1 | #include <stdio.h> |
---|
2 | #include <stdlib.h> |
---|
3 | #include <math.h> |
---|
4 | #include <iostream> |
---|
5 | #include <iomanip> |
---|
6 | #include <memory.h> |
---|
7 | #include <arbdb.h> |
---|
8 | #include <arbdbt.h> |
---|
9 | #include <string.h> |
---|
10 | #include <awt_tree.hxx> |
---|
11 | |
---|
12 | #include "AP_buffer.hxx" |
---|
13 | #include "parsimony.hxx" |
---|
14 | #include "ap_tree_nlen.hxx" |
---|
15 | |
---|
16 | // #include <aw_root.hxx> |
---|
17 | |
---|
18 | using namespace std; |
---|
19 | |
---|
20 | // #define ap_assert(x) arb_assert(x) |
---|
21 | |
---|
22 | /************************** |
---|
23 | |
---|
24 | Constructor |
---|
25 | Destructor |
---|
26 | initialize |
---|
27 | relink |
---|
28 | unlink |
---|
29 | |
---|
30 | **************************/ |
---|
31 | long AP_tree_edge::timeStamp = 0; |
---|
32 | |
---|
33 | AP_tree_edge::AP_tree_edge(AP_tree_nlen *node1, AP_tree_nlen *node2) |
---|
34 | { |
---|
35 | // not really necessary, but why not clear all: |
---|
36 | memset((char *)this,0,sizeof(AP_tree_edge)); |
---|
37 | age = timeStamp++; |
---|
38 | |
---|
39 | // link the nodes: |
---|
40 | |
---|
41 | relink(node1,node2); |
---|
42 | } |
---|
43 | |
---|
44 | AP_tree_edge::~AP_tree_edge() |
---|
45 | { |
---|
46 | unlink(); |
---|
47 | } |
---|
48 | |
---|
49 | static void buildSonEdges(AP_tree_nlen *tree) |
---|
50 | // Builds edges between a node and his two sons. |
---|
51 | // We assume there is already an edge to node's father and there are |
---|
52 | // no edges to his sons. |
---|
53 | { |
---|
54 | if (!tree->is_leaf) |
---|
55 | { |
---|
56 | buildSonEdges(tree->Leftson()); |
---|
57 | buildSonEdges(tree->Rightson()); |
---|
58 | |
---|
59 | // to ensure the nodes contain the correct distance to the border |
---|
60 | // we MUST build all son edges before creating the father edge |
---|
61 | |
---|
62 | new AP_tree_edge(tree, tree->Leftson()); |
---|
63 | new AP_tree_edge(tree, tree->Rightson()); |
---|
64 | } |
---|
65 | } |
---|
66 | |
---|
67 | void AP_tree_edge::initialize(AP_tree_nlen *tree) |
---|
68 | // Builds all edges in the hole tree |
---|
69 | // The root node is skipped - instead his two sons are connected with an edge |
---|
70 | { |
---|
71 | while (tree->Father()) tree = tree->Father(); // go up to root |
---|
72 | buildSonEdges(tree->Leftson()); // link left subtree |
---|
73 | buildSonEdges(tree->Rightson()); // link right subtree |
---|
74 | |
---|
75 | // to ensure the nodes contain the correct distance to the border |
---|
76 | // we MUST build all son edges before creating the root edge |
---|
77 | |
---|
78 | new AP_tree_edge(tree->Leftson(),tree->Rightson()); // link brothers |
---|
79 | } |
---|
80 | |
---|
81 | void AP_tree_edge::tailDistance(AP_tree_nlen *n) |
---|
82 | { |
---|
83 | ap_assert(!n->is_leaf); // otherwise call was not neccessary! |
---|
84 | |
---|
85 | int i0 = n->indexOf(this); // index of this |
---|
86 | int i1 = i0==0 ? 1 : 0; // the indices of the other two nodes (beside n) |
---|
87 | int i2 = i1==1 ? 2 : (i0==1 ? 2 : 1); |
---|
