1117 | assert(x[i] >= lim_inf && x[i] <= lim_sup); |
---|
1118 | assert(v[i] >= lim_inf && v[i] <= lim_sup); |
---|
1119 | assert(w[i] >= lim_inf && w[i] <= lim_sup); |
---|
1120 | |
---|
1121 | xm[i] = 0.5 * (a[i] + b[i]); |
---|
1122 | tol2[i] = 2.0 * (tol1[i] = tol * fabs(x[i]) + BRENT_ZEPS); |
---|
1123 | |
---|
1124 | if(fabs(x[i] - xm[i]) <= (tol2[i] - 0.5 * (b[i] - a[i]))) |
---|
1125 | { |
---|
1126 | result[i] = -fx[i]; |
---|
1127 | xmin[i] = x[i]; |
---|
1128 | converged[i] = TRUE; |
---|
1129 | } |
---|
1130 | else |
---|
1131 | { |
---|
1132 | if(fabs(e[i]) > tol1[i]) |
---|
1133 | { |
---|
1134 | r[i] = (x[i] - w[i]) * (fx[i] - fv[i]); |
---|
1135 | q[i] = (x[i] - v[i]) * (fx[i] - fw[i]); |
---|
1136 | p[i] = (x[i] - v[i]) * q[i] - (x[i] - w[i]) * r[i]; |
---|
1137 | q[i] = 2.0 * (q[i] - r[i]); |
---|
1138 | if(q[i] > 0.0) |
---|
1139 | p[i] = -p[i]; |
---|
1140 | q[i] = fabs(q[i]); |
---|
1141 | etemp[i] = e[i]; |
---|
1142 | e[i] = d[i]; |
---|
1143 | if((fabs(p[i]) >= fabs(0.5 * q[i] * etemp[i])) || (p[i] <= q[i] * (a[i]-x[i])) || (p[i] >= q[i] * (b[i] - x[i]))) |
---|
1144 | d[i] = BRENT_CGOLD * (e[i] = (x[i] >= xm[i] ? a[i] - x[i] : b[i] - x[i])); |
---|
1145 | else |
---|
1146 | { |
---|
1147 | d[i] = p[i] / q[i]; |
---|
1148 | u[i] = x[i] + d[i]; |
---|
1149 | if( u[i] - a[i] < tol2[i] || b[i] - u[i] < tol2[i]) |
---|
1150 | d[i] = SIGN(tol1[i], xm[i] - x[i]); |
---|
1151 | } |
---|
1152 | } |
---|
1153 | else |
---|
1154 | { |
---|
1155 | d[i] = BRENT_CGOLD * (e[i] = (x[i] >= xm[i] ? a[i] - x[i]: b[i] - x[i])); |
---|
1156 | } |
---|
1157 | u[i] = ((fabs(d[i]) >= tol1[i]) ? (x[i] + d[i]): (x[i] +SIGN(tol1[i], d[i]))); |
---|
1158 | } |
---|
1159 | |
---|
1160 | if(!converged[i]) |
---|
1161 | assert(u[i] >= lim_inf && u[i] <= lim_sup); |
---|
1162 | } |
---|
1163 | } |
---|
1164 | |
---|
1165 | evaluateChange(tr, rateNumber, u, fu, converged, whichFunction, numberOfModels, ll, tol); |
---|
1166 | |
---|
1167 | for(i = 0; i < numberOfModels; i++) |
---|
1168 | { |
---|
1169 | if(!converged[i]) |
---|
1170 | { |
---|
1171 | if(fu[i] <= fx[i]) |
---|
1172 | { |
---|
1173 | if(u[i] >= x[i]) |
---|
1174 | a[i] = x[i]; |
---|
1175 | else |
---|
1176 | b[i] = x[i]; |
---|
1177 | |
---|
1178 | SHFT(v[i],w[i],x[i],u[i]); |
---|
1179 | SHFT(fv[i],fw[i],fx[i],fu[i]); |
---|
1180 | } |
---|
1181 | else |
---|
1182 | { |
---|
1183 | if(u[i] < x[i]) |
---|
1184 | a[i] = u[i]; |
---|
1185 | else |
---|
1186 | b[i] = u[i]; |
---|
1187 | |
---|
1188 | if(fu[i] <= fw[i] || w[i] == x[i]) |
---|
1189 | { |
---|
1190 | v[i] = w[i]; |
---|
1191 | w[i] = u[i]; |
---|
1192 | fv[i] = fw[i]; |
---|
1193 | fw[i] = fu[i]; |
---|
1194 | } |
---|
1195 | else |
---|
1196 | { |
---|
1197 | if(fu[i] <= fv[i] || v[i] == x[i] || v[i] == w[i]) |
---|
1198 | { |
---|
1199 | v[i] = u[i]; |
---|
1200 | fv[i] = fu[i]; |
---|
1201 | } |
---|
1202 | } |
---|
1203 | } |
---|
1204 | |
---|
1205 | assert(a[i] >= lim_inf && a[i] <= lim_sup); |
---|
1206 | assert(b[i] >= lim_inf && b[i] <= lim_sup); |
---|
1207 | assert(x[i] >= lim_inf && x[i] <= lim_sup); |
---|
1208 | assert(v[i] >= lim_inf && v[i] <= lim_sup); |
---|
1209 | assert(w[i] >= lim_inf && w[i] <= lim_sup); |
---|
1210 | assert(u[i] >= lim_inf && u[i] <= lim_sup); |
---|
1211 | } |
---|
1212 | } |
---|
1213 | } |
---|
1214 | |
---|
1215 | rax_free(converged); |
---|
1216 | rax_free(a); |
---|
1217 | rax_free(b); |
---|
1218 | rax_free(d); |
---|
1219 | rax_free(etemp); |
---|
1220 | rax_free(fu); |
---|
1221 | rax_free(fv); |
---|
1222 | rax_free(fw); |
---|
1223 | rax_free(fx); |
---|
1224 | rax_free(p); |
---|
1225 | rax_free(q); |
---|
1226 | rax_free(r); |
---|
1227 | rax_free(tol1); |
---|
1228 | rax_free(tol2); |
---|
1229 | rax_free(u); |
---|
1230 | rax_free(v); |
---|
1231 | rax_free(w); |
---|
1232 | rax_free(x); |
---|
1233 | rax_free(xm); |
---|
1234 | rax_free(e); |
---|
1235 | |
---|
1236 | printf("\n. Too many iterations in BRENT !"); |
---|
1237 | assert(0); |
---|
1238 | } |
---|
1239 | |
---|
1240 | |
---|
1241 | |
---|
1242 | static int brakGeneric(double *param, double *ax, double *bx, double *cx, double *fa, double *fb, |
---|
1243 | double *fc, double lim_inf, double lim_sup, |
---|
1244 | int numberOfModels, int rateNumber, int whichFunction, tree *tr, linkageList *ll, double modelEpsilon) |
---|
1245 | { |
---|
1246 | double |
---|
1247 | *ulim = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1248 | *u = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1249 | *r = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1250 | *q = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1251 | *fu = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1252 | *dum = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1253 | *temp = (double *)rax_malloc(sizeof(double) * numberOfModels); |
---|
1254 | |
---|
1255 | int |
---|
1256 | i, |
---|
1257 | *state = (int *)rax_malloc(sizeof(int) * numberOfModels), |
---|
1258 | *endState = (int *)rax_malloc(sizeof(int) * numberOfModels); |
---|
1259 | |
---|
1260 | boolean *converged = (boolean *)rax_malloc(sizeof(boolean) * numberOfModels); |
---|
1261 | boolean allConverged; |
---|
1262 | |
---|
1263 | for(i = 0; i < numberOfModels; i++) |
---|
1264 | converged[i] = FALSE; |
---|
1265 | |
---|
1266 | for(i = 0; i < numberOfModels; i++) |
---|
1267 | { |
---|
1268 | state[i] = 0; |
---|
1269 | endState[i] = 0; |
---|
1270 | |
---|
1271 | u[i] = 0.0; |
---|
1272 | |
---|
1273 | param[i] = ax[i]; |
---|
1274 | |
---|
1275 | if(param[i] > lim_sup) |
---|
1276 | param[i] = ax[i] = lim_sup; |
---|
1277 | |
---|
1278 | if(param[i] < lim_inf) |
---|
1279 | param[i] = ax[i] = lim_inf; |
---|
1280 | |
---|
1281 | assert(param[i] >= lim_inf && param[i] <= lim_sup); |
---|
1282 | } |
---|
1283 | |
---|
1284 | |
---|
1285 | evaluateChange(tr, rateNumber, param, fa, converged, whichFunction, numberOfModels, ll, modelEpsilon); |
---|
1286 | |
---|
1287 | |
---|
1288 | for(i = 0; i < numberOfModels; i++) |
---|
1289 | { |
---|
1290 | param[i] = bx[i]; |
---|
1291 | if(param[i] > lim_sup) |
---|
1292 | param[i] = bx[i] = lim_sup; |
---|
1293 | if(param[i] < lim_inf) |
---|
1294 | param[i] = bx[i] = lim_inf; |
---|
1295 | |
---|
1296 | assert(param[i] >= lim_inf && param[i] <= lim_sup); |
---|
1297 | } |
---|
1298 | |
---|
1299 | evaluateChange(tr, rateNumber, param, fb, converged, whichFunction, numberOfModels, ll, modelEpsilon); |
---|
1300 | |
---|
1301 | for(i = 0; i < numberOfModels; i++) |
---|
1302 | { |
---|
1303 | if (fb[i] > fa[i]) |
---|
1304 | { |
---|
1305 | SHFT(dum[i],ax[i],bx[i],dum[i]); |
---|
1306 | SHFT(dum[i],fa[i],fb[i],dum[i]); |
---|
1307 | } |
---|
1308 | |
---|
1309 | cx[i] = bx[i] + MNBRAK_GOLD * (bx[i] - ax[i]); |
---|
1310 | |
---|
1311 | param[i] = cx[i]; |
---|
1312 | |
---|
1313 | if(param[i] > lim_sup) |
---|
1314 | param[i] = cx[i] = lim_sup; |
---|
1315 | if(param[i] < lim_inf) |
---|
1316 | param[i] = cx[i] = lim_inf; |
---|
1317 | |
---|
1318 | assert(param[i] >= lim_inf && param[i] <= lim_sup); |
---|
1319 | } |
---|
1320 | |
---|
1321 | |
---|
1322 | evaluateChange(tr, rateNumber, param, fc, converged, whichFunction, numberOfModels, ll, modelEpsilon); |
---|
1323 | |
---|
1324 | while(1) |
---|
1325 | { |
---|
1326 | allConverged = TRUE; |
---|
1327 | |
---|
1328 | for(i = 0; i < numberOfModels && allConverged; i++) |
---|
1329 | allConverged = allConverged && converged[i]; |
---|
1330 | |
---|
1331 | if(allConverged) |
---|
1332 | { |
---|
1333 | for(i = 0; i < numberOfModels; i++) |
---|
1334 | { |
---|
1335 | if(ax[i] > lim_sup) |
---|
1336 | ax[i] = lim_sup; |
---|
1337 | if(ax[i] < lim_inf) |
---|
1338 | ax[i] = lim_inf; |
---|
1339 | |
---|
1340 | if(bx[i] > lim_sup) |
---|
1341 | bx[i] = lim_sup; |
---|
1342 | if(bx[i] < lim_inf) |
---|
1343 | bx[i] = lim_inf; |
---|
1344 | |
---|
1345 | if(cx[i] > lim_sup) |
---|
1346 | cx[i] = lim_sup; |
---|
1347 | if(cx[i] < lim_inf) |
---|
1348 | cx[i] = lim_inf; |
---|
1349 | } |
---|
1350 | |
---|
1351 | rax_free(converged); |
---|
1352 | rax_free(ulim); |
---|
1353 | rax_free(u); |
---|
1354 | rax_free(r); |
---|
1355 | rax_free(q); |
---|
1356 | rax_free(fu); |
---|
1357 | rax_free(dum); |
---|
1358 | rax_free(temp); |
---|
1359 | rax_free(state); |
---|
1360 | rax_free(endState); |
---|
1361 | return 0; |
---|
1362 | |
---|
1363 | } |
---|
1364 | |
---|
1365 | for(i = 0; i < numberOfModels; i++) |
---|
1366 | { |
---|
1367 | if(!converged[i]) |
---|
1368 | { |
---|
1369 | switch(state[i]) |
---|
1370 | { |
---|
1371 | case 0: |
---|
1372 | endState[i] = 0; |
---|
1373 | if(!(fb[i] > fc[i])) |
---|
1374 | converged[i] = TRUE; |
---|
1375 | else |
---|
1376 | { |
---|
1377 | |
---|
1378 | if(ax[i] > lim_sup) |
---|
1379 | ax[i] = lim_sup; |
---|
1380 | if(ax[i] < lim_inf) |
---|
1381 | ax[i] = lim_inf; |
---|
1382 | if(bx[i] > lim_sup) |
---|
1383 | bx[i] = lim_sup; |
---|
1384 | if(bx[i] < lim_inf) |
---|
1385 | bx[i] = lim_inf; |
---|
1386 | if(cx[i] > lim_sup) |
---|
1387 | cx[i] = lim_sup; |
---|
1388 | if(cx[i] < lim_inf) |
---|
1389 | cx[i] = lim_inf; |
---|
1390 | |
---|
1391 | r[i]=(bx[i]-ax[i])*(fb[i]-fc[i]); |
---|
1392 | q[i]=(bx[i]-cx[i])*(fb[i]-fa[i]); |
---|
1393 | u[i]=(bx[i])-((bx[i]-cx[i])*q[i]-(bx[i]-ax[i])*r[i])/ |
---|
1394 | (2.0*SIGN(MAX(fabs(q[i]-r[i]),MNBRAK_TINY),q[i]-r[i])); |
---|
1395 | |
---|
1396 | ulim[i]=(bx[i])+MNBRAK_GLIMIT*(cx[i]-bx[i]); |
---|
1397 | |
---|
1398 | if(u[i] > lim_sup) |
---|
1399 | u[i] = lim_sup; |
---|
1400 | if(u[i] < lim_inf) |
---|
1401 | u[i] = lim_inf; |
---|
1402 | if(ulim[i] > lim_sup) |
---|
1403 | ulim[i] = lim_sup; |
---|
1404 | if(ulim[i] < lim_inf) |
---|
1405 | ulim[i] = lim_inf; |
---|
1406 | |
---|
1407 | if ((bx[i]-u[i])*(u[i]-cx[i]) > 0.0) |
---|
1408 | { |
---|
1409 | param[i] = u[i]; |
---|
1410 | if(param[i] > lim_sup) |
---|
1411 | param[i] = u[i] = lim_sup; |
---|
1412 | if(param[i] < lim_inf) |
---|
1413 | param[i] = u[i] = lim_inf; |
---|
1414 | endState[i] = 1; |
---|
1415 | } |
---|
1416 | else |
---|
1417 | { |
---|
1418 | if ((cx[i]-u[i])*(u[i]-ulim[i]) > 0.0) |
---|
1419 | { |
---|
1420 | param[i] = u[i]; |
---|
1421 | if(param[i] > lim_sup) |
---|
1422 | param[i] = u[i] = lim_sup; |
---|
1423 | if(param[i] < lim_inf) |
---|
1424 | param[i] = u[i] = lim_inf; |
---|
1425 | endState[i] = 2; |
---|
1426 | } |
---|
1427 | else |
---|
1428 | { |
---|
1429 | if ((u[i]-ulim[i])*(ulim[i]-cx[i]) >= 0.0) |
---|
1430 | { |
---|
1431 | u[i] = ulim[i]; |
---|
1432 | param[i] = u[i]; |
---|
1433 | if(param[i] > lim_sup) |
---|
1434 | param[i] = u[i] = ulim[i] = lim_sup; |
---|
1435 | if(param[i] < lim_inf) |
---|
1436 | param[i] = u[i] = ulim[i] = lim_inf; |
---|
1437 | endState[i] = 0; |
---|
1438 | } |
---|
1439 | else |
---|
1440 | { |
---|
1441 | u[i]=(cx[i])+MNBRAK_GOLD*(cx[i]-bx[i]); |
---|
1442 | param[i] = u[i]; |
---|
1443 | endState[i] = 0; |
---|
1444 | if(param[i] > lim_sup) |
---|
1445 | param[i] = u[i] = lim_sup; |
---|
1446 | if(param[i] < lim_inf) |
---|
1447 | param[i] = u[i] = lim_inf; |
---|
1448 | } |
---|
1449 | } |
---|
1450 | } |
---|
1451 | } |
---|
1452 | break; |
---|
1453 | case 1: |
---|
1454 | endState[i] = 0; |
---|
1455 | break; |
---|
1456 | case 2: |
---|
1457 | endState[i] = 3; |
---|
1458 | break; |
---|
1459 | default: |
---|
1460 | assert(0); |
---|
1461 | } |
---|
1462 | assert(param[i] >= lim_inf && param[i] <= lim_sup); |
---|
1463 | } |
---|
1464 | } |
---|
1465 | |
---|
1466 | evaluateChange(tr, rateNumber, param, temp, converged, whichFunction, numberOfModels, ll, modelEpsilon); |
---|
1467 | |
---|
1468 | for(i = 0; i < numberOfModels; i++) |
---|
1469 | { |
---|
1470 | if(!converged[i]) |
---|
