1 | /******************************************************************************************** |
---|
2 | Some Hash/Cash Procedures |
---|
3 | ********************************************************************************************/ |
---|
4 | |
---|
5 | #include <stdio.h> |
---|
6 | #include <stdlib.h> |
---|
7 | /* #include <malloc.h> */ |
---|
8 | #include <string.h> |
---|
9 | #include <ctype.h> |
---|
10 | #include <limits.h> |
---|
11 | #include <float.h> |
---|
12 | |
---|
13 | #include "adlocal.h" |
---|
14 | /*#include "arbdb.h"*/ |
---|
15 | |
---|
16 | /* memory management */ |
---|
17 | |
---|
18 | struct gbs_hash_entry { |
---|
19 | char *key; |
---|
20 | long val; |
---|
21 | struct gbs_hash_entry *next; |
---|
22 | }; |
---|
23 | typedef struct gbs_hash_struct { |
---|
24 | size_t size; |
---|
25 | size_t nelem; |
---|
26 | GB_CASE case_sens; |
---|
27 | |
---|
28 | struct gbs_hash_entry **entries; // the hash table (has 'size' entries) |
---|
29 | |
---|
30 | void (*freefun)(long val); // function to free hash values (see GBS_create_dynaval_hash) |
---|
31 | |
---|
32 | } gbs_hash; |
---|
33 | |
---|
34 | struct gbs_hashi_entry { |
---|
35 | long key; |
---|
36 | long val; |
---|
37 | struct gbs_hashi_entry *next; |
---|
38 | }; |
---|
39 | |
---|
40 | struct gbs_hashi_struct { |
---|
41 | long size; |
---|
42 | struct gbs_hashi_entry **entries; |
---|
43 | }; |
---|
44 | |
---|
45 | /* prime numbers */ |
---|
46 | |
---|
47 | #define KNOWN_PRIMES 279 |
---|
48 | static long sorted_primes[KNOWN_PRIMES] = { |
---|
49 | 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 79, 89, 97, 103, 109, 127, 137, 149, 157, 167, 179, 191, 211, |
---|
50 | 223, 239, 257, 271, 293, 311, 331, 349, 373, 397, 419, 443, 467, 499, 541, 571, 607, 641, 677, 719, 757, 797, 839, 887, 937, |
---|
51 | 991, 1049, 1109, 1171, 1237, 1303, 1373, 1447, 1531, 1613, 1699, 1789, 1889, 1993, 2099, 2213, 2333, 2459, 2591, 2729, 2879, |
---|
52 | 3037, 3203, 3373, 3557, 3761, 3967, 4177, 4397, 4637, 4889, 5147, 5419, 5711, 6029, 6353, 6689, 7043, 7417, 7817, 8231, 8669, |
---|
53 | 9127, 9613, 10133, 10667, 11239, 11831, 12457, 13121, 13829, 14557, 15329, 16139, 16993, 17891, 18839, 19841, 20887, 21991, 23159, |
---|
54 | 24379, 25667, 27031, 28463, 29983, 31567, 33247, 35023, 36871, 38821, 40867, 43019, 45289, 47681, 50207, 52859, 55661, 58601, |
---|
55 | 61687, 64937, 68371, 71971, 75767, 79757, 83969, 88397, 93053, 97961, 103123, 108553, 114269, 120293, 126631, 133303, 140321, |
---|
56 | 147709, 155501, 163697, 172313, 181387, 190979, 201031, 211619, 222773, 234499, 246889, 259907, 273601, 288007, 303187, 319147, |
---|
57 | 335953, 353641, 372263, 391861, 412487, 434201, 457057, 481123, 506449, 533111, 561173, 590713, 621821, 654553, 689021, 725293, |
---|
58 | 763471, 803659, 845969, 890501, 937373, 986717, 1038671, 1093357, 1150909, 1211489, 1275269, 1342403, 1413077, 1487459, 1565747, |
---|
59 | 1648181, 1734937, 1826257, 1922383, 2023577, 2130101, 2242213, 2360243, 2484473, 2615243, 2752889, 2897789, 3050321, 3210871, |
---|
60 | 3379877, 3557773, 3745051, 3942209, 4149703, 4368113, 4598063, 4840103, 5094853, 5363011, 5645279, 5942399, 6255157, 6584377, |
---|
61 | 6930929, 7295719, 7679713, 8083919, 8509433, 8957309, 9428759, 9925021, 10447391, 10997279, 11576087, 12185359, 12826699, 13501819, |
---|
62 | 14212447, 14960471, 15747869, 16576727, 17449207, 18367597, 19334317, 20351927, 21423107, 22550639, 23737523, 24986867, 26301967, |
---|
63 | 27686291, 29143493, 30677363, 32291971, 33991597, 35780639, 37663841, 39646153, 41732809, 43929307, 46241389, 48675167, 51237019, |
---|
64 | 53933713, 56772371, 59760391, 62905681, 66216511, 69701591, 73370107, 77231711, 81296543, 85575313, 90079313, 94820347, 99810899 |
---|
65 | }; |
---|
66 | |
---|
67 | |
---|
68 | /* define CALC_PRIMES only to expand the above table */ |
---|
69 | #if defined(DEBUG) |
---|
70 | /* #define CALC_PRIMES */ |
---|
71 | #endif /* DEBUG */ |
---|
72 | |
---|
73 | #ifdef CALC_PRIMES |
---|
74 | |
---|
75 | #define CALC_PRIMES_UP_TO 100000000L |
---|
76 | #define PRIME_UNDENSITY 20L /* the higher, the less primes are stored */ |
---|
77 | |
---|
78 | #warning "please don't define CALC_PRIMES permanently" |
---|
79 | |
---|
80 | static unsigned char bit_val[8] = { 1, 2, 4, 8, 16, 32, 64, 128 }; |
---|
81 | |
---|
82 | static int bit_value(const unsigned char *erastothenes, long num) { // 'num' is odd and lowest 'num' is 3 |
---|
83 | long bit_num = ((num-1) >> 1)-1; // 3->0 5->1 7->2 etc. |
---|
84 | long byte_num = bit_num >> 3; // div 8 |
---|
85 | char byte = erastothenes[byte_num]; |
---|
86 | |
---|
87 | gb_assert(bit_num >= 0); |
---|
88 | gb_assert((num&1) == 1); // has to odd |
---|
89 | |
---|
90 | bit_num = bit_num & 7; |
---|
91 | |
---|
92 | return (byte & bit_val[bit_num]) ? 1 : 0; |
---|
93 | } |
---|
94 | static void set_bit_value(unsigned char *erastothenes, long num, int val) { // 'num' is odd and lowest 'num' is 3; val is 0 or 1 |
---|
95 | long bit_num = ((num-1) >> 1)-1; // 3->0 5->1 7->2 etc. |
---|
96 | long byte_num = bit_num >> 3; // div 8 |
---|
97 | char byte = erastothenes[byte_num]; |
---|
98 | |
---|
99 | gb_assert(bit_num >= 0); |
---|
100 | gb_assert((num&1) == 1); // has to odd |
