1 | /* CONTIG ASSEMBLY PROGRAM (CAP) |
---|
2 | |
---|
3 | copyright (c) 1991 Xiaoqiu Huang |
---|
4 | The distribution of the program is granted provided no charge |
---|
5 | is made and the copyright notice is included. |
---|
6 | |
---|
7 | Proper attribution of the author as the source of the software |
---|
8 | would be appreciated: |
---|
9 | "A Contig Assembly Program Based on Sensitive Detection of |
---|
10 | Fragment Overlaps" (submitted to Genomics, 1991) |
---|
11 | Xiaoqiu Huang |
---|
12 | Department of Computer Science |
---|
13 | Michigan Technological University |
---|
14 | Houghton, MI 49931 |
---|
15 | E-mail: huang@cs.mtu.edu |
---|
16 | |
---|
17 | The CAP program uses a dynamic programming algorithm to compute |
---|
18 | the maximal-scoring overlapping alignment between two fragments. |
---|
19 | Fragments in random orientations are assembled into contigs by a |
---|
20 | greedy approach in order of the overlap scores. CAP is efficient |
---|
21 | in computer memory: a large number of arbitrarily long fragments |
---|
22 | can be assembled. The time requirement is acceptable; for example, |
---|
23 | CAP took 4 hours to assemble 1015 fragments of a total of 252 kb |
---|
24 | nucleotides on a Sun SPARCstation SLC. The program is written in C |
---|
25 | and runs on Sun workstations. |
---|
26 | |
---|
27 | Below is a description of the parameters in the #define section of CAP. |
---|
28 | Two specially chosen sets of substitution scores and indel penalties |
---|
29 | are used by the dynamic programming algorithm: heavy set for regions |
---|
30 | of low sequencing error rates and light set for fragment ends of high |
---|
31 | sequencing error rates. (Use integers only.) |
---|
32 | Heavy set: Light set: |
---|
33 | |
---|
34 | MATCH = 2 MATCH = 2 |
---|
35 | MISMAT = -6 LTMISM = -3 |
---|
36 | EXTEND = 4 LTEXTEN = 2 |
---|
37 | |
---|
38 | In the initial assembly, any overlap must be of length at least OVERLEN, |
---|
39 | and any overlap/containment must be of identity percentage at least |
---|
40 | PERCENT. After the initial assembly, the program attempts to join |
---|
41 | contigs together using weak overlaps. Two contigs are merged if the |
---|
42 | score of the overlapping alignment is at least CUTOFF. The value for |
---|
43 | CUTOFF is chosen according to the value for MATCH. |
---|
44 | |
---|
45 | DELTA is a parameter in necessary conditions for overlap/containment. |
---|
46 | Those conditions are used to quickly reject pairs of fragments that |
---|
47 | could not possibly have an overlap/containment relationship. |
---|
48 | The dynamic programming algorithm is only applied to pairs of fragments |
---|
49 | that pass the screening. A large value for DELTA means stringent |
---|
50 | conditions, where the value for DELTA is a real number at least 8.0. |
---|
51 | |
---|
52 | POS5 and POS3 are fragment positions such that the 5' end between base 1 |
---|
53 | and base POS5, and the 3' end after base POS3 are of high sequencing |
---|
54 | error rates, say more than 5%. For mismatches and indels occurring in |
---|
55 | the two ends, light penalties are used. |
---|
56 | |
---|
57 | A file of input fragments looks like: |
---|
58 | >G019uabh |
---|
59 | ATACATCATAACACTACTTCCTACCCATAAGCTCCTTTTAACTTGTTAAA |
---|
60 | GTCTTGCTTGAATTAAAGACTTGTTTAAACACAAAAATTTAGAGTTTTAC |
---|
61 | TCAACAAAAGTGATTGATTGATTGATTGATTGATTGATGGTTTACAGTAG |
---|
62 | GACTTCATTCTAGTCATTATAGCTGCTGGCAGTATAACTGGCCAGCCTTT |
---|
63 | AATACATTGCTGCTTAGAGTCAAAGCATGTACTTAGAGTTGGTATGATTT |
---|
64 | ATCTTTTTGGTCTTCTATAGCCTCCTTCCCCATCCCCATCAGTCTTAATC |
---|
65 | AGTCTTGTTACGTTATGACTAATCTTTGGGGATTGTGCAGAATGTTATTT |
---|
66 | TAGATAAGCAAAACGAGCAAAATGGGGAGTTACTTATATTTCTTTAAAGC |
---|
67 | >G028uaah |
---|
68 | CATAAGCTCCTTTTAACTTGTTAAAGTCTTGCTTGAATTAAAGACTTGTT |
---|
69 | TAAACACAAAATTTAGACTTTTACTCAACAAAAGTGATTGATTGATTGAT |
---|
70 | TGATTGATTGATGGTTTACAGTAGGACTTCATTCTAGTCATTATAGCTGC |
---|
71 | TGGCAGTATAACTGGCCAGCCTTTAATACATTGCTGCTTAGAGTCAAAGC |
---|
72 | ATGTACTTAGAGTTGGTATGATTTATCTTTTTGGTCTTCTATAGCCTCCT |
---|
73 | TCCCCATCCCATCAGTCT |
---|
74 | >G022uabh |
---|
75 | TATTTTAGAGACCCAAGTTTTTGACCTTTTCCATGTTTACATCAATCCTG |
---|
76 | TAGGTGATTGGGCAGCCATTTAAGTATTATTATAGACATTTTCACTATCC |
---|
77 | CATTAAAACCCTTTATGCCCATACATCATAACACTACTTCCTACCCATAA |
---|
78 | GCTCCTTTTAACTTGTTAAAGTCTTGCTTGAATTAAAGACTTGTTTAAAC |
---|
79 | ACAAAATTTAGACTTTTACTCAACAAAAGTGATTGATTGATTGATTGATT |
---|
80 | GATTGAT |
---|
81 | >G023uabh |
---|
82 | AATAAATACCAAAAAAATAGTATATCTACATAGAATTTCACATAAAATAA |
---|
83 | ACTGTTTTCTATGTGAAAATTAACCTAAAAATATGCTTTGCTTATGTTTA |
---|
84 | AGATGTCATGCTTTTTATCAGTTGAGGAGTTCAGCTTAATAATCCTCTAC |
---|
85 | GATCTTAAACAAATAGGAAAAAAACTAAAAGTAGAAAATGGAAATAAAAT |
---|
86 | GTCAAAGCATTTCTACCACTCAGAATTGATCTTATAACATGAAATGCTTT |
---|
87 | TTAAAAGAAAATATTAAAGTTAAACTCCCCTATTTTGCTCGTTTTTGCTT |
---|
88 | ATCTAAAATACATTCTGCACAATCCCCAAAGATTGATCATACGTTAC |
---|
89 | >G006uaah |
---|
90 | ACATAAAATAAACTGTTTTCTATGTGAAAATTAACCTANNATATGCTTTG |
---|
91 | CTTATGTTTAAGATGTCATGCTTTTTATCAGTTGAGGAGTTCAGCTTAAT |
---|
92 | AATCCTCTAAGATCTTAAACAAATAGGAAAAAAACTAAAAGTAGAAAATG |
---|
93 | GAAATAAAATGTCAAAGCATTTCTACCACTCAGAATTGATCTTATAACAT |
---|
94 | GAAATGCTTTTTAAAAGAAAATATTAAAGTTAAACTCCCC |
---|
95 | A string after ">" is the name of the following fragment. |
---|
96 | Only the five upper-case letters A, C, G, T and N are allowed |
---|
97 | to appear in fragment data. No other characters are allowed. |
---|
98 | A common mistake is the use of lower case letters in a fragment. |
---|
99 | |
---|
100 | To run the program, type a command of form |
---|
101 | |
---|
102 | cap file_of_fragments |
---|
103 | |
---|
104 | The output goes to the terminal screen. So redirection of the |
---|
105 | output into a file is necessary. The output consists of three parts: |
---|
106 | overview of contigs at fragment level, detailed display of contigs |
---|
107 | at nucleotide level, and consensus sequences. |
---|
108 | '+' = direct orientation; '-' = reverse complement |
---|
109 | The output of CAP on the sample input data looks like: |
---|
110 | |
---|
111 | #Contig 1 |
---|
112 | |
---|
113 | #G022uabh+(0) |
---|
114 | TATTTTAGAGACCCAAGTTTTTGACCTTTTCCATGTTTACATCAATCCTGTAGGTGATTG |
---|
115 | GGCAGCCATTTAAGTATTATTATAGACATTTTCACTATCCCATTAAAACCCTTTATGCCC |
---|
116 | ATACATCATAACACTACTTCCTACCCATAAGCTCCTTTTAACTTGTTAAAGTCTTGCTTG |
---|
117 | AATTAAAGACTTGTTTAAACACAAAA-TTTAGACTTTTACTCAACAAAAGTGATTGATTG |
---|
118 | ATTGATTGATTGATTGAT |
---|
119 | #G028uaah+(145) |
---|
120 | CATAAGCTCCTTTTAACTTGTTAAAGTCTTGCTTGAATTAAAGACTTGTTTAAACACAAA |
---|
121 | A-TTTAGACTTTTACTCAACAAAAGTGATTGATTGATTGATTGATTGATTGATGGTTTAC |
---|
122 | AGTAGGACTTCATTCTAGTCATTATAGCTGCTGGCAGTATAACTGGCCAGCCTTTAATAC |
---|
123 | ATTGCTGCTTAGAGTCAAAGCATGTACTTAGAGTTGGTATGATTTATCTTTTTGGTCTTC |
---|
124 | TATAGCCTCCTTCCCCATCCC-ATCAGTCT |
---|
125 | #G019uabh+(120) |
---|
126 | ATACATCATAACACTACTTCCTACCCATAAGCTCCTTTTAACTTGTTAAAGTCTTGCTTG |
---|
127 | AATTAAAGACTTGTTTAAACACAAAAATTTAGAGTTTTACTCAACAAAAGTGATTGATTG |
---|
128 | ATTGATTGATTGATTGATGGTTTACAGTAGGACTTCATTCTAGTCATTATAGCTGCTGGC |
---|
129 | AGTATAACTGGCCAGCCTTTAATACATTGCTGCTTAGAGTCAAAGCATGTACTTAGAGTT |
---|
130 | GGTATGATTTATCTTTTTGGTCTTCTATAGCCTCCTTCCCCATCCCCATCAGTCTTAATC |
---|
131 | AGTCTTGTTACGTTATGACT-AATCTTTGGGGATTGTGCAGAATGTTATTTTAGATAAGC |
---|
132 | AAAA-CGAGCAAAAT-GGGGAGTT-A-CTT-A-TATTT-CTTT-AAA--GC |
---|
133 | #G023uabh-(426) |
---|
134 | GTAACGT-ATGA-TCAATCTTTGGGGATTGTGCAGAATGT-ATTTTAGATAAGCAAAAAC |
---|
135 | GAGCAAAATAGGGGAGTTTAACTTTAATATTTTCTTTTAAAAAGCATTTCATGTTATAAG |
---|
136 | ATCAATTCTGAGTGGTAGAAATGCTTTGACATTTTATTTCCATTTTCTACTTTTAGTTTT |
---|
137 | TTTCCTATTTGTTTAAGATCGTAGAGGATTATTAAGCTGAACTCCTCAACTGATAAAAAG |
---|
138 | CATGACATCTTAAACATAAGCAAAGCATATTTTTAGGTTAATTTTCACATAGAAAACAGT |
---|
139 | TTATTTTATGTGAAATTCTATGTAGATATACTATTTTTTTGGTATTTATT |
---|
140 | #G006uaah-(496) |
---|
141 | GGGGAGTTTAACTTTAATATTTTCTTTTAAAAAGCATTTCATGTTATAAGATCAATTCTG |
---|
142 | AGTGGTAGAAATGCTTTGACATTTTATTTCCATTTTCTACTTTTAGTTTTTTTCCTATTT |
---|
143 | GTTTAAGATCTTAGAGGATTATTAAGCTGAACTCCTCAACTGATAAAAAGCATGACATCT |
---|
144 | TAAACATAAGCAAAGCATATNNT-AGGTTAATTTTCACATAGAAAACAGTTTATTTTATG |
---|
145 | T |
---|
146 | |
---|
147 | |
---|
148 | |
---|
149 | Slight modifications by S. Smith on Mon Feb 17 10:18:34 EST 1992. |
---|
150 | These changes allow for command line arguements for several |
---|
151 | of the hard coded parameters, as well as a slight modification to |
---|
152 | the output routine to support GDE format. Changes are commented |
---|
153 | as: |
---|
154 | |
---|
155 | Mod by S.S. |
---|
156 | |
---|
157 | */ |
---|
158 | |
---|
159 | #include <stdio.h> |
---|
160 | |
---|
161 | int OVERLEN; /* Minimum length of any overlap */ |
---|
162 | float PERCENT; /* Minimum identity percentage of any overlap */ |
---|
163 | #define CUTOFF 50 /* cutoff score for overlap or containment */ |
---|
164 | #define DELTA 9.0 /* Jump increment in check for overlap */ |
---|
165 | #define MATCH 2 /* score of a match */ |
---|
166 | #define MISMAT -6 /* score of a mismatch */ |
---|
167 | #define LTMISM -3 /* light score of a mismatch */ |
---|
168 | #define OPEN 0 /* gap open penalty */ |
---|
169 | #define EXTEND 4 /* gap extension penalty */ |
---|
170 | #define LTEXTEN 2 /* light gap extension penalty */ |
---|
171 | #define POS5 30 /* Sequencing errors often occur before base POS5 */ |
---|
172 | #define POS3 475 /* Sequencing errors often occur after base POS3 */ |
---|
173 | #define LINELEN 60 /* length of one printed line */ |
---|
174 | #define NAMELEN 20 /* length of printed fragment name */ |
---|
175 | #define TUPLELEN 4 /* Maximum length of words for lookup table */ |
---|
176 | #define SEQLEN 2000 /* initial size of an array for an output fragment */ |
---|
177 | |
---|
178 | static int over_len; |
---|
179 | static float per_cent; |
---|
180 | typedef struct OVERLAP /* of 5' and 3' segments */ |
---|
181 | { |
---|
182 | int number; /* index of 3' segment */ |
---|
183 | int host; /* index of 5' segment */ |
---|
184 | int ind; /* used in reassembly */ |
---|
185 | int stari; /* start position of 5' suffix */ |
---|
186 | int endi; /* end position of 5' suffix */ |
---|
187 | int starj; /* start position of 3' prefix */ |
---|
188 | int endj; /* end position of 3' prefix */ |
---|
189 | short orienti; /* orientation of 5' segment: 0= rev. */ |
---|
190 | short orientj; /* orientation of 3' segment: 0= rev. */ |