88 | AP_tree_edge *e1 = n->edge[i1]; // edges to the other two nodes |
---|
89 | AP_tree_edge *e2 = n->edge[i2]; |
---|
90 | |
---|
91 | cout << "tail n=" << n << " d(n)=" << n->distance << " "; |
---|
92 | |
---|
93 | if (e1 && e2) |
---|
94 | { |
---|
95 | AP_tree_nlen *n1 = e1->node[1-n->index[i1]]; // the other two nodes |
---|
96 | AP_tree_nlen *n2 = e2->node[1-n->index[i2]]; |
---|
97 | |
---|
98 | cout << "n1=" << n1 << " d(n1)=" << n1->distance << |
---|
99 | " n2=" << n2 << " d(n2)=" << n2->distance << " "; |
---|
100 | |
---|
101 | if (n1->distance==n2->distance) |
---|
102 | { |
---|
103 | if (n1->distance>n->distance && n2->distance>n->distance) |
---|
104 | { |
---|
105 | // both distances (of n1 and n2) are greather that distance of n |
---|
106 | // so its possible that the nearest connection the border was |
---|
107 | // via node n and we must recalculate the distance into the other |
---|
108 | // directions |
---|
109 | |
---|
110 | ap_assert(n1->distance==n2->distance); |
---|
111 | |
---|
112 | cout << "special tailDistance-case\n"; |
---|
113 | e1->tailDistance(n1); |
---|
114 | e2->tailDistance(n2); |
---|
115 | |
---|
116 | if (n1->distance<n2->distance) |
---|
117 | { |
---|
118 | n->distance = n1->distance+1; |
---|
119 | if (!e2->distanceOK()) e2->calcDistance(); |
---|
120 | } |
---|
121 | else |
---|
122 | { |
---|
123 | n->distance = n2->distance+1; |
---|
124 | if (!e1->distanceOK()) e1->calcDistance(); |
---|
125 | } |
---|
126 | } |
---|
127 | else |
---|
128 | { |
---|
129 | cout << "tail case 2\n"; |
---|
130 | n->distance = n1->distance+1; |
---|
131 | } |
---|
132 | } |
---|
133 | else |
---|
134 | { |
---|
135 | ap_assert(n1->distance != n2->distance); |
---|
136 | |
---|
137 | if (n1->distance<n2->distance) |
---|
138 | { |
---|
139 | if (n1->distance<n->distance) |
---|
140 | { |
---|
141 | // in this case the distance via n1 is the same as |
---|
142 | // the distance via the cutted edge - so we do nothing |
---|
143 | |
---|
144 | cout << "tail case 3\n"; |
---|
145 | ap_assert(n1->distance==(n->distance-1)); |
---|
146 | } |
---|
147 | else |
---|
148 | { |
---|
149 | cout << "tail case 4\n"; |
---|
150 | ap_assert(n1->distance==n->distance); |
---|
151 | ap_assert(n2->distance==(n->distance+1)); |
---|
152 | |
---|
153 | n->distance = n1->distance+1; |
---|
154 | e2->tailDistance(n2); |
---|
155 | } |
---|
156 | } |
---|
157 | else |
---|
158 | { |
---|
159 | ap_assert(n2->distance<n1->distance); |
---|
160 | |
---|
161 | if (n2->distance<n->distance) |
---|
162 | { |
---|
163 | // in this case the distance via n2 is the same as |
---|
164 | // the distance via the cutted edge - so we do nothing |
---|
165 | |
---|
166 | cout << "tail case 5\n"; |
---|
167 | ap_assert(n2->distance==(n->distance-1)); |
---|
168 | } |
---|
169 | else |
---|
170 | { |
---|
171 | cout << "tail case 6\n"; |
---|
172 | ap_assert(n2->distance==n->distance); |
---|
173 | ap_assert(n1->distance==(n->distance+1)); |
---|
174 | |
---|
175 | n->distance = n2->distance+1; |
---|
176 | e1->tailDistance(n1); |
---|
177 | } |
---|
178 | } |
---|
179 | } |
---|
180 | |
---|