---|
101 | |
---|
102 | bit_num = bit_num & 7; |
---|
103 | |
---|
104 | if (val) { |
---|
105 | byte |= bit_val[bit_num]; |
---|
106 | } |
---|
107 | else { |
---|
108 | byte &= (0xff - bit_val[bit_num]); |
---|
109 | } |
---|
110 | erastothenes[byte_num] = byte; |
---|
111 | } |
---|
112 | |
---|
113 | static void calculate_primes_upto() { |
---|
114 | { |
---|
115 | long bits_needed = CALC_PRIMES_UP_TO/2+1; // only need bits for odd numbers |
---|
116 | long bytes_needed = (bits_needed/8)+1; |
---|
117 | unsigned char *erastothenes = GB_calloc(bytes_needed, 1); // bit = 1 means "is not a prime" |
---|
118 | long prime_count = 0; |
---|
119 | long num; |
---|
120 | |
---|
121 | printf("erastothenes' size = %li\n", bytes_needed); |
---|
122 | |
---|
123 | if (!erastothenes) { |
---|
124 | GB_internal_error("out of memory"); |
---|
125 | return; |
---|
126 | } |
---|
127 | |
---|
128 | for (num = 3; num <= CALC_PRIMES_UP_TO; num += 2) { |
---|
129 | if (bit_value(erastothenes, num) == 0) { // is a prime number |
---|
130 | long num2; |
---|
131 | prime_count++; |
---|
132 | for (num2 = num*2; num2 <= CALC_PRIMES_UP_TO; num2 += num) { // with all multiples |
---|
133 | if ((num2&1) == 1) { // skip even numbers |
---|
134 | set_bit_value(erastothenes, num2, 1); |
---|
135 | } |
---|
136 | } |
---|
137 | } |
---|
138 | // otherwise it is no prime and all multiples are already set to 1 |
---|
139 | } |
---|
140 | |
---|
141 | /* thin out prime numbers (we don't need all of them) */ |
---|
142 | { |
---|
143 | long prime_count2 = 0; |
---|
144 | long last_prime = -1000; |
---|
145 | int index; |
---|
146 | int printed = 0; |
---|
147 | |
---|
148 | for (num = 3; num <= CALC_PRIMES_UP_TO; num += 2) { |
---|
149 | if (bit_value(erastothenes, num) == 0) { // is a prime number |
---|
150 | long diff = num-last_prime; |
---|
151 | if ((diff*PRIME_UNDENSITY)<num) { |
---|
152 | set_bit_value(erastothenes, num, 1); // delete unneeded prime |
---|
153 | } |
---|
154 | else { |
---|
155 | prime_count2++; // count needed primes |
---|
156 | last_prime = num; |
---|
157 | } |
---|
158 | } |
---|
159 | } |
---|
160 | |
---|
161 | printf("\nUsing %li prime numbers up to %li:\n\n", prime_count2, CALC_PRIMES_UP_TO); |
---|
162 | printf("#define KNOWN_PRIMES %li\n", prime_count2); |
---|
163 | printf("static long sorted_primes[KNOWN_PRIMES] = {\n "); |
---|
164 | printed = 4; |
---|
165 | |
---|
166 | index = 0; |
---|
167 | for (num = 3; num <= CALC_PRIMES_UP_TO; num += 2) { |
---|
168 | if (bit_value(erastothenes, num) == 0) { // is a prime number |
---|
169 | if (printed>128) { |
---|
170 | printf("\n "); |
---|
171 | printed = 4; |
---|
172 | } |
---|
173 | if (num>INT_MAX) { |
---|
174 | printed += printf("%liL, ", num); |
---|
175 | } |
---|
176 | else { |
---|
177 | printed += printf("%li, ", num); |
---|
178 | } |
---|
179 | } |
---|
180 | } |
---|
181 | printf("\n};\n\n"); |
---|
182 | } |
---|
183 | |
---|
184 | free(erastothenes); |
---|
185 | } |
---|
186 | fflush(stdout); |
---|
187 | exit(1); |
---|
188 | } |
---|
189 | |
---|
190 | #endif /* CALC_PRIMES */ |
---|
191 | |
---|
192 | long GBS_get_a_prime(long above_or_equal_this) { |
---|
193 | // return a prime number above_or_equal_this |
---|
194 | // NOTE: it is not necessarily the next prime number, because we don't calculate all prime numbers! |
---|
195 | |
---|
196 | #if defined(CALC_PRIMES) |
---|
197 | calculate_primes_upto(above_or_equal_this); |
---|
198 | #endif /* CALC_PRIMES */ |
---|
199 | |
---|
200 | if (sorted_primes[KNOWN_PRIMES-1] >= above_or_equal_this) { |
---|
201 | int l = 0, h = KNOWN_PRIMES-1; |
---|
202 | |
---|
203 | while (l < h) { |
---|
204 | int m = (l+h)/2; |
---|
205 | #if defined(DEBUG) && 0 |
---|
206 | printf("l=%-3i m=%-3i h=%-3i above_or_equal_this=%li sorted_primes[%i]=%li sorted_primes[%i]=%li sorted_primes[%i]=%li\n", |
---|
207 | l, m, h, above_or_equal_this, l, sorted_primes[l], m, sorted_primes[m], h, sorted_primes[h]); |
---|
208 | #endif /* DEBUG */ |
---|
209 | gb_assert(l <= m); |
---|
210 | gb_assert(m <= h); |
---|
211 | if (sorted_primes[m] > above_or_equal_this) { |
---|
212 | h = m-1; |
---|
213 | } |
---|
214 | else { |
---|
215 | if (sorted_primes[m] < above_or_equal_this) { |
---|
216 | l = m+1; |
---|
217 | } |
---|
218 | else { |
---|
219 | h = l = m; |
---|
220 | } |
---|
221 | } |
---|
222 | } |
---|
223 | |
---|
224 | if (sorted_primes[l] < above_or_equal_this) { |
---|
225 | l++; // take next |
---|
226 | gb_assert(l<KNOWN_PRIMES); |
---|
227 | } |
---|
228 | |
---|
229 | gb_assert(sorted_primes[l] >= above_or_equal_this); |
---|
230 | gb_assert(l == 0 || sorted_primes[l-1] < above_or_equal_this); |
---|
231 | |
---|
232 | return sorted_primes[l]; |
---|
233 | } |
---|
234 | |
---|
235 | fprintf(stderr, "Warning: GBS_get_a_prime failed for value %li (performance bleed)\n", above_or_equal_this); |
---|
236 | gb_assert(0); // add more primes to sorted_primes[] |
---|
237 | |
---|
238 | return above_or_equal_this; |
---|
239 | } |
---|
240 | |
---|
241 | /******************************************************************************************** |
---|
242 | Some Hash Procedures for [string,long] |
---|