---|
191 | int score; /* score of overlap alignment */ |
---|
192 | int length; /* length of alignment */ |
---|
193 | int match; /* number of matches in alignment */ |
---|
194 | short kind; /* 0 = containment; 1 = overlap */ |
---|
195 | int *script; /* script for constructing alignment */ |
---|
196 | struct OVERLAP *next; |
---|
197 | } over, *overptr; |
---|
198 | struct SEG |
---|
199 | { |
---|
200 | char *name; /* name string */ |
---|
201 | int len; /* length of segment name */ |
---|
202 | char *seq; /* segment sequence */ |
---|
203 | char *rev; /* reverse complement */ |
---|
204 | int length; /* length of sequence */ |
---|
205 | short kind; /* 0 = contain; 1 = overlap */ |
---|
206 | int *lookup; /* lookup table */ |
---|
207 | int *pos; /* location list */ |
---|
208 | overptr list; /* list of overlapping edges */ |
---|
209 | } *segment; /* array of segment records */ |
---|
210 | int seg_num; /* The number of segments */ |
---|
211 | overptr *edge; /* set of overlapping edges */ |
---|
212 | int edge_num; /* The number of overlaps */ |
---|
213 | struct CONS /* 1 = itself; 0 = reverse complement */ |
---|
214 | { |
---|
215 | short isfive[2]; /* is 5' end free? */ |
---|
216 | short isthree[2]; /* is 3' end free? */ |
---|
217 | short orient[2]; /* orientation of 3' segment */ |
---|
218 | int group; /* contig serial number */ |
---|
219 | int next[2]; /* pointer to 3' adjacent segment */ |
---|
220 | int other; /* the other end of the contig */ |
---|
221 | int child; /* for the containment tree */ |
---|
222 | int brother; |
---|
223 | int father; |
---|
224 | overptr node[2]; /* pointers to overlapping edges */ |
---|
225 | } *contigs; /* list of contigs */ |
---|
226 | struct TTREE /* multiple alignment tree */ |
---|
227 | { |
---|
228 | short head; /* head = 1 means the head of a contig */ |
---|
229 | short orient; /* orientation */ |
---|
230 | int begin; /* start position of previous segment */ |
---|
231 | int *script; /* alignment script */ |
---|
232 | int size; /* length of script */ |
---|
233 | int next; /* list of overlap segments */ |
---|
234 | int child; /* list of child segments */ |
---|
235 | int brother; /* list of sibling segments */ |
---|
236 | } *mtree; |
---|
237 | int vert[128]; /* converted digits for 'A','C','G','T' */ |
---|
238 | int vertc[128]; /* for reverse complement */ |
---|
239 | int tuple; /* tuple = TUPLELEN - 1 */ |
---|
240 | int base[TUPLELEN]; /* locations of a lookup table */ |
---|
241 | int power[TUPLELEN]; /* powers of 4 */ |
---|
242 | typedef struct OUT |
---|
243 | { |
---|
244 | char *line; /* one print line */ |
---|
245 | char *a; /* pointer to slot in line */ |
---|
246 | char c; /* current char */ |
---|
247 | char *seq; /* pointer to sequence */ |
---|
248 | int length; /* length of segment */ |
---|
249 | int id; /* index of segment */ |
---|
250 | int *s; /* pointer to script vector */ |
---|
251 | int size; /* size of script vector */ |
---|
252 | int op; /* current operation */ |
---|
253 | char name[NAMELEN+2];/* name of segment */ |
---|
254 | short done; /* indicates if segment is done */ |
---|
255 | int loc; /* position of next segment symbol */ |
---|
256 | char kind; /* type of next symbol of segment */ |
---|
257 | char up; /* type of upper symbol of operation */ |
---|
258 | char dw; /* type of lower symbol of operation */ |
---|
259 | int offset; /* relative to consensus sequence */ |
---|
260 | int linesize; /* size of array line */ |
---|
261 | struct OUT *child; /* pointer to child subtree */ |
---|
262 | struct OUT *brother; /* pointer to brother node */ |
---|
263 | struct OUT *link; /* for operation linked list */ |
---|
264 | struct OUT *father; /* pointer to father node */ |
---|
265 | } row, *rowptr; /* node for segment */ |
---|
266 | rowptr *work; /* a set of working segments */ |
---|
267 | rowptr head, tail; /* first and last nodes of op list */ |
---|
268 | struct VX |
---|
269 | { |
---|
270 | int id; /* Segment index */ |
---|
271 | short kind; /* overlap or containment */ |
---|
272 | overptr list; /* list of overlapping edges */ |
---|
273 | } *piece; /* array of segment records */ |
---|
274 | char *allconsen, *allconpt; /* Storing consensus sequences */ |
---|
275 | |
---|
276 | main(argc, argv) int argc; |
---|
277 | char *argv[]; |
---|
278 | { |
---|
279 | int M; /* Sequence length */ |
---|
280 | int V[128][128], Q,R; /* Weights */ |
---|
281 | int V1[128][128], R1; /* Light weights */ |
---|
282 | int total; /* Total of segment lengths */ |
---|
283 | int number; /* The number of segments */ |
---|
284 | char *sequence; /* Storing all segments */ |
---|
285 | char *reverse; /* Storing all reverse segments */ |
---|
286 | int symbol, prev; /* The next character */ |
---|
287 | FILE *Ap, *ckopen(); /* For the sequence file */ |
---|
288 | char *my_calloc(int); /* space-allocating function */ |
---|
289 | register int i, j, k; /* index variables */ |
---|
290 | /* Mod by S.S. */ |
---|
291 | int jj; |
---|
292 | short heading; /* 1: heading; 0: sequence */ |
---|
293 | |
---|
294 | /* |
---|
295 | * Mod by S.S. |
---|
296 | * |
---|
297 | if ( argc != 2 ) |
---|
298 | fatalf("The proper form of command is: \n%s file_of_fragments", |
---|
299 | argv[0]); |
---|
300 | */ |
---|
301 | if ( argc != 4 ) |
---|
302 | fatalf("usage: %s file_of_fragments MIN_OVERLAP PERCENT_MATCH", |
---|
303 | argv[0]); |
---|
304 | sscanf(argv[2],"%d",&OVERLEN); |
---|
305 | sscanf(argv[3],"%d",&jj); |
---|
306 | PERCENT = (float)jj/100.0; |
---|
307 | if(PERCENT < 0.25) PERCENT = 0.25; |
---|
308 | if(PERCENT > 1.0) PERCENT = 1.0; |
---|
309 | if(OVERLEN < 1) OVERLEN = 1; |
---|
310 | if(OVERLEN > 100) OVERLEN = 100; |
---|
311 | |
---|
312 | |
---|
313 | |
---|
314 | /* determine number of segments and total lengths */ |
---|
315 | j = 0; |
---|
316 | |
---|
317 | Ap = ckopen(argv[1], "r"); |
---|
318 | prev = '\n'; |
---|
319 | for (total = 3, number = 0; ( symbol = getc(Ap)) != EOF ; total++ ) |
---|
320 | { |
---|
321 | if ( symbol == '>' && prev == '\n' ) |
---|
322 | number++; |
---|
323 | prev = symbol; |
---|
324 | } |
---|
325 | (void) fclose(Ap); |
---|
326 | |
---|
327 | total += number * 20; |
---|
328 | /* allocate space for segments */ |
---|
329 | sequence = ( char * ) my_calloc( total * sizeof(char)); |
---|
330 | reverse = ( char * ) my_calloc( total * sizeof(char)); |
---|
331 | allconpt = allconsen = ( char * ) my_calloc( total * sizeof(char)); |
---|
332 | segment = ( struct SEG * ) my_calloc( number * sizeof(struct SEG)); |
---|
333 | |
---|
334 | /* read the segments into sequence */ |
---|
335 | M = 0; |
---|
336 | Ap = ckopen(argv[1], "r"); |
---|
337 | number = -1; |
---|
338 | heading = 0; |
---|
339 | prev = '\n'; |
---|
340 | for ( i = 0, k = total ; ( symbol = getc(Ap)) != EOF ; ) |
---|
341 | { |
---|
342 | if ( symbol != '\n' ) |
---|
343 | { |
---|
344 | sequence[++i] = symbol; |
---|
345 | switch ( symbol ) |
---|
346 | { |
---|
347 | case 'A' : |
---|
348 | reverse[--k] = 'T'; |
---|
349 | break; |
---|
350 | case 'a' : |
---|
351 | reverse[--k] = 't'; |
---|
352 | break; |
---|
353 | case 'T' : |
---|
354 | reverse[--k] = 'A'; |
---|
355 | break; |
---|
356 | case 't' : |
---|
357 | reverse[--k] = 'a'; |
---|
358 | break; |
---|
359 | case 'C' : |
---|
360 | reverse[--k] = 'G'; |
---|
361 | break; |
---|
362 | case 'c' : |
---|
363 | reverse[--k] = 'g'; |
---|
364 | break; |
---|
365 | case 'G' : |
---|
366 | reverse[--k] = 'C'; |
---|
367 | break; |
---|
368 | case 'g' : |
---|
369 | reverse[--k] = 'c'; |
---|
370 | break; |
---|
371 | default : |
---|
372 | reverse[--k] = symbol; |
---|
373 | break; |
---|
374 | } |
---|
375 | } |
---|
376 | if ( symbol == '>' && prev == '\n' ) |
---|
377 | { |
---|
378 | heading = 1; |
---|
379 | if ( number >= 0 ) |
---|
380 | { |
---|
381 | segment[number].length = i - j - 1; |
---|
382 | segment[number].rev = &(reverse[k]); |
---|
383 | if ( i - j - 1 > M ) M = i - j -1; |
---|
384 | } |
---|
385 | number++; |
---|
386 | j = i; |
---|
387 | segment[number].name = &(sequence[i]); |
---|
388 | segment[number].kind = 1; |
---|
389 | segment[number].list = 0; |
---|
390 | } |
---|
391 | if ( heading && symbol == '\n' ) |
---|
392 | { |
---|
393 | heading = 0; |
---|
394 | segment[number].len = i - j; |
---|
395 | segment[number].seq = &(sequence[i]); |
---|
396 | j = i; |
---|
397 | } |
---|
398 | |
---|
399 | prev = symbol; |
---|
400 | } |
---|
401 | segment[number].length = i - j; |
---|
402 | reverse[--k] = '>'; |
---|
403 | segment[number].rev = &(reverse[k]); |
---|
404 | if ( i - j > M ) M = i - j; |
---|
405 | seg_num = ++number; |
---|
406 | (void) fclose(Ap); |
---|
407 | |
---|
408 | Q = OPEN; |
---|
409 | R = EXTEND; |
---|
410 | R1 = LTEXTEN; |
---|
411 | /* set match and mismatch weights */ |
---|
412 | for ( i = 0; i < 128 ; i++ ) |
---|
413 | for ( j = 0; j < 128 ; j++ ) |
---|
414 | if ((i|32) == (j|32) ) |
---|
415 | V[i][j] = V1[i][j] = MATCH; |
---|
416 | else |
---|
417 | { |
---|
418 | V[i][j] = MISMAT; |
---|
419 | V1[i][j] = LTMISM; |
---|
420 | } |
---|
421 | for ( i = 0; i < 128 ; i++ ) |
---|
422 | V['N'][i] = V[i]['N'] = MISMAT + 1; |
---|
423 | V1['N']['N'] = MISMAT + 1; |
---|
424 | |
---|
425 | over_len = OVERLEN; |
---|
426 | per_cent = PERCENT; |
---|
427 | edge_num = 0; |
---|
428 | INIT(M); |
---|
429 | MAKE(); |
---|
430 | PAIR(V,V1,Q,R,R1); |
---|
431 | ASSEM(); |
---|
432 | REPAIR(); |
---|
433 | FORM_TREE(); |
---|
434 | /* GRAPH(); */ |
---|
435 | SHOW(); |
---|
436 | } |
---|
437 | |
---|
438 | static int (*v)[128]; /* substitution scores */ |
---|
439 | static int q, r; /* gap penalties */ |
---|
440 | static int qr; /* qr = q + r */ |
---|
441 | static int (*v1)[128]; /* light substitution scores */ |
---|
442 | static int r1; /* light extension penalty */ |
---|
443 | static int qr1; /* qr1 = q + r1 */ |
---|
444 | |
---|
445 | static int SCORE; |
---|
446 | static int STARI; |
---|
447 | static int STARJ; |
---|
448 | static int ENDI; |
---|
449 | static int ENDJ; |
---|
450 | |
---|
451 | static int *CC, *DD; /* saving matrix scores */ |
---|
452 | static int *RR, *SS; /* saving start-points */ |
---|
453 | static int *S; /* saving operations for diff */ |
---|
454 | |
---|
455 | /* The following definitions are for function diff() */ |
---|
456 | |
---|
457 | int diff(); |
---|
458 | static int zero = 0; /* int type zero */ |
---|
459 | |
---|