1471 | { |
---|
1472 | switch(endState[i]) |
---|
1473 | { |
---|
1474 | case 0: |
---|
1475 | fu[i] = temp[i]; |
---|
1476 | SHFT(ax[i],bx[i],cx[i],u[i]); |
---|
1477 | SHFT(fa[i],fb[i],fc[i],fu[i]); |
---|
1478 | state[i] = 0; |
---|
1479 | break; |
---|
1480 | case 1: |
---|
1481 | fu[i] = temp[i]; |
---|
1482 | if (fu[i] < fc[i]) |
---|
1483 | { |
---|
1484 | ax[i]=(bx[i]); |
---|
1485 | bx[i]=u[i]; |
---|
1486 | fa[i]=(fb[i]); |
---|
1487 | fb[i]=fu[i]; |
---|
1488 | converged[i] = TRUE; |
---|
1489 | } |
---|
1490 | else |
---|
1491 | { |
---|
1492 | if (fu[i] > fb[i]) |
---|
1493 | { |
---|
1494 | assert(u[i] >= lim_inf && u[i] <= lim_sup); |
---|
1495 | cx[i]=u[i]; |
---|
1496 | fc[i]=fu[i]; |
---|
1497 | converged[i] = TRUE; |
---|
1498 | } |
---|
1499 | else |
---|
1500 | { |
---|
1501 | u[i]=(cx[i])+MNBRAK_GOLD*(cx[i]-bx[i]); |
---|
1502 | param[i] = u[i]; |
---|
1503 | if(param[i] > lim_sup) {param[i] = u[i] = lim_sup;} |
---|
1504 | if(param[i] < lim_inf) {param[i] = u[i] = lim_inf;} |
---|
1505 | state[i] = 1; |
---|
1506 | } |
---|
1507 | } |
---|
1508 | break; |
---|
1509 | case 2: |
---|
1510 | fu[i] = temp[i]; |
---|
1511 | if (fu[i] < fc[i]) |
---|
1512 | { |
---|
1513 | SHFT(bx[i],cx[i],u[i], cx[i]+MNBRAK_GOLD*(cx[i]-bx[i])); |
---|
1514 | state[i] = 2; |
---|
1515 | } |
---|
1516 | else |
---|
1517 | { |
---|
1518 | state[i] = 0; |
---|
1519 | SHFT(ax[i],bx[i],cx[i],u[i]); |
---|
1520 | SHFT(fa[i],fb[i],fc[i],fu[i]); |
---|
1521 | } |
---|
1522 | break; |
---|
1523 | case 3: |
---|
1524 | SHFT(fb[i],fc[i],fu[i], temp[i]); |
---|
1525 | SHFT(ax[i],bx[i],cx[i],u[i]); |
---|
1526 | SHFT(fa[i],fb[i],fc[i],fu[i]); |
---|
1527 | state[i] = 0; |
---|
1528 | break; |
---|
1529 | default: |
---|
1530 | assert(0); |
---|
1531 | } |
---|
1532 | } |
---|
1533 | } |
---|
1534 | } |
---|
1535 | |
---|
1536 | |
---|
1537 | assert(0); |
---|
1538 | rax_free(converged); |
---|
1539 | rax_free(ulim); |
---|
1540 | rax_free(u); |
---|
1541 | rax_free(r); |
---|
1542 | rax_free(q); |
---|
1543 | rax_free(fu); |
---|
1544 | rax_free(dum); |
---|
1545 | rax_free(temp); |
---|
1546 | rax_free(state); |
---|
1547 | rax_free(endState); |
---|
1548 | |
---|
1549 | |
---|
1550 | |
---|
1551 | return(0); |
---|
1552 | } |
---|
1553 | |
---|
1554 | |
---|
1555 | |
---|
1556 | |
---|
1557 | |
---|
1558 | |
---|
1559 | |
---|
1560 | |
---|
1561 | |
---|
1562 | static void optInvar(tree *tr, double modelEpsilon, linkageList *ll) |
---|
1563 | { |
---|
1564 | int |
---|
1565 | i, |
---|
1566 | k, |
---|
1567 | numberOfModels = ll->entries; |
---|
1568 | double lim_inf = INVAR_MIN; |
---|
1569 | double lim_sup = INVAR_MAX; |
---|
1570 | double |
---|
1571 | *startLH = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1572 | *startInvar = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1573 | *endInvar = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1574 | *_a = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1575 | *_b = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1576 | *_c = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1577 | *_fa = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1578 | *_fb = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1579 | *_fc = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1580 | *_param = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1581 | *result = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1582 | *_x = (double *)rax_malloc(sizeof(double) * numberOfModels); |
---|
1583 | |
---|
1584 | evaluateGenericInitrav(tr, tr->start); |
---|
1585 | |
---|
1586 | #ifdef _USE_PTHREADS |
---|
1587 | evaluateGeneric(tr, tr->start); |
---|
1588 | /* to avoid transferring traversal info further on */ |
---|
1589 | #endif |
---|
1590 | |
---|
1591 | #ifdef _DEBUG_MODEL_OPTIMIZATION |
---|
1592 | double |
---|
1593 | initialLH = tr->likelihood; |
---|
1594 | #endif |
---|
1595 | |
---|
1596 | for(i = 0; i < numberOfModels; i++) |
---|
1597 | { |
---|
1598 | assert(ll->ld[i].valid); |
---|
1599 | |
---|
1600 | startInvar[i] = tr->partitionData[ll->ld[i].partitionList[0]].propInvariant; |
---|
1601 | _a[i] = startInvar[i] + 0.1; |
---|
1602 | _b[i] = startInvar[i] - 0.1; |
---|
1603 | if(_b[i] < lim_inf) |
---|
1604 | _b[i] = lim_inf; |
---|
1605 | |
---|
1606 | startLH[i] = 0.0; |
---|
1607 | |
---|
1608 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
1609 | { |
---|
1610 | startLH[i] += tr->perPartitionLH[ll->ld[i].partitionList[k]]; |
---|
1611 | /* TODO need to fix the initialization for this assertion not to fail */ |
---|
1612 | /* assert(tr->partitionData[ll->ld[i].partitionList[0]].propInvariant == tr->partitionData[ll->ld[i].partitionList[k]].propInvariant);*/ |
---|
1613 | } |
---|
1614 | } |
---|
1615 | |
---|
1616 | brakGeneric(_param, _a, _b, _c, _fa, _fb, _fc, lim_inf, lim_sup, numberOfModels, -1, INVAR_F, tr, ll, modelEpsilon); |
---|
1617 | brentGeneric(_a, _b, _c, _fb, modelEpsilon, _x, result, numberOfModels, INVAR_F, -1, tr, ll, lim_inf, lim_sup); |
---|
1618 | |
---|
1619 | for(i = 0; i < numberOfModels; i++) |
---|
1620 | endInvar[i] = result[i]; |
---|
1621 | |
---|
1622 | for(i = 0; i < numberOfModels; i++) |
---|
1623 | { |
---|
1624 | if(startLH[i] > endInvar[i]) |
---|
1625 | { |
---|
1626 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
1627 | tr->partitionData[ll->ld[i].partitionList[k]].propInvariant = startInvar[i]; |
---|
1628 | } |
---|
1629 | else |
---|
1630 | { |
---|
1631 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
1632 | tr->partitionData[ll->ld[i].partitionList[k]].propInvariant = _x[i]; |
---|
1633 | } |
---|
1634 | } |
---|
1635 | |
---|
1636 | #ifdef _USE_PTHREADS |
---|
1637 | masterBarrier(THREAD_COPY_INVAR, tr); |
---|
1638 | #endif |
---|
1639 | |
---|
1640 | #ifdef _DEBUG_MODEL_OPTIMIZATION |
---|
1641 | evaluateGenericInitrav(tr, tr->start); |
---|
1642 | |
---|
1643 | if(tr->likelihood < initialLH) |
---|
1644 | printf("%f %f\n", tr->likelihood, initialLH); |
---|
1645 | assert(tr->likelihood >= initialLH); |
---|
1646 | #endif |
---|
1647 | |
---|
1648 | rax_free(startLH); |
---|
1649 | rax_free(startInvar); |
---|
1650 | rax_free(endInvar); |
---|
1651 | rax_free(result); |
---|
1652 | rax_free(_a); |
---|
1653 | rax_free(_b); |
---|
1654 | rax_free(_c); |
---|
1655 | rax_free(_fa); |
---|
1656 | rax_free(_fb); |
---|
1657 | rax_free(_fc); |
---|
1658 | rax_free(_param); |
---|
1659 | rax_free(_x); |
---|
1660 | |
---|
1661 | } |
---|
1662 | |
---|
1663 | |
---|
1664 | |
---|
1665 | |
---|
1666 | |
---|
1667 | |
---|
1668 | /**********************************************************************************************************/ |
---|
1669 | /* ALPHA PARAM ********************************************************************************************/ |
---|
1670 | |
---|
1671 | |
---|
1672 | |
---|
1673 | |
---|
1674 | |
---|
1675 | |
---|
1676 | |
---|
1677 | static void optAlpha(tree *tr, double modelEpsilon, linkageList *ll, int numberOfModels) |
---|
1678 | { |
---|
1679 | int |
---|
1680 | pos, |
---|
1681 | i; |
---|
1682 | |
---|
1683 | double |
---|
1684 | lim_inf = ALPHA_MIN, |
---|
1685 | lim_sup = ALPHA_MAX, |
---|
1686 | *endLH = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1687 | *startLH = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1688 | *startAlpha = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1689 | *endAlpha = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1690 | *_a = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1691 | *_b = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1692 | *_c = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1693 | *_fa = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1694 | *_fb = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1695 | *_fc = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1696 | *_param = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1697 | *result = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1698 | *_x = (double *)rax_malloc(sizeof(double) * numberOfModels); |
---|
1699 | |
---|
1700 | evaluateGenericInitrav(tr, tr->start); |
---|
1701 | |
---|
1702 | #ifdef _DEBUG_MODEL_OPTIMIZATION |
---|
1703 | double |
---|
1704 | initialLH = tr->likelihood; |
---|
1705 | #endif |
---|
1706 | |
---|
1707 | /* |
---|
1708 | at this point here every worker has the traversal data it needs for the |
---|
1709 | search, so we won't re-distribute it he he :-) |
---|
1710 | */ |
---|
1711 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
1712 | { |
---|
1713 | if(ll->ld[i].valid) |
---|
1714 | { |
---|
1715 | int |
---|
1716 | index = ll->ld[i].partitionList[0]; |
---|
1717 | |
---|
1718 | assert(ll->ld[i].partitions == 1); |
---|
1719 | |
---|
1720 | startAlpha[pos] = tr->partitionData[index].alpha; |
---|
1721 | |
---|
1722 | _a[pos] = startAlpha[pos] + 0.1; |
---|
1723 | _b[pos] = startAlpha[pos] - 0.1; |
---|
1724 | |
---|
1725 | if(_a[pos] < lim_inf) |
---|
1726 | _a[pos] = lim_inf; |
---|
1727 | |
---|
1728 | if(_a[pos] > lim_sup) |
---|
1729 | _a[pos] = lim_sup; |
---|
1730 | |
---|
1731 | if(_b[pos] < lim_inf) |
---|
1732 | _b[pos] = lim_inf; |
---|
1733 | |
---|
1734 | if(_b[pos] > lim_sup) |
---|
1735 | _b[pos] = lim_sup; |
---|
1736 | |
---|
1737 | startLH[pos] = tr->perPartitionLH[index]; |
---|
1738 | endLH[pos] = unlikely; |
---|
1739 | |
---|
1740 | pos++; |
---|
1741 | } |
---|
1742 | } |
---|
1743 | |
---|
1744 | brakGeneric(_param, _a, _b, _c, _fa, _fb, _fc, lim_inf, lim_sup, numberOfModels, -1, ALPHA_F, tr, ll, modelEpsilon); |
---|
1745 | brentGeneric(_a, _b, _c, _fb, modelEpsilon, _x, result, numberOfModels, ALPHA_F, -1, tr, ll, lim_inf, lim_sup); |
---|
1746 | |
---|
1747 | for(i = 0; i < numberOfModels; i++) |
---|
1748 | endLH[i] = result[i]; |
---|
1749 | |
---|
1750 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
1751 | { |
---|
1752 | if(ll->ld[i].valid) |
---|
1753 | { |
---|
1754 | int |
---|
1755 | index = ll->ld[i].partitionList[0]; |
---|
1756 | |
---|
1757 | assert(ll->ld[i].partitions == 1); |
---|
1758 | |
---|
1759 | if(startLH[pos] > endLH[pos]) |
---|
1760 | { |
---|
1761 | tr->partitionData[index].alpha = startAlpha[pos]; |
---|
1762 | makeGammaCats(tr->partitionData[index].alpha, tr->partitionData[index].gammaRates, 4, tr->useGammaMedian); |
---|
1763 | } |
---|
1764 | else |
---|
1765 | { |
---|
1766 | tr->partitionData[index].alpha = _x[pos]; |
---|
1767 | makeGammaCats(tr->partitionData[index].alpha, tr->partitionData[index].gammaRates, 4, tr->useGammaMedian); |
---|
1768 | } |
---|
1769 | |
---|
1770 | pos++; |
---|
1771 | } |
---|
1772 | } |
---|
1773 | |
---|
1774 | assert(pos == numberOfModels); |
---|
1775 | |
---|
1776 | #ifdef _USE_PTHREADS |
---|
1777 | masterBarrier(THREAD_COPY_ALPHA, tr); |
---|
1778 | #endif |
---|
1779 | |
---|
1780 | |
---|
1781 | #ifdef _DEBUG_MODEL_OPTIMIZATION |
---|
1782 | evaluateGenericInitrav(tr, tr->start); |
---|
1783 | |
---|
1784 | if(tr->likelihood < initialLH) |
---|
1785 | printf("%f %f\n", tr->likelihood, initialLH); |
---|
1786 | assert(tr->likelihood >= initialLH); |
---|
1787 | #endif |
---|
1788 | |
---|
1789 | rax_free(startLH); |
---|
1790 | rax_free(endLH); |
---|
1791 | rax_free(startAlpha); |
---|
1792 | rax_free(endAlpha); |
---|
1793 | rax_free(result); |
---|
1794 | rax_free(_a); |
---|
1795 | rax_free(_b); |
---|
1796 | rax_free(_c); |
---|
1797 | rax_free(_fa); |
---|
1798 | rax_free(_fb); |
---|
1799 | rax_free(_fc); |
---|
1800 | rax_free(_param); |
---|
1801 | rax_free(_x); |
---|
1802 | } |
---|
1803 | |
---|
1804 | |
---|
1805 | /*******************************************************************************************************************/ |