243 | ********************************************************************************************/ |
---|
244 | |
---|
245 | GB_HASH *GBS_create_hash(long user_size, GB_CASE case_sens) { |
---|
246 | /* Create a hash of size size, this hash is using linked list to avoid collisions, |
---|
247 | * ignore_case == 0 -> 'a != A' |
---|
248 | * ignore_case != 0 -> 'a == A' |
---|
249 | */ |
---|
250 | |
---|
251 | struct gbs_hash_struct *hs; |
---|
252 | long size = GBS_get_a_prime(user_size); // use next prime number for hash size |
---|
253 | |
---|
254 | hs = (struct gbs_hash_struct *)GB_calloc(sizeof(struct gbs_hash_struct),1); |
---|
255 | hs->size = size; |
---|
256 | hs->nelem = 0; |
---|
257 | hs->case_sens = case_sens; |
---|
258 | hs->entries = (struct gbs_hash_entry **)GB_calloc(sizeof(struct gbs_hash_entry *), size); |
---|
259 | hs->freefun = NULL; |
---|
260 | |
---|
261 | return hs; |
---|
262 | } |
---|
263 | |
---|
264 | GB_HASH *GBS_create_dynaval_hash(long user_size, GB_CASE case_sens, void (*freefun)(long)) { |
---|
265 | /* like GBS_create_hash, but values stored in hash get free'd using 'freefun' |
---|
266 | */ |
---|
267 | GB_HASH *hs = GBS_create_hash(user_size, case_sens); |
---|
268 | hs->freefun = freefun; |
---|
269 | return hs; |
---|
270 | } |
---|
271 | |
---|
272 | void GBS_dynaval_free(long val) { |
---|
273 | free((char*)val); |
---|
274 | } |
---|
275 | |
---|
276 | #if defined(DEBUG) |
---|
277 | static void dump_access(const char *title, GB_HASH *hs, double mean_access) { |
---|
278 | fprintf(stderr, |
---|
279 | "%s: size=%zu elements=%zu mean_access=%.2f hash-speed=%.1f%%\n", |
---|
280 | title, hs->size, hs->nelem, mean_access, 100.0/mean_access); |
---|
281 | } |
---|
282 | #endif /* DEBUG */ |
---|
283 | |
---|
284 | void GBS_optimize_hash(GB_HASH *hs) { |
---|
285 | if (hs->nelem > hs->size) { /* hash is overfilled (even full is bad) */ |
---|
286 | size_t new_size = GBS_get_a_prime(hs->nelem*3); |
---|
287 | |
---|
288 | #if defined(DEBUG) |
---|
289 | dump_access("Optimizing filled hash", hs, GBS_hash_mean_access_costs(hs)); |
---|
290 | #endif /* DEBUG */ |
---|
291 | |
---|
292 | if (new_size>hs->size) { // avoid overflow |
---|
293 | struct gbs_hash_entry **new_entries = GB_calloc(sizeof(struct gbs_hash_entry*), new_size); |
---|
294 | size_t pos; |
---|
295 | |
---|
296 | for (pos = 0; pos<hs->size; ++pos) { |
---|
297 | struct gbs_hash_entry *e; |
---|
298 | struct gbs_hash_entry *next; |
---|
299 | |
---|
300 | for (e = hs->entries[pos]; e; e = next) { |
---|
301 | long new_idx; |
---|
302 | next = e->next; |
---|
303 | |
---|
304 | GB_CALC_HASH_INDEX(e->key, new_idx, new_size, hs->case_sens); |
---|
305 | |
---|
306 | e->next = new_entries[new_idx]; |
---|
307 | new_entries[new_idx] = e; |
---|
308 | } |
---|
309 | } |
---|
310 | |
---|
311 | free(hs->entries); |
---|
312 | |
---|
313 | hs->size = new_size; |
---|
314 | hs->entries = new_entries; |
---|
315 | } |
---|
316 | #if defined(DEBUG) |
---|
317 | dump_access("Optimized hash ", hs, GBS_hash_mean_access_costs(hs)); |
---|
318 | #endif /* DEBUG */ |
---|
319 | |
---|
320 | } |
---|
321 | } |
---|
322 | |
---|
323 | static long gbs_hash_to_strstruct(const char *key, long val, void *cd_out) { |
---|
324 | const char *p; |
---|
325 | int c; |
---|
326 | struct GBS_strstruct *out = (struct GBS_strstruct*)cd_out; |
---|
327 | |
---|
328 | for (p = key; (c=*p) ; p++) { |
---|
329 | GBS_chrcat(out, c); |
---|
330 | if (c==':') GBS_chrcat(out, c); |
---|
331 | } |
---|
332 | GBS_chrcat(out, ':'); |
---|
333 | GBS_intcat(out, val); |
---|
334 | GBS_chrcat(out, ' '); |
---|
335 | |
---|
336 | return val; |
---|
337 | } |
---|
338 | |
---|
339 | char *GBS_hashtab_2_string(GB_HASH *hash) { |
---|
340 | struct GBS_strstruct *out = GBS_stropen(1024); |
---|
341 | GBS_hash_do_loop(hash, gbs_hash_to_strstruct, out); |
---|
342 | return GBS_strclose(out); |
---|
343 | } |
---|
344 | |
---|
345 | |
---|
346 | char *GBS_string_2_hashtab(GB_HASH *hash, char *data){ /* destroys data */ |
---|
347 | char *p,*d,*dp; |
---|
348 | int c; |
---|
349 | char *nextp; |
---|
350 | char *error = 0; |
---|
351 | char *str; |
---|
352 | int strlen; |
---|
353 | long val; |
---|
354 | |
---|
355 | for ( p = data; p ; p = nextp ){ |
---|
356 | strlen = 0; |
---|
357 | for (dp = p; (c = *dp); dp++){ |
---|
358 | if (c==':') { |
---|
359 | if (dp[1] == ':') dp++; |
---|
360 | else break; |
---|
361 | } |
---|
362 | strlen++; |
---|
363 | } |
---|
364 | if (*dp) { |
---|
365 | nextp = strchr(dp,' '); |
---|
366 | if (nextp) nextp++; |
---|
367 | } |
---|
368 | else break; |
---|
369 | |
---|
370 | str = (char *)GB_calloc(sizeof(char),strlen+1); |
---|
371 | for (dp = p, d = str; (c = *dp) ; dp++){ |
---|
372 | if (c==':'){ |
---|
373 | if (dp[1] == ':') { |
---|
374 | *(d++) = c; |
---|
375 | dp++; |
---|
376 | }else break; |
---|
377 | }else{ |
---|
378 | *(d++) = c; |
---|
379 | } |
---|
380 | } |
---|
381 | val = atoi(dp+1); |
---|
382 | GBS_write_hash_no_strdup(hash,str,val); |
---|
383 | } |
---|
384 | |
---|
385 | return error; |
---|
386 | } |
---|
387 | |
---|
388 | static struct gbs_hash_entry *find_hash_entry(const GB_HASH *hs, const char *key, size_t *index) { |
---|
389 | struct gbs_hash_entry *e; |
---|
390 | if (hs->case_sens == GB_IGNORE_CASE) { |