181 | // cout << "e1=" << *e1 << endl; |
---|
182 | // cout << "e2=" << *e2 << endl; |
---|
183 | |
---|
184 | cout << "d(n)=" << n->distance << |
---|
185 | " d(n1)=" << n1->distance << |
---|
186 | " d(n2)=" << n2->distance << |
---|
187 | " D(e1)=" << e1->Distance() << |
---|
188 | " D(e2)=" << e2->Distance() << |
---|
189 | " dtb(e1)=" << e1->distanceToBorder(INT_MAX,n) << |
---|
190 | " dtb(e2)=" << e2->distanceToBorder(INT_MAX,n) << endl; |
---|
191 | |
---|
192 | // ap_assert(e1->Distance()==e1->distanceToBorder(INT_MAX,n)); |
---|
193 | // ap_assert(e2->Distance()==e2->distanceToBorder(INT_MAX,n)); |
---|
194 | } |
---|
195 | else |
---|
196 | { |
---|
197 | if (e1) |
---|
198 | { |
---|
199 | AP_tree_nlen *n1 = e1->node[1-n->index[i1]]; |
---|
200 | |
---|
201 | cout << "tail case 7\n"; |
---|
202 | ap_assert(n1!=0); |
---|
203 | if (n1->distance>n->distance) e1->tailDistance(n1); |
---|
204 | n->distance = n1->distance+1; |
---|
205 | |
---|
206 | // cout << "e1=" << *e1 << endl; |
---|
207 | |
---|
208 | cout << "d(n)=" << n->distance << |
---|
209 | " d(n1)=" << n1->distance << |
---|
210 | " D(e1)=" << e1->Distance() << |
---|
211 | " dtb(e1)=" << e1->distanceToBorder(INT_MAX,n) << endl; |
---|
212 | |
---|
213 | |
---|
214 | // ap_assert(e1->Distance()==e1->distanceToBorder(INT_MAX,n)); |
---|
215 | } |
---|
216 | else if (e2) |
---|
217 | { |
---|
218 | AP_tree_nlen *n2 = e2->node[1-n->index[i2]]; |
---|
219 | |
---|
220 | cout << "tail case 8\n"; |
---|
221 | ap_assert(n2!=0); |
---|
222 | cout << "d(n2)=" << n2->distance << " d(n)=" << n->distance << endl; |
---|
223 | |
---|
224 | if (n2->distance>n->distance) e2->tailDistance(n2); |
---|
225 | n->distance = n2->distance+1; |
---|
226 | |
---|
227 | // cout << "e2=" << *e2 << endl; |
---|
228 | |
---|
229 | cout << "d(n)=" << n->distance << |
---|
230 | " d(n2)=" << n2->distance << |
---|
231 | " D(e2)=" << e2->Distance() << |
---|
232 | " dtb(e2)=" << e2->distanceToBorder(INT_MAX,n) << endl; |
---|
233 | |
---|
234 | // ap_assert(e2->Distance()==e2->distanceToBorder(INT_MAX,n)); |
---|
235 | } |
---|
236 | else |
---|
237 | { |
---|
238 | cout << "tail case 9\n"; |
---|
239 | n->distance = INT_MAX; |
---|
240 | } |
---|
241 | } |
---|
242 | } |
---|
243 | |
---|
244 | AP_tree_edge* AP_tree_edge::unlink() |
---|
245 | { |
---|
246 | ap_assert(this!=0); |
---|
247 | |
---|
248 | // cout << "------ unlink" << endl; |
---|
249 | |
---|
250 | // switch (node[0]->distance-node[1]->distance) |
---|
251 | // { |
---|
252 | // case -1: // n1->distance > n0->distance |
---|
253 | // { |
---|
254 | // ap_assert(!node[1]->is_leaf); |
---|
255 | // tailDistance(node[1]); |
---|
256 | // break; |
---|
257 | // } |
---|
258 | // case 0: // equal -> distances remain correct |
---|
259 | // { |
---|
260 | // break; |
---|
261 | // } |
---|
262 | // case 1: // n0->distance > n1->distance |
---|
263 | // { |
---|
264 | // ap_assert(!node[0]->is_leaf); |
---|
265 | // tailDistance(node[0]); |
---|
266 | // break; |
---|
267 | // } |
---|
268 | // default: |
---|
269 | // { |
---|
270 | // cerr << "error in distances" << endl; |
---|