---|
1806 | /*******************RATES ******************************************************************************************/ |
---|
1807 | |
---|
1808 | |
---|
1809 | |
---|
1810 | |
---|
1811 | |
---|
1812 | static void optRate(tree *tr, double modelEpsilon, linkageList *ll, int numberOfModels, int states, int rateNumber, int numberOfRates) |
---|
1813 | { |
---|
1814 | int |
---|
1815 | l, |
---|
1816 | k, |
---|
1817 | j, |
---|
1818 | pos; |
---|
1819 | |
---|
1820 | double |
---|
1821 | lim_inf = RATE_MIN, |
---|
1822 | lim_sup = RATE_MAX, |
---|
1823 | *startRates = (double *)rax_malloc(sizeof(double) * numberOfRates * numberOfModels), |
---|
1824 | *startLH = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1825 | *endLH = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1826 | *_a = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1827 | *_b = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1828 | *_c = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1829 | *_fa = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1830 | *_fb = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1831 | *_fc = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1832 | *_param = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1833 | *result = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
1834 | *_x = (double *)rax_malloc(sizeof(double) * numberOfModels); |
---|
1835 | |
---|
1836 | assert(states != -1); |
---|
1837 | |
---|
1838 | evaluateGenericInitrav(tr, tr->start); |
---|
1839 | |
---|
1840 | #ifdef _DEBUG_MODEL_OPTIMIZATION |
---|
1841 | double |
---|
1842 | initialLH = tr->likelihood; |
---|
1843 | #endif |
---|
1844 | |
---|
1845 | /* |
---|
1846 | at this point here every worker has the traversal data it needs for the |
---|
1847 | search |
---|
1848 | */ |
---|
1849 | |
---|
1850 | for(l = 0, pos = 0; l < ll->entries; l++) |
---|
1851 | { |
---|
1852 | if(ll->ld[l].valid) |
---|
1853 | { |
---|
1854 | endLH[pos] = unlikely; |
---|
1855 | startLH[pos] = 0.0; |
---|
1856 | |
---|
1857 | for(j = 0; j < ll->ld[l].partitions; j++) |
---|
1858 | { |
---|
1859 | int |
---|
1860 | index = ll->ld[l].partitionList[j]; |
---|
1861 | |
---|
1862 | startLH[pos] += tr->perPartitionLH[index]; |
---|
1863 | |
---|
1864 | for(k = 0; k < numberOfRates; k++) |
---|
1865 | startRates[pos * numberOfRates + k] = tr->partitionData[index].substRates[k]; |
---|
1866 | } |
---|
1867 | pos++; |
---|
1868 | } |
---|
1869 | } |
---|
1870 | |
---|
1871 | assert(pos == numberOfModels); |
---|
1872 | |
---|
1873 | for(k = 0, pos = 0; k < ll->entries; k++) |
---|
1874 | { |
---|
1875 | if(ll->ld[k].valid) |
---|
1876 | { |
---|
1877 | |
---|
1878 | /* TODO partition List[0]? */ |
---|
1879 | int |
---|
1880 | index = ll->ld[k].partitionList[0]; |
---|
1881 | |
---|
1882 | |
---|
1883 | _a[pos] = tr->partitionData[index].substRates[rateNumber] + 0.1; |
---|
1884 | _b[pos] = tr->partitionData[index].substRates[rateNumber] - 0.1; |
---|
1885 | |
---|
1886 | if(_a[pos] < lim_inf) |
---|
1887 | _a[pos] = lim_inf; |
---|
1888 | |
---|
1889 | if(_a[pos] > lim_sup) |
---|
1890 | _a[pos] = lim_sup; |
---|
1891 | |
---|
1892 | if(_b[pos] < lim_inf) |
---|
1893 | _b[pos] = lim_inf; |
---|
1894 | |
---|
1895 | if(_b[pos] > lim_sup) |
---|
1896 | _b[pos] = lim_sup; |
---|
1897 | pos++; |
---|
1898 | } |
---|
1899 | } |
---|
1900 | |
---|
1901 | assert(pos == numberOfModels); |
---|
1902 | |
---|
1903 | brakGeneric(_param, _a, _b, _c, _fa, _fb, _fc, lim_inf, lim_sup, numberOfModels, rateNumber, RATE_F, tr, ll, modelEpsilon); |
---|
1904 | |
---|
1905 | for(k = 0; k < numberOfModels; k++) |
---|
1906 | { |
---|
1907 | assert(_a[k] >= lim_inf && _a[k] <= lim_sup); |
---|
1908 | assert(_b[k] >= lim_inf && _b[k] <= lim_sup); |
---|
1909 | assert(_c[k] >= lim_inf && _c[k] <= lim_sup); |
---|
1910 | } |
---|
1911 | |
---|
1912 | brentGeneric(_a, _b, _c, _fb, modelEpsilon, _x, result, numberOfModels, RATE_F, rateNumber, tr, ll, lim_inf, lim_sup); |
---|
1913 | |
---|
1914 | for(k = 0; k < numberOfModels; k++) |
---|
1915 | endLH[k] = result[k]; |
---|
1916 | |
---|
1917 | for(k = 0, pos = 0; k < ll->entries; k++) |
---|
1918 | { |
---|
1919 | if(ll->ld[k].valid) |
---|
1920 | { |
---|
1921 | if(startLH[pos] > endLH[pos]) |
---|
1922 | { |
---|
1923 | for(j = 0; j < ll->ld[k].partitions; j++) |
---|
1924 | { |
---|
1925 | int |
---|
1926 | index = ll->ld[k].partitionList[j]; |
---|
1927 | |
---|
1928 | setRateModel(tr, index, startRates[pos * numberOfRates + rateNumber], rateNumber); |
---|
1929 | //tr->partitionData[index].substRates[rateNumber] = startRates[pos * numberOfRates + rateNumber]; |
---|
1930 | initReversibleGTR(tr, index); |
---|
1931 | } |
---|
1932 | } |
---|
1933 | else |
---|
1934 | { |
---|
1935 | for(j = 0; j < ll->ld[k].partitions; j++) |
---|
1936 | { |
---|
1937 | int |
---|
1938 | index = ll->ld[k].partitionList[j]; |
---|
1939 | |
---|
1940 | setRateModel(tr, index, _x[pos], rateNumber); |
---|
1941 | //tr->partitionData[index].substRates[rateNumber] = _x[pos]; |
---|
1942 | initReversibleGTR(tr, index); |
---|
1943 | } |
---|
1944 | } |
---|
1945 | pos++; |
---|
1946 | } |
---|
1947 | } |
---|
1948 | |
---|
1949 | #ifdef _USE_PTHREADS |
---|
1950 | masterBarrier(THREAD_COPY_RATES, tr); |
---|
1951 | #endif |
---|
1952 | assert(pos == numberOfModels); |
---|
1953 | |
---|
1954 | rax_free(startLH); |
---|
1955 | rax_free(endLH); |
---|
1956 | rax_free(result); |
---|
1957 | rax_free(_a); |
---|
1958 | rax_free(_b); |
---|
1959 | rax_free(_c); |
---|
1960 | rax_free(_fa); |
---|
1961 | rax_free(_fb); |
---|
1962 | rax_free(_fc); |
---|
1963 | rax_free(_param); |
---|
1964 | rax_free(_x); |
---|
1965 | rax_free(startRates); |
---|
1966 | |
---|
1967 | #ifdef _DEBUG_MODEL_OPTIMIZATION |
---|
1968 | evaluateGenericInitrav(tr, tr->start); |
---|
1969 | |
---|
1970 | if(tr->likelihood < initialLH) |
---|
1971 | printf("%f %f\n", tr->likelihood, initialLH); |
---|
1972 | assert(tr->likelihood >= initialLH); |
---|
1973 | #endif |
---|
1974 | |
---|
1975 | } |
---|
1976 | |
---|
1977 | static void optRates(tree *tr, double modelEpsilon, linkageList *ll, int numberOfModels, int states) |
---|
1978 | { |
---|
1979 | int |
---|
1980 | rateNumber, |
---|
1981 | numberOfRates = ((states * states - states) / 2) - 1; |
---|
1982 | |
---|
1983 | for(rateNumber = 0; rateNumber < numberOfRates; rateNumber++) |
---|
1984 | optRate(tr, modelEpsilon, ll, numberOfModels, states, rateNumber, numberOfRates); |
---|
1985 | } |
---|
1986 | |
---|
1987 | static boolean AAisGTR(tree *tr) |
---|
1988 | { |
---|
1989 | int |
---|
1990 | i, |
---|
1991 | count = 0; |
---|
1992 | |
---|
1993 | for(i = 0; i < tr->NumberOfModels; i++) |
---|
1994 | { |
---|
1995 | if(tr->partitionData[i].dataType == AA_DATA) |
---|
1996 | { |
---|
1997 | count++; |
---|
1998 | if(tr->partitionData[i].protModels != GTR) |
---|
1999 | return FALSE; |
---|
2000 | } |
---|
2001 | } |
---|
2002 | |
---|
2003 | if(count == 0) |
---|
2004 | return FALSE; |
---|
2005 | |
---|
2006 | return TRUE; |
---|
2007 | } |
---|
2008 | |
---|
2009 | static boolean AAisUnlinkedGTR(tree *tr) |
---|
2010 | { |
---|
2011 | int |
---|
2012 | i, |
---|
2013 | count = 0; |
---|
2014 | |
---|
2015 | for(i = 0; i < tr->NumberOfModels; i++) |
---|
2016 | { |
---|
2017 | if(tr->partitionData[i].dataType == AA_DATA) |
---|
2018 | { |
---|
2019 | count++; |
---|
2020 | if(tr->partitionData[i].protModels != GTR_UNLINKED) |
---|
2021 | return FALSE; |
---|
2022 | } |
---|
2023 | } |
---|
2024 | |
---|
2025 | if(count == 0) |
---|
2026 | return FALSE; |
---|
2027 | |
---|
2028 | return TRUE; |
---|
2029 | } |
---|
2030 | |
---|
2031 | static void optRatesGeneric(tree *tr, double modelEpsilon, linkageList *ll) |
---|
2032 | { |
---|
2033 | int |
---|
2034 | i, |
---|
2035 | dnaPartitions = 0, |
---|
2036 | aaPartitionsLinked = 0, |
---|
2037 | aaPartitionsUnlinked = 0, |
---|
2038 | secondaryPartitions = 0, |
---|
2039 | secondaryModel = -1, |
---|
2040 | states = -1; |
---|
2041 | |
---|
2042 | /* assumes homogeneous super-partitions, that either contain DNA or AA partitions !*/ |
---|
2043 | /* does not check whether AA are all linked */ |
---|
2044 | |
---|
2045 | /* first do DNA */ |
---|
2046 | |
---|
2047 | for(i = 0; i < ll->entries; i++) |
---|
2048 | { |
---|
2049 | switch(tr->partitionData[ll->ld[i].partitionList[0]].dataType) |
---|
2050 | { |
---|
2051 | case DNA_DATA: |
---|
2052 | states = tr->partitionData[ll->ld[i].partitionList[0]].states; |
---|
2053 | ll->ld[i].valid = TRUE; |
---|
2054 | dnaPartitions++; |
---|
2055 | break; |
---|
2056 | case BINARY_DATA: |
---|
2057 | case AA_DATA: |
---|
2058 | case SECONDARY_DATA: |
---|
2059 | case SECONDARY_DATA_6: |
---|
2060 | case SECONDARY_DATA_7: |
---|
2061 | case GENERIC_32: |
---|
2062 | case GENERIC_64: |
---|
2063 | ll->ld[i].valid = FALSE; |
---|
2064 | break; |
---|
2065 | default: |
---|
2066 | assert(0); |
---|
2067 | } |
---|
2068 | } |
---|
2069 | |
---|
2070 | if(dnaPartitions > 0) |
---|
2071 | optRates(tr, modelEpsilon, ll, dnaPartitions, states); |
---|
2072 | |
---|
2073 | |
---|
2074 | /* then SECONDARY */ |
---|
2075 | |
---|
2076 | for(i = 0; i < ll->entries; i++) |
---|
2077 | { |
---|
2078 | switch(tr->partitionData[ll->ld[i].partitionList[0]].dataType) |
---|
2079 | { |
---|
2080 | /* we only have one type of secondary data models in one analysis */ |
---|
2081 | case SECONDARY_DATA_6: |
---|
2082 | states = tr->partitionData[ll->ld[i].partitionList[0]].states; |
---|
2083 | secondaryModel = SECONDARY_DATA_6; |
---|
2084 | ll->ld[i].valid = TRUE; |
---|
2085 | secondaryPartitions++; |
---|
2086 | break; |
---|
2087 | case SECONDARY_DATA_7: |
---|
2088 | states = tr->partitionData[ll->ld[i].partitionList[0]].states; |
---|
2089 | secondaryModel = SECONDARY_DATA_7; |
---|
2090 | ll->ld[i].valid = TRUE; |
---|
2091 | secondaryPartitions++; |
---|
2092 | break; |
---|
2093 | case SECONDARY_DATA: |
---|
2094 | states = tr->partitionData[ll->ld[i].partitionList[0]].states; |
---|
2095 | secondaryModel = SECONDARY_DATA; |
---|
2096 | ll->ld[i].valid = TRUE; |
---|
2097 | secondaryPartitions++; |
---|
2098 | break; |
---|
2099 | case BINARY_DATA: |
---|
2100 | case AA_DATA: |
---|
2101 | case DNA_DATA: |
---|
2102 | case GENERIC_32: |
---|
2103 | case GENERIC_64: |
---|
2104 | ll->ld[i].valid = FALSE; |
---|
2105 | break; |
---|
2106 | default: |
---|
2107 | assert(0); |
---|
2108 | } |
---|
2109 | } |
---|
2110 | |
---|
2111 | |
---|
2112 | |
---|
2113 | if(secondaryPartitions > 0) |
---|
2114 | { |
---|
2115 | assert(secondaryPartitions == 1); |
---|
2116 | |
---|
2117 | switch(secondaryModel) |
---|
2118 | { |
---|
2119 | case SECONDARY_DATA: |
---|
2120 | optRates(tr, modelEpsilon, ll, secondaryPartitions, states); |
---|
2121 | break; |
---|
2122 | case SECONDARY_DATA_6: |
---|
2123 | optRates(tr, modelEpsilon, ll, secondaryPartitions, states); |
---|
2124 | break; |
---|
2125 | case SECONDARY_DATA_7: |
---|
2126 | optRates(tr, modelEpsilon, ll, secondaryPartitions, states); |
---|
2127 | break; |
---|
2128 | default: |
---|
2129 | assert(0); |
---|
2130 | } |
---|
2131 | } |
---|
2132 | |
---|
2133 | /* then AA */ |
---|
2134 | |
---|
2135 | if(AAisGTR(tr)) |
---|
2136 | { |
---|
2137 | for(i = 0; i < ll->entries; i++) |
---|
2138 | { |
---|
2139 | switch(tr->partitionData[ll->ld[i].partitionList[0]].dataType) |
---|
2140 | { |
---|
2141 | case AA_DATA: |
---|
2142 | states = tr->partitionData[ll->ld[i].partitionList[0]].states; |
---|
2143 | ll->ld[i].valid = TRUE; |
---|
2144 | aaPartitionsLinked++; |
---|
2145 | break; |
---|
2146 | case DNA_DATA: |