460 | #define gap(k) ((k) <= 0 ? 0 : q+r*(k)) /* k-symbol indel score */ |
---|
461 | |
---|
462 | static int *sapp; /* Current script append ptr */ |
---|
463 | static int last; /* Last script op appended */ |
---|
464 | |
---|
465 | static int no_mat; /* number of matches */ |
---|
466 | |
---|
467 | static int no_mis; /* number of mismatches */ |
---|
468 | |
---|
469 | static int al_len; /* length of alignment */ |
---|
470 | /* Append "Delete k" op */ |
---|
471 | #define DEL(k) \ |
---|
472 | { al_len += k; \ |
---|
473 | if (last < 0) \ |
---|
474 | last = sapp[-1] -= (k); \ |
---|
475 | else \ |
---|
476 | last = *sapp++ = -(k); \ |
---|
477 | } |
---|
478 | /* Append "Insert k" op */ |
---|
479 | #define INS(k) \ |
---|
480 | { al_len += k; \ |
---|
481 | if (last < 0) \ |
---|
482 | { sapp[-1] = (k); *sapp++ = last; } \ |
---|
483 | else \ |
---|
484 | last = *sapp++ = (k); \ |
---|
485 | } |
---|
486 | |
---|
487 | /* Append "Replace" op */ |
---|
488 | #define REP \ |
---|
489 | { last = *sapp++ = 0; \ |
---|
490 | al_len += 1; \ |
---|
491 | } |
---|
492 | |
---|
493 | INIT(M) int M; |
---|
494 | { |
---|
495 | register int j; /* row and column indices */ |
---|
496 | char *my_calloc(); /* space-allocating function */ |
---|
497 | |
---|
498 | /* allocate space for all vectors */ |
---|
499 | j = (M + 1) * sizeof(int ); |
---|
500 | CC = ( int * ) my_calloc(j); |
---|
501 | DD = ( int * ) my_calloc(j); |
---|
502 | RR = ( int * ) my_calloc(j); |
---|
503 | SS = ( int * ) my_calloc(j); |
---|
504 | S = ( int * ) my_calloc(2 * j); |
---|
505 | } |
---|
506 | |
---|
507 | /* Make a lookup table for words of lengths up to TUPLELEN in each sequence. |
---|
508 | The value of a word is used as an index to the table. */ |
---|
509 | MAKE() |
---|
510 | { |
---|
511 | int hash[TUPLELEN]; /* values of words of lengths up to TUPLELEN */ |
---|
512 | int *table; /* pointer to a lookup table */ |
---|
513 | int *loc; /* pointer to a table of sequence locations */ |
---|
514 | int size; /* size of a lookup table */ |
---|
515 | int limit, digit, step; /* temporary variables */ |
---|
516 | register int i, j, k, p, q; /* index varibles */ |
---|
517 | char *my_calloc(); /* space-allocating function */ |
---|
518 | char *A; /* pointer to a sequence */ |
---|
519 | int M; /* length of a sequence */ |
---|
520 | |
---|
521 | tuple = TUPLELEN - 1; |
---|
522 | for ( i = 0; i < 128; i++ ) |
---|
523 | vert[i] = 4; |
---|
524 | vert['A'] = vert['a'] = 0; |
---|
525 | vert['C'] = vert['c'] = 1; |
---|
526 | vert['G'] = vert['g'] = 2; |
---|
527 | vert['T'] = vert['t'] = 3; |
---|
528 | vertc['A'] = vertc['a'] = 3; |
---|
529 | vertc['C'] = vertc['c'] = 2; |
---|
530 | vertc['G'] = vertc['g'] = 1; |
---|
531 | vertc['T'] = vertc['t'] = 0; |
---|
532 | for ( i = 0, j = 1, size = 0; i <= tuple ; i++, j *= 4 ) |
---|
533 | { |
---|
534 | base[i] = size; |
---|
535 | power[i] = j; |
---|
536 | size = ( size + 1 ) * 4; |
---|
537 | } |
---|
538 | for ( j = 0; j <= tuple; j++ ) |
---|
539 | hash[j] = 0; |
---|
540 | /* make a lookup table for each sequence */ |
---|
541 | for ( i = 0; i < seg_num ; i++ ) |
---|
542 | { |
---|
543 | A = segment[i].seq; |
---|
544 | M = segment[i].length; |
---|
545 | table = segment[i].lookup = (int * ) my_calloc(size * sizeof(int )); |
---|
546 | loc = segment[i].pos = (int * ) my_calloc((M + 1) * sizeof(int )); |
---|
547 | for ( j = 0; j < size; j++ ) |
---|
548 | table[j] = 0; |
---|
549 | for ( k = 0, j = 1; j <= M; j++ ) |
---|
550 | if ( ( digit = vert[A[j]] ) != 4 ) |
---|
551 | { |
---|
552 | for ( p = tuple; p > 0; p-- ) |
---|
553 | hash[p] = 4 * (hash[p-1] + 1) + digit; |
---|
554 | hash[0] = digit; |
---|
555 | step = j - k; |
---|
556 | limit = tuple <= step ? tuple : step; |
---|
557 | for ( p = 0; p < limit; p++ ) |
---|
558 | if ( ! table[(q = hash[p])] ) table[q] = 1; |
---|
559 | if ( step > tuple ) |
---|
560 | { |
---|
561 | loc[(p = j - tuple)] = table[(q = hash[tuple])]; |
---|
562 | table[q] = p; |
---|
563 | } |
---|
564 | } |
---|
565 | else |
---|
566 | k = j; |
---|
567 | } |
---|
568 | } |
---|
569 | |
---|
570 | /* Perform pair-wise comparisons of sequences. The sequences not |
---|
571 | satisfying the necessary condition for overlap are rejected quickly. |
---|
572 | Those that do satisfy the condition are verified with a dynamic |
---|
573 | programming algorithm to see if overlaps exist. */ |
---|
574 | PAIR(V,V1,Q,R,R1) int V[][128],V1[][128],Q,R,R1; |
---|
575 | { |
---|
576 | int endi, endj, stari, starj; /* endpoint and startpoint */ |
---|
577 | |
---|
578 | short orienti, orientj; /* orientation of segments */ |
---|
579 | short iscon; /* containment condition */ |
---|
580 | int score; /* the max score */ |
---|
581 | int count, limit; /* temporary variables */ |
---|
582 | |
---|
583 | register int i, j, d; /* row and column indices */ |
---|
584 | char *my_calloc(); /* space-allocating function */ |
---|
585 | int rl, cl; |
---|
586 | char *A, *B; |
---|
587 | int M, N; |
---|
588 | overptr node1; |
---|
589 | int total; /* total number of pairs */ |
---|
590 | int hit; /* number of pairs satisfying cond. */ |
---|
591 | int CHECK(); |
---|
592 | |
---|
593 | v = V; |
---|
594 | q = Q; |
---|
595 | r = R; |
---|
596 | qr = q + r; |
---|
597 | v1 = V1; |
---|
598 | r1 = R1; |
---|
599 | qr1 = q + r1; |
---|
600 | total = hit = 0; |
---|
601 | limit = 2 * ( seg_num - 1 ); |
---|
602 | for ( orienti = 0, d = 0; d < limit ; d++ ) |
---|
603 | { |
---|
604 | i = d / 2; |
---|
605 | orienti = 1 - orienti; |
---|
606 | A = orienti ? segment[i].seq : segment[i].rev; |
---|
607 | M = segment[i].length; |
---|
608 | for ( j = i+1; j < seg_num ; j++ ) |
---|
609 | { |
---|
610 | B = segment[j].seq; |
---|
611 | orientj = 1; |
---|
612 | N = segment[j].length; |
---|
613 | total += 1; |
---|
614 | if ( CHECK(orienti, i, j) ) |
---|
615 | { |
---|
616 | hit += 1; |
---|
617 | SCORE = 0; |
---|
618 | big_pass(A,B,M,N,orienti,orientj); |
---|
619 | if ( SCORE ) |
---|
620 | { |
---|
621 | score = SCORE; |
---|
622 | stari = ++STARI; |
---|
623 | starj = ++STARJ; |
---|
624 | endi = ENDI; |
---|
625 | endj = ENDJ; |
---|
626 | rl = endi - stari + 1; |
---|
627 | cl = endj - starj + 1; |
---|
628 | sapp = S; |
---|
629 | last = 0; |
---|
630 | al_len = no_mat = no_mis = 0; |
---|
631 | (void) diff(&A[stari]-1, &B[starj]-1,rl,cl,q,q); |
---|
632 | iscon = stari == 1 && endi == M || starj == 1 && endj == N; |
---|
633 | if ( no_mat >= al_len * per_cent && |
---|
634 | ( al_len >= over_len || iscon ) ) |
---|
635 | { |
---|
636 | node1 = ( overptr ) my_calloc( (int ) sizeof(over)); |
---|
637 | if ( iscon ) |
---|
638 | node1->kind = 0; /* containment */ |
---|
639 | else |
---|
640 | { |
---|
641 | node1->kind = 1; |
---|
642 | edge_num++; |
---|
643 | } /* overlap */ |
---|
644 | if ( endi == M && ( endj != N || starj != 1 ) ) /*i is 5'*/ |
---|
645 | { |
---|
646 | node1->number = j; |
---|
647 | node1->host = i; |
---|
648 | node1->stari = stari; |
---|
649 | node1->endi = endi; |
---|
650 | node1->orienti = orienti; |
---|
651 | node1->starj = starj; |
---|
652 | node1->endj = endj; |
---|
653 | node1->orientj = orientj; |
---|
654 | } |
---|
655 | else /* j is 5' */ |
---|
656 | { |
---|
657 | node1->number = i; |
---|
658 | node1->host = j; |
---|
659 | node1->stari = starj; |
---|
660 | node1->endi = endj; |
---|
661 | node1->orienti = orientj; |
---|
662 | node1->starj = stari; |
---|
663 | node1->endj = endi; |
---|
664 | node1->orientj = orienti; |
---|
665 | } |
---|
666 | node1->score = score; |
---|
667 | node1->length = al_len; |
---|
668 | node1->match = no_mat; |
---|
669 | count = node1->number == i ? j : i; |
---|
670 | node1->next = segment[count].list; |
---|
671 | segment[count].list = node1; |
---|
672 | if ( ! node1->kind ) |
---|
673 | segment[count].kind = 0; |
---|
674 | } |
---|
675 | } |
---|
676 | } |
---|
677 | } |
---|
678 | } |
---|
679 | } |
---|
680 | |
---|
681 | /* Return 1 if two sequences satisfy the necessary condition for overlap, |
---|
682 | and 0 otherwise. Parameters first and second are the indices of segments, |
---|
683 | and parameter orient indicates the orientation of segment first. */ |
---|
684 | int CHECK(orient,first,second) short orient; |
---|
685 | int first, second; |
---|
686 | { |
---|
687 | int limit, bound; /* maximum number of jumps */ |
---|
688 | int small; /* smaller of limit and bound */ |
---|
689 | float delta; /* cutoff factor */ |
---|
690 | float cut; /* cutoff score */ |
---|
691 | register int i; /* index variable */ |
---|
692 | int t, q; /* temporary variables */ |
---|
693 | int JUMP(); |
---|
694 | int RJUMP(); |
---|
695 | int JUMPC(); |
---|
696 | int RJUMPC(); |
---|
697 | |
---|
698 | delta = DELTA; |
---|
699 | if ( orient ) |
---|
700 | limit = JUMP(CC, first, second, 1); |
---|
701 | else |
---|
702 | limit = JUMPC(CC, first, second); |
---|
703 | bound = RJUMP(DD, second, first, orient); |
---|
704 | small = limit <= bound ? limit : bound; |
---|
705 | cut = 0; |
---|
706 | for ( i = 1; i <= small; i++ ) |
---|
707 | { |
---|
708 | if ( (t = DD[i] - 1) >= over_len && t >= cut |
---|
709 | && (q = CC[i] - 1) >= over_len && q >= cut ) |
---|
710 | return (1); |
---|
711 | cut += delta; |
---|
712 | } |
---|
713 | if (DD[bound] >= delta*(bound-1) || CC[limit] >= delta*(limit-1)) |
---|
714 | return (1); |
---|
715 | limit = JUMP(CC, second, first, orient); |
---|
716 | if ( orient ) |
---|
717 | bound = RJUMP(DD, first, second, 1); |
---|
718 | else |
---|
719 | bound = RJUMPC(DD, first, second); |
---|
720 | small = limit <= bound ? limit : bound; |
---|
721 | cut = 0; |
---|
722 | for ( i = 1; i <= small; i++ ) |
---|
723 | { |
---|
724 | if ( (t = DD[i] - 1) >= over_len && t >= cut |
---|
725 | && (q = CC[i] - 1) >= over_len && q >= cut ) |
---|
726 | return (1); |
---|
727 | cut += delta; |
---|
728 | } |
---|
729 | return (0); |
---|
730 | } |
---|
731 | |
---|
732 | /* Compute a vector of lengths of jumps */ |
---|
733 | int JUMP(H,one,two,orient) int H[], one, two; |
---|
734 | short orient; |
---|
735 | { |
---|
736 | char *A, *B; /* pointers to two sequences */ |
---|
737 | int M, N; /* lengths of two sequences */ |
---|
738 | int *table; /* pointer to a lookup table */ |
---|
739 | int *loc; /* pointer to a location table */ |
---|
740 | int value; /* value of a word */ |
---|
741 | int maxd; /* maximum length of an identical diagonal */ |
---|