271 | // } |
---|
272 | // } |
---|
273 | |
---|
274 | node[0]->edge[index[0]] = NULL; |
---|
275 | node[1]->edge[index[1]] = NULL; |
---|
276 | |
---|
277 | node[0] = NULL; |
---|
278 | node[1] = NULL; |
---|
279 | |
---|
280 | return this; |
---|
281 | } |
---|
282 | |
---|
283 | void AP_tree_edge::calcDistance() |
---|
284 | { |
---|
285 | ap_assert(!distanceOK()); // otherwise call was not neccessary |
---|
286 | ap_assert (node[0]->distance!=node[1]->distance); |
---|
287 | |
---|
288 | if (node[0]->distance < node[1]->distance) // node[1] has wrong distance |
---|
289 | { |
---|
290 | cout << "dist(" << node[1] << ") " << node[1]->distance; |
---|
291 | |
---|
292 | if (node[1]->distance==INT_MAX) // not initialized -> do not recurse |
---|
293 | { |
---|
294 | node[1]->distance = node[0]->distance+1; |
---|
295 | cout << " -> " << node[1]->distance << endl; |
---|
296 | } |
---|
297 | else |
---|
298 | { |
---|
299 | node[1]->distance = node[0]->distance+1; |
---|
300 | cout << " -> " << node[1]->distance << endl; |
---|
301 | |
---|
302 | if (!node[1]->is_leaf) |
---|
303 | { |
---|
304 | for (int e=0; e<3; e++) // recursively correct distance where neccessary |
---|
305 | { |
---|
306 | AP_tree_edge *ed = node[1]->edge[e]; |
---|
307 | if (ed && ed!=this && !ed->distanceOK()) ed->calcDistance(); |
---|
308 | } |
---|
309 | } |
---|
310 | } |
---|
311 | } |
---|
312 | else // node[0] has wrong distance |
---|
313 | { |
---|
314 | cout << "dist(" << node[0] << ") " << node[0]->distance; |
---|
315 | |
---|
316 | if (node[0]->distance==INT_MAX) // not initialized -> do not recurse |
---|
317 | { |
---|
318 | node[0]->distance = node[1]->distance+1; |
---|
319 | cout << " -> " << node[0]->distance << endl; |
---|
320 | } |
---|
321 | else |
---|
322 | { |
---|
323 | node[0]->distance = node[1]->distance+1; |
---|
324 | cout << " -> " << node[0]->distance << endl; |
---|
325 | |
---|
326 | if (!node[0]->is_leaf) |
---|
327 | { |
---|
328 | for (int e=0; e<3; e++) // recursively correct distance where neccessary |
---|
329 | { |
---|
330 | AP_tree_edge *ed = node[0]->edge[e]; |
---|
331 | if (ed && ed!=this && !ed->distanceOK()) ed->calcDistance(); |
---|
332 | } |
---|
333 | } |
---|
334 | } |
---|
335 | } |
---|
336 | |
---|
337 | ap_assert(distanceOK()); // invariant of AP_tree_edge (if fully constructed) |
---|
338 | } |
---|
339 | |
---|
340 | void AP_tree_edge::relink(AP_tree_nlen *node1,AP_tree_nlen *node2) |
---|
341 | { |
---|
342 | // cout << "------ relink" << endl; |
---|
343 | |
---|
344 | node[0] = node1; |
---|
345 | node[1] = node2; |
---|
346 | |
---|
347 | node1->edge[index[0] = node1->unusedEdge()] = this; |
---|
348 | node2->edge[index[1] = node2->unusedEdge()] = this; |
---|
349 | |
---|
350 | node1->index[index[0]] = 0; |
---|
351 | node2->index[index[1]] = 1; |
---|
352 | |
---|
353 | // if (node1->is_leaf) node1->distance = 0; |
---|
354 | // if (node2->is_leaf) node2->distance = 0; |
---|
355 | |
---|
356 | // cout << "relink (dist = (" << node1->distance << "," |
---|
357 | // << node2->distance << "))" << endl; |
---|
358 | |
---|