---|
2147 | case BINARY_DATA: |
---|
2148 | case SECONDARY_DATA: |
---|
2149 | case SECONDARY_DATA_6: |
---|
2150 | case SECONDARY_DATA_7: |
---|
2151 | ll->ld[i].valid = FALSE; |
---|
2152 | break; |
---|
2153 | default: |
---|
2154 | assert(0); |
---|
2155 | } |
---|
2156 | } |
---|
2157 | |
---|
2158 | assert(aaPartitionsLinked == 1); |
---|
2159 | |
---|
2160 | optRates(tr, modelEpsilon, ll, aaPartitionsLinked, states); |
---|
2161 | } |
---|
2162 | |
---|
2163 | if(AAisUnlinkedGTR(tr)) |
---|
2164 | { |
---|
2165 | aaPartitionsUnlinked = 0; |
---|
2166 | |
---|
2167 | for(i = 0; i < ll->entries; i++) |
---|
2168 | { |
---|
2169 | switch(tr->partitionData[ll->ld[i].partitionList[0]].dataType) |
---|
2170 | { |
---|
2171 | case AA_DATA: |
---|
2172 | states = tr->partitionData[ll->ld[i].partitionList[0]].states; |
---|
2173 | ll->ld[i].valid = TRUE; |
---|
2174 | aaPartitionsUnlinked++; |
---|
2175 | break; |
---|
2176 | case DNA_DATA: |
---|
2177 | case BINARY_DATA: |
---|
2178 | case SECONDARY_DATA: |
---|
2179 | case SECONDARY_DATA_6: |
---|
2180 | case SECONDARY_DATA_7: |
---|
2181 | ll->ld[i].valid = FALSE; |
---|
2182 | break; |
---|
2183 | default: |
---|
2184 | assert(0); |
---|
2185 | } |
---|
2186 | } |
---|
2187 | |
---|
2188 | assert(aaPartitionsUnlinked >= 1); |
---|
2189 | |
---|
2190 | optRates(tr, modelEpsilon, ll, aaPartitionsUnlinked, states); |
---|
2191 | } |
---|
2192 | /* then multi-state */ |
---|
2193 | |
---|
2194 | /* |
---|
2195 | now here we have to be careful, because every multi-state partition can actually |
---|
2196 | have a distinct number of states, so we will go to every multi-state partition separately, |
---|
2197 | parallel efficiency for this will suck, but what the hell ..... |
---|
2198 | */ |
---|
2199 | |
---|
2200 | if(tr->multiStateModel == GTR_MULTI_STATE) |
---|
2201 | { |
---|
2202 | for(i = 0; i < ll->entries; i++) |
---|
2203 | { |
---|
2204 | switch(tr->partitionData[ll->ld[i].partitionList[0]].dataType) |
---|
2205 | { |
---|
2206 | case GENERIC_32: |
---|
2207 | { |
---|
2208 | int k; |
---|
2209 | |
---|
2210 | states = tr->partitionData[ll->ld[i].partitionList[0]].states; |
---|
2211 | |
---|
2212 | ll->ld[i].valid = TRUE; |
---|
2213 | |
---|
2214 | for(k = 0; k < ll->entries; k++) |
---|
2215 | if(k != i) |
---|
2216 | ll->ld[k].valid = FALSE; |
---|
2217 | |
---|
2218 | optRates(tr, modelEpsilon, ll, 1, states); |
---|
2219 | } |
---|
2220 | break; |
---|
2221 | case AA_DATA: |
---|
2222 | case DNA_DATA: |
---|
2223 | case BINARY_DATA: |
---|
2224 | case SECONDARY_DATA: |
---|
2225 | case SECONDARY_DATA_6: |
---|
2226 | case SECONDARY_DATA_7: |
---|
2227 | case GENERIC_64: |
---|
2228 | break; |
---|
2229 | default: |
---|
2230 | assert(0); |
---|
2231 | } |
---|
2232 | } |
---|
2233 | } |
---|
2234 | |
---|
2235 | for(i = 0; i < ll->entries; i++) |
---|
2236 | ll->ld[i].valid = TRUE; |
---|
2237 | } |
---|
2238 | |
---|
2239 | static void optLG4X_Rate(tree *tr, double modelEpsilon, linkageList *ll, int numberOfModels, int rateNumber) |
---|
2240 | { |
---|
2241 | int |
---|
2242 | pos, |
---|
2243 | i; |
---|
2244 | |
---|
2245 | double |
---|
2246 | lim_inf = LG4X_RATE_MIN, |
---|
2247 | lim_sup = LG4X_RATE_MAX, |
---|
2248 | *startLH = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
2249 | *endLH = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
2250 | *startAlpha = (double *)rax_malloc(sizeof(double) * numberOfModels * 4), |
---|
2251 | *startWeights = (double *)rax_malloc(sizeof(double) * numberOfModels * 4), |
---|
2252 | *endAlpha = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
2253 | *_a = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
2254 | *_b = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
2255 | *_c = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
2256 | *_fa = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
2257 | *_fb = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
2258 | *_fc = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
2259 | *_param = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
2260 | *result = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
2261 | *_x = (double *)rax_malloc(sizeof(double) * numberOfModels); |
---|
2262 | |
---|
2263 | evaluateGenericInitrav(tr, tr->start); |
---|
2264 | // printf("Enter lg4x rates: %f\n", tr->likelihood); |
---|
2265 | |
---|
2266 | #ifdef _DEBUG_MODEL_OPTIMIZATION |
---|
2267 | double |
---|
2268 | initialLH = tr->likelihood; |
---|
2269 | #endif |
---|
2270 | |
---|
2271 | assert(rateNumber >= 0 && rateNumber < 4); |
---|
2272 | |
---|
2273 | /* |
---|
2274 | at this point here every worker has the traversal data it needs for the |
---|
2275 | search, so we won't re-distribute it he he :-) |
---|
2276 | */ |
---|
2277 | |
---|
2278 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
2279 | { |
---|
2280 | if(ll->ld[i].valid) |
---|
2281 | { |
---|
2282 | int |
---|
2283 | index = ll->ld[i].partitionList[0]; |
---|
2284 | |
---|
2285 | assert(ll->ld[i].partitions == 1); |
---|
2286 | |
---|
2287 | memcpy(&startAlpha[pos * 4], tr->partitionData[index].gammaRates, 4 * sizeof(double)); |
---|
2288 | memcpy(&startWeights[pos * 4], tr->partitionData[index].weights, 4 * sizeof(double)); |
---|
2289 | |
---|
2290 | _a[pos] = startAlpha[pos * 4 + rateNumber] + 0.1; |
---|
2291 | _b[pos] = startAlpha[pos * 4 + rateNumber] - 0.1; |
---|
2292 | |
---|
2293 | if(_a[pos] < lim_inf) |
---|
2294 | _a[pos] = lim_inf; |
---|
2295 | |
---|
2296 | if(_a[pos] > lim_sup) |
---|
2297 | _a[pos] = lim_sup; |
---|
2298 | |
---|
2299 | if(_b[pos] < lim_inf) |
---|
2300 | _b[pos] = lim_inf; |
---|
2301 | |
---|
2302 | if(_b[pos] > lim_sup) |
---|
2303 | _b[pos] = lim_sup; |
---|
2304 | |
---|
2305 | startLH[pos] = tr->perPartitionLH[index]; |
---|
2306 | endLH[pos] = unlikely; |
---|
2307 | |
---|
2308 | pos++; |
---|
2309 | } |
---|
2310 | } |
---|
2311 | |
---|
2312 | assert(pos == numberOfModels); |
---|
2313 | |
---|
2314 | brakGeneric(_param, _a, _b, _c, _fa, _fb, _fc, lim_inf, lim_sup, numberOfModels, rateNumber, LXRATE_F, tr, ll, modelEpsilon); |
---|
2315 | brentGeneric(_a, _b, _c, _fb, modelEpsilon, _x, result, numberOfModels, LXRATE_F, rateNumber, tr, ll, lim_inf, lim_sup); |
---|
2316 | |
---|
2317 | /* now calculate the likelihood with the optimized rate */ |
---|
2318 | |
---|
2319 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
2320 | { |
---|
2321 | if(ll->ld[i].valid) |
---|
2322 | { |
---|
2323 | int |
---|
2324 | index = ll->ld[i].partitionList[0]; |
---|
2325 | |
---|
2326 | assert(ll->ld[i].partitions == 1); |
---|
2327 | |
---|
2328 | tr->executeModel[index] = TRUE; |
---|
2329 | |
---|
2330 | tr->partitionData[index].gammaRates[rateNumber] = _x[pos]; |
---|
2331 | |
---|
2332 | pos++; |
---|
2333 | } |
---|
2334 | } |
---|
2335 | |
---|
2336 | #ifdef _USE_PTHREADS |
---|
2337 | masterBarrier(THREAD_COPY_LG4X_RATES, tr); |
---|
2338 | #endif |
---|
2339 | |
---|
2340 | evaluateGenericInitrav(tr, tr->start); |
---|
2341 | |
---|
2342 | for(i = 0, pos = 0; i < ll->entries; i++) |
---|
2343 | { |
---|
2344 | if(ll->ld[i].valid) |
---|
2345 | { |
---|
2346 | int |
---|
2347 | index = ll->ld[i].partitionList[0]; |
---|
2348 | |
---|
2349 | assert(ll->ld[i].partitions == 1); |
---|
2350 | |
---|
2351 | endLH[pos] = tr->perPartitionLH[index]; |
---|
2352 | |
---|
2353 | if(startLH[pos] > endLH[pos]) |
---|
2354 | { |
---|
2355 | memcpy(tr->partitionData[index].weights, &startWeights[pos * 4], sizeof(double) * 4); |
---|
2356 | memcpy(tr->partitionData[index].gammaRates, &startAlpha[pos * 4], sizeof(double) * 4); |
---|
2357 | } |
---|
2358 | |
---|
2359 | pos++; |
---|
2360 | } |
---|
2361 | } |
---|
2362 | |
---|
2363 | assert(pos == numberOfModels); |
---|
2364 | |
---|
2365 | #ifdef _USE_PTHREADS |
---|
2366 | masterBarrier(THREAD_COPY_LG4X_RATES, tr); |
---|
2367 | #endif |
---|
2368 | |
---|
2369 | |
---|
2370 | #ifdef _DEBUG_MODEL_OPTIMIZATION |
---|
2371 | evaluateGenericInitrav(tr, tr->start); |
---|
2372 | |
---|
2373 | if(tr->likelihood < initialLH) |
---|
2374 | printf("%f %f\n", tr->likelihood, initialLH); |
---|
2375 | assert(tr->likelihood >= initialLH); |
---|
2376 | #endif |
---|
2377 | |
---|
2378 | rax_free(startLH); |
---|
2379 | rax_free(endLH); |
---|
2380 | rax_free(startWeights); |
---|
2381 | rax_free(startAlpha); |
---|
2382 | rax_free(endAlpha); |
---|
2383 | rax_free(result); |
---|
2384 | rax_free(_a); |
---|
2385 | rax_free(_b); |
---|
2386 | rax_free(_c); |
---|
2387 | rax_free(_fa); |
---|
2388 | rax_free(_fb); |
---|
2389 | rax_free(_fc); |
---|
2390 | rax_free(_param); |
---|
2391 | rax_free(_x); |
---|
2392 | } |
---|
2393 | |
---|
2394 | /*** WARNING: the re-scaling of the branch lengths will only work if |
---|
2395 | it is done after the rate optimization that modifies fracchange |
---|
2396 | ***/ |
---|
2397 | |
---|
2398 | |
---|
2399 | static void optLG4X(tree *tr, double modelEpsilon, linkageList *ll, int numberOfModels) |
---|
2400 | { |
---|
2401 | int |
---|
2402 | i; |
---|
2403 | |
---|
2404 | double |
---|
2405 | lg4xScaler, |
---|
2406 | *lg4xScalers = (double *)rax_calloc(tr->NumberOfModels, sizeof(double)), |
---|
2407 | *modelWeights = (double *)rax_calloc(tr->NumberOfModels, sizeof(double)), |
---|
2408 | wgtsum = 0.0; |
---|
2409 | |
---|
2410 | for(i = 0; i < 4; i++) |
---|
2411 | optLG4X_Rate(tr, modelEpsilon, ll, numberOfModels, i); |
---|
2412 | |
---|
2413 | for(i = 0; i < tr->NumberOfModels; i++) |
---|
2414 | lg4xScalers[i] = 1.0; |
---|
2415 | |
---|
2416 | for(i = 0; i < ll->entries; i++) |
---|
2417 | { |
---|
2418 | if(ll->ld[i].valid) |
---|
2419 | { |
---|
2420 | int |
---|
2421 | j, |
---|
2422 | index = ll->ld[i].partitionList[0]; |
---|
2423 | |
---|
2424 | double |
---|
2425 | averageRate = 0.0; |
---|
2426 | |
---|
2427 | assert(ll->ld[i].partitions == 1); |
---|
2428 | |
---|
2429 | for(j = 0; j < 4; j++) |
---|
2430 | averageRate += tr->partitionData[index].gammaRates[j]; |
---|
2431 | |
---|
2432 | averageRate /= 4.0; |
---|
2433 | |
---|
2434 | lg4xScalers[index] = averageRate; |
---|
2435 | } |
---|
2436 | } |
---|
2437 | |
---|
2438 | if(tr->NumberOfModels > 1) |
---|
2439 | { |
---|
2440 | for(i = 0; i < tr->NumberOfModels; i++) |
---|
2441 | tr->fracchanges[i] = tr->rawFracchanges[i] * (1.0 / lg4xScalers[i]); |
---|
2442 | } |
---|
2443 | |
---|
2444 | for(i = 0; i < tr->cdta->endsite; i++) |
---|
2445 | { |
---|
2446 | modelWeights[tr->model[i]] += (double)tr->cdta->aliaswgt[i]; |
---|
2447 | wgtsum += (double)tr->cdta->aliaswgt[i]; |
---|
2448 | } |
---|
2449 | |
---|
2450 | lg4xScaler = 0.0; |
---|
2451 | |
---|
2452 | for(i = 0; i < tr->NumberOfModels; i++) |
---|
2453 | { |
---|
2454 | double |
---|
2455 | fraction = modelWeights[i] / wgtsum; |
---|
2456 | |
---|
2457 | lg4xScaler += (fraction * lg4xScalers[i]); |
---|
2458 | } |
---|
2459 | |
---|
2460 | tr->fracchange = tr->rawFracchange * (1.0 / lg4xScaler); |
---|
2461 | |
---|
2462 | rax_free(lg4xScalers); |
---|
2463 | rax_free(modelWeights); |
---|
2464 | } |
---|
2465 | |
---|
2466 | static void optAlphasGeneric(tree *tr, double modelEpsilon, linkageList *ll) |
---|
2467 | { |
---|
2468 | int |
---|
2469 | i, |
---|
2470 | non_LG4X_Partitions = 0, |
---|
2471 | LG4X_Partitions = 0; |
---|
2472 | |
---|
2473 | /* assumes homogeneous super-partitions, that either contain DNA or AA partitions !*/ |
---|
2474 | /* does not check whether AA are all linked */ |
---|
2475 | |
---|
2476 | /* first do non-LG4X partitions */ |
---|
2477 | |
---|
2478 | for(i = 0; i < ll->entries; i++) |
---|
2479 | { |
---|
2480 | switch(tr->partitionData[ll->ld[i].partitionList[0]].dataType) |