742 | int d; /* length of current identical diagonal */ |
---|
743 | int s; /* length of jumps */ |
---|
744 | int k; /* number of jumps */ |
---|
745 | |
---|
746 | register int i, j, p; /* index variables */ |
---|
747 | |
---|
748 | A = segment[one].seq; |
---|
749 | M = segment[one].length; |
---|
750 | table = segment[one].lookup; |
---|
751 | loc = segment[one].pos; |
---|
752 | B = orient ? segment[two].seq : segment[two].rev; |
---|
753 | N = segment[two].length; |
---|
754 | for ( s = 1, k = 1; s <= N ; k++ ) |
---|
755 | { |
---|
756 | maxd = 0; |
---|
757 | for ( value = -1, d = 0, j = s; d <= tuple && j <= N; j++, d++) |
---|
758 | { |
---|
759 | if ( vert[B[j]] == 4 ) break; |
---|
760 | value = 4 * (value + 1) + vert[B[j]]; |
---|
761 | if ( ! table[value] ) break; |
---|
762 | } |
---|
763 | if ( d > tuple ) |
---|
764 | { |
---|
765 | for ( p = table[value]; p ; p = loc[p] ) |
---|
766 | { |
---|
767 | d = tuple + 1; |
---|
768 | for ( i = p+d, j = s+d; i <= M && j <= N; i++, j++, d++ ) |
---|
769 | if ( A[i] != B[j] && vert[A[i]] != 4 && vert[B[j]] != 4 ) break; |
---|
770 | if ( maxd < d ) |
---|
771 | maxd = d; |
---|
772 | if ( j > N ) break; |
---|
773 | } |
---|
774 | } |
---|
775 | else |
---|
776 | maxd = d; |
---|
777 | s += maxd + 1; |
---|
778 | H[k] = s; |
---|
779 | } |
---|
780 | return (k - 1); |
---|
781 | } |
---|
782 | |
---|
783 | /* Compute a vector of lengths of jumps for reverse complement of one */ |
---|
784 | int JUMPC(H,one,two) int H[], one, two; |
---|
785 | { |
---|
786 | char *A, *B; /* pointers to two sequences */ |
---|
787 | int M, N; /* lengths of two sequences */ |
---|
788 | int *table; /* pointer to a lookup table */ |
---|
789 | int *loc; /* pointer to a location table */ |
---|
790 | int value; /* value of a word */ |
---|
791 | int maxd; /* maximum length of an identical diagonal */ |
---|
792 | int d; /* length of current identical diagonal */ |
---|
793 | int s; /* length of jumps */ |
---|
794 | int k; /* number of jumps */ |
---|
795 | |
---|
796 | register int i, j, p; /* index variables */ |
---|
797 | |
---|
798 | A = segment[one].rev; |
---|
799 | M = segment[one].length; |
---|
800 | table = segment[one].lookup; |
---|
801 | loc = segment[one].pos; |
---|
802 | B = segment[two].seq; |
---|
803 | N = segment[two].length; |
---|
804 | for ( s = 1, k = 1; s <= N ; k++ ) |
---|
805 | { |
---|
806 | maxd = 0; |
---|
807 | for ( value = 0, d = 0, j = s; d <= tuple && j <= N; j++, d++) |
---|
808 | { |
---|
809 | if ( vert[B[j]] == 4 ) break; |
---|
810 | value += vertc[B[j]] * power[d]; |
---|
811 | if ( ! table[value+base[d]] ) break; |
---|
812 | } |
---|
813 | if ( d > tuple ) |
---|
814 | { |
---|
815 | for ( p = table[value+base[tuple]]; p ; p = loc[p] ) |
---|
816 | { |
---|
817 | d = tuple + 1; |
---|
818 | for ( i = M+2-p, j = s+d; i <= M && j <= N; i++, j++, d++ ) |
---|
819 | if ( A[i] != B[j] && vert[A[i]] != 4 && vert[B[j]] != 4 ) break; |
---|
820 | if ( maxd < d ) |
---|
821 | maxd = d; |
---|
822 | if ( j > N ) break; |
---|
823 | } |
---|
824 | } |
---|
825 | else |
---|
826 | maxd = d; |
---|
827 | s += maxd + 1; |
---|
828 | H[k] = s; |
---|
829 | } |
---|
830 | return (k - 1); |
---|
831 | } |
---|
832 | |
---|
833 | /* Compute a vector of lengths of reverse jumps */ |
---|
834 | int RJUMP(H,one,two,orient) int H[], one, two; |
---|
835 | short orient; |
---|
836 | { |
---|
837 | char *A, *B; /* pointers to two sequences */ |
---|
838 | int N; /* length of a sequence */ |
---|
839 | int *table; /* pointer to a lookup table */ |
---|
840 | int *loc; /* pointer to a location table */ |
---|
841 | int value; /* value of a word */ |
---|
842 | int maxd; /* maximum length of an identical diagonal */ |
---|
843 | int d; /* length of current identical diagonal */ |
---|
844 | int s; /* length of jumps */ |
---|
845 | int k; /* number of jumps */ |
---|
846 | |
---|
847 | register int i, j, p; /* index variables */ |
---|
848 | |
---|
849 | A = segment[one].seq; |
---|
850 | table = segment[one].lookup; |
---|
851 | loc = segment[one].pos; |
---|
852 | B = orient ? segment[two].seq : segment[two].rev; |
---|
853 | N = segment[two].length; |
---|
854 | for ( s = 1, k = 1; s <= N ; k++ ) |
---|
855 | { |
---|
856 | maxd = 0; |
---|
857 | for (value = 0, d = 0, j = N+1-s; d <= tuple && j >= 1; j--, d++) |
---|
858 | { |
---|
859 | if ( vert[B[j]] == 4 ) break; |
---|
860 | value += vert[B[j]] * power[d]; |
---|
861 | if ( ! table[value+base[d]] ) break; |
---|
862 | } |
---|
863 | if ( d > tuple ) |
---|
864 | { |
---|
865 | for ( p = table[value+base[tuple]]; p ; p = loc[p] ) |
---|
866 | { |
---|
867 | d = tuple + 1; |
---|
868 | for ( i = p-1, j = N+1-s-d; i >= 1 && j >= 1; i--, j--, d++ ) |
---|
869 | if ( A[i] != B[j] && vert[A[i]] != 4 && vert[B[j]] != 4 ) break; |
---|
870 | if ( maxd < d ) |
---|
871 | maxd = d; |
---|
872 | if ( j < 1 ) break; |
---|
873 | } |
---|
874 | } |
---|
875 | else |
---|
876 | maxd = d; |
---|
877 | s += maxd + 1; |
---|
878 | H[k] = s; |
---|
879 | } |
---|
880 | return (k - 1); |
---|
881 | } |
---|
882 | |
---|
883 | /* Compute a vector of lengths of reverse jumps for reverse complement */ |
---|
884 | int RJUMPC(H,one,two) int H[], one, two; |
---|
885 | { |
---|
886 | char *A, *B; /* pointers to two sequences */ |
---|
887 | int M, N; /* lengths of two sequences */ |
---|
888 | int *table; /* pointer to a lookup table */ |
---|
889 | int *loc; /* pointer to a location table */ |
---|
890 | int value; /* value of a word */ |
---|
891 | int maxd; /* maximum length of an identical diagonal */ |
---|
892 | int d; /* length of current identical diagonal */ |
---|
893 | int s; /* length of jumps */ |
---|
894 | int k; /* number of jumps */ |
---|
895 | |
---|
896 | register int i, j, p; /* index variables */ |
---|
897 | |
---|
898 | A = segment[one].rev; |
---|
899 | M = segment[one].length; |
---|
900 | table = segment[one].lookup; |
---|
901 | loc = segment[one].pos; |
---|
902 | B = segment[two].seq; |
---|
903 | N = segment[two].length; |
---|
904 | for ( s = 1, k = 1; s <= N ; k++ ) |
---|
905 | { |
---|
906 | maxd = 0; |
---|
907 | for (value = -1, d = 0, j = N+1-s; d <= tuple && j >= 1; j--, d++) |
---|
908 | { |
---|
909 | if ( vert[B[j]] == 4 ) break; |
---|
910 | value = 4 * (value + 1) + vertc[B[j]]; |
---|
911 | if ( ! table[value] ) break; |
---|
912 | } |
---|
913 | if ( d > tuple ) |
---|
914 | { |
---|
915 | for ( p = table[value]; p ; p = loc[p] ) |
---|
916 | { |
---|
917 | d = tuple + 1; |
---|
918 | i = M - p - tuple; |
---|
919 | for ( j = N-s-tuple; i >= 1 && j >= 1; i--, j--, d++ ) |
---|
920 | if ( A[i] != B[j] && vert[A[i]] != 4 && vert[B[j]] != 4 ) break; |
---|
921 | if ( maxd < d ) |
---|
922 | maxd = d; |
---|
923 | if ( j < 1 ) break; |
---|
924 | } |
---|
925 | } |
---|
926 | else |
---|
927 | maxd = d; |
---|
928 | s += maxd + 1; |
---|
929 | H[k] = s; |
---|
930 | } |
---|
931 | return (k - 1); |
---|
932 | } |
---|
933 | |
---|
934 | /* Construct contigs */ |
---|
935 | ASSEM() |
---|
936 | { |
---|
937 | char *my_calloc(); /* space-allocating function */ |
---|
938 | register int i, j, k; /* index variables */ |
---|
939 | overptr node1, x, y; /* temporary pointer */ |
---|
940 | int five, three; /* indices of 5' and 3' segments */ |
---|
941 | short orienti; /* orientation of 5' segment */ |
---|
942 | short orientj; /* orientation of 3' segment */ |
---|
943 | short sorted; /* boolean variable */ |
---|
944 | |
---|
945 | contigs = ( struct CONS * ) my_calloc( seg_num * sizeof(struct CONS)); |
---|
946 | for ( i = 0; i < seg_num; i++ ) |
---|
947 | { |
---|
948 | contigs[i].isfive[0] = contigs[i].isthree[0] = 1; |
---|
949 | contigs[i].isfive[1] = contigs[i].isthree[1] = 1; |
---|
950 | contigs[i].other = i; |
---|
951 | contigs[i].group = contigs[i].child = -1; |
---|
952 | contigs[i].brother = contigs[i].father = -1; |
---|
953 | } |
---|
954 | for ( i = 0; i < seg_num; i++ ) |
---|
955 | if ( ! segment[i].kind ) |
---|
956 | for ( ; ; ) |
---|
957 | { |
---|
958 | for ( y = segment[i].list; y->kind; y = y->next ) |
---|
959 | ; |
---|
960 | for ( x = y->next; x != 0; x = x->next ) |
---|
961 | if ( ! x->kind && x->score > y->score ) |
---|
962 | y = x; |
---|
963 | for ( j = y->number; (k = contigs[j].father) != -1; j = k ) |
---|
964 | ; |
---|
965 | if ( j != i ) |
---|
966 | { |
---|
967 | contigs[i].father = j = y->number; |
---|
968 | contigs[i].brother = contigs[j].child; |
---|
969 | contigs[j].child = i; |
---|
970 | contigs[i].node[1] = y; |
---|
971 | break; |
---|
972 | } |
---|
973 | else |
---|
974 | { |
---|
975 | if ( segment[i].list->number == y->number ) |
---|
976 | segment[i].list = y->next; |
---|
977 | else |
---|
978 | { |
---|
979 | for ( x = segment[i].list; x->next->number != y->number ; ) |
---|
980 | x = x->next; |
---|
981 | x->next = y->next; |
---|
982 | } |
---|
983 | for ( x = segment[i].list; x != 0 && x->kind; x = x->next ) |
---|
984 | ; |
---|
985 | if ( x == 0 ) |
---|
986 | { |
---|
987 | segment[i].kind = 1; |
---|
988 | break; |
---|
989 | } |
---|
990 | } |
---|
991 | } |
---|
992 | edge = ( overptr * ) my_calloc( edge_num * sizeof(overptr) ); |
---|
993 | for ( j = 0, i = 0; i < seg_num; i++ ) |
---|
994 | if ( segment[i].kind ) |
---|
995 | for ( node1 = segment[i].list; node1 != 0; node1 = node1->next ) |
---|
996 | if ( segment[node1->number].kind ) |
---|
997 | edge[j++] = node1; |
---|
998 | edge_num = j; |
---|
999 | for ( i = edge_num - 1; i > 0; i-- ) |
---|
1000 | { |
---|
1001 | sorted = 1; |
---|
1002 | for ( j = 0; j < i; j++ ) |
---|
1003 | if ( edge[j]->score < edge[j+1]->score ) |
---|
1004 | { |
---|
1005 | node1 = edge[j]; |
---|
1006 | edge[j] = edge[j+1]; |
---|
1007 | edge[j+1] = node1; |
---|
1008 | sorted = 0; |
---|
1009 | } |
---|
1010 | if ( sorted ) |
---|
1011 | break; |
---|
1012 | } |
---|
1013 | for ( k = 0; k < edge_num; k++ ) |
---|
1014 | { |
---|
1015 | five = edge[k]->host; |
---|
1016 | three = edge[k]->number; |
---|
1017 | orienti = edge[k]->orienti; |
---|
1018 | orientj = edge[k]->orientj; |
---|
1019 | if ( contigs[five].isthree[orienti] && |
---|
1020 | contigs[three].isfive[orientj] && contigs[five].other != three ) |
---|
1021 | { |
---|
1022 | contigs[five].isthree[orienti] = 0; |
---|
1023 | contigs[three].isfive[orientj] = 0; |
---|
1024 | contigs[five].next[orienti] = three; |
---|
1025 | contigs[five].orient[orienti] = orientj; |
---|
1026 | contigs[five].node[orienti] = edge[k]; |