---|
391 | GB_CALC_HASH_INDEX_CASE_IGNORED(key,*index,hs->size); |
---|
392 | for(e=hs->entries[*index];e;e=e->next){ |
---|
393 | if (!strcasecmp(e->key,key)) return e; |
---|
394 | } |
---|
395 | } |
---|
396 | else { |
---|
397 | GB_CALC_HASH_INDEX_CASE_SENSITIVE(key,*index,hs->size); |
---|
398 | for(e=hs->entries[*index];e;e=e->next){ |
---|
399 | if (!strcmp(e->key,key)) return e; |
---|
400 | } |
---|
401 | } |
---|
402 | return 0; |
---|
403 | } |
---|
404 | |
---|
405 | long GBS_read_hash(const GB_HASH *hs,const char *key) { |
---|
406 | size_t i; |
---|
407 | struct gbs_hash_entry *e = find_hash_entry(hs, key, &i); |
---|
408 | |
---|
409 | return e ? e->val : 0; |
---|
410 | } |
---|
411 | |
---|
412 | static void delete_from_list(GB_HASH *hs, size_t i, struct gbs_hash_entry *e) { |
---|
413 | // delete the hash entry 'e' from list at index 'i' |
---|
414 | hs->nelem--; |
---|
415 | if (hs->entries[i] == e) { |
---|
416 | hs->entries[i] = e->next; |
---|
417 | } |
---|
418 | else { |
---|
419 | struct gbs_hash_entry *ee; |
---|
420 | for (ee = hs->entries[i]; ee->next != e; ee = ee->next); |
---|
421 | if (ee->next == e) { |
---|
422 | ee->next = e->next; |
---|
423 | } |
---|
424 | else { |
---|
425 | GB_internal_error("Database may be corrupt, hash tables error"); |
---|
426 | } |
---|
427 | } |
---|
428 | free(e->key); |
---|
429 | if (hs->freefun) hs->freefun(e->val); |
---|
430 | gbm_free_mem((char *)e,sizeof(struct gbs_hash_entry),GBM_HASH_INDEX); |
---|
431 | } |
---|
432 | |
---|
433 | static long write_hash(GB_HASH *hs, char *key, GB_BOOL copyKey, long val) { |
---|
434 | /* returns the old value (or 0 if key had no entry) |
---|
435 | * if 'copyKey' == GB_FALSE, 'key' will be freed (now or later) and may be invalid! |
---|
436 | * if 'copyKey' == GB_TRUE, 'key' will not be touched in any way! |
---|
437 | */ |
---|
438 | |
---|
439 | size_t i; |
---|
440 | struct gbs_hash_entry *e = find_hash_entry(hs, key, &i); |
---|
441 | long oldval = 0; |
---|
442 | |
---|
443 | if (e) { |
---|
444 | oldval = e->val; |
---|
445 | |
---|
446 | if (!val) delete_from_list(hs, i, e); // (val == 0 is not stored, cause 0 is the default value) |
---|
447 | else e->val = val; |
---|
448 | |
---|
449 | if (!copyKey) free(key); // already had an entry -> delete usused mem |
---|
450 | } |
---|
451 | else if (val != 0) { // don't store 0 |
---|
452 | // create new hash entry |
---|
453 | e = (struct gbs_hash_entry *)gbm_get_mem(sizeof(struct gbs_hash_entry),GBM_HASH_INDEX); |
---|
454 | e->next = hs->entries[i]; |
---|
455 | e->key = copyKey ? strdup(key) : key; |
---|
456 | e->val = val; |
---|
457 | |
---|
458 | hs->entries[i] = e; |
---|
459 | hs->nelem++; |
---|
460 | } |
---|
461 | else { |
---|
462 | if (!copyKey) free(key); // don't need an entry -> delete usused mem |
---|
463 | } |
---|
464 | return oldval; |
---|
465 | } |
---|
466 | |
---|
467 | long GBS_write_hash(GB_HASH *hs, const char *key, long val) { |
---|
468 | /* returns the old value (or 0 if key had no entry) */ |
---|
469 | return write_hash(hs, (char*)key, GB_TRUE, val); |
---|
470 | } |
---|
471 | |
---|
472 | long GBS_write_hash_no_strdup(GB_HASH *hs, char *key, long val) { |
---|
473 | /* same as GBS_write_hash, but does no strdup. 'key' is freed later in GBS_free_hash, |
---|
474 | * so the user has to 'malloc' the string and give control to the hash. |
---|
475 | * Note: after calling this function 'key' may be invalid! |
---|
476 | */ |
---|
477 | return write_hash(hs, key, GB_FALSE, val); |
---|
478 | } |
---|
479 | |
---|
480 | long GBS_incr_hash(GB_HASH *hs,const char *key) { |
---|
481 | /* returns new value */ |
---|
482 | size_t i; |
---|
483 | struct gbs_hash_entry *e = find_hash_entry(hs, key, &i); |
---|
484 | long result; |
---|
485 | |
---|
486 | if (e) { |
---|
487 | result = ++e->val; |
---|
488 | if (!result) delete_from_list(hs, i, e); |
---|
489 | } |
---|
490 | else { |
---|
491 | e = (struct gbs_hash_entry *)gbm_get_mem(sizeof(struct gbs_hash_entry),GBM_HASH_INDEX); |
---|
492 | e->next = hs->entries[i]; |
---|
493 | e->key = strdup(key); |
---|
494 | e->val = result = 1; |
---|
495 | |
---|
496 | hs->entries[i] = e; |
---|
497 | hs->nelem++; |
---|
498 | } |
---|
499 | return result; |
---|
500 | } |
---|
501 | |
---|
502 | #if defined(DEVEL_RALF) |
---|
503 | /* #define DUMP_HASH_ENTRIES */ |
---|
504 | #endif /* DEVEL_RALF */ |
---|
505 | |
---|
506 | #if defined(DEBUG) |
---|
507 | double GBS_hash_mean_access_costs(GB_HASH *hs) { |
---|
508 | /* returns the mean access costs of the hash [1.0 .. inf[ |
---|
509 | * 1.0 is optimal |
---|
510 | * 2.0 means: hash speed is 50% (1/2.0) |
---|
511 | */ |
---|
512 | double mean_access = 1.0; |
---|
513 | |
---|
514 | if (hs->nelem) { |
---|
515 | int strcmps_needed = 0; |
---|
516 | size_t pos; |
---|
517 | |
---|
518 | for (pos = 0; pos<hs->size; pos++) { |
---|
519 | int strcmps = 1; |
---|
520 | struct gbs_hash_entry *e; |
---|
521 | |
---|
522 | for (e = hs->entries[pos]; e; e = e->next) { |
---|
523 | strcmps_needed += strcmps++; |
---|
524 | } |
---|
525 | } |
---|
526 | |
---|
527 | mean_access = (double)strcmps_needed/hs->nelem; |
---|
528 | } |
---|
529 | return mean_access; |
---|
530 | } |
---|