---|
2481 | { |
---|
2482 | case DNA_DATA: |
---|
2483 | case BINARY_DATA: |
---|
2484 | case SECONDARY_DATA: |
---|
2485 | case SECONDARY_DATA_6: |
---|
2486 | case SECONDARY_DATA_7: |
---|
2487 | case GENERIC_32: |
---|
2488 | case GENERIC_64: |
---|
2489 | ll->ld[i].valid = TRUE; |
---|
2490 | non_LG4X_Partitions++; |
---|
2491 | break; |
---|
2492 | case AA_DATA: |
---|
2493 | if(tr->partitionData[ll->ld[i].partitionList[0]].protModels == LG4X) |
---|
2494 | { |
---|
2495 | LG4X_Partitions++; |
---|
2496 | ll->ld[i].valid = FALSE; |
---|
2497 | } |
---|
2498 | else |
---|
2499 | { |
---|
2500 | ll->ld[i].valid = TRUE; |
---|
2501 | non_LG4X_Partitions++; |
---|
2502 | } |
---|
2503 | break; |
---|
2504 | default: |
---|
2505 | assert(0); |
---|
2506 | } |
---|
2507 | } |
---|
2508 | |
---|
2509 | |
---|
2510 | |
---|
2511 | if(non_LG4X_Partitions > 0) |
---|
2512 | optAlpha(tr, modelEpsilon, ll, non_LG4X_Partitions); |
---|
2513 | |
---|
2514 | |
---|
2515 | |
---|
2516 | /* then LG4x partitions */ |
---|
2517 | |
---|
2518 | for(i = 0; i < ll->entries; i++) |
---|
2519 | { |
---|
2520 | switch(tr->partitionData[ll->ld[i].partitionList[0]].dataType) |
---|
2521 | { |
---|
2522 | case DNA_DATA: |
---|
2523 | case BINARY_DATA: |
---|
2524 | case SECONDARY_DATA: |
---|
2525 | case SECONDARY_DATA_6: |
---|
2526 | case SECONDARY_DATA_7: |
---|
2527 | case GENERIC_32: |
---|
2528 | case GENERIC_64: |
---|
2529 | ll->ld[i].valid = FALSE; |
---|
2530 | break; |
---|
2531 | case AA_DATA: |
---|
2532 | if(tr->partitionData[ll->ld[i].partitionList[0]].protModels == LG4X) |
---|
2533 | ll->ld[i].valid = TRUE; |
---|
2534 | else |
---|
2535 | ll->ld[i].valid = FALSE; |
---|
2536 | break; |
---|
2537 | default: |
---|
2538 | assert(0); |
---|
2539 | } |
---|
2540 | } |
---|
2541 | |
---|
2542 | |
---|
2543 | |
---|
2544 | if(LG4X_Partitions > 0) |
---|
2545 | optLG4X(tr, modelEpsilon, ll, LG4X_Partitions); |
---|
2546 | |
---|
2547 | |
---|
2548 | |
---|
2549 | |
---|
2550 | for(i = 0; i < ll->entries; i++) |
---|
2551 | ll->ld[i].valid = TRUE; |
---|
2552 | } |
---|
2553 | |
---|
2554 | |
---|
2555 | /*********************FUNCTIONS FOR APPROXIMATE MODEL OPTIMIZATION ***************************************/ |
---|
2556 | |
---|
2557 | |
---|
2558 | |
---|
2559 | |
---|
2560 | |
---|
2561 | |
---|
2562 | static int catCompare(const void *p1, const void *p2) |
---|
2563 | { |
---|
2564 | rateCategorize *rc1 = (rateCategorize *)p1; |
---|
2565 | rateCategorize *rc2 = (rateCategorize *)p2; |
---|
2566 | |
---|
2567 | double i = rc1->accumulatedSiteLikelihood; |
---|
2568 | double j = rc2->accumulatedSiteLikelihood; |
---|
2569 | |
---|
2570 | if (i > j) |
---|
2571 | return (1); |
---|
2572 | if (i < j) |
---|
2573 | return (-1); |
---|
2574 | return (0); |
---|
2575 | } |
---|
2576 | |
---|
2577 | |
---|
2578 | |
---|
2579 | static void categorizePartition(tree *tr, rateCategorize *rc, int model, int lower, int upper) |
---|
2580 | { |
---|
2581 | int |
---|
2582 | zeroCounter, |
---|
2583 | i, |
---|
2584 | k; |
---|
2585 | |
---|
2586 | double |
---|
2587 | diff, |
---|
2588 | min; |
---|
2589 | |
---|
2590 | for (i = lower, zeroCounter = 0; i < upper; i++, zeroCounter++) |
---|
2591 | { |
---|
2592 | double |
---|
2593 | temp = tr->cdta->patrat[i]; |
---|
2594 | |
---|
2595 | int |
---|
2596 | found = 0; |
---|
2597 | |
---|
2598 | for(k = 0; k < tr->partitionData[model].numberOfCategories; k++) |
---|
2599 | { |
---|
2600 | if(temp == rc[k].rate || (fabs(temp - rc[k].rate) < 0.001)) |
---|
2601 | { |
---|
2602 | found = 1; |
---|
2603 | tr->cdta->rateCategory[i] = k; |
---|
2604 | break; |
---|
2605 | } |
---|
2606 | } |
---|
2607 | |
---|
2608 | if(!found) |
---|
2609 | { |
---|
2610 | min = fabs(temp - rc[0].rate); |
---|
2611 | tr->cdta->rateCategory[i] = 0; |
---|
2612 | |
---|
2613 | for(k = 1; k < tr->partitionData[model].numberOfCategories; k++) |
---|
2614 | { |
---|
2615 | diff = fabs(temp - rc[k].rate); |
---|
2616 | |
---|
2617 | if(diff < min) |
---|
2618 | { |
---|
2619 | min = diff; |
---|
2620 | tr->cdta->rateCategory[i] = k; |
---|
2621 | } |
---|
2622 | } |
---|
2623 | } |
---|
2624 | } |
---|
2625 | |
---|
2626 | for(k = 0; k < tr->partitionData[model].numberOfCategories; k++) |
---|
2627 | tr->partitionData[model].unscaled_perSiteRates[k] = rc[k].rate; |
---|
2628 | } |
---|
2629 | |
---|
2630 | |
---|
2631 | #ifdef _USE_PTHREADS |
---|
2632 | |
---|
2633 | void optRateCatPthreads(tree *tr, double lower_spacing, double upper_spacing, double *lhs, int n, int tid) |
---|
2634 | { |
---|
2635 | int |
---|
2636 | model; |
---|
2637 | |
---|
2638 | size_t |
---|
2639 | localIndex, |
---|
2640 | i; |
---|
2641 | |
---|
2642 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
2643 | { |
---|
2644 | for(i = tr->partitionData[model].lower, localIndex = 0; i < tr->partitionData[model].upper; i++) |
---|
2645 | { |
---|
2646 | if(i % ((size_t)n) == ((size_t)tid)) |
---|
2647 | { |
---|
2648 | |
---|
2649 | double initialRate, initialLikelihood, |
---|
2650 | leftLH, rightLH, leftRate, rightRate, v; |
---|
2651 | const double epsilon = 0.00001; |
---|
2652 | int k; |
---|
2653 | |
---|
2654 | tr->cdta->patrat[i] = tr->cdta->patratStored[i]; |
---|
2655 | initialRate = tr->cdta->patrat[i]; |
---|
2656 | |
---|
2657 | initialLikelihood = evaluatePartialGeneric(tr, localIndex, initialRate, model); /* i is real i ??? */ |
---|
2658 | |
---|
2659 | |
---|
2660 | leftLH = rightLH = initialLikelihood; |
---|
2661 | leftRate = rightRate = initialRate; |
---|
2662 | |
---|
2663 | k = 1; |
---|
2664 | |
---|
2665 | while((initialRate - k * lower_spacing > 0.0001) && |
---|
2666 | ((v = evaluatePartialGeneric(tr, localIndex, initialRate - k * lower_spacing, model)) |
---|
2667 | > leftLH) && |
---|
2668 | (fabs(leftLH - v) > epsilon)) |
---|
2669 | { |
---|
2670 | #ifndef WIN32 |
---|
2671 | if(isnan(v)) |
---|
2672 | assert(0); |
---|
2673 | #endif |
---|
2674 | |
---|
2675 | leftLH = v; |
---|
2676 | leftRate = initialRate - k * lower_spacing; |
---|
2677 | k++; |
---|
2678 | } |
---|
2679 | |
---|
2680 | k = 1; |
---|
2681 | |
---|
2682 | while(((v = evaluatePartialGeneric(tr, localIndex, initialRate + k * upper_spacing, model)) > rightLH) && |
---|
2683 | (fabs(rightLH - v) > epsilon)) |
---|
2684 | { |
---|
2685 | #ifndef WIN32 |
---|
2686 | if(isnan(v)) |
---|
2687 | assert(0); |
---|
2688 | #endif |
---|
2689 | rightLH = v; |
---|
2690 | rightRate = initialRate + k * upper_spacing; |
---|
2691 | k++; |
---|
2692 | } |
---|
2693 | |
---|
2694 | if(rightLH > initialLikelihood || leftLH > initialLikelihood) |
---|
2695 | { |
---|
2696 | if(rightLH > leftLH) |
---|
2697 | { |
---|
2698 | tr->cdta->patrat[i] = rightRate; |
---|
2699 | lhs[i] = rightLH; |
---|
2700 | } |
---|
2701 | else |
---|
2702 | { |
---|
2703 | tr->cdta->patrat[i] = leftRate; |
---|
2704 | lhs[i] = leftLH; |
---|
2705 | } |
---|
2706 | } |
---|
2707 | else |
---|
2708 | lhs[i] = initialLikelihood; |
---|
2709 | |
---|
2710 | tr->cdta->patratStored[i] = tr->cdta->patrat[i]; |
---|
2711 | localIndex++; |
---|
2712 | } |
---|
2713 | } |
---|
2714 | assert(localIndex == tr->partitionData[model].width); |
---|
2715 | } |
---|
2716 | } |
---|
2717 | |
---|
2718 | |
---|
2719 | |
---|
2720 | #else |
---|
2721 | |
---|
2722 | |
---|
2723 | static void optRateCatModel(tree *tr, int model, double lower_spacing, double upper_spacing, double *lhs) |
---|
2724 | { |
---|
2725 | int lower = tr->partitionData[model].lower; |
---|
2726 | int upper = tr->partitionData[model].upper; |
---|
2727 | int i; |
---|
2728 | for(i = lower; i < upper; i++) |
---|
2729 | { |
---|
2730 | double initialRate, initialLikelihood, |
---|
2731 | leftLH, rightLH, leftRate, rightRate, v; |
---|
2732 | const double epsilon = 0.00001; |
---|
2733 | int k; |
---|
2734 | |
---|
2735 | tr->cdta->patrat[i] = tr->cdta->patratStored[i]; |
---|
2736 | initialRate = tr->cdta->patrat[i]; |
---|
2737 | |
---|
2738 | initialLikelihood = evaluatePartialGeneric(tr, i, initialRate, model); |
---|
2739 | |
---|
2740 | |
---|
2741 | leftLH = rightLH = initialLikelihood; |
---|
2742 | leftRate = rightRate = initialRate; |
---|
2743 | |
---|
2744 | k = 1; |
---|
2745 | |
---|
2746 | while((initialRate - k * lower_spacing > 0.0001) && |
---|
2747 | ((v = evaluatePartialGeneric(tr, i, initialRate - k * lower_spacing, model)) |
---|
2748 | > leftLH) && |
---|
2749 | (fabs(leftLH - v) > epsilon)) |
---|
2750 | { |
---|
2751 | #ifndef WIN32 |
---|
2752 | if(isnan(v)) |
---|
2753 | assert(0); |
---|
2754 | #endif |
---|
2755 | |
---|
2756 | leftLH = v; |
---|
2757 | leftRate = initialRate - k * lower_spacing; |
---|
2758 | k++; |
---|
2759 | } |
---|
2760 | |
---|
2761 | k = 1; |
---|
2762 | |
---|
2763 | while(((v = evaluatePartialGeneric(tr, i, initialRate + k * upper_spacing, model)) > rightLH) && |
---|
2764 | (fabs(rightLH - v) > epsilon)) |
---|
2765 | { |
---|
2766 | #ifndef WIN32 |
---|
2767 | if(isnan(v)) |
---|
2768 | assert(0); |
---|
2769 | #endif |
---|
2770 | rightLH = v; |
---|
2771 | rightRate = initialRate + k * upper_spacing; |
---|
2772 | k++; |
---|
2773 | } |
---|
2774 | |
---|
2775 | if(rightLH > initialLikelihood || leftLH > initialLikelihood) |
---|
2776 | { |
---|
2777 | if(rightLH > leftLH) |
---|
2778 | { |
---|
2779 | tr->cdta->patrat[i] = rightRate; |
---|
2780 | lhs[i] = rightLH; |
---|
2781 | } |
---|
2782 | else |
---|
2783 | { |
---|
2784 | tr->cdta->patrat[i] = leftRate; |
---|
2785 | lhs[i] = leftLH; |
---|
2786 | } |
---|
2787 | } |
---|
2788 | else |
---|
2789 | lhs[i] = initialLikelihood; |
---|
2790 | |
---|
2791 | tr->cdta->patratStored[i] = tr->cdta->patrat[i]; |
---|
2792 | } |
---|
2793 | |
---|
2794 | } |
---|
2795 | |
---|
2796 | |
---|
2797 | #endif |
---|
2798 | |
---|
2799 | |
---|
2800 | |
---|
2801 | /* |
---|
2802 | set scaleRates to FALSE everywhere such that |
---|
2803 | per-site rates are not scaled to obtain an overall mean rate |
---|
2804 | of 1.0 |
---|
2805 | */ |
---|
2806 | |
---|
2807 | void updatePerSiteRates(tree *tr, boolean scaleRates) |
---|
2808 | { |
---|
2809 | int |
---|
2810 | i, |
---|
2811 | model; |
---|
2812 | |
---|
2813 | if(tr->multiBranch) |
---|
2814 | { |
---|
2815 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
2816 | { |
---|
2817 | int |
---|
2818 | lower = tr->partitionData[model].lower, |
---|
2819 | upper = tr->partitionData[model].upper; |
---|
2820 | |
---|
2821 | if(scaleRates) |
---|
2822 | { |
---|
2823 | double |
---|
2824 | scaler = 0.0, |
---|
2825 | accRat = 0.0; |
---|
2826 | |
---|
2827 | int |
---|
2828 | accWgt = 0; |
---|
2829 | |
---|
2830 | for(i = lower; i < upper; i++) |
---|
2831 | { |
---|
2832 | int |
---|
2833 | w = tr->cdta->aliaswgt[i]; |
---|
2834 | |
---|
2835 | double |
---|
2836 | rate = tr->partitionData[model].unscaled_perSiteRates[tr->cdta->rateCategory[i]]; |
---|
2837 | |
---|
2838 | assert(0 <= tr->cdta->rateCategory[i] && tr->cdta->rateCategory[i] < tr->maxCategories); |
---|
2839 | |
---|
2840 | accWgt += w; |
---|
2841 | |
---|
2842 | accRat += (w * rate); |
---|
2843 | } |
---|
2844 | |
---|
2845 | accRat /= ((double)accWgt); |
---|
2846 | |
---|
2847 | scaler = 1.0 / ((double)accRat); |
---|
2848 | |
---|
2849 | for(i = 0; i < tr->partitionData[model].numberOfCategories; i++) |
---|
2850 | tr->partitionData[model].perSiteRates[i] = scaler * tr->partitionData[model].unscaled_perSiteRates[i]; |
---|
2851 | |
---|
2852 | accRat = 0.0; |
---|
2853 | |
---|
2854 | for(i = lower; i < upper; i++) |
---|
2855 | { |
---|
2856 | int |
---|
2857 | w = tr->cdta->aliaswgt[i]; |
---|
2858 | |
---|
2859 | double |
---|