---|
1027 | contigs[three].isthree[(j = 1 - orientj)] = 0; |
---|
1028 | contigs[five].isfive[(i = 1 - orienti)] = 0; |
---|
1029 | contigs[three].next[j] = five; |
---|
1030 | contigs[three].orient[j] = i; |
---|
1031 | contigs[three].node[j] = edge[k]; |
---|
1032 | i = contigs[three].other; |
---|
1033 | j = contigs[five].other; |
---|
1034 | contigs[i].other = j; |
---|
1035 | contigs[j].other = i; |
---|
1036 | } |
---|
1037 | } |
---|
1038 | } |
---|
1039 | |
---|
1040 | REPAIR() |
---|
1041 | { |
---|
1042 | int endi, endj, stari, starj; /* endpoint and startpoint */ |
---|
1043 | |
---|
1044 | short orienti, orientj; /* orientation of segments */ |
---|
1045 | short isconi, isconj; /* containment condition */ |
---|
1046 | int score; /* the max score */ |
---|
1047 | int i, j, f, d, e; /* row and column indices */ |
---|
1048 | char *my_calloc(); /* space-allocating function */ |
---|
1049 | char *A, *B; |
---|
1050 | int M, N; |
---|
1051 | overptr node1; |
---|
1052 | int piece_num; /* The number of pieces */ |
---|
1053 | int count, limit; |
---|
1054 | int number; |
---|
1055 | int hit; |
---|
1056 | |
---|
1057 | piece = ( struct VX * ) my_calloc( seg_num * sizeof(struct VX)); |
---|
1058 | for ( j = 0, i = 0; i < seg_num; i++ ) |
---|
1059 | if (segment[i].kind && (contigs[i].isfive[1] || contigs[i].isfive[0])) |
---|
1060 | piece[j++].id = i; |
---|
1061 | piece_num = j; |
---|
1062 | for ( i = 0; i < piece_num; i++ ) |
---|
1063 | { |
---|
1064 | piece[i].kind = 1; |
---|
1065 | piece[i].list = 0; |
---|
1066 | } |
---|
1067 | limit = 2 * ( piece_num - 1 ); |
---|
1068 | hit = number = 0; |
---|
1069 | for ( orienti = 0, d = 0; d < limit ; d++ ) |
---|
1070 | { |
---|
1071 | i = piece[(e = d / 2)].id; |
---|
1072 | orienti = 1 - orienti; |
---|
1073 | A = orienti ? segment[i].seq : segment[i].rev; |
---|
1074 | M = segment[i].length; |
---|
1075 | for ( f = e+1; f < piece_num ; f++ ) |
---|
1076 | { |
---|
1077 | j = piece[f].id; |
---|
1078 | B = segment[j].seq; |
---|
1079 | orientj = 1; |
---|
1080 | N = segment[j].length; |
---|
1081 | SCORE = 0; |
---|
1082 | hit++; |
---|
1083 | big_pass(A,B,M,N,orienti,orientj); |
---|
1084 | if ( SCORE > CUTOFF ) |
---|
1085 | { |
---|
1086 | score = SCORE; |
---|
1087 | stari = ++STARI; |
---|
1088 | starj = ++STARJ; |
---|
1089 | endi = ENDI; |
---|
1090 | endj = ENDJ; |
---|
1091 | isconi = stari == 1 && endi == M; |
---|
1092 | isconj = starj == 1 && endj == N; |
---|
1093 | node1 = ( overptr ) my_calloc( (int ) sizeof(over)); |
---|
1094 | if ( isconi || isconj ) |
---|
1095 | node1->kind = 0; /* containment */ |
---|
1096 | else |
---|
1097 | { |
---|
1098 | node1->kind = 1; |
---|
1099 | number++; |
---|
1100 | } /* overlap */ |
---|
1101 | if ( endi == M && ! isconj ) /*i is 5'*/ |
---|
1102 | { |
---|
1103 | node1->number = j; |
---|
1104 | node1->host = i; |
---|
1105 | node1->ind = f; |
---|
1106 | node1->stari = stari; |
---|
1107 | node1->endi = endi; |
---|
1108 | node1->orienti = orienti; |
---|
1109 | node1->starj = starj; |
---|
1110 | node1->endj = endj; |
---|
1111 | node1->orientj = orientj; |
---|
1112 | } |
---|
1113 | else /* j is 5' */ |
---|
1114 | { |
---|
1115 | node1->number = i; |
---|
1116 | node1->host = j; |
---|
1117 | node1->ind = e; |
---|
1118 | node1->stari = starj; |
---|
1119 | node1->endi = endj; |
---|
1120 | node1->orienti = orientj; |
---|
1121 | node1->starj = stari; |
---|
1122 | node1->endj = endi; |
---|
1123 | node1->orientj = orienti; |
---|
1124 | } |
---|
1125 | node1->score = score; |
---|
1126 | count = node1->number == i ? f : e; |
---|
1127 | node1->next = piece[count].list; |
---|
1128 | piece[count].list = node1; |
---|
1129 | if ( ! node1->kind ) |
---|
1130 | piece[count].kind = 0; |
---|
1131 | } |
---|
1132 | } |
---|
1133 | } |
---|
1134 | REASSEM(piece_num, number); |
---|
1135 | } |
---|
1136 | |
---|
1137 | /* Construct contigs */ |
---|
1138 | REASSEM(piece_num, number) int piece_num, number; |
---|
1139 | { |
---|
1140 | char *my_calloc(); /* space-allocating function */ |
---|
1141 | int i, j, k, d; /* index variables */ |
---|
1142 | overptr node1, x, y; /* temporary pointer */ |
---|
1143 | int five, three; /* indices of 5' and 3' segments */ |
---|
1144 | short orienti; /* orientation of 5' segment */ |
---|
1145 | short orientj; /* orientation of 3' segment */ |
---|
1146 | short sorted; /* boolean variable */ |
---|
1147 | |
---|
1148 | for ( d = 0; d < piece_num; d++ ) |
---|
1149 | if ( ! piece[d].kind ) |
---|
1150 | for ( i = piece[d].id ; ; ) |
---|
1151 | { |
---|
1152 | for ( y = piece[d].list; y->kind; y = y->next ) |
---|
1153 | ; |
---|
1154 | for ( x = y->next; x != 0; x = x->next ) |
---|
1155 | if ( ! x->kind && x->score > y->score ) |
---|
1156 | y = x; |
---|
1157 | for ( j = y->number; (k = contigs[j].father) != -1; j = k ) |
---|
1158 | ; |
---|
1159 | if ( j != i && RECONCILE(y,&piece_num,&number) ) |
---|
1160 | { |
---|
1161 | contigs[i].father = j = y->number; |
---|
1162 | contigs[i].brother = contigs[j].child; |
---|
1163 | contigs[j].child = i; |
---|
1164 | contigs[i].node[1] = y; |
---|
1165 | segment[i].kind = 0; |
---|
1166 | break; |
---|
1167 | } |
---|
1168 | else |
---|
1169 | { |
---|
1170 | if ( piece[d].list->number == y->number ) |
---|
1171 | piece[d].list = y->next; |
---|
1172 | else |
---|
1173 | { |
---|
1174 | for ( x = piece[d].list; x->next->number != y->number ; ) |
---|
1175 | x = x->next; |
---|
1176 | x->next = y->next; |
---|
1177 | } |
---|
1178 | for ( x = piece[d].list; x != 0 && x->kind; x = x->next ) |
---|
1179 | ; |
---|
1180 | if ( x == 0 ) |
---|
1181 | { |
---|
1182 | piece[d].kind = 1; |
---|
1183 | break; |
---|
1184 | } |
---|
1185 | } |
---|
1186 | } |
---|
1187 | if ( number > edge_num ) |
---|
1188 | edge = ( overptr * ) my_calloc( number * sizeof(overptr) ); |
---|
1189 | for ( j = 0, d = 0; d < piece_num; d++ ) |
---|
1190 | if ( piece[d].kind ) |
---|
1191 | for ( node1 = piece[d].list; node1 != 0; node1 = node1->next ) |
---|
1192 | if ( piece[node1->ind].kind ) |
---|
1193 | edge[j++] = node1; |
---|
1194 | edge_num = j; |
---|
1195 | for ( i = edge_num - 1; i > 0; i-- ) |
---|
1196 | { |
---|
1197 | sorted = 1; |
---|
1198 | for ( j = 0; j < i; j++ ) |
---|
1199 | if ( edge[j]->score < edge[j+1]->score ) |
---|
1200 | { |
---|
1201 | node1 = edge[j]; |
---|
1202 | edge[j] = edge[j+1]; |
---|
1203 | edge[j+1] = node1; |
---|
1204 | sorted = 0; |
---|
1205 | } |
---|
1206 | if ( sorted ) |
---|
1207 | break; |
---|
1208 | } |
---|
1209 | for ( k = 0; k < edge_num; k++ ) |
---|
1210 | { |
---|
1211 | five = edge[k]->host; |
---|
1212 | three = edge[k]->number; |
---|
1213 | orienti = edge[k]->orienti; |
---|
1214 | orientj = edge[k]->orientj; |
---|
1215 | if ( contigs[five].isthree[orienti] && |
---|
1216 | contigs[three].isfive[orientj] && contigs[five].other != three ) |
---|
1217 | { |
---|
1218 | contigs[five].isthree[orienti] = 0; |
---|
1219 | contigs[three].isfive[orientj] = 0; |
---|
1220 | contigs[five].next[orienti] = three; |
---|
1221 | contigs[five].orient[orienti] = orientj; |
---|
1222 | contigs[five].node[orienti] = edge[k]; |
---|
1223 | contigs[three].isthree[(j = 1 - orientj)] = 0; |
---|
1224 | contigs[five].isfive[(i = 1 - orienti)] = 0; |
---|
1225 | contigs[three].next[j] = five; |
---|
1226 | contigs[three].orient[j] = i; |
---|
1227 | contigs[three].node[j] = edge[k]; |
---|
1228 | i = contigs[three].other; |
---|
1229 | j = contigs[five].other; |
---|
1230 | contigs[i].other = j; |
---|
1231 | contigs[j].other = i; |
---|
1232 | } |
---|
1233 | } |
---|
1234 | } |
---|
1235 | |
---|
1236 | RECONCILE(y, pp,nn) overptr y; |
---|
1237 | int *pp,*nn; |
---|
1238 | { |
---|
1239 | short orienti, orientj; /* orientation of segments */ |
---|
1240 | short orientk, orientd; /* orientation of segments */ |
---|
1241 | int i, j, k, d, f; /* row and column indices */ |
---|
1242 | char *my_calloc(); /* space-allocating function */ |
---|
1243 | char *A, *B; |
---|
1244 | int M, N; |
---|
1245 | overptr node1; |
---|
1246 | |
---|
1247 | k = y->host; |
---|
1248 | d = y->number; |
---|
1249 | orientk = y->orienti; |
---|
1250 | orientd = y->orientj; |
---|
1251 | if ( ! contigs[k].isthree[orientk] ) |
---|
1252 | { |
---|
1253 | if ( ! piece[y->ind].kind ) return (0); |
---|
1254 | if ( contigs[d].isthree[orientd] ) |
---|
1255 | { |
---|
1256 | orienti = orientd; |
---|
1257 | i = d; |
---|
1258 | orientj = contigs[k].orient[orientk]; |
---|
1259 | j = contigs[k].next[orientk]; |
---|
1260 | } |
---|
1261 | else |
---|
1262 | return (0); |
---|
1263 | } |
---|
1264 | else |
---|
1265 | if ( ! contigs[k].isfive[orientk] ) |
---|
1266 | { |
---|
1267 | if ( ! piece[y->ind].kind ) return (0); |
---|
1268 | if ( contigs[d].isfive[orientd] ) |
---|
1269 | { |
---|
1270 | orienti = contigs[k].orient[1-orientk]; |
---|
1271 | orienti = 1 - orienti; |
---|
1272 | i = contigs[k].next[1-orientk]; |
---|
1273 | orientj = orientd; |
---|
1274 | j = d; |
---|
1275 | } |
---|
1276 | else |
---|
1277 | return (0); |
---|
1278 | } |
---|
1279 | else |
---|
1280 | return (0); |
---|
1281 | A = orienti ? segment[i].seq : segment[i].rev; |
---|
1282 | M = segment[i].length; |
---|
1283 | B = orientj ? segment[j].seq : segment[j].rev; |
---|
1284 | N = segment[j].length; |
---|
1285 | SCORE = 0; |
---|
1286 | big_pass(A,B,M,N,orienti,orientj); |
---|
1287 | if ( SCORE > CUTOFF && ENDI - STARI > over_len && ENDI == M && STARJ == 0 ) |
---|
1288 | { |
---|
1289 | node1 = ( overptr ) my_calloc( (int ) sizeof(over)); |
---|
1290 | node1->kind = 1; |
---|
1291 | node1->host = i; |
---|
1292 | node1->number = j; |
---|
1293 | node1->stari = ++STARI; |
---|
1294 | node1->endi = ENDI; |
---|
1295 | node1->orienti = orienti; |
---|
1296 | node1->starj = ++STARJ; |
---|
1297 | node1->endj = ENDJ; |
---|
1298 | node1->orientj = orientj; |
---|
1299 | node1->score = SCORE; |
---|
1300 | piece[*pp].kind = 1; |
---|
1301 | if ( i == d ) |
---|
1302 | { |
---|
1303 | node1->ind = *pp; |
---|
1304 | node1->next = piece[y->ind].list; |
---|
1305 | piece[y->ind].list = node1; |
---|
1306 | piece[*pp].id = j; |
---|
1307 | piece[*pp].list = 0; |
---|
1308 | } |
---|
1309 | else |
---|
1310 | { |
---|
1311 | node1->ind = y->ind; |
---|
1312 | piece[*pp].list = node1; |
---|
1313 | node1->next = 0; |
---|
1314 | piece[*pp].id = i; |
---|
1315 | } |
---|
1316 | (*nn)++; |
---|