531 | #endif /* DEBUG */ |
---|
532 | |
---|
533 | void GBS_free_hash_entries(GB_HASH *hs) |
---|
534 | { |
---|
535 | long i; |
---|
536 | long e2; |
---|
537 | struct gbs_hash_entry *e, *ee; |
---|
538 | |
---|
539 | e2 = hs->size; |
---|
540 | |
---|
541 | #if defined(DUMP_HASH_ENTRIES) |
---|
542 | for (i = 0; i < e2; i++) { |
---|
543 | printf("hash[%li] =", i); |
---|
544 | for (e = hs->entries[i]; e; e = e->next) { |
---|
545 | printf(" '%s'", e->key); |
---|
546 | } |
---|
547 | printf("\n"); |
---|
548 | } |
---|
549 | #endif /* DUMP_HASH_ENTRIES */ |
---|
550 | |
---|
551 | #if defined(DEBUG) |
---|
552 | if (e2 >= 30) { // ignore small hashes |
---|
553 | double mean_access = GBS_hash_mean_access_costs(hs); |
---|
554 | if (mean_access > 1.5) { // every 2nd access is a collision - increase hash size? |
---|
555 | dump_access("hash-size-warning", hs, mean_access); |
---|
556 | #if defined(DEVEL_RALF) |
---|
557 | gb_assert(mean_access<2.0); // hash with 50% speed or less |
---|
558 | #endif /* DEVEL_RALF */ |
---|
559 | } |
---|
560 | } |
---|
561 | #endif /* DEBUG */ |
---|
562 | |
---|
563 | for (i = 0; i < e2; i++) { |
---|
564 | for (e = hs->entries[i]; e; e = ee) { |
---|
565 | free(e->key); |
---|
566 | if (hs->freefun) hs->freefun(e->val); |
---|
567 | ee = e->next; |
---|
568 | gbm_free_mem((char *)e,sizeof(struct gbs_hash_entry),GBM_HASH_INDEX); |
---|
569 | } |
---|
570 | hs->entries[i] = 0; |
---|
571 | } |
---|
572 | } |
---|
573 | |
---|
574 | void GBS_free_hash(GB_HASH *hs) |
---|
575 | { |
---|
576 | if (!hs) return; |
---|
577 | GBS_free_hash_entries(hs); |
---|
578 | free((char *)hs->entries); |
---|
579 | free((char *)hs); |
---|
580 | } |
---|
581 | |
---|
582 | /* determine hash quality */ |
---|
583 | |
---|
584 | typedef struct { |
---|
585 | long count; // how many stats |
---|
586 | long min_size, max_size, sum_size; |
---|
587 | long min_nelem, max_nelem, sum_nelem; |
---|
588 | long min_collisions, max_collisions, sum_collisions; |
---|
589 | double min_fill_ratio, max_fill_ratio, sum_fill_ratio; |
---|
590 | double min_hash_quality, max_hash_quality, sum_hash_quality; |
---|
591 | } gbs_hash_statistic_summary; |
---|
592 | |
---|
593 | static GB_HASH *stat_hash = 0; |
---|
594 | |
---|
595 | static void init_hash_statistic_summary(gbs_hash_statistic_summary *stat) { |
---|
596 | stat->count = 0; |
---|
597 | stat->min_size = stat->min_nelem = stat->min_collisions = LONG_MAX; |
---|
598 | stat->max_size = stat->max_nelem = stat->max_collisions = LONG_MIN; |
---|
599 | stat->min_fill_ratio = stat->min_hash_quality = DBL_MAX; |
---|
600 | stat->max_fill_ratio = stat->max_hash_quality = DBL_MIN; |
---|
601 | |
---|
602 | stat->sum_size = stat->sum_nelem = stat->sum_collisions = 0; |
---|
603 | stat->sum_fill_ratio = stat->sum_hash_quality = 0.0; |
---|
604 | } |
---|
605 | |
---|
606 | static gbs_hash_statistic_summary *get_stat_summary(const char *id) { |
---|
607 | long found; |
---|
608 | if (!stat_hash) stat_hash = GBS_create_hash(10, GB_MIND_CASE); |
---|
609 | found = GBS_read_hash(stat_hash, id); |
---|
610 | if (!found) { |
---|
611 | gbs_hash_statistic_summary *stat = GB_calloc(1, sizeof(*stat)); |
---|
612 | init_hash_statistic_summary(stat); |
---|
613 | found = (long)stat; |
---|
614 | GBS_write_hash(stat_hash, id, found); |
---|
615 | } |
---|
616 | |
---|
617 | return (gbs_hash_statistic_summary*)found; |
---|
618 | } |
---|
619 | |
---|
620 | static void addto_hash_statistic_summary(gbs_hash_statistic_summary *stat, long size, long nelem, long collisions, double fill_ratio, double hash_quality) { |
---|
621 | stat->count++; |
---|
622 | |
---|
623 | if (stat->min_size > size) stat->min_size = size; |
---|
624 | if (stat->max_size < size) stat->max_size = size; |
---|
625 | |
---|
626 | if (stat->min_nelem > nelem) stat->min_nelem = nelem; |
---|
627 | if (stat->max_nelem < nelem) stat->max_nelem = nelem; |
---|
628 | |
---|
629 | if (stat->min_collisions > collisions) stat->min_collisions = collisions; |
---|
630 | if (stat->max_collisions < collisions) stat->max_collisions = collisions; |
---|
631 | |
---|
632 | if (stat->min_fill_ratio > fill_ratio) stat->min_fill_ratio = fill_ratio; |
---|
633 | if (stat->max_fill_ratio < fill_ratio) stat->max_fill_ratio = fill_ratio; |
---|
634 | |
---|
635 | if (stat->min_hash_quality > hash_quality) stat->min_hash_quality = hash_quality; |
---|
636 | if (stat->max_hash_quality < hash_quality) stat->max_hash_quality = hash_quality; |
---|
637 | |
---|
638 | stat->sum_size += size; |
---|
639 | stat->sum_nelem += nelem; |
---|
640 | stat->sum_collisions += collisions; |
---|
641 | stat->sum_fill_ratio += fill_ratio; |
---|
642 | stat->sum_hash_quality += hash_quality; |
---|
643 | } |
---|
644 | |
---|
645 | void GBS_clear_hash_statistic_summary(const char *id) { |
---|
646 | init_hash_statistic_summary(get_stat_summary(id)); |
---|
647 | } |
---|
648 | |
---|
649 | void GBS_print_hash_statistic_summary(const char *id) { |
---|
650 | gbs_hash_statistic_summary *stat = get_stat_summary(id); |
---|
651 | long count = stat->count; |
---|
652 | printf("Statistic summary for %li hashes of type '%s':\n", count, id); |
---|
653 | printf("- size: min = %6li ; max = %6li ; mean = %6.1f\n", stat->min_size, stat->max_size, (double)stat->sum_size/count); |