359 | // if (!distanceOK()) calcDistance(); |
---|
360 | } |
---|
361 | |
---|
362 | /************************** |
---|
363 | test |
---|
364 | **************************/ |
---|
365 | |
---|
366 | int AP_tree_edge::test() const |
---|
367 | { |
---|
368 | int ok = 1; // result is used by |
---|
369 | int n; |
---|
370 | |
---|
371 | for (n=0; n<2; n++) |
---|
372 | { |
---|
373 | if (node[n]->edge[index[n]]!=this) |
---|
374 | { |
---|
375 | int i; |
---|
376 | |
---|
377 | for (i=0; i<3; i++) |
---|
378 | { |
---|
379 | if (node[n]->edge[i]==this) break; |
---|
380 | } |
---|
381 | |
---|
382 | if (i==3) |
---|
383 | { |
---|
384 | cout << *this << " points to wrong node " << node[n] |
---|
385 | << '\n'; |
---|
386 | ok = 0; |
---|
387 | } |
---|
388 | else |
---|
389 | { |
---|
390 | cout << *this << " has wrong index (" |
---|
391 | << index[n] << "instead of " << i << ")\n"; |
---|
392 | ok = 0; |
---|
393 | } |
---|
394 | } |
---|
395 | } |
---|
396 | |
---|
397 | if (!distanceOK() || |
---|
398 | (node[0]->is_leaf && node[0]->distance!=0) || |
---|
399 | (node[1]->is_leaf && node[1]->distance!=0)) |
---|
400 | { |
---|
401 | cout << "distance not set correctly at" << *this << '\n'; |
---|
402 | } |
---|
403 | else if (Distance()!=distanceToBorder()) |
---|
404 | { |
---|
405 | cout << "Distance() != distanceToBorder()" << endl; |
---|
406 | } |
---|
407 | |
---|
408 | return ok; |
---|
409 | } |
---|
410 | |
---|
411 | /************************** |
---|
412 | |
---|
413 | Recursive methods: |
---|
414 | |
---|
415 | clearValues |
---|
416 | |
---|
417 | **************************/ |
---|
418 | |
---|
419 | /* |
---|
420 | int AP_tree_edge::clearValues(int deep, AP_tree_nlen *skip) |
---|
421 | { |
---|
422 | int cnt = 1; |
---|
423 | |
---|
424 | used = 0; |
---|
425 | data.distance = 0; |
---|
426 | |
---|
427 | if (deep--) |
---|
428 | for (int n=0; n<2; n++) |
---|
429 | if (node[n]!=skip && !node[n]->is_leaf) |
---|
430 | for (int e=0; e<3; e++) |
---|
431 | if (node[n]->edge[e]!=this) |
---|
432 | cnt += node[n]->edge[e]->clearValues(deep,node[n]); |
---|
433 | |
---|
434 | return cnt; |
---|
435 | } |
---|
436 | */ |
---|
437 | |
---|
438 | void AP_tree_edge::testChain(int deep) |
---|
439 | { |
---|
440 | cout << "Building chain (deep=" << deep << ")\n"; |
---|
441 | buildChain(deep,GB_FALSE); |
---|
442 | int inChain = dumpChain(); |
---|
443 | cout << "Edges in Chain = " << inChain << '\n'; |
---|
444 | } |
---|
445 | |
---|
446 | int AP_tree_edge::dumpChain(void) const |
---|
447 | { |
---|
448 | // cout << this << '\n'; |
---|
449 | return next ? 1+next->dumpChain() : 1; |
---|
450 | } |
---|
451 | |
---|
452 | AP_tree_edge* AP_tree_edge::buildChain(int deep, GB_BOOL skip_hidden, |
---|
453 | int distanceToInsert, |
---|
454 | const AP_tree_nlen *skip, |
---|
455 | AP_tree_edge *comesFrom) |
---|
456 | { |
---|
457 | AP_tree_edge *last = this; |
---|
458 | |
---|
459 | data.distance = distanceToInsert++; |
---|
460 | if (comesFrom) comesFrom->next = this; |
---|
461 | this->next = NULL; |
---|
462 | if (skip_hidden){ |
---|
463 | if (node[0]->gr.hidden) return last; |