1317 | (*pp)++; |
---|
1318 | f = contigs[k].other; |
---|
1319 | if ( ! contigs[k].isthree[orientk] ) |
---|
1320 | { |
---|
1321 | contigs[j].isfive[orientj] = 1; |
---|
1322 | contigs[j].isthree[1 - orientj] = 1; |
---|
1323 | contigs[k].isthree[orientk] = 1; |
---|
1324 | contigs[k].isfive[1 - orientk] = 1; |
---|
1325 | contigs[f].other = j; |
---|
1326 | contigs[j].other = f; |
---|
1327 | } |
---|
1328 | else |
---|
1329 | { |
---|
1330 | contigs[i].isthree[orienti] = 1; |
---|
1331 | contigs[i].isfive[1 - orienti] = 1; |
---|
1332 | contigs[k].isfive[orientk] = 1; |
---|
1333 | contigs[k].isthree[1 - orientk] = 1; |
---|
1334 | contigs[f].other = i; |
---|
1335 | contigs[i].other = f; |
---|
1336 | } |
---|
1337 | contigs[k].other = k; |
---|
1338 | return (1); |
---|
1339 | } |
---|
1340 | return (0); |
---|
1341 | } |
---|
1342 | |
---|
1343 | /* Construct a tree of overlapping-containment segments */ |
---|
1344 | FORM_TREE() |
---|
1345 | { |
---|
1346 | register int i, j, k; /* index variables */ |
---|
1347 | char *my_calloc(); /* space-allocating function */ |
---|
1348 | overptr node1; /* temporary pointer */ |
---|
1349 | short orient; /* orientation of segment */ |
---|
1350 | int group; /* serial number of contigs */ |
---|
1351 | char *A, *B; /* pointers to segment sequences */ |
---|
1352 | int stari, endi, starj, endj;/* positions where alignment begins */ |
---|
1353 | int M, N; /* lengths of segment sequences */ |
---|
1354 | int count; /* temporary variables */ |
---|
1355 | |
---|
1356 | mtree = ( struct TTREE * ) my_calloc( seg_num * sizeof(struct TTREE)); |
---|
1357 | for ( i = 0; i < seg_num; i++ ) |
---|
1358 | { |
---|
1359 | mtree[i].head = 0; |
---|
1360 | mtree[i].next = mtree[i].child = mtree[i].brother = -1; |
---|
1361 | } |
---|
1362 | for ( group = 0, i = 0; i < seg_num; i++ ) |
---|
1363 | if ( segment[i].kind && contigs[i].group < 0 && |
---|
1364 | ( contigs[i].isfive[1] || contigs[i].isfive[0] ) ) |
---|
1365 | { |
---|
1366 | orient = contigs[i].isfive[1] ? 1 : 0; |
---|
1367 | mtree[i].head = 1; |
---|
1368 | for ( j = i; ; ) |
---|
1369 | { |
---|
1370 | contigs[j].group = group; |
---|
1371 | mtree[j].orient = orient; |
---|
1372 | SORT(j, orient); |
---|
1373 | if ( contigs[j].isthree[orient] ) |
---|
1374 | break; |
---|
1375 | else |
---|
1376 | { |
---|
1377 | k = contigs[j].next[orient]; |
---|
1378 | node1 = contigs[j].node[orient]; |
---|
1379 | if ( j == node1->host ) |
---|
1380 | { |
---|
1381 | stari = node1->stari; |
---|
1382 | endi = node1->endi; |
---|
1383 | starj = node1->starj; |
---|
1384 | endj = node1->endj; |
---|
1385 | A = node1->orienti ? segment[j].seq : segment[j].rev; |
---|
1386 | B = node1->orientj ? segment[k].seq : segment[k].rev; |
---|
1387 | } |
---|
1388 | else |
---|
1389 | { |
---|
1390 | M = segment[j].length; |
---|
1391 | stari = M + 1 - node1->endj; |
---|
1392 | endi = M + 1 - node1->starj; |
---|
1393 | N = segment[k].length; |
---|
1394 | starj = N + 1 - node1->endi; |
---|
1395 | endj = N + 1 - node1->stari; |
---|
1396 | A = node1->orientj ? segment[j].rev : segment[j].seq; |
---|
1397 | B = node1->orienti ? segment[k].rev : segment[k].seq; |
---|
1398 | } |
---|
1399 | M = endi - stari + 1; |
---|
1400 | N = endj - starj + 1; |
---|
1401 | sapp = S; |
---|
1402 | last = 0; |
---|
1403 | al_len = no_mat = no_mis = 0; |
---|
1404 | (void) diff(&A[stari]-1, &B[starj]-1,M,N,q,q); |
---|
1405 | count = ( (N = sapp - S) + 1 ) * sizeof(int ); |
---|
1406 | mtree[k].script = ( int * ) my_calloc( count ); |
---|
1407 | for ( M = 0; M < N; M++) |
---|
1408 | mtree[k].script[M] = S[M]; |
---|
1409 | mtree[k].size = N; |
---|
1410 | mtree[k].begin = stari; |
---|
1411 | mtree[j].next = k; |
---|
1412 | orient = contigs[j].orient[orient]; |
---|
1413 | j = k; |
---|
1414 | } |
---|
1415 | } |
---|
1416 | group++; |
---|
1417 | } |
---|
1418 | } |
---|
1419 | |
---|
1420 | /* Sort the children of each node by the `begin' field */ |
---|
1421 | SORT(seg, ort) int seg; |
---|
1422 | short ort; |
---|
1423 | { |
---|
1424 | register int i, j, k; /* index variables */ |
---|
1425 | char *my_calloc(); /* space-allocating function */ |
---|
1426 | overptr node1; /* temporary pointer */ |
---|
1427 | short orient; /* orientation of segment */ |
---|
1428 | char *A, *B; /* pointers to segment sequences */ |
---|
1429 | int stari, endi, starj, endj;/* positions where alignment begins */ |
---|
1430 | int M, N; /* lengths of segment sequences */ |
---|
1431 | int count; /* temporary variables */ |
---|
1432 | |
---|
1433 | for ( j = contigs[seg].child; j != -1; j = contigs[j].brother ) |
---|
1434 | { |
---|
1435 | node1 = contigs[j].node[1]; |
---|
1436 | if ( ort == node1->orientj ) |
---|
1437 | { |
---|
1438 | stari = node1->starj; |
---|
1439 | endi = node1->endj; |
---|
1440 | starj = node1->stari; |
---|
1441 | endj = node1->endi; |
---|
1442 | A = node1->orientj ? segment[seg].seq : segment[seg].rev; |
---|
1443 | B = node1->orienti ? segment[j].seq : segment[j].rev; |
---|
1444 | orient = node1->orienti; |
---|
1445 | } |
---|
1446 | else |
---|
1447 | { |
---|
1448 | M = segment[seg].length; |
---|
1449 | stari = M + 1 - node1->endj; |
---|
1450 | endi = M + 1 - node1->starj; |
---|
1451 | N = segment[j].length; |
---|
1452 | starj = N + 1 - node1->endi; |
---|
1453 | endj = N + 1 - node1->stari; |
---|
1454 | A = node1->orientj ? segment[seg].rev : segment[seg].seq; |
---|
1455 | B = node1->orienti ? segment[j].rev : segment[j].seq; |
---|
1456 | orient = 1 - node1->orienti; |
---|
1457 | } |
---|
1458 | M = endi - stari + 1; |
---|
1459 | N = endj - starj + 1; |
---|
1460 | sapp = S; |
---|
1461 | last = 0; |
---|
1462 | al_len = no_mat = no_mis = 0; |
---|
1463 | (void) diff(&A[stari]-1, &B[starj]-1,M,N,q,q); |
---|
1464 | count = ( (M = sapp - S ) + 1 ) * sizeof(int ); |
---|
1465 | mtree[j].script = ( int * ) my_calloc( count ); |
---|
1466 | for ( k = 0; k < M; k++) |
---|
1467 | mtree[j].script[k] = S[k]; |
---|
1468 | mtree[j].size = M; |
---|
1469 | mtree[j].begin = stari; |
---|
1470 | mtree[j].orient = orient; |
---|
1471 | if ( mtree[seg].child == -1 ) |
---|
1472 | mtree[seg].child = j; |
---|
1473 | else |
---|
1474 | { |
---|
1475 | i = mtree[seg].child; |
---|
1476 | if ( mtree[i].begin >= stari ) |
---|
1477 | { |
---|
1478 | mtree[j].brother = i; |
---|
1479 | mtree[seg].child = j; |
---|
1480 | } |
---|
1481 | else |
---|
1482 | { |
---|
1483 | M = mtree[i].brother; |
---|
1484 | for ( ; M != -1; i = M, M = mtree[M].brother ) |
---|
1485 | if ( mtree[M].begin >= stari ) break; |
---|
1486 | mtree[j].brother = M; |
---|
1487 | mtree[i].brother = j; |
---|
1488 | } |
---|
1489 | } |
---|
1490 | SORT(j, orient); |
---|
1491 | } |
---|
1492 | } |
---|
1493 | |
---|
1494 | /* Display the alignments of segments */ |
---|
1495 | SHOW() |
---|
1496 | { |
---|
1497 | register int i, j, k; /* index variables */ |
---|
1498 | char *my_calloc(); /* space-allocating function */ |
---|
1499 | int n; /* number of working segments */ |
---|
1500 | int limit; /* number of slots in work */ |
---|
1501 | int col; /* number of output columns prepared */ |
---|
1502 | short done; /* tells if current group is done */ |
---|
1503 | rowptr root; /* pointer to root of op tree */ |
---|
1504 | int sym[6]; /* occurrence counts for six chars */ |
---|
1505 | char c; /* temp variable */ |
---|
1506 | rowptr t, w, yy; /* temp pointer */ |
---|
1507 | int x; /* temp variables */ |
---|
1508 | int group; /* Contigs number */ |
---|
1509 | char conlit[20], *a; /* String form of contig number */ |
---|
1510 | char *spt; /* pointer to the start of consensus */ |
---|
1511 | |
---|
1512 | work = ( rowptr * ) my_calloc( seg_num * sizeof(rowptr)); |
---|
1513 | group = 0; |
---|
1514 | yy = 0; |
---|
1515 | for ( j = 0; j < 6; j++ ) |
---|
1516 | sym[j] = 0; |
---|
1517 | n = limit = col = 0; |
---|
1518 | for ( i = 0; i < seg_num; i++ ) |
---|
1519 | if ( mtree[i].head ) |
---|
1520 | { |
---|
1521 | (void) sprintf(conlit, ">Contig %d\n", group); |
---|
1522 | for ( a = conlit; *a; ) |
---|
1523 | *allconpt++ = *a++; |
---|
1524 | /* Mod by S.S. |
---|
1525 | (void) printf("\n#Contig %d\n\n", group++); |
---|
1526 | */ |
---|
1527 | group++; |
---|
1528 | done = 0; |
---|
1529 | ENTER(&limit, &n, i, col, yy); |
---|
1530 | root = work[0]; |
---|
1531 | spt = allconpt; |
---|
1532 | while ( ! done ) |
---|
1533 | { |
---|
1534 | for ( j = 0; j < n; j++ ) /* get segments into work */ |
---|
1535 | { |
---|
1536 | t = work[j]; |
---|
1537 | k = t->id; |
---|
1538 | if ((x = mtree[k].next) != -1 && mtree[x].begin == t->loc) |
---|
1539 | { |
---|
1540 | ENTER(&limit, &n, x, col, t); |
---|
1541 | mtree[k].next = -1; |
---|
1542 | } |
---|
1543 | for ( x = mtree[k].child; x != -1; x = mtree[x].brother ) |
---|
1544 | if ( mtree[x].begin == t->loc ) |
---|
1545 | { |
---|
1546 | ENTER(&limit, &n, x, col, t); |
---|
1547 | mtree[k].child = mtree[x].brother; |
---|
1548 | } |
---|
1549 | else |
---|
1550 | break; |
---|
1551 | } |
---|
1552 | COLUMN(root); /* determine next column */ |
---|
1553 | root->c = root->kind; |
---|
1554 | for ( t = head; t != 0; t = t->link ) |
---|
1555 | t->c = t->kind; |
---|
1556 | for ( j = 0; j < n; j++ ) |
---|
1557 | { |
---|
1558 | t = work[j]; |
---|
1559 | if ( t->done ) |
---|
1560 | *t->a++ = ' '; |
---|
1561 | else |
---|
1562 | { |
---|
1563 | if ( t->c == 'L' ) |
---|
1564 | { |
---|
1565 | if ( t->loc == 1 ) |
---|
1566 | t->offset = allconpt - spt; |
---|
1567 | c = *t->a++ = t->seq[t->loc++]; |
---|
1568 | } |
---|
1569 | else |
---|
1570 | if ( t->loc > 1 ) |
---|
1571 | c = *t->a++ = '-'; |
---|
1572 | else |
---|
1573 | c = *t->a++ = ' '; |
---|
1574 | if ( c != ' ' ) |
---|
1575 | if ( c == '-' ) |
---|
1576 | sym[5] += 1; |
---|
1577 | else |
---|
1578 | sym[vert[c]] += 1; |
---|
1579 | t->c = ' '; |
---|
1580 | } |
---|
1581 | } |
---|
1582 | /* determine consensus char */ |
---|
1583 | k = sym[0] + sym[1] + sym[2] + sym[3] + sym[4]; |
---|
1584 | if ( k < sym[5] ) |
---|
1585 | *allconpt++ = '-'; |
---|
1586 | else |
---|
1587 | if ( sym[0] == sym[1] && sym[1] == sym[2] && |
---|
1588 | sym[2] == sym[3] ) |
---|
1589 | *allconpt++ = 'N'; |
---|
1590 | else |
---|
1591 | { |
---|
1592 | k = sym[0]; |
---|
1593 | c = 'A'; |
---|
1594 | if ( k < sym[1] ) { |
---|
1595 | k = sym[1]; |
---|
1596 | c = 'C'; |
---|
1597 | } |
---|
1598 | if ( k < sym[2] ) { |
---|
1599 | k = sym[2]; |