---|
654 | printf("- nelem: min = %6li ; max = %6li ; mean = %6.1f\n", stat->min_nelem, stat->max_nelem, (double)stat->sum_nelem/count); |
---|
655 | printf("- fill_ratio: min = %5.1f%% ; max = %5.1f%% ; mean = %5.1f%%\n", stat->min_fill_ratio*100.0, stat->max_fill_ratio*100.0, (double)stat->sum_fill_ratio/count*100.0); |
---|
656 | printf("- collisions: min = %6li ; max = %6li ; mean = %6.1f\n", stat->min_collisions, stat->max_collisions, (double)stat->sum_collisions/count); |
---|
657 | printf("- hash_quality: min = %5.1f%% ; max = %5.1f%% ; mean = %5.1f%%\n", stat->min_hash_quality*100.0, stat->max_hash_quality*100.0, (double)stat->sum_hash_quality/count*100.0); |
---|
658 | } |
---|
659 | |
---|
660 | void GBS_calc_hash_statistic(GB_HASH *hs, const char *id, int print) { |
---|
661 | size_t i; |
---|
662 | long queues = 0; |
---|
663 | long collisions; |
---|
664 | double fill_ratio = (double)hs->nelem/hs->size; |
---|
665 | double hash_quality; |
---|
666 | |
---|
667 | for (i = 0; i < hs->size; i++) { |
---|
668 | if (hs->entries[i]) queues++; |
---|
669 | } |
---|
670 | collisions = hs->nelem - queues; |
---|
671 | |
---|
672 | hash_quality = (double)queues/hs->nelem; // no collisions means 100% quality |
---|
673 | |
---|
674 | if (print != 0) { |
---|
675 | printf("Statistic for hash '%s':\n", id); |
---|
676 | printf("- size = %zu\n", hs->size); |
---|
677 | printf("- elements = %zu (fill ratio = %4.1f%%)\n", hs->nelem, fill_ratio*100.0); |
---|
678 | printf("- collisions = %li (hash quality = %4.1f%%)\n", collisions, hash_quality*100.0); |
---|
679 | } |
---|
680 | |
---|
681 | addto_hash_statistic_summary(get_stat_summary(id), hs->size, hs->nelem, collisions, fill_ratio, hash_quality); |
---|
682 | } |
---|
683 | |
---|
684 | void GBS_hash_do_loop(GB_HASH *hs, gb_hash_loop_type func, void *client_data) |
---|
685 | { |
---|
686 | long i,e2; |
---|
687 | struct gbs_hash_entry *e, *next; |
---|
688 | e2 = hs->size; |
---|
689 | for (i=0;i<e2;i++) { |
---|
690 | for (e = hs->entries[i]; e; e = next) { |
---|
691 | next = e->next; |
---|
692 | if (e->val) { |
---|
693 | e->val = func(e->key, e->val, client_data); |
---|
694 | if (!e->val) delete_from_list(hs, i, e); |
---|
695 | } |
---|
696 | } |
---|
697 | } |
---|
698 | } |
---|
699 | |
---|
700 | long GBS_hash_count_elems(GB_HASH *hs) { |
---|
701 | long e2 = hs->size; |
---|
702 | long count = 0; |
---|
703 | long i; |
---|
704 | struct gbs_hash_entry *e; |
---|
705 | |
---|
706 | for (i = 0; i<e2; ++i) { |
---|
707 | for (e=hs->entries[i]; e; e=e->next) { |
---|
708 | if (e->val) { |
---|
709 | ++count; |
---|
710 | } |
---|
711 | } |
---|
712 | } |
---|
713 | |
---|
714 | return count; |
---|
715 | } |
---|
716 | |
---|
717 | long GBS_hash_count_value(GB_HASH *hs, long val) { |
---|
718 | long e2 = hs->size; |
---|
719 | long count = 0; |
---|
720 | long i; |
---|
721 | struct gbs_hash_entry *e; |
---|
722 | |
---|
723 | ad_assert(val != 0); // counting zero values makes no sense (cause these are not stored in the hash) |
---|
724 | |
---|
725 | for (i = 0; i<e2; ++i) { |
---|
726 | for (e=hs->entries[i]; e; e=e->next) { |
---|
727 | if (e->val == val) { |
---|
728 | ++count; |
---|
729 | } |
---|
730 | } |
---|
731 | } |
---|
732 | |
---|
733 | return count; |
---|
734 | } |
---|
735 | |
---|
736 | const char *GBS_hash_next_element_that(GB_HASH *hs, const char *last_key, GB_BOOL (*condition)(const char *key, long val, void *cd), void *cd) { |
---|
737 | /* Returns the key of the next element after 'last_key' matching 'condition' (i.e. where condition returns GB_TRUE). |
---|
738 | * If 'last_key' is NULL, the first matching element is returned. |
---|
739 | * Returns NULL if no (more) elements match the 'condition'. |
---|
740 | */ |
---|
741 | |
---|
742 | size_t size = hs->size;; |
---|
743 | size_t i = 0; |
---|
744 | struct gbs_hash_entry *e = 0; |
---|
745 | |
---|
746 | if (last_key) { |
---|
747 | e = find_hash_entry(hs, last_key, &i); |
---|
748 | if (!e) return NULL; |
---|
749 | |
---|
750 | e = e->next; // use next entry after 'last_key' |
---|
751 | if (!e) i++; |
---|
752 | } |
---|
753 | |
---|
754 | for (; i<size && !e; ++i) e = hs->entries[i]; // search first/next entry |
---|
755 | |
---|
756 | while (e) { |
---|
757 | if ((*condition)(e->key, e->val, cd)) break; |
---|
758 | e = e->next; |
---|
759 | if (!e) { |
---|
760 | for (i++; i<size && !e; ++i) e = hs->entries[i]; |
---|
761 | } |
---|
762 | } |
---|
763 | |
---|
764 | return e ? e->key : NULL; |
---|
765 | } |
---|
766 | |
---|
767 | #ifdef __cplusplus |
---|
768 | extern "C" { |
---|
769 | #endif |
---|
770 | |
---|
771 | int wrap_hashCompare4gb_sort(const void *v0, const void *v1, void *sorter) { |
---|
772 | const struct gbs_hash_entry *e0 = (const struct gbs_hash_entry*)v0; |
---|
773 | const struct gbs_hash_entry *e1 = (const struct gbs_hash_entry*)v1; |
---|
774 | |
---|
775 | return ((gbs_hash_compare_function)sorter)(e0->key, e0->val, e1->key, e1->val); |
---|
776 | } |
---|
777 | |
---|
778 | #ifdef __cplusplus |
---|
779 | } |
---|
780 | #endif |
---|
781 | |
---|
782 | void GBS_hash_do_sorted_loop(GB_HASH *hs, gb_hash_loop_type func, gbs_hash_compare_function sorter, void *client_data) { |