---|
464 | if (node[1]->gr.hidden) return last; |
---|
465 | if ( (!node[0]->gr.has_marked_children) && (!node[1]->gr.has_marked_children)) return last; |
---|
466 | } |
---|
467 | |
---|
468 | if (deep--) |
---|
469 | for (int n=0; n<2; n++) |
---|
470 | if (node[n]!=skip && !node[n]->is_leaf){ |
---|
471 | for (int e=0; e<3; e++){ |
---|
472 | if (node[n]->edge[e]!=this){ |
---|
473 | last = node[n]->edge[e]->buildChain(deep,skip_hidden,distanceToInsert,node[n],last); |
---|
474 | } |
---|
475 | } |
---|
476 | } |
---|
477 | |
---|
478 | return last; |
---|
479 | } |
---|
480 | |
---|
481 | long AP_tree_edge::sizeofChain(void){ |
---|
482 | AP_tree_edge *f; |
---|
483 | long c= 0; |
---|
484 | for (f=this; f ; f = f->next) c++; |
---|
485 | return c; |
---|
486 | } |
---|
487 | |
---|
488 | int AP_tree_edge::distanceToBorder(int maxsearch,AP_tree_nlen *skipNode) const |
---|
489 | // return the minimal distance to the border of the tree |
---|
490 | // a return value of 0 means: one of the nodes is a leaf |
---|
491 | { |
---|
492 | if ((node[0] && node[0]->is_leaf) || (node[1] && node[1]->is_leaf)) |
---|
493 | { |
---|
494 | // cout << "dtb(" << *this << ")=" << 0 << endl; |
---|
495 | return 0; |
---|
496 | } |
---|
497 | |
---|
498 | for (int n=0; n<2 && maxsearch; n++) |
---|
499 | { |
---|
500 | if (node[n] && node[n]!=skipNode) |
---|
501 | { |
---|
502 | for (int e=0; e<3; e++) |
---|
503 | { |
---|
504 | AP_tree_edge *ed = node[n]->edge[e]; |
---|
505 | |
---|
506 | if (ed && ed!=this) |
---|
507 | { |
---|
508 | int dist = ed->distanceToBorder(maxsearch-1, node[n])+1; |
---|
509 | if (dist<maxsearch) maxsearch = dist; |
---|
510 | } |
---|
511 | } |
---|
512 | } |
---|
513 | } |
---|
514 | |
---|
515 | // cout << "dtb(" << *this << ")=" << maxsearch+1 << endl; |
---|
516 | return maxsearch; |
---|
517 | } |
---|
518 | |
---|
519 | void AP_tree_edge::countSpecies(int deep,const AP_tree_nlen *skip) |
---|
520 | { |
---|
521 | if (!skip) |
---|
522 | { |
---|
523 | speciesInTree = 0; |
---|
524 | nodesInTree = 0; |
---|
525 | } |
---|
526 | |
---|
527 | if (deep--) |
---|
528 | { |
---|
529 | for (int n=0; n<2; n++) |
---|
530 | { |
---|
531 | if (node[n]->is_leaf) |
---|
532 | { |
---|
533 | speciesInTree++; |
---|
534 | nodesInTree++; |
---|
535 | } |
---|
536 | else if (node[n]!=skip) |
---|
537 | { |
---|
538 | nodesInTree++; |
---|
539 | |
---|
540 | for (int e=0; e<3; e++) |
---|
541 | { |
---|
542 | if (node[n]->edge[e]!=this) |
---|
543 | { |
---|
544 | node[n]->edge[e]->countSpecies(deep,node[n]); |
---|
545 | } |
---|
546 | } |
---|
547 | } |
---|
548 | } |
---|
549 | } |
---|
550 | } |
---|
551 | |
---|
552 | /************************** |
---|
553 | tree optimization |
---|
554 | **************************/ |
---|
555 | void ap_init_bootstrap_remark(AP_tree_nlen *son_node){ |
---|
556 | int seq_len = son_node->sequence->root->filter->real_len; |
---|
557 | AP_sequence::static_mutation_per_site[0] = (char *)GB_calloc(sizeof(char),seq_len); |
---|
558 | AP_sequence::static_mutation_per_site[1] = (char *)GB_calloc(sizeof(char),seq_len); |
---|