---|
1600 | c = 'G'; |
---|
1601 | } |
---|
1602 | if ( k < sym[3] ) c = 'T'; |
---|
1603 | *allconpt++ = c; |
---|
1604 | } |
---|
1605 | for ( j = 0; j < 6; j++ ) |
---|
1606 | sym[j] = 0; |
---|
1607 | for ( t = head; t != 0; t = t->link ) |
---|
1608 | { |
---|
1609 | NEXTOP(t); |
---|
1610 | if ( t->done ) /* delete it from op tree */ |
---|
1611 | { |
---|
1612 | w = t->father; |
---|
1613 | if ( w->child->id == t->id ) |
---|
1614 | w->child = t->brother; |
---|
1615 | else |
---|
1616 | { |
---|
1617 | w = w->child; |
---|
1618 | for ( ; w->brother->id != t->id; w = w->brother ) |
---|
1619 | ; |
---|
1620 | w->brother = t->brother; |
---|
1621 | } |
---|
1622 | } |
---|
1623 | } |
---|
1624 | if ( root->loc > root->length ) /* check root node */ |
---|
1625 | { |
---|
1626 | root->done = 1; |
---|
1627 | if ( (w = root->child) != 0 ) |
---|
1628 | { |
---|
1629 | w->father = 0; |
---|
1630 | root = w; |
---|
1631 | } |
---|
1632 | else |
---|
1633 | done = 1; |
---|
1634 | } |
---|
1635 | col++; |
---|
1636 | if ( col == LINELEN || done ) /* output */ |
---|
1637 | { |
---|
1638 | col = 0; |
---|
1639 | for ( j = 0; j < n; j++ ) |
---|
1640 | { |
---|
1641 | t = work[j]; |
---|
1642 | if ( t->done ) |
---|
1643 | /* |
---|
1644 | Mod by S.S. |
---|
1645 | { (void) printf("#"); |
---|
1646 | for ( a = t->name; *a; a++ ) |
---|
1647 | (void) printf("%c", *a); |
---|
1648 | */ |
---|
1649 | { |
---|
1650 | int jj; |
---|
1651 | (void) printf("{\nname "); |
---|
1652 | for(jj=0;jj<strlen(t->name)-1;jj++) |
---|
1653 | (void) printf("%c", t->name[jj]); |
---|
1654 | printf("\nstrandedness %c\n", |
---|
1655 | t->name[strlen(t->name)] == '+'? '1':'2'); |
---|
1656 | |
---|
1657 | printf("offset %d\ntype DNA\ngroup-ID %d\nsequence \"\n", |
---|
1658 | t->offset,group); |
---|
1659 | for ( k = 0, a = t->line ; a != t->a; a++ ) |
---|
1660 | if ( *a != ' ' ) |
---|
1661 | { |
---|
1662 | k++; |
---|
1663 | (void) printf("%c", *a); |
---|
1664 | if ( k == LINELEN ) |
---|
1665 | { |
---|
1666 | (void) printf("\n"); |
---|
1667 | k = 0; |
---|
1668 | } |
---|
1669 | } |
---|
1670 | /* |
---|
1671 | if ( k ) |
---|
1672 | */ |
---|
1673 | (void) printf("\"\n}\n"); |
---|
1674 | } |
---|
1675 | if ( t->linesize - (t->a - t->line) < LINELEN + 3 ) |
---|
1676 | ALOC_SEQ(t); |
---|
1677 | } |
---|
1678 | if ( !done ) |
---|
1679 | { |
---|
1680 | for ( k = j = n - 1; j >= 0; j-- ) |
---|
1681 | if ( work[j]->done ) |
---|
1682 | { |
---|
1683 | t = work[j]; |
---|
1684 | for ( x = j; x < k; x++ ) |
---|
1685 | work[x] = work[x+1]; |
---|
1686 | work[k--] = t; |
---|
1687 | } |
---|
1688 | n = k + 1; |
---|
1689 | } |
---|
1690 | else |
---|
1691 | n = 0; |
---|
1692 | } |
---|
1693 | } |
---|
1694 | } |
---|
1695 | } |
---|
1696 | |
---|
1697 | /* allocate more space for output fragment */ |
---|
1698 | ALOC_SEQ(t) rowptr t; |
---|
1699 | { |
---|
1700 | char *my_calloc(); /* space-allocating function */ |
---|
1701 | char *start, *end, *p; |
---|
1702 | t->linesize *= 2; |
---|
1703 | start = t->line; |
---|
1704 | end = t->a; |
---|
1705 | t->line = ( char * ) my_calloc( t->linesize * sizeof(char)); |
---|
1706 | for ( t->a = t->line, p = start ; p != end; ) |
---|
1707 | *t->a++ = *p++; |
---|
1708 | free(start); |
---|
1709 | return 0; |
---|
1710 | } |
---|
1711 | |
---|
1712 | /* enter a segment into working set */ |
---|
1713 | ENTER(b, d, id, pos, par) int *b, *d, id, pos; |
---|
1714 | rowptr par; |
---|
1715 | { |
---|
1716 | int i; |
---|
1717 | char *my_calloc(); /* space-allocating function */ |
---|
1718 | rowptr t; |
---|
1719 | |
---|
1720 | if ( *b <= *d ) |
---|
1721 | { |
---|
1722 | work[*b] = ( rowptr ) my_calloc( (int ) sizeof(row)); |
---|
1723 | work[*b]->line = ( char * ) my_calloc( SEQLEN * sizeof(char)); |
---|
1724 | work[*b]->linesize = SEQLEN; |
---|
1725 | *b += 1; |
---|
1726 | } |
---|
1727 | t = work[*d]; |
---|
1728 | *d += 1; |
---|
1729 | t->a = t->line; |
---|
1730 | for ( i = 0; i < pos; i++ ) |
---|
1731 | *t->a++ = ' '; |
---|
1732 | t->c = ' '; |
---|
1733 | t->seq = mtree[id].orient ? segment[id].seq : segment[id].rev; |
---|
1734 | t->length = segment[id].length; |
---|
1735 | t->id = id; |
---|
1736 | if ( par != 0 ) |
---|
1737 | { |
---|
1738 | t->s = mtree[id].script; |
---|
1739 | t->size = mtree[id].size; |
---|
1740 | } |
---|
1741 | t->op = 0; |
---|
1742 | for ( i = 1; i <= segment[id].len && i <= NAMELEN; i++ ) |
---|
1743 | t->name[i-1] = segment[id].name[i]; |
---|
1744 | if ( mtree[id].orient ) |
---|
1745 | t->name[i-1] = '+'; |
---|
1746 | else |
---|
1747 | t->name[i-1] = '-'; |
---|
1748 | t->name[i] = '\0'; |
---|
1749 | t->done = 0; |
---|
1750 | t->loc = 1; |
---|
1751 | t->child = 0; |
---|
1752 | t->father = par; |
---|
1753 | if ( par != 0 ) |
---|
1754 | { |
---|
1755 | t->brother = par->child; |
---|
1756 | par->child = t; |
---|
1757 | NEXTOP(t); |
---|
1758 | } |
---|
1759 | } |
---|
1760 | |
---|
1761 | /* get the next operation */ |
---|
1762 | NEXTOP(t) rowptr t; |
---|
1763 | { |
---|
1764 | if ( t->size || t->op ) |
---|
1765 | if ( t->op == 0 && *t->s == 0 ) |
---|
1766 | { |
---|
1767 | t->op = *t->s++; |
---|
1768 | t->size--; |
---|
1769 | t->up = 'L'; |
---|
1770 | t->dw = 'L'; |
---|
1771 | } |
---|
1772 | else |
---|
1773 | { |
---|
1774 | if ( t->op == 0 ) |
---|
1775 | { |
---|
1776 | t->op = *t->s++; |
---|
1777 | t->size--; |
---|
1778 | } |
---|
1779 | if ( t->op > 0 ) |
---|
1780 | { |
---|
1781 | t->up = '-'; |
---|
1782 | t->dw = 'L'; |
---|
1783 | t->op--; |
---|
1784 | } |
---|
1785 | else |
---|
1786 | { |
---|
1787 | t->up = 'L'; |
---|
1788 | t->dw = '-'; |
---|
1789 | t->op++; |
---|
1790 | } |
---|
1791 | } |
---|
1792 | else |
---|
1793 | if ( t->loc > t->length ) |
---|
1794 | t->done = 1; |
---|
1795 | } |
---|
1796 | |
---|
1797 | COLUMN(x) rowptr x; |
---|
1798 | { |
---|
1799 | rowptr y; |
---|
1800 | rowptr start, end; /* first and last nodes for subtree */ |
---|
1801 | |
---|
1802 | if ( x->child == 0 ) |
---|
1803 | { |
---|
1804 | head = tail = 0; |
---|
1805 | x->kind = 'L'; |
---|
1806 | } |
---|
1807 | else |
---|
1808 | { |
---|
1809 | start = end = 0; |
---|
1810 | x->kind = 'L'; |
---|
1811 | for ( y = x->child; y != 0; y = y->brother ) |
---|
1812 | { |
---|
1813 | COLUMN(y); |
---|
1814 | if ( x->kind == y->up ) |
---|
1815 | if ( y->kind == y->dw ) |
---|
1816 | { |
---|
1817 | if ( head == 0 ) |
---|
1818 | { |
---|
1819 | y->link = 0; |
---|
1820 | head = tail = y; |
---|
1821 | } |
---|
1822 | else |
---|
1823 | { |
---|
1824 | y->link = head; |
---|
1825 | head = y; |
---|
1826 | } |
---|
1827 | if ( end == 0 ) |
---|
1828 | start = head; |
---|
1829 | else |
---|
1830 | end->link = head; |
---|
1831 | end = tail; |
---|
1832 | } |
---|
1833 | else |
---|
1834 | if ( y->kind == '-' ) |
---|
1835 | { |
---|
1836 | start = head; |
---|
1837 | end = tail; |
---|
1838 | x->kind = '-'; |
---|
1839 | } |
---|
1840 | else |
---|
1841 | { |
---|
1842 | y->link = 0; |
---|
1843 | y->kind = '-'; |
---|
1844 | if ( end == 0 ) |
---|
1845 | start = end = y; |
---|
1846 | else |
---|
1847 | { |
---|
1848 | end->link = y; |
---|
1849 | end = y; |
---|
1850 | } |
---|
1851 | } |
---|
1852 | else |
---|
1853 | if ( y->kind == y->dw ) |
---|
1854 | if ( x->kind == '-' ) |
---|
1855 | ; |
---|
1856 | else |
---|
1857 | { |
---|
1858 | if ( head == 0 ) |
---|
1859 | { |
---|
1860 | y->link = 0; |
---|
1861 | head = tail = y; |
---|
1862 | } |
---|
1863 | else |
---|
1864 | { |
---|
1865 | y->link = head; |
---|
1866 | head = y; |
---|
1867 | } |
---|
1868 | start = head; |
---|
1869 | end = tail; |
---|
1870 | x->kind = '-'; |
---|
1871 | } |
---|
1872 | else |
---|
1873 | if ( x->kind == '-' ) |
---|
1874 | if ( y->kind == '-' ) |
---|
1875 | { |
---|
1876 | if ( end == 0 ) |
---|
1877 | { |
---|
1878 | start = head; |
---|
1879 | end = tail; |
---|
1880 | } |
---|
1881 | else |
---|
1882 | if ( head == 0 ) |
---|
1883 | /* code folded from here */ |
---|
1884 | ; |
---|
1885 | /* unfolding */ |
---|
1886 | else |
---|
1887 | { |
---|
1888 | /* code folded from here */ |
---|
1889 | end->link = head; |
---|
1890 | end = tail; |
---|
1891 | /* unfolding */ |
---|
1892 | } |
---|
1893 | } |
---|
1894 | else |
---|
1895 | ; |
---|
1896 | else |
---|
1897 | { |
---|
1898 | start = head; |
---|
1899 | end = tail; |
---|
1900 | x->kind = '-'; |
---|
1901 | } |
---|
1902 | } |
---|
1903 | head = start; |
---|
1904 | tail = end; |
---|
1905 | } |
---|
1906 | } |
---|
1907 | |
---|
1908 | /* Display a summary of contigs */ |
---|
1909 | GRAPH() |
---|
1910 | { |
---|
1911 | int i, j, k; /* index variables */ |
---|
1912 | int group; /* serial number of contigs */ |
---|
1913 | char name[NAMELEN+2]; /* name of segment */ |
---|
1914 | char *t; /* temp var */ |
---|
1915 | int length; /* length of name */ |
---|
1916 | |
---|
1917 | (void) printf("\nOVERLAPS CONTAINMENTS\n\n"); |
---|
1918 | group = 1; |
---|
1919 | for ( i = 0; i < seg_num; i++ ) |
---|
1920 | if ( mtree[i].head ) |
---|
1921 | { |
---|
1922 | (void) printf("******************* Contig %d ********************\n", |
---|
1923 | group++ ); |
---|
1924 | for ( j = i; j != -1; j = mtree[j].next ) |
---|
1925 | { |
---|
1926 | length = segment[j].len; |
---|
1927 | t = segment[j].name + 1; |
---|
1928 | for ( k = 0; k < length && k < NAMELEN; k++ ) |
---|
1929 | name[k] = *t++; |
---|
1930 | if ( mtree[j].orient ) |
---|
1931 | name[k] = '+'; |
---|
1932 | else |
---|
1933 | name[k] = '-'; |
---|
1934 | name[k+1] = '\0'; |
---|
1935 | (void) printf("%s\n", name); |
---|
1936 | CONTAIN(mtree[j].child, name); |
---|
1937 | } |
---|
1938 | } |
---|
1939 | } |
---|
1940 | |
---|
1941 | CONTAIN(id, f) int id; |
---|
1942 | char *f; |
---|
1943 | { |
---|
1944 | int k; /* index variable */ |
---|
1945 | char name[NAMELEN+2]; /* name of segment */ |
---|
1946 | char *t; /* temp var */ |
---|
1947 | int length; /* length of name */ |
---|
1948 | |
---|
1949 | if ( id != -1 ) |
---|
1950 | { |
---|
1951 | length = segment[id].len; |
---|
1952 | t = segment[id].name + 1; |
---|
1953 | for ( k = 0; k < length && k < NAMELEN; k++ ) |
---|
1954 | name[k] = *t++; |
---|
1955 | if ( mtree[id].orient ) |
---|
1956 | name[k] = '+'; |
---|
1957 | else |
---|
1958 | name[k] = '-'; |
---|
1959 | name[k+1] = '\0'; |
---|
1960 | (void) printf(" %s is in %s\n", name,f); |
---|
1961 | CONTAIN(mtree[id].child, name); |
---|
1962 | CONTAIN(mtree[id].brother, f); |