---|
783 | long i, j, e2; |
---|
784 | struct gbs_hash_entry *e, **mtab; |
---|
785 | e2 = hs->size; |
---|
786 | mtab = (struct gbs_hash_entry **)GB_calloc(sizeof(void *), hs->nelem); |
---|
787 | for (j = 0, i = 0; i < e2; i++) { |
---|
788 | for (e = hs->entries[i]; e; e = e->next) { |
---|
789 | if (e->val) { |
---|
790 | mtab[j++] = e; |
---|
791 | } |
---|
792 | } |
---|
793 | } |
---|
794 | GB_sort((void **) mtab, 0, j, wrap_hashCompare4gb_sort, (void*)sorter); |
---|
795 | for (i = 0; i < j; i++) { |
---|
796 | long new_val = func(mtab[i]->key, mtab[i]->val, client_data); |
---|
797 | if (new_val != mtab[i]->val) GBS_write_hash(hs, mtab[i]->key, new_val); |
---|
798 | } |
---|
799 | free((char *)mtab); |
---|
800 | } |
---|
801 | |
---|
802 | int GBS_HCF_sortedByKey(const char *k0, long v0, const char *k1, long v1) { |
---|
803 | GBUSE(v0); |
---|
804 | GBUSE(v1); |
---|
805 | return strcmp(k0, k1); |
---|
806 | } |
---|
807 | |
---|
808 | /******************************************************************************************** |
---|
809 | Some Hash Procedures for [long,long] |
---|
810 | ********************************************************************************************/ |
---|
811 | |
---|
812 | long gbs_hashi_index(long key, long size) |
---|
813 | { |
---|
814 | long x; |
---|
815 | x = (key * (long long)97)%size; // make one multiplier a (long long) to avoid |
---|
816 | if (x<0) x+= size; // int overflow and abort if compield with -ftrapv |
---|
817 | return x; |
---|
818 | } |
---|
819 | |
---|
820 | |
---|
821 | GB_HASHI *GBS_create_hashi(long user_size) { |
---|
822 | long size = GBS_get_a_prime(user_size); // use next prime number for hash size |
---|
823 | struct gbs_hashi_struct *hs = (struct gbs_hashi_struct *)GB_calloc(sizeof(struct gbs_hashi_struct),1); |
---|
824 | |
---|
825 | hs->size = size; |
---|
826 | hs->entries = (struct gbs_hashi_entry **)GB_calloc(sizeof(struct gbs_hashi_entry *),(size_t)size); |
---|
827 | |
---|
828 | return hs; |
---|
829 | } |
---|
830 | |
---|
831 | |
---|
832 | long GBS_read_hashi(GB_HASHI *hs,long key) { |
---|
833 | struct gbs_hashi_entry *e; |
---|
834 | long i = gbs_hashi_index(key,hs->size); |
---|
835 | |
---|
836 | for(e = hs->entries[i]; e; e = e->next) { |
---|
837 | if (e->key==key) return e->val; |
---|
838 | } |
---|
839 | return 0; |
---|
840 | } |
---|
841 | |
---|
842 | long GBS_write_hashi(GB_HASHI *hs,long key,long val) { |
---|
843 | struct gbs_hashi_entry *e; |
---|
844 | long i2; |
---|
845 | long i = gbs_hashi_index(key,hs->size); |
---|
846 | |
---|
847 | if (!val) { |
---|
848 | struct gbs_hashi_entry *oe; |
---|
849 | oe = 0; |
---|
850 | for (e = hs->entries[i]; e; e = e->next) { |
---|
851 | if (e->key == key) { |
---|
852 | if (oe) { |
---|
853 | oe->next = e->next; |
---|
854 | } else { |
---|
855 | hs->entries[i] = e->next; |
---|
856 | } |
---|
857 | gbm_free_mem((char *) e, sizeof(struct gbs_hashi_entry),GBM_HASH_INDEX); |
---|
858 | return 0; |
---|
859 | } |
---|
860 | oe = e; |
---|
861 | } |
---|
862 | printf("free %lx not found\n",(long)e); |
---|
863 | return 0; |
---|
864 | } |
---|
865 | for(e=hs->entries[i];e;e=e->next) |
---|
866 | { |
---|
867 | if (e->key==key) { |
---|
868 | i2 = e->val; |
---|
869 | e->val = val; |
---|
870 | return i2; |
---|
871 | } |
---|
872 | } |
---|
873 | e = (struct gbs_hashi_entry *)gbm_get_mem(sizeof(struct gbs_hashi_entry),GBM_HASH_INDEX); |
---|
874 | e->next = hs->entries[i]; |
---|
875 | e->key = key; |
---|
876 | e->val = val; |
---|
877 | hs->entries[i] = e; |
---|
878 | return 0; |
---|
879 | } |
---|
880 | |
---|
881 | void GBS_free_hashi(GB_HASHI *hs) { |
---|
882 | long i; |
---|
883 | struct gbs_hashi_entry *e,*ee; |
---|
884 | long e2 = hs->size; |
---|
885 | |
---|
886 | for (i=0;i<e2;i++) { |
---|
887 | for (e=hs->entries[i];e;e=ee) { |
---|
888 | ee = e->next; |
---|
889 | gbm_free_mem((char *)e,sizeof(struct gbs_hashi_entry),GBM_HASH_INDEX); |
---|
890 | } |
---|
891 | } |
---|
892 | |
---|
893 | free ((char *)hs->entries); |
---|
894 | free ((char *)hs); |
---|
895 | } |
---|
896 | |
---|
897 | |
---|
898 | |
---|
899 | /******************************************************************************************** |
---|
900 | Cache Cache Cache |
---|
901 | ********************************************************************************************/ |
---|
902 | |
---|
903 | void gb_init_cache(GB_MAIN_TYPE *Main){ |
---|
904 | int i; |
---|
905 | if (Main->cache.entries) return; |
---|
906 | Main->cache.entries = (struct gb_cache_entry_struct *)GB_calloc(sizeof(struct gb_cache_entry_struct), |
---|
907 | GB_MAX_CACHED_ENTRIES); |
---|
908 | Main->cache.max_data_size = GB_TOTAL_CACHE_SIZE; |
---|
909 | Main->cache.max_entries = GB_MAX_CACHED_ENTRIES; |
---|
910 | for (i=0;i<GB_MAX_CACHED_ENTRIES-1;i++) { |
---|
911 | Main->cache.entries[i].next = i+1; |
---|
912 | } |
---|
913 | Main->cache.firstfree_entry = 1; |
---|
914 | } |
---|
915 | |
---|
916 | char *gb_read_cache(GBDATA *gbd) { |
---|
917 | GB_MAIN_TYPE *Main; |
---|
918 | struct gb_cache_struct *cs; |
---|
919 | long i; |
---|
920 | long n,p; |
---|
921 | if (!(i=gbd->cache_index)) return 0; |
---|
922 | Main = GB_MAIN(gbd); |
---|