2860 | rate = tr->partitionData[model].perSiteRates[tr->cdta->rateCategory[i]]; |
---|
2861 | |
---|
2862 | assert(0 <= tr->cdta->rateCategory[i] && tr->cdta->rateCategory[i] < tr->maxCategories); |
---|
2863 | |
---|
2864 | accRat += (w * rate); |
---|
2865 | } |
---|
2866 | |
---|
2867 | accRat /= ((double)accWgt); |
---|
2868 | |
---|
2869 | if(!(ABS(1.0 - accRat) < 1.0E-5)) |
---|
2870 | printBothOpen("An assertion will fail: accumulated rate categories: %1.40f\n", accRat); |
---|
2871 | |
---|
2872 | assert(ABS(1.0 - accRat) < 1.0E-5); |
---|
2873 | } |
---|
2874 | |
---|
2875 | |
---|
2876 | |
---|
2877 | |
---|
2878 | } |
---|
2879 | } |
---|
2880 | else |
---|
2881 | { |
---|
2882 | int |
---|
2883 | accWgt = 0; |
---|
2884 | |
---|
2885 | double |
---|
2886 | scaler = 0.0, |
---|
2887 | accRat = 0.0; |
---|
2888 | |
---|
2889 | if(scaleRates) |
---|
2890 | { |
---|
2891 | for(model = 0, accRat = 0.0, accWgt = 0; model < tr->NumberOfModels; model++) |
---|
2892 | { |
---|
2893 | int |
---|
2894 | localCount = 0, |
---|
2895 | lower = tr->partitionData[model].lower, |
---|
2896 | upper = tr->partitionData[model].upper; |
---|
2897 | |
---|
2898 | for(i = lower, localCount = 0; i < upper; i++, localCount++) |
---|
2899 | { |
---|
2900 | int |
---|
2901 | w = tr->cdta->aliaswgt[i]; |
---|
2902 | |
---|
2903 | double |
---|
2904 | rate = tr->partitionData[model].unscaled_perSiteRates[tr->cdta->rateCategory[i]]; |
---|
2905 | |
---|
2906 | assert(0 <= tr->cdta->rateCategory[i] && tr->cdta->rateCategory[i] < tr->maxCategories); |
---|
2907 | |
---|
2908 | accWgt += w; |
---|
2909 | |
---|
2910 | accRat += (w * rate); |
---|
2911 | } |
---|
2912 | } |
---|
2913 | |
---|
2914 | |
---|
2915 | |
---|
2916 | accRat /= ((double)accWgt); |
---|
2917 | |
---|
2918 | scaler = 1.0 / ((double)accRat); |
---|
2919 | |
---|
2920 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
2921 | { |
---|
2922 | for(i = 0; i < tr->partitionData[model].numberOfCategories; i++) |
---|
2923 | tr->partitionData[model].perSiteRates[i] = scaler * tr->partitionData[model].unscaled_perSiteRates[i]; |
---|
2924 | } |
---|
2925 | |
---|
2926 | for(model = 0, accRat = 0.0; model < tr->NumberOfModels; model++) |
---|
2927 | { |
---|
2928 | int |
---|
2929 | localCount = 0, |
---|
2930 | lower = tr->partitionData[model].lower, |
---|
2931 | upper = tr->partitionData[model].upper; |
---|
2932 | |
---|
2933 | for(i = lower, localCount = 0; i < upper; i++, localCount++) |
---|
2934 | { |
---|
2935 | int |
---|
2936 | w = tr->cdta->aliaswgt[i]; |
---|
2937 | |
---|
2938 | double |
---|
2939 | rate = tr->partitionData[model].perSiteRates[tr->cdta->rateCategory[i]]; |
---|
2940 | |
---|
2941 | assert(0 <= tr->cdta->rateCategory[i] && tr->cdta->rateCategory[i] < tr->maxCategories); |
---|
2942 | |
---|
2943 | accRat += (w * rate); |
---|
2944 | } |
---|
2945 | } |
---|
2946 | |
---|
2947 | accRat /= ((double)accWgt); |
---|
2948 | |
---|
2949 | if(!(ABS(1.0 - accRat) < 1.0E-5)) |
---|
2950 | printBothOpen("An assertion will fail: accumulated rate categories: %1.40f\n", accRat); |
---|
2951 | |
---|
2952 | assert(ABS(1.0 - accRat) < 1.0E-5); |
---|
2953 | } |
---|
2954 | |
---|
2955 | |
---|
2956 | |
---|
2957 | } |
---|
2958 | |
---|
2959 | |
---|
2960 | #ifdef _USE_PTHREADS |
---|
2961 | masterBarrier(THREAD_COPY_RATE_CATS, tr); |
---|
2962 | #endif |
---|
2963 | } |
---|
2964 | |
---|
2965 | static void optimizeRateCategories(tree *tr, int _maxCategories) |
---|
2966 | { |
---|
2967 | assert(_maxCategories > 0); |
---|
2968 | |
---|
2969 | if(_maxCategories > 1) |
---|
2970 | { |
---|
2971 | double |
---|
2972 | temp, |
---|
2973 | lower_spacing, |
---|
2974 | upper_spacing, |
---|
2975 | initialLH = tr->likelihood, |
---|
2976 | *ratStored = (double *)rax_malloc(sizeof(double) * tr->cdta->endsite), |
---|
2977 | *lhs = (double *)rax_malloc(sizeof(double) * tr->cdta->endsite), |
---|
2978 | **oldCategorizedRates = (double **)rax_malloc(sizeof(double *) * tr->NumberOfModels), |
---|
2979 | **oldUnscaledCategorizedRates = (double **)rax_malloc(sizeof(double *) * tr->NumberOfModels); |
---|
2980 | |
---|
2981 | int |
---|
2982 | i, |
---|
2983 | k, |
---|
2984 | maxCategories = _maxCategories, |
---|
2985 | *oldCategory = (int *)rax_malloc(sizeof(int) * tr->cdta->endsite), |
---|
2986 | model, |
---|
2987 | *oldNumbers = (int *)rax_malloc(sizeof(int) * tr->NumberOfModels); |
---|
2988 | |
---|
2989 | assert(isTip(tr->start->number, tr->rdta->numsp)); |
---|
2990 | |
---|
2991 | determineFullTraversal(tr->start, tr); |
---|
2992 | |
---|
2993 | if(optimizeRateCategoryInvocations == 1) |
---|
2994 | { |
---|
2995 | lower_spacing = 0.5 / ((double)optimizeRateCategoryInvocations); |
---|
2996 | upper_spacing = 1.0 / ((double)optimizeRateCategoryInvocations); |
---|
2997 | } |
---|
2998 | else |
---|
2999 | { |
---|
3000 | lower_spacing = 0.05 / ((double)optimizeRateCategoryInvocations); |
---|
3001 | upper_spacing = 0.1 / ((double)optimizeRateCategoryInvocations); |
---|
3002 | } |
---|
3003 | |
---|
3004 | if(lower_spacing < 0.001) |
---|
3005 | lower_spacing = 0.001; |
---|
3006 | |
---|
3007 | if(upper_spacing < 0.001) |
---|
3008 | upper_spacing = 0.001; |
---|
3009 | |
---|
3010 | optimizeRateCategoryInvocations++; |
---|
3011 | |
---|
3012 | memcpy(oldCategory, tr->cdta->rateCategory, sizeof(int) * tr->cdta->endsite); |
---|
3013 | memcpy(ratStored, tr->cdta->patratStored, sizeof(double) * tr->cdta->endsite); |
---|
3014 | |
---|
3015 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3016 | { |
---|
3017 | oldNumbers[model] = tr->partitionData[model].numberOfCategories; |
---|
3018 | |
---|
3019 | oldCategorizedRates[model] = (double *)rax_malloc(sizeof(double) * tr->maxCategories); |
---|
3020 | oldUnscaledCategorizedRates[model] = (double *)rax_malloc(sizeof(double) * tr->maxCategories); |
---|
3021 | |
---|
3022 | memcpy(oldCategorizedRates[model], tr->partitionData[model].perSiteRates, tr->maxCategories * sizeof(double)); |
---|
3023 | memcpy(oldUnscaledCategorizedRates[model], tr->partitionData[model].unscaled_perSiteRates, tr->maxCategories * sizeof(double)); |
---|
3024 | } |
---|
3025 | |
---|
3026 | #ifdef _USE_PTHREADS |
---|
3027 | tr->lhs = lhs; |
---|
3028 | tr->lower_spacing = lower_spacing; |
---|
3029 | tr->upper_spacing = upper_spacing; |
---|
3030 | masterBarrier(THREAD_RATE_CATS, tr); |
---|
3031 | #else |
---|
3032 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3033 | optRateCatModel(tr, model, lower_spacing, upper_spacing, lhs); |
---|
3034 | #endif |
---|
3035 | |
---|
3036 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3037 | { |
---|
3038 | int |
---|
3039 | where = 1, |
---|
3040 | found = 0, |
---|
3041 | width = tr->partitionData[model].upper - tr->partitionData[model].lower, |
---|
3042 | upper = tr->partitionData[model].upper, |
---|
3043 | lower = tr->partitionData[model].lower; |
---|
3044 | |
---|
3045 | rateCategorize |
---|
3046 | *rc = (rateCategorize *)rax_malloc(sizeof(rateCategorize) * width); |
---|
3047 | |
---|
3048 | for (i = 0; i < width; i++) |
---|
3049 | { |
---|
3050 | rc[i].accumulatedSiteLikelihood = 0.0; |
---|
3051 | rc[i].rate = 0.0; |
---|
3052 | } |
---|
3053 | |
---|
3054 | rc[0].accumulatedSiteLikelihood = lhs[lower]; |
---|
3055 | rc[0].rate = tr->cdta->patrat[lower]; |
---|
3056 | |
---|
3057 | tr->cdta->rateCategory[lower] = 0; |
---|
3058 | |
---|
3059 | for (i = lower + 1; i < upper; i++) |
---|
3060 | { |
---|
3061 | temp = tr->cdta->patrat[i]; |
---|
3062 | found = 0; |
---|
3063 | |
---|
3064 | for(k = 0; k < where; k++) |
---|
3065 | { |
---|
3066 | if(temp == rc[k].rate || (fabs(temp - rc[k].rate) < 0.001)) |
---|
3067 | { |
---|
3068 | found = 1; |
---|
3069 | rc[k].accumulatedSiteLikelihood += lhs[i]; |
---|
3070 | break; |
---|
3071 | } |
---|
3072 | } |
---|
3073 | |
---|
3074 | if(!found) |
---|
3075 | { |
---|
3076 | rc[where].rate = temp; |
---|
3077 | rc[where].accumulatedSiteLikelihood += lhs[i]; |
---|
3078 | where++; |
---|
3079 | } |
---|
3080 | } |
---|
3081 | |
---|
3082 | qsort(rc, where, sizeof(rateCategorize), catCompare); |
---|
3083 | |
---|
3084 | if(where < maxCategories) |
---|
3085 | { |
---|
3086 | tr->partitionData[model].numberOfCategories = where; |
---|
3087 | categorizePartition(tr, rc, model, lower, upper); |
---|
3088 | } |
---|
3089 | else |
---|
3090 | { |
---|
3091 | tr->partitionData[model].numberOfCategories = maxCategories; |
---|
3092 | categorizePartition(tr, rc, model, lower, upper); |
---|
3093 | } |
---|
3094 | |
---|
3095 | rax_free(rc); |
---|
3096 | } |
---|
3097 | |
---|
3098 | updatePerSiteRates(tr, TRUE); |
---|
3099 | |
---|
3100 | evaluateGenericInitrav(tr, tr->start); |
---|
3101 | |
---|
3102 | if(tr->likelihood < initialLH) |
---|
3103 | { |
---|
3104 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3105 | { |
---|
3106 | tr->partitionData[model].numberOfCategories = oldNumbers[model]; |
---|
3107 | memcpy(tr->partitionData[model].perSiteRates, oldCategorizedRates[model], tr->maxCategories * sizeof(double)); |
---|
3108 | memcpy(tr->partitionData[model].unscaled_perSiteRates, oldUnscaledCategorizedRates[model], tr->maxCategories * sizeof(double)); |
---|
3109 | } |
---|
3110 | |
---|
3111 | memcpy(tr->cdta->patratStored, ratStored, sizeof(double) * tr->cdta->endsite); |
---|
3112 | memcpy(tr->cdta->rateCategory, oldCategory, sizeof(int) * tr->cdta->endsite); |
---|
3113 | |
---|
3114 | updatePerSiteRates(tr, FALSE); |
---|
3115 | |
---|
3116 | evaluateGenericInitrav(tr, tr->start); |
---|
3117 | |
---|
3118 | /* printf("REVERT: %1.40f %1.40f\n", initialLH, tr->likelihood); */ |
---|
3119 | |
---|
3120 | assert(initialLH == tr->likelihood); |
---|
3121 | } |
---|
3122 | |
---|
3123 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3124 | { |
---|
3125 | rax_free(oldCategorizedRates[model]); |
---|
3126 | rax_free(oldUnscaledCategorizedRates[model]); |
---|
3127 | } |
---|
3128 | |
---|
3129 | rax_free(oldCategorizedRates); |
---|
3130 | rax_free(oldUnscaledCategorizedRates); |
---|
3131 | rax_free(oldCategory); |
---|
3132 | rax_free(ratStored); |
---|
3133 | rax_free(lhs); |
---|
3134 | rax_free(oldNumbers); |
---|
3135 | } |
---|
3136 | } |
---|
3137 | |
---|
3138 | |
---|
3139 | |
---|
3140 | |
---|
3141 | |
---|
3142 | |
---|
3143 | |
---|
3144 | /*****************************************************************************************************/ |
---|
3145 | |
---|
3146 | void resetBranches(tree *tr) |
---|
3147 | { |
---|
3148 | nodeptr p, q; |
---|
3149 | int nodes, i; |
---|
3150 | |
---|
3151 | nodes = tr->mxtips + 3 * (tr->mxtips - 2); |
---|
3152 | p = tr->nodep[1]; |
---|
3153 | while (nodes-- > 0) |
---|
3154 | { |
---|
3155 | for(i = 0; i < tr->numBranches; i++) |
---|
3156 | p->z[i] = defaultz; |
---|
3157 | |
---|
3158 | q = p->next; |
---|
3159 | while(q != p) |
---|
3160 | { |
---|
3161 | for(i = 0; i < tr->numBranches; i++) |
---|
3162 | q->z[i] = defaultz; |
---|
3163 | q = q->next; |
---|
3164 | } |
---|
3165 | p++; |
---|
3166 | } |
---|
3167 | } |
---|
3168 | |
---|
3169 | static double fixZ(double z) |
---|
3170 | { |
---|
3171 | if(z > zmax) |
---|
3172 | return zmax; |
---|
3173 | |
---|
3174 | if(z < zmin) |
---|
3175 | return zmin; |
---|
3176 | |
---|
3177 | return z; |
---|
3178 | } |
---|
3179 | |
---|
3180 | static double getFracChange(tree *tr, int model) |
---|
3181 | { |
---|
3182 | if(tr->NumberOfModels == 1) |
---|
3183 | return tr->fracchange; |
---|
3184 | else |
---|
3185 | return tr->fracchanges[model]; |
---|
3186 | } |
---|
3187 | |
---|
3188 | void scaleBranches(tree *tr, boolean fromFile) |
---|
3189 | { |
---|
3190 | nodeptr |
---|
3191 | p; |