---|
1963 | } |
---|
1964 | } |
---|
1965 | |
---|
1966 | big_pass(A,B,M,N,orienti,orientj) char A[],B[]; |
---|
1967 | int M,N; |
---|
1968 | short orienti, orientj; |
---|
1969 | { |
---|
1970 | register int i, j; /* row and column indices */ |
---|
1971 | register int c; /* best score at current point */ |
---|
1972 | register int f; /* best score ending with insertion */ |
---|
1973 | register int d; /* best score ending with deletion */ |
---|
1974 | register int p; /* best score at (i-1, j-1) */ |
---|
1975 | register int ci; /* end-point associated with c */ |
---|
1976 | |
---|
1977 | register int di; /* end-point associated with d */ |
---|
1978 | register int fi; /* end-point associated with f */ |
---|
1979 | register int pi; /* end-point associated with p */ |
---|
1980 | int *va; /* pointer to v(A[i], B[j]) */ |
---|
1981 | int x1, x2; /* regions of A before x1 or after x2 are lightly penalized */ |
---|
1982 | int y1, y2; /* regions of B before y1 or after y2 are lightly penalized */ |
---|
1983 | short heavy; /* 1 = heavy penalty */ |
---|
1984 | int ex, gx; /* current gap penalty scores */ |
---|
1985 | |
---|
1986 | /* determine x1, x2, y1, y2 */ |
---|
1987 | if ( POS5 >= POS3 ) |
---|
1988 | fatal("The value for POS5 must be less than the value for POS3"); |
---|
1989 | if ( orienti ) |
---|
1990 | { |
---|
1991 | x1 = POS5 >= M ? 1 : POS5; |
---|
1992 | x2 = POS3 >= M ? M : POS3; |
---|
1993 | } |
---|
1994 | else |
---|
1995 | { |
---|
1996 | x1 = POS3 >= M ? 1 : M - POS3 + 1; |
---|
1997 | x2 = POS5 >= M ? M : M - POS5 + 1; |
---|
1998 | } |
---|
1999 | if ( orientj ) |
---|
2000 | { |
---|
2001 | y1 = POS5 >= N ? 1 : POS5; |
---|
2002 | y2 = POS3 >= N ? N : POS3; |
---|
2003 | } |
---|
2004 | else |
---|
2005 | { |
---|
2006 | y1 = POS3 >= N ? 1 : N - POS3 + 1; |
---|
2007 | y2 = POS5 >= N ? N : N - POS5 + 1; |
---|
2008 | } |
---|
2009 | if ( x1 + 1 <= x2 ) x1++; |
---|
2010 | if ( y1 + 1 <= y2 ) y1++; |
---|
2011 | heavy = 0; |
---|
2012 | |
---|
2013 | /* Compute the matrix. |
---|
2014 | CC : the scores of the current row |
---|
2015 | RR : the starting point that leads to score CC |
---|
2016 | DD : the scores of the current row, ending with deletion |
---|
2017 | SS : the starting point that leads to score DD */ |
---|
2018 | /* Initialize the 0 th row */ |
---|
2019 | for ( j = 1; j <= N ; j++ ) |
---|
2020 | { |
---|
2021 | CC[j] = 0; |
---|
2022 | DD[j] = - (q); |
---|
2023 | RR[j] = SS[j] = -j; |
---|
2024 | } |
---|
2025 | for ( i = 1; i <= M; i++) |
---|
2026 | { |
---|
2027 | if ( i == x1 ) heavy = 1 - heavy; |
---|
2028 | if ( i == x2 ) heavy = 1 - heavy; |
---|
2029 | ex = r1; |
---|
2030 | gx = qr1; |
---|
2031 | va = v1[A[i]]; |
---|
2032 | c = 0; /* Initialize column 0 */ |
---|
2033 | f = - (q); |
---|
2034 | ci = fi = i; |
---|
2035 | p = 0; |
---|
2036 | pi = i - 1; |
---|
2037 | for ( j = 1 ; j <= N ; j++ ) |
---|
2038 | { |
---|
2039 | if ( j == y1 ) |
---|
2040 | { |
---|
2041 | if ( heavy ) |
---|
2042 | { |
---|
2043 | ex = r; |
---|
2044 | gx = qr; |
---|
2045 | /* |
---|
2046 | S.S. |
---|
2047 | va = v[A[i]]; |
---|
2048 | */ |
---|
2049 | va = v[A[i]]; |
---|
2050 | } |
---|
2051 | } |
---|
2052 | if ( j == y2 ) |
---|
2053 | { |
---|
2054 | if ( heavy ) |
---|
2055 | { |
---|
2056 | ex = r1; |
---|
2057 | gx = qr1; |
---|
2058 | va = v1[A[i]]; |
---|
2059 | } |
---|
2060 | } |
---|
2061 | if ( ( f = f - ex ) < ( c = c - gx ) ) |
---|
2062 | { |
---|
2063 | f = c; |
---|
2064 | fi = ci; |
---|
2065 | } |
---|
2066 | di = SS[j]; |
---|
2067 | if ( ( d = DD[j] - ex ) < ( c = CC[j] - gx ) ) |
---|
2068 | { |
---|
2069 | d = c; |
---|
2070 | di = RR[j]; |
---|
2071 | } |
---|
2072 | c = p+va[B[j]]; /* diagonal */ |
---|
2073 | ci = pi; |
---|
2074 | if ( c < d ) |
---|
2075 | { |
---|
2076 | c = d; |
---|
2077 | ci = di; |
---|
2078 | } |
---|
2079 | if ( c < f ) |
---|
2080 | { |
---|
2081 | c = f; |
---|
2082 | ci = fi; |
---|
2083 | } |
---|
2084 | p = CC[j]; |
---|
2085 | CC[j] = c; |
---|
2086 | pi = RR[j]; |
---|
2087 | RR[j] = ci; |
---|
2088 | DD[j] = d; |
---|
2089 | SS[j] = di; |
---|
2090 | if ( ( j == N || i == M ) && c > SCORE ) |
---|
2091 | { |
---|
2092 | SCORE = c; |
---|
2093 | ENDI = i; |
---|
2094 | ENDJ = j; |
---|
2095 | STARI = ci; |
---|
2096 | } |
---|
2097 | } |
---|
2098 | } |
---|
2099 | if ( SCORE ) |
---|
2100 | if ( STARI < 0 ) |
---|
2101 | { |
---|
2102 | STARJ = - STARI; |
---|
2103 | STARI = 0; |
---|
2104 | } |
---|
2105 | else |
---|
2106 | STARJ = 0; |
---|
2107 | } |
---|
2108 | |
---|
2109 | /* diff(A,B,M,N,tb,te) returns the score of an optimum conversion between |
---|
2110 | A[1..M] and B[1..N] that begins(ends) with a delete if tb(te) is zero |
---|
2111 | and appends such a conversion to the current script. */ |
---|
2112 | |
---|
2113 | int diff(A,B,M,N,tb,te) char *A, *B; |
---|
2114 | int M, N; |
---|
2115 | int tb, te; |
---|
2116 | |
---|
2117 | { |
---|
2118 | int midi, midj, type; /* Midpoint, type, and cost */ |
---|
2119 | int midc; |
---|
2120 | |
---|
2121 | { |
---|
2122 | register int i, j; |
---|
2123 | register int c, e, d, s; |
---|
2124 | int t, *va; |
---|
2125 | char *my_calloc(); |
---|
2126 | |
---|
2127 | /* Boundary cases: M <= 1 or N == 0 */ |
---|
2128 | |
---|
2129 | if (N <= 0) |
---|
2130 | { |
---|
2131 | if (M > 0) DEL(M) |
---|
2132 | return - gap(M); |
---|
2133 | } |
---|
2134 | if (M <= 1) |
---|
2135 | { |
---|
2136 | if (M <= 0) |
---|
2137 | { |
---|
2138 | INS(N); |
---|
2139 | return - gap(N); |
---|
2140 | } |
---|
2141 | if (tb > te) tb = te; |
---|
2142 | midc = - (tb + r + gap(N) ); |
---|
2143 | midj = 0; |
---|
2144 | va = v[A[1]]; |
---|
2145 | for (j = 1; j <= N; j++) |
---|
2146 | { |
---|
2147 | c = va[B[j]] - ( gap(j-1) + gap(N-j) ); |
---|
2148 | if (c > midc) |
---|
2149 | { |
---|
2150 | midc = c; |
---|
2151 | midj = j; |
---|
2152 | } |
---|
2153 | } |
---|
2154 | if (midj == 0) |
---|
2155 | { |
---|
2156 | INS(N) DEL(1) } |
---|
2157 | else |
---|
2158 | { |
---|
2159 | if (midj > 1) INS(midj-1) |
---|
2160 | REP |
---|
2161 | if ( (A[1]|32) == (B[midj]|32) ) |
---|
2162 | no_mat += 1; |
---|
2163 | else |
---|
2164 | no_mis += 1; |
---|
2165 | if (midj < N) INS(N-midj) |
---|
2166 | } |
---|
2167 | return midc; |
---|
2168 | } |
---|
2169 | |
---|
2170 | /* Divide: Find optimum midpoint (midi,midj) of cost midc */ |
---|
2171 | |
---|
2172 | midi = M/2; /* Forward phase: */ |
---|
2173 | CC[0] = 0; /* Compute C(M/2,k) & D(M/2,k) for all k */ |
---|
2174 | t = -q; |
---|
2175 | for (j = 1; j <= N; j++) |
---|
2176 | { |
---|
2177 | CC[j] = t = t-r; |
---|
2178 | DD[j] = t-q; |
---|
2179 | } |
---|
2180 | t = -tb; |
---|
2181 | for (i = 1; i <= midi; i++) |
---|
2182 | { |
---|
2183 | s = CC[0]; |
---|
2184 | CC[0] = c = t = t-r; |
---|
2185 | e = t-q; |
---|
2186 | va = v[A[i]]; |
---|
2187 | for (j = 1; j <= N; j++) |
---|
2188 | { |
---|
2189 | if ((c = c - qr) > (e = e - r)) e = c; |
---|
2190 | if ((c = CC[j] - qr) > (d = DD[j] - r)) d = c; |
---|
2191 | c = s+va[B[j]]; |
---|
2192 | if (c < d) c = d; |
---|
2193 | if (c < e) c = e; |
---|
2194 | s = CC[j]; |
---|
2195 | CC[j] = c; |
---|
2196 | DD[j] = d; |
---|
2197 | } |
---|
2198 | } |
---|
2199 | DD[0] = CC[0]; |
---|
2200 | |
---|
2201 | RR[N] = 0; /* Reverse phase: */ |
---|
2202 | t = -q; /* Compute R(M/2,k) & S(M/2,k) for all k */ |
---|
2203 | for (j = N-1; j >= 0; j--) |
---|
2204 | { |
---|
2205 | RR[j] = t = t-r; |
---|
2206 | SS[j] = t-q; |
---|
2207 | } |
---|
2208 | t = -te; |
---|
2209 | for (i = M-1; i >= midi; i--) |
---|
2210 | { |
---|
2211 | s = RR[N]; |
---|
2212 | RR[N] = c = t = t-r; |
---|
2213 | e = t-q; |
---|
2214 | va = v[A[i+1]]; |
---|
2215 | for (j = N-1; j >= 0; j--) |
---|
2216 | { |
---|
2217 | if ((c = c - qr) > (e = e - r)) e = c; |
---|
2218 | if ((c = RR[j] - qr) > (d = SS[j] - r)) d = c; |
---|
2219 | c = s+va[B[j+1]]; |
---|
2220 | if (c < d) c = d; |
---|
2221 | if (c < e) c = e; |
---|
2222 | s = RR[j]; |
---|
2223 | RR[j] = c; |
---|
2224 | SS[j] = d; |
---|
2225 | } |
---|
2226 | } |
---|
2227 | SS[N] = RR[N]; |
---|
2228 | |
---|
2229 | midc = CC[0]+RR[0]; /* Find optimal midpoint */ |
---|
2230 | midj = 0; |
---|
2231 | type = 1; |
---|
2232 | for (j = 0; j <= N; j++) |
---|
2233 | if ((c = CC[j] + RR[j]) >= midc) |
---|
2234 | if (c > midc || CC[j] != DD[j] && RR[j] == SS[j]) |
---|
2235 | { |
---|
2236 | midc = c; |
---|
2237 | midj = j; |
---|
2238 | } |
---|
2239 | for (j = N; j >= 0; j--) |
---|
2240 | if ((c = DD[j] + SS[j] + q) > midc) |
---|
2241 | { |
---|
2242 | midc = c; |
---|
2243 | midj = j; |
---|
2244 | type = 2; |
---|
2245 | } |
---|
2246 | } |
---|
2247 | |
---|
2248 | /* Conquer: recursively around midpoint */ |
---|
2249 | |
---|
2250 | if (type == 1) |
---|
2251 | { |
---|
2252 | (void) diff(A,B,midi,midj,tb,q); |
---|
2253 | (void) diff(A+midi,B+midj,M-midi,N-midj,q,te); |
---|
2254 | } |
---|
2255 | else |
---|
2256 | { |
---|
2257 | (void) diff(A,B,midi-1,midj,tb,zero); |
---|
2258 | DEL(2); |
---|
2259 | (void) diff(A+midi+1,B+midj,M-midi-1,N-midj,zero,te); |
---|
2260 | } |
---|
2261 | return midc; |
---|
2262 | } |
---|
2263 | |
---|
2264 | /* lib.c - library of C procedures. */ |
---|
2265 | |
---|
2266 | /* fatal - print message and die */ |
---|
2267 | fatal(msg) |
---|
2268 | char *msg; |
---|
2269 | { |
---|
2270 | (void) fprintf(stderr, "%s\n", msg); |
---|
2271 | exit(1); |
---|
2272 | } |
---|
2273 | |
---|
2274 | /* fatalf - format message, print it, and die */ |
---|
2275 | fatalf(msg, val) |
---|
2276 | char *msg, *val; |
---|
2277 | { |
---|
2278 | (void) fprintf(stderr, msg, val); |
---|
2279 | (void) putc('\n', stderr); |
---|
2280 | exit(1); |
---|
2281 | } |
---|
2282 | |
---|
2283 | /* ckopen - open file; check for success */ |
---|
2284 | FILE *ckopen(name, mode) |
---|
2285 | char *name, *mode; |
---|
2286 | { |
---|
2287 | FILE *fopen(), *fp; |
---|
2288 | |
---|
2289 | if ((fp = fopen(name, mode)) == NULL) |
---|
2290 | fatalf("Cannot open %s.", name); |
---|
2291 | return(fp); |
---|
2292 | } |
---|
2293 | |
---|
2294 | /* my_calloc - allocate space; check for success */ |
---|
2295 | char *my_calloc(amount) |
---|
2296 | int amount; |
---|
2297 | { |
---|
2298 | char *malloc(), *p; |
---|
2299 | |
---|
2300 | if ((p = malloc( (unsigned) amount)) == NULL) |
---|
2301 | fatal("Ran out of memory."); |
---|
2302 | return(p); |
---|
2303 | } |
---|
2304 | |
---|