923 | cs = &Main->cache; |
---|
924 | n = cs->entries[i].next; p = cs->entries[i].prev; |
---|
925 | /* remove entry from list */ |
---|
926 | if (i == cs->newest_entry) cs->newest_entry = n; |
---|
927 | if (i == cs->oldest_entry) cs->oldest_entry = p; |
---|
928 | cs->entries[n].prev = p; |
---|
929 | cs->entries[p].next = n; |
---|
930 | /* check validity */ |
---|
931 | if (GB_GET_EXT_UPDATE_DATE(gbd) > cs->entries[i].clock) { |
---|
932 | freeset(cs->entries[i].data, NULL); |
---|
933 | cs->sum_data_size -= cs->entries[i].sizeof_data; |
---|
934 | |
---|
935 | gbd->cache_index = 0; |
---|
936 | |
---|
937 | /* insert deleted entry in free list */ |
---|
938 | cs->entries[i].next = cs->firstfree_entry; |
---|
939 | cs->firstfree_entry = i; |
---|
940 | return 0; |
---|
941 | } |
---|
942 | |
---|
943 | /* insert entry on top of list */ |
---|
944 | cs->entries[i].next = cs->newest_entry; |
---|
945 | cs->entries[cs->newest_entry].prev = i; |
---|
946 | cs->newest_entry = i; |
---|
947 | cs->entries[i].prev = 0; |
---|
948 | if (!cs->oldest_entry) cs->oldest_entry = i; |
---|
949 | |
---|
950 | return cs->entries[i].data; |
---|
951 | } |
---|
952 | |
---|
953 | void *gb_free_cache(GB_MAIN_TYPE *Main, GBDATA *gbd) { |
---|
954 | struct gb_cache_struct *cs; |
---|
955 | long i; |
---|
956 | long n,p; |
---|
957 | if (!(i=gbd->cache_index)) return 0; |
---|
958 | cs = &Main->cache; |
---|
959 | n = cs->entries[i].next; p = cs->entries[i].prev; |
---|
960 | /* remove entry from list */ |
---|
961 | if (i == cs->newest_entry) cs->newest_entry = n; |
---|
962 | if (i == cs->oldest_entry) cs->oldest_entry = p; |
---|
963 | cs->entries[n].prev = p; |
---|
964 | cs->entries[p].next = n; |
---|
965 | |
---|
966 | /* free cache */ |
---|
967 | freeset(cs->entries[i].data, NULL); |
---|
968 | cs->sum_data_size -= cs->entries[i].sizeof_data; |
---|
969 | |
---|
970 | gbd->cache_index = 0; |
---|
971 | |
---|
972 | /* insert deleted entry in free list */ |
---|
973 | cs->entries[i].next = cs->firstfree_entry; |
---|
974 | cs->firstfree_entry = i; |
---|
975 | return 0; |
---|
976 | } |
---|
977 | |
---|
978 | char *delete_old_cache_entries(struct gb_cache_struct *cs, long needed_size, long max_data_size) |
---|
979 | /* call with max_data_size==0 to flush cache */ |
---|
980 | { |
---|
981 | long n,p; |
---|
982 | long i; |
---|
983 | char *data = 0; |
---|
984 | |
---|
985 | while ( ( (!cs->firstfree_entry) || ( needed_size + cs->sum_data_size >= max_data_size)) |
---|
986 | && cs->oldest_entry) { |
---|
987 | i = cs->oldest_entry; |
---|
988 | n = cs->entries[i].next; p = cs->entries[i].prev; |
---|
989 | /* remove entry from list */ |
---|
990 | if (i == cs->newest_entry) cs->newest_entry = n; |
---|
991 | if (i == cs->oldest_entry) cs->oldest_entry = p; |
---|
992 | cs->entries[n].prev = p; |
---|
993 | cs->entries[p].next = n; |
---|
994 | |
---|
995 | /* insert deleted entry in free list */ |
---|
996 | cs->entries[i].gbd->cache_index = 0; |
---|
997 | cs->entries[i].next = cs->firstfree_entry; |
---|
998 | cs->firstfree_entry = i; |
---|
999 | /* delete all unused memorys */ |
---|
1000 | if (data || ( needed_size != cs->entries[i].sizeof_data) ) { |
---|
1001 | free(cs->entries[i].data); |
---|
1002 | }else{ |
---|
1003 | data = cs->entries[i].data; |
---|
1004 | } |
---|
1005 | cs->sum_data_size -= cs->entries[i].sizeof_data; |
---|
1006 | cs->entries[i].data = 0; |
---|
1007 | } |
---|
1008 | return data; |
---|
1009 | } |
---|
1010 | |
---|
1011 | char *gb_flush_cache(GBDATA *gbd) |
---|
1012 | { |
---|
1013 | GB_MAIN_TYPE *Main = GB_MAIN(gbd); |
---|
1014 | struct gb_cache_struct *cs = &Main->cache; |
---|
1015 | |
---|
1016 | delete_old_cache_entries(cs, 0, 0); |
---|
1017 | return 0; |
---|
1018 | } |
---|
1019 | |
---|
1020 | char *gb_alloc_cache_index(GBDATA *gbd,long size) { |
---|
1021 | GB_MAIN_TYPE *Main = GB_MAIN(gbd); |
---|
1022 | struct gb_cache_struct *cs = &Main->cache; |
---|
1023 | long i; |
---|
1024 | char *data = 0; |
---|
1025 | |
---|
1026 | data = delete_old_cache_entries(cs, size, cs->max_data_size); /* delete enough old memory */ |
---|
1027 | |
---|
1028 | i = cs->firstfree_entry; |
---|
1029 | if (!i) { |
---|
1030 | GB_internal_error("internal cache error"); |
---|
1031 | return 0; |
---|
1032 | } |
---|
1033 | |
---|
1034 | /* get free element */ |
---|
1035 | cs->firstfree_entry = cs->entries[i].next; |
---|
1036 | /* insert it on top of used list */ |
---|
1037 | cs->entries[i].next = cs->newest_entry; |
---|
1038 | cs->entries[cs->newest_entry].prev = i; |
---|
1039 | cs->newest_entry = i; |
---|
1040 | cs->entries[i].prev = 0; |
---|
1041 | if (!cs->oldest_entry) cs->oldest_entry = i; |
---|
1042 | |
---|
1043 | /* create data */ |
---|
1044 | cs->sum_data_size += size; |
---|
1045 | if (!data) data = (char *) malloc((int)size); |
---|
1046 | cs->entries[i].sizeof_data = (int)size; |
---|
1047 | cs->entries[i].data = data; |
---|
1048 | cs->entries[i].gbd = gbd; |
---|
1049 | gbd->cache_index = (short)i; |
---|
1050 | |
---|
1051 | return data; |
---|
1052 | } |
---|
1053 | |
---|
1054 | char *GB_set_cache_size(GBDATA *gbd, long size){ |
---|
1055 | GB_MAIN(gbd)->cache.max_data_size = size; |
---|
1056 | return 0; |
---|
1057 | } |
---|