---|
3192 | |
---|
3193 | int |
---|
3194 | model, |
---|
3195 | i, |
---|
3196 | nodes, |
---|
3197 | count = 0; |
---|
3198 | |
---|
3199 | double |
---|
3200 | z; |
---|
3201 | |
---|
3202 | if(!tr->storedBrLens) |
---|
3203 | tr->storedBrLens = (double *)rax_malloc(sizeof(double) * (2 * tr->mxtips - 3) * 2); |
---|
3204 | |
---|
3205 | assert(tr->numBranches == tr->NumberOfModels); |
---|
3206 | |
---|
3207 | nodes = tr->mxtips + tr->mxtips - 2; |
---|
3208 | p = tr->nodep[1]; |
---|
3209 | |
---|
3210 | for(i = 1; i <= nodes; i++) |
---|
3211 | { |
---|
3212 | p = tr->nodep[i]; |
---|
3213 | |
---|
3214 | if(fromFile) |
---|
3215 | { |
---|
3216 | tr->storedBrLens[count] = p->z[0]; |
---|
3217 | |
---|
3218 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3219 | { |
---|
3220 | z = exp(-p->z[model] / getFracChange(tr, model)); |
---|
3221 | |
---|
3222 | z = fixZ(z); |
---|
3223 | |
---|
3224 | p->z[model] = z; |
---|
3225 | } |
---|
3226 | } |
---|
3227 | else |
---|
3228 | { |
---|
3229 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3230 | { |
---|
3231 | z = tr->partitionData[model].brLenScaler * tr->storedBrLens[count]; |
---|
3232 | |
---|
3233 | z = exp(-z / getFracChange(tr, model)); |
---|
3234 | |
---|
3235 | z = fixZ(z); |
---|
3236 | |
---|
3237 | p->z[model] = z; |
---|
3238 | } |
---|
3239 | } |
---|
3240 | count++; |
---|
3241 | |
---|
3242 | |
---|
3243 | if(i > tr->mxtips) |
---|
3244 | { |
---|
3245 | if(fromFile) |
---|
3246 | { |
---|
3247 | tr->storedBrLens[count] = p->next->z[0]; |
---|
3248 | |
---|
3249 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3250 | { |
---|
3251 | z = exp(-p->next->z[model] / getFracChange(tr, model)); |
---|
3252 | |
---|
3253 | z = fixZ(z); |
---|
3254 | |
---|
3255 | p->next->z[model] = z; |
---|
3256 | |
---|
3257 | } |
---|
3258 | } |
---|
3259 | else |
---|
3260 | { |
---|
3261 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3262 | { |
---|
3263 | z = tr->partitionData[model].brLenScaler * tr->storedBrLens[count]; |
---|
3264 | z = exp(-z / getFracChange(tr, model)); |
---|
3265 | |
---|
3266 | z = fixZ(z); |
---|
3267 | |
---|
3268 | p->next->z[model] = z; |
---|
3269 | } |
---|
3270 | } |
---|
3271 | count++; |
---|
3272 | |
---|
3273 | if(fromFile) |
---|
3274 | { |
---|
3275 | tr->storedBrLens[count] = p->next->next->z[0]; |
---|
3276 | |
---|
3277 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3278 | { |
---|
3279 | z = exp(-p->next->next->z[model] / getFracChange(tr, model)); |
---|
3280 | |
---|
3281 | z = fixZ(z); |
---|
3282 | |
---|
3283 | p->next->next->z[model] = z; |
---|
3284 | } |
---|
3285 | } |
---|
3286 | else |
---|
3287 | { |
---|
3288 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3289 | { |
---|
3290 | z = tr->partitionData[model].brLenScaler * tr->storedBrLens[count]; |
---|
3291 | |
---|
3292 | z = exp(-z / getFracChange(tr, model)); |
---|
3293 | |
---|
3294 | z = fixZ(z); |
---|
3295 | |
---|
3296 | p->next->next->z[model] = z; |
---|
3297 | } |
---|
3298 | } |
---|
3299 | count++; |
---|
3300 | } |
---|
3301 | } |
---|
3302 | |
---|
3303 | assert(count == (2 * tr->mxtips - 3) * 2); |
---|
3304 | } |
---|
3305 | |
---|
3306 | |
---|
3307 | static void printAAmatrix(tree *tr, double epsilon) |
---|
3308 | { |
---|
3309 | |
---|
3310 | |
---|
3311 | if(AAisGTR(tr) || AAisUnlinkedGTR(tr)) |
---|
3312 | { |
---|
3313 | int |
---|
3314 | model; |
---|
3315 | |
---|
3316 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3317 | { |
---|
3318 | if(tr->partitionData[model].dataType == AA_DATA) |
---|
3319 | { |
---|
3320 | char |
---|
3321 | gtrFileName[1024]; |
---|
3322 | /*epsilonStr[1024];*/ |
---|
3323 | |
---|
3324 | FILE |
---|
3325 | *gtrFile; |
---|
3326 | |
---|
3327 | double |
---|
3328 | *rates = tr->partitionData[model].substRates, |
---|
3329 | *f = tr->partitionData[model].frequencies, |
---|
3330 | q[20][20]; |
---|
3331 | |
---|
3332 | int |
---|
3333 | r = 0, |
---|
3334 | i, |
---|
3335 | j; |
---|
3336 | |
---|
3337 | assert(tr->partitionData[model].protModels == GTR || tr->partitionData[model].protModels == GTR_UNLINKED); |
---|
3338 | |
---|
3339 | /*sprintf(epsilonStr, "%f", epsilon);*/ |
---|
3340 | |
---|
3341 | strcpy(gtrFileName, workdir); |
---|
3342 | strcat(gtrFileName, "RAxML_proteinGTRmodel."); |
---|
3343 | strcat(gtrFileName, run_id); |
---|
3344 | |
---|
3345 | /* |
---|
3346 | strcat(gtrFileName, "_"); |
---|
3347 | strcat(gtrFileName, epsilonStr); |
---|
3348 | */ |
---|
3349 | |
---|
3350 | strcat(gtrFileName, "_Partition_"); |
---|
3351 | strcat(gtrFileName, tr->partitionData[model].partitionName); |
---|
3352 | |
---|
3353 | gtrFile = myfopen(gtrFileName, "wb"); |
---|
3354 | |
---|
3355 | for(i = 0; i < 20; i++) |
---|
3356 | for(j = 0; j < 20; j++) |
---|
3357 | q[i][j] = 0.0; |
---|
3358 | |
---|
3359 | for(i = 0; i < 19; i++) |
---|
3360 | for(j = i + 1; j < 20; j++) |
---|
3361 | q[i][j] = rates[r++]; |
---|
3362 | |
---|
3363 | for(i = 0; i < 20; i++) |
---|
3364 | for(j = 0; j <= i; j++) |
---|
3365 | { |
---|
3366 | if(i == j) |
---|
3367 | q[i][j] = 0.0; |
---|
3368 | else |
---|
3369 | q[i][j] = q[j][i]; |
---|
3370 | } |
---|
3371 | |
---|
3372 | for(i = 0; i < 20; i++) |
---|
3373 | { |
---|
3374 | for(j = 0; j < 20; j++) |
---|
3375 | fprintf(gtrFile, "%1.80f ", q[i][j]); |
---|
3376 | |
---|
3377 | fprintf(gtrFile, "\n"); |
---|
3378 | } |
---|
3379 | for(i = 0; i < 20; i++) |
---|
3380 | fprintf(gtrFile, "%1.80f ", f[i]); |
---|
3381 | fprintf(gtrFile, "\n"); |
---|
3382 | |
---|
3383 | fclose(gtrFile); |
---|
3384 | |
---|
3385 | if(tr->partitionData[model].protModels == GTR) |
---|
3386 | printBothOpen("\nPrinted linked AA GTR matrix that achieved an overall improvement of %f log likelihood units for partition %s to file %s\n\n", epsilon, tr->partitionData[model].partitionName, gtrFileName); |
---|
3387 | else |
---|
3388 | printBothOpen("\nPrinted unlinked AA GTR matrix that achieved an overall improvement of %f log likelihood units for partition %s to file %s\n\n", epsilon, tr->partitionData[model].partitionName, gtrFileName); |
---|
3389 | } |
---|
3390 | |
---|
3391 | } |
---|
3392 | } |
---|
3393 | } |
---|
3394 | |
---|
3395 | |
---|
3396 | |
---|
3397 | static void optScaler(tree *tr, double modelEpsilon, linkageList *ll) |
---|
3398 | { |
---|
3399 | int |
---|
3400 | i, |
---|
3401 | k, |
---|
3402 | numberOfModels = ll->entries; |
---|
3403 | |
---|
3404 | double |
---|
3405 | lim_inf = 0.01, |
---|
3406 | lim_sup = 100.0, |
---|
3407 | *endLH = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
3408 | *startLH = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
3409 | *startAlpha = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
3410 | *endAlpha = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
3411 | *_a = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
3412 | *_b = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
3413 | *_c = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
3414 | *_fa = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
3415 | *_fb = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
3416 | *_fc = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
3417 | *_param = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
3418 | *result = (double *)rax_malloc(sizeof(double) * numberOfModels), |
---|
3419 | *_x = (double *)rax_malloc(sizeof(double) * numberOfModels); |
---|
3420 | |
---|
3421 | |
---|
3422 | assert(numberOfModels == tr->numBranches); |
---|
3423 | |
---|
3424 | |
---|
3425 | |
---|
3426 | evaluateGenericInitrav(tr, tr->start); |
---|
3427 | |
---|
3428 | #ifdef _DEBUG_MODEL_OPTIMIZATION |
---|
3429 | double |
---|
3430 | initialLH = tr->likelihood; |
---|
3431 | #endif |
---|
3432 | |
---|
3433 | for(i = 0; i < numberOfModels; i++) |
---|
3434 | { |
---|
3435 | assert(ll->ld[i].valid); |
---|
3436 | |
---|
3437 | startAlpha[i] = tr->partitionData[ll->ld[i].partitionList[0]].brLenScaler; |
---|
3438 | _a[i] = startAlpha[i] + 0.1; |
---|
3439 | _b[i] = startAlpha[i] - 0.1; |
---|
3440 | if(_b[i] < lim_inf) |
---|
3441 | _b[i] = lim_inf; |
---|
3442 | |
---|
3443 | startLH[i] = 0.0; |
---|
3444 | endLH[i] = unlikely; |
---|
3445 | |
---|
3446 | assert(ll->ld[i].partitions == 1); |
---|
3447 | |
---|
3448 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
3449 | startLH[i] += tr->perPartitionLH[ll->ld[i].partitionList[k]]; |
---|
3450 | } |
---|
3451 | |
---|
3452 | brakGeneric(_param, _a, _b, _c, _fa, _fb, _fc, lim_inf, lim_sup, numberOfModels, -1, SCALER_F, tr, ll, modelEpsilon); |
---|
3453 | brentGeneric(_a, _b, _c, _fb, modelEpsilon, _x, result, numberOfModels, SCALER_F, -1, tr, ll, lim_inf, lim_sup); |
---|
3454 | |
---|
3455 | for(i = 0; i < numberOfModels; i++) |
---|
3456 | endLH[i] = result[i]; |
---|
3457 | |
---|
3458 | |
---|
3459 | for(i = 0; i < numberOfModels; i++) |
---|
3460 | { |
---|
3461 | if(startLH[i] > endLH[i]) |
---|
3462 | { |
---|
3463 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
3464 | { |
---|
3465 | tr->partitionData[ll->ld[i].partitionList[k]].brLenScaler = startAlpha[i]; |
---|
3466 | scaleBranches(tr, FALSE); |
---|
3467 | } |
---|
3468 | } |
---|
3469 | else |
---|
3470 | { |
---|
3471 | for(k = 0; k < ll->ld[i].partitions; k++) |
---|
3472 | { |
---|
3473 | tr->partitionData[ll->ld[i].partitionList[k]].brLenScaler = _x[i]; |
---|
3474 | scaleBranches(tr, FALSE); |
---|
3475 | } |
---|
3476 | } |
---|
3477 | } |
---|
3478 | |
---|
3479 | |
---|
3480 | evaluateGenericInitrav(tr, tr->start); |
---|
3481 | |
---|
3482 | #ifdef _DEBUG_MODEL_OPTIMIZATION |
---|
3483 | if(tr->likelihood < initialLH) |
---|
3484 | printf("%f %f\n", tr->likelihood, initialLH); |
---|
3485 | assert(tr->likelihood >= initialLH); |
---|
3486 | #endif |
---|
3487 | |
---|
3488 | rax_free(startLH); |
---|
3489 | rax_free(endLH); |
---|
3490 | rax_free(startAlpha); |
---|
3491 | rax_free(endAlpha); |
---|
3492 | rax_free(result); |
---|
3493 | rax_free(_a); |
---|
3494 | rax_free(_b); |
---|
3495 | rax_free(_c); |
---|
3496 | rax_free(_fa); |
---|
3497 | rax_free(_fb); |
---|
3498 | rax_free(_fc); |
---|
3499 | rax_free(_param); |
---|
3500 | rax_free(_x); |
---|
3501 | |
---|
3502 | } |
---|
3503 | |
---|
3504 | static void autoProtein(tree *tr) |
---|
3505 | { |
---|
3506 | int |
---|
3507 | countAutos = 0, |
---|
3508 | model; |
---|
3509 | |
---|
3510 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3511 | if(tr->partitionData[model].protModels == AUTO) |
---|
3512 | countAutos++; |
---|
3513 | |
---|
3514 | if(countAutos > 0) |
---|
3515 | { |
---|
3516 | int |
---|
3517 | i, |
---|
3518 | numProteinModels = AUTO, |
---|
3519 | *bestIndex = (int*)rax_malloc(sizeof(int) * tr->NumberOfModels), |
---|
3520 | *oldIndex = (int*)rax_malloc(sizeof(int) * tr->NumberOfModels); |
---|
3521 | |
---|
3522 | double |
---|
3523 | startLH, |
---|
3524 | *bestScores = (double*)rax_malloc(sizeof(double) * tr->NumberOfModels); |
---|
3525 | |
---|
3526 | topolRELL_LIST |
---|
3527 | *rl = (topolRELL_LIST *)rax_malloc(sizeof(topolRELL_LIST)); |
---|
3528 | |
---|
3529 | initTL(rl, tr, 1); |
---|
3530 | saveTL(rl, tr, 0); |
---|
3531 | |
---|
3532 | evaluateGenericInitrav(tr, tr->start); |
---|
3533 | |
---|
3534 | startLH = tr->likelihood; |
---|
3535 | |
---|
3536 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3537 | { |
---|
3538 | oldIndex[model] = tr->partitionData[model].autoProtModels; |
---|
3539 | bestIndex[model] = -1; |
---|
3540 | bestScores[model] = unlikely; |
---|
3541 | } |
---|
3542 | |
---|
3543 | for(i = 0; i < numProteinModels; i++) |
---|
3544 | { |
---|
3545 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3546 | { |
---|
3547 | if(tr->partitionData[model].protModels == AUTO) |
---|
3548 | { |
---|
3549 | tr->partitionData[model].autoProtModels = i; |
---|
3550 | initReversibleGTR(tr, model); |
---|
3551 | } |
---|
3552 | } |
---|
3553 | |
---|
3554 | #ifdef _USE_PTHREADS |
---|
3555 | masterBarrier(THREAD_COPY_RATES, tr); |
---|
3556 | #endif |
---|
3557 | |
---|
3558 | resetBranches(tr); |
---|
3559 | evaluateGenericInitrav(tr, tr->start); |
---|
3560 | treeEvaluate(tr, 0.5); |
---|
3561 | |
---|
3562 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3563 | { |
---|
3564 | if(tr->partitionData[model].protModels == AUTO) |
---|
3565 | { |
---|
3566 | if(tr->perPartitionLH[model] > bestScores[model]) |
---|
3567 | { |
---|
3568 | bestScores[model] = tr->perPartitionLH[model]; |
---|
3569 | bestIndex[model] = i; |
---|
3570 | } |
---|
3571 | } |
---|
3572 | } |
---|
3573 | } |
---|
3574 | |
---|
3575 | printBothOpen("Automatic protein model assignment algorithm:\n\n"); |
---|
3576 | |
---|
3577 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3578 | { |
---|
3579 | if(tr->partitionData[model].protModels == AUTO) |
---|
3580 | { |
---|
3581 | tr->partitionData[model].autoProtModels = bestIndex[model]; |
---|
3582 | initReversibleGTR(tr, model); |
---|
3583 | printBothOpen("\tPartition: %d best-scoring AA model: %s likelihood %f\n", model, protModels[tr->partitionData[model].autoProtModels], bestScores[model]); |
---|
3584 | } |
---|
3585 | } |
---|
3586 | |
---|
3587 | printBothOpen("\n\n"); |
---|
3588 | |
---|
3589 | #ifdef _USE_PTHREADS |
---|
3590 | masterBarrier(THREAD_COPY_RATES, tr); |
---|
3591 | #endif |
---|
3592 | |
---|
3593 | resetBranches(tr); |
---|
3594 | evaluateGenericInitrav(tr, tr->start); |
---|
3595 | treeEvaluate(tr, 2.0); |
---|
3596 | |
---|
3597 | if(tr->likelihood < startLH) |
---|
3598 | { |
---|
3599 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3600 | { |
---|
3601 | if(tr->partitionData[model].protModels == AUTO) |
---|
3602 | { |
---|
3603 | tr->partitionData[model].autoProtModels = oldIndex[model]; |
---|
3604 | initReversibleGTR(tr, model); |
---|
3605 | } |
---|
3606 | } |
---|
3607 | |
---|
3608 | #ifdef _USE_PTHREADS |
---|
3609 | masterBarrier(THREAD_COPY_RATES, tr); |
---|
3610 | #endif |
---|
3611 | restoreTL(rl, tr, 0); |
---|
3612 | evaluateGenericInitrav(tr, tr->start); |
---|
3613 | } |
---|
3614 | |
---|
3615 | assert(tr->likelihood >= startLH); |
---|
3616 | |
---|
3617 | freeTL(rl); |
---|
3618 | rax_free(rl); |
---|
3619 | |
---|
3620 | rax_free(oldIndex); |
---|
3621 | rax_free(bestIndex); |
---|
3622 | rax_free(bestScores); |
---|
3623 | } |
---|
3624 | } |
---|
3625 | |
---|
3626 | |
---|
3627 | //#define _DEBUG_MOD_OPT |
---|
3628 | |
---|
3629 | void modOpt(tree *tr, analdef *adef, boolean resetModel, double likelihoodEpsilon) |
---|
3630 | { |
---|
3631 | int i, model, catOpt = 0; |
---|
3632 | double |
---|
3633 | inputLikelihood, |
---|
3634 | currentLikelihood, |
---|
3635 | modelEpsilon = 0.0001; |
---|
3636 | linkageList |
---|
3637 | *alphaList, |
---|
3638 | *invarList, |
---|
3639 | *rateList, |
---|
3640 | *scalerList; |
---|
3641 | /* |
---|
3642 | int linkedAlpha[4] = {0, 0, 0, 0}; |
---|
3643 | int linkedInvar[4] = {0, 0, 0, 0}; |
---|
3644 | int linkedRates[4] = {0, 0, 0, 0}; |
---|
3645 | */ |
---|
3646 | int |
---|
3647 | *unlinked = (int *)rax_malloc(sizeof(int) * tr->NumberOfModels), |
---|
3648 | *linked = (int *)rax_malloc(sizeof(int) * tr->NumberOfModels); |
---|
3649 | |
---|
3650 | assert(!adef->useBinaryModelFile); |
---|
3651 | |
---|
3652 | modelEpsilon = 0.0001; |
---|
3653 | |
---|
3654 | |
---|
3655 | for(i = 0; i < tr->NumberOfModels; i++) |
---|
3656 | { |
---|
3657 | unlinked[i] = i; |
---|
3658 | linked[i] = 0; |
---|
3659 | } |
---|
3660 | |
---|
3661 | alphaList = initLinkageList(unlinked, tr); |
---|
3662 | invarList = initLinkageList(unlinked, tr); |
---|
3663 | rateList = initLinkageListGTR(tr); |
---|
3664 | scalerList = initLinkageList(unlinked, tr); |
---|
3665 | |
---|
3666 | if(!(adef->mode == CLASSIFY_ML)) |
---|
3667 | tr->start = tr->nodep[1]; |
---|
3668 | |
---|
3669 | if(resetModel) |
---|
3670 | { |
---|
3671 | |
---|
3672 | |
---|
3673 | initRateMatrix(tr); |
---|
3674 | |
---|
3675 | for(model = 0; model < tr->NumberOfModels; model++) |
---|
3676 | { |
---|
3677 | if(adef->useInvariant) |
---|
3678 | { |
---|
3679 | int lower, upper; |
---|
3680 | int count = 0; |
---|
3681 | int total = 0; |
---|
3682 | |
---|
3683 | lower = tr->partitionData[model].lower; |
---|
3684 | upper = tr->partitionData[model].upper; |
---|
3685 | |
---|
3686 | for(i = lower; i < upper; i++) |
---|
3687 | { |
---|
3688 | if(tr->invariant[i] < 4) |
---|
3689 | count += tr->cdta->aliaswgt[i]; |
---|
3690 | total += tr->cdta->aliaswgt[i]; |
---|
3691 | } |
---|
3692 | |
---|
3693 | tr->partitionData[model].propInvariant = ((double)count)/((double) total); |
---|
3694 | } |
---|
3695 | |
---|
3696 | tr->partitionData[model].alpha = 1.0; |
---|
3697 | |
---|
3698 | initReversibleGTR(tr, model); |
---|
3699 | |
---|
3700 | makeGammaCats(tr->partitionData[model].alpha, tr->partitionData[model].gammaRates, 4, tr->useGammaMedian); |
---|
3701 | } |
---|
3702 | #ifdef _USE_PTHREADS |
---|
3703 | masterBarrier(THREAD_RESET_MODEL ,tr); |
---|
3704 | #endif |
---|
3705 | |
---|
3706 | resetBranches(tr); |
---|
3707 | |
---|
3708 | evaluateGenericInitrav(tr, tr->start); |
---|
3709 | |
---|
3710 | |
---|
3711 | |
---|
3712 | treeEvaluate(tr, 0.25); |
---|
3713 | } |
---|
3714 | |
---|
3715 | inputLikelihood = tr->likelihood; |
---|
3716 | |
---|
3717 | evaluateGenericInitrav(tr, tr->start); |
---|
3718 | |
---|
3719 | assert(inputLikelihood == tr->likelihood); |
---|
3720 | |
---|
3721 | /* no need for individual models here, just an init on params equal for all partitions*/ |
---|
3722 | |
---|
3723 | do |
---|
3724 | { |
---|
3725 | currentLikelihood = tr->likelihood; |
---|
3726 | |
---|
3727 | #ifdef _DEBUG_MOD_OPT |
---|
3728 | printf("start: %1.40f\n", currentLikelihood); |
---|
3729 | #endif |
---|
3730 | |
---|
3731 | optRatesGeneric(tr, modelEpsilon, rateList); |
---|
3732 | |
---|
3733 | evaluateGenericInitrav(tr, tr->start); |
---|
3734 | |
---|
3735 | #ifdef _DEBUG_MOD_OPT |
---|
3736 | printf("after rates %1.40f\n", tr->likelihood); |
---|
3737 | #endif |
---|
3738 | |
---|
3739 | autoProtein(tr); |
---|
3740 | |
---|
3741 | if(adef->mode != OPTIMIZE_BR_LEN_SCALER) |
---|
3742 | treeEvaluate(tr, 0.0625); |
---|
3743 | else |
---|
3744 | optScaler(tr, modelEpsilon, scalerList); |
---|
3745 | |
---|
3746 | #ifdef _DEBUG_MOD_OPT |
---|
3747 | evaluateGenericInitrav(tr, tr->start); |
---|
3748 | printf("after br-len 1 %1.40f\n", tr->likelihood); |
---|
3749 | #endif |
---|
3750 | |
---|
3751 | switch(tr->rateHetModel) |
---|
3752 | { |
---|
3753 | case GAMMA_I: |
---|
3754 | optAlphasGeneric(tr, modelEpsilon, alphaList); |
---|
3755 | |
---|
3756 | #ifdef _DEBUG_MOD_OPT |
---|
3757 | evaluateGenericInitrav(tr, tr->start); |
---|
3758 | printf("after alphas %1.40f\n", tr->likelihood); |
---|
3759 | #endif |
---|
3760 | |
---|
3761 | optInvar(tr, modelEpsilon, invarList); |
---|
3762 | |
---|
3763 | #ifdef _DEBUG_MOD_OPT |
---|
3764 | evaluateGenericInitrav(tr, tr->start); |
---|
3765 | printf("after invar %1.40f\n", tr->likelihood); |
---|
3766 | #endif |
---|
3767 | |
---|
3768 | if(adef->mode != OPTIMIZE_BR_LEN_SCALER) |
---|
3769 | treeEvaluate(tr, 0.1); |
---|
3770 | else |
---|
3771 | optScaler(tr, modelEpsilon, scalerList); |
---|
3772 | |
---|
3773 | #ifdef _DEBUG_MOD_OPT |
---|
3774 | evaluateGenericInitrav(tr, tr->start); |
---|
3775 | printf("after br-len 2 %1.40f\n", tr->likelihood); |
---|
3776 | #endif |
---|
3777 | |
---|
3778 | break; |
---|
3779 | case GAMMA: |
---|
3780 | optAlphasGeneric(tr, modelEpsilon, alphaList); |
---|
3781 | |
---|
3782 | #ifdef _DEBUG_MOD_OPT |
---|
3783 | evaluateGenericInitrav(tr, tr->start); |
---|
3784 | printf("after alphas %1.40f\n", tr->likelihood); |
---|
3785 | #endif |
---|
3786 | |
---|
3787 | |
---|
3788 | onlyInitrav(tr, tr->start); |
---|
3789 | |
---|
3790 | evaluateGeneric(tr, tr->start); |
---|
3791 | |
---|
3792 | if(adef->mode != OPTIMIZE_BR_LEN_SCALER) |
---|
3793 | treeEvaluate(tr, 0.1); |
---|
3794 | else |
---|
3795 | optScaler(tr, modelEpsilon, scalerList); |
---|
3796 | |
---|
3797 | #ifdef _DEBUG_MOD_OPT |
---|
3798 | evaluateGenericInitrav(tr, tr->start); |
---|
3799 | printf("after br-len 3 %1.40f\n", tr->likelihood); |
---|
3800 | #endif |
---|
3801 | |
---|
3802 | |
---|
3803 | break; |
---|
3804 | case CAT: |
---|
3805 | if(!tr->noRateHet) |
---|
3806 | { |
---|
3807 | if(catOpt < 3) |
---|
3808 | { |
---|
3809 | evaluateGenericInitrav(tr, tr->start); |
---|
3810 | optimizeRateCategories(tr, adef->categories); |
---|
3811 | catOpt++; |
---|
3812 | } |
---|
3813 | } |
---|
3814 | |
---|
3815 | #ifdef _DEBUG_MOD_OPT |
---|
3816 | evaluateGenericInitrav(tr, tr->start); |
---|
3817 | printf("after cat-opt %f\n", tr->likelihood); |
---|
3818 | #endif |
---|
3819 | |
---|
3820 | break; |
---|
3821 | default: |
---|
3822 | assert(0); |
---|
3823 | } |
---|
3824 | |
---|
3825 | if(tr->likelihood < currentLikelihood) |
---|
3826 | { |
---|
3827 | if(fabs(tr->likelihood - currentLikelihood) > MIN(0.0000001, likelihoodEpsilon)) |
---|
3828 | { |
---|
3829 | printf("%1.40f %1.40f\n", tr->likelihood, currentLikelihood); |
---|
3830 | assert(0); |
---|
3831 | } |
---|
3832 | } |
---|
3833 | |
---|
3834 | printAAmatrix(tr, fabs(currentLikelihood - tr->likelihood)); |
---|
3835 | } |
---|
3836 | while(fabs(currentLikelihood - tr->likelihood) > likelihoodEpsilon); |
---|
3837 | |
---|
3838 | rax_free(unlinked); |
---|
3839 | rax_free(linked); |
---|
3840 | freeLinkageList(alphaList); |
---|
3841 | freeLinkageList(rateList); |
---|
3842 | freeLinkageList(invarList); |
---|
3843 | freeLinkageList(scalerList); |
---|
3844 | } |
---|
3845 | |
---|
3846 | |
---|
3847 | |
---|
3848 | |
---|
3849 | /*********************FUNCTIONS FOOR EXACT MODEL OPTIMIZATION UNDER GTRGAMMA ***************************************/ |
---|
3850 | |
---|
3851 | |
---|
3852 | |
---|
3853 | static double branchLength(int model, double *z, tree *tr) |
---|
3854 | { |
---|
3855 | double x; |
---|
3856 | |
---|
3857 | x = z[model]; |
---|
3858 | assert(x > 0); |
---|
3859 | if (x < zmin) |
---|
3860 | x = zmin; |
---|
3861 | |
---|
3862 | |
---|
3863 | assert(x <= zmax); |
---|
3864 | |
---|
3865 | if(!tr->multiBranch) |
---|
3866 | x = -log(x) * tr->fracchange; |
---|
3867 | else |
---|
3868 | x = -log(x) * tr->fracchanges[model]; |
---|
3869 | |
---|
3870 | return x; |
---|
3871 | |
---|
3872 | } |
---|
3873 | |
---|
3874 | |
---|
3875 | static double treeLengthRec(nodeptr p, tree *tr, int model) |
---|
3876 | { |
---|
3877 | double |
---|
3878 | x = branchLength(model, p->z, tr); |
---|
3879 | |
---|
3880 | if(isTip(p->number, tr->rdta->numsp)) |
---|
3881 | return x; |
---|
3882 | else |
---|
3883 | { |
---|
3884 | double acc = 0; |
---|
3885 | nodeptr q; |
---|
3886 | |
---|
3887 | q = p->next; |
---|
3888 | |
---|
3889 | while(q != p) |
---|
3890 | { |
---|
3891 | acc += treeLengthRec(q->back, tr, model); |
---|
3892 | q = q->next; |
---|
3893 | } |
---|
3894 | |
---|
3895 | return acc + x; |
---|
3896 | } |
---|
3897 | } |
---|
3898 | |
---|
3899 | double treeLength(tree *tr, int model) |
---|
3900 | { |
---|
3901 | /* printf("SCALER: %f\n", tr->partitionData[model].brLenScaler); */ |
---|
3902 | |
---|
3903 | return treeLengthRec(tr->start->back, tr, model); |
---|
3904 | } |
---|
3905 | |
---|
3906 | |
---|
3907 | |
---|
3908 | |
---|
3909 | |
---|