559 | AP_sequence::static_mutation_per_site[2] = (char *)GB_calloc(sizeof(char),seq_len); |
---|
560 | } |
---|
561 | |
---|
562 | double fak(int n,int m){ |
---|
563 | double res = 1.0; |
---|
564 | while (n>m){ |
---|
565 | res *= n; |
---|
566 | n--; |
---|
567 | } |
---|
568 | return res; |
---|
569 | } |
---|
570 | |
---|
571 | |
---|
572 | double ap_calc_bootstrap_remark_sub(int seq_len, char *old, char *ne){ |
---|
573 | int i; |
---|
574 | int sum[3]; |
---|
575 | sum[0] = 0; |
---|
576 | sum[1] = 0; |
---|
577 | sum[2] = 0; |
---|
578 | for (i=0;i<seq_len;i++){ |
---|
579 | int diff = ne[i] - old[i]; |
---|
580 | if (diff > 1 || diff < -1){ |
---|
581 | GB_export_errorf("diff by nni at one position not in [-1,1]: %i:%i - %i",diff,old[i],ne[i]); |
---|
582 | GB_print_error(); |
---|
583 | continue; |
---|
584 | } |
---|
585 | sum[diff+1] ++; |
---|
586 | } |
---|
587 | { |
---|
588 | int msum = 0; |
---|
589 | for (i=0;i<seq_len;i++){ |
---|
590 | msum += old[i]; |
---|
591 | msum += ne[i]; |
---|
592 | } |
---|
593 | msum /= 2; |
---|
594 | } |
---|
595 | double prob = 0; |
---|
596 | { |
---|
597 | int asum = 0; |
---|
598 | for (i=0;i<3;i++) asum += sum[i]; |
---|
599 | double freq[3]; |
---|
600 | double log_freq[3]; |
---|
601 | for (i=0;i<3;i++){ |
---|
602 | freq[i] = sum[i] / double(asum); // relative frequencies of -1, 0, 1 |
---|
603 | if (sum[i] >0){ |
---|
604 | log_freq[i] = log(freq[i]); |
---|
605 | }else{ |
---|
606 | log_freq[i] = -1e100; // minus infinit |
---|
607 | } |
---|
608 | } |
---|
609 | |
---|
610 | int max = seq_len; // bootstrap can select seq_len ones maximum |
---|
611 | double log_fak_seq_len = GB_log_fak(seq_len); |
---|
612 | double log_eps = log(1e-11); |
---|
613 | |
---|
614 | //printf("********* %i %i %i max %i\n",sum[0],sum[1],sum[2],max); |
---|
615 | // loop over all delta_mutations, begin in the middle |
---|
616 | for ( int tsum_add = 1; tsum_add >= -1; tsum_add -= 2){ |
---|
617 | int tsum = sum[2]-sum[0]; |
---|
618 | if (tsum <=0) tsum = 1; |
---|
619 | for (; tsum < max && tsum > 0; tsum += tsum_add){ // sum of mutations in bootstrap sample, loop over all possibilities |
---|
620 | if (tsum_add < 0 && tsum == sum[2]-sum[0]) continue; // don't double count tsum |
---|
621 | |
---|
622 | |
---|
623 | |
---|
624 | int max_minus = max; // we need tsum + n_minus ones, we cannot have more than max_minux minus, reduce also |
---|
625 | for (int minus_add = 1; minus_add>=-1;minus_add-=2){ |
---|
626 | int first_minus = 1; |
---|
627 | for (int n_minus = sum[0]; n_minus<max_minus && n_minus>=0; first_minus = 0, n_minus+=minus_add){ |
---|
628 | if (minus_add < 0 && first_minus) continue; // dont double count center |
---|
629 | int n_zeros = seq_len - n_minus * 2 - tsum; // number of minus |
---|
630 | int n_plus = tsum + n_minus; // number of plus ones (n_ones + n_minus + n_zeros = seq_len) |
---|
631 | |
---|
632 | double log_a = |
---|
633 | n_minus * log_freq[0] + |
---|
634 | n_zeros * log_freq[1] + |
---|
635 | n_plus * log_freq[2] + |
---|
636 | log_fak_seq_len - GB_log_fak(n_minus) - GB_log_fak(n_zeros) - GB_log_fak(n_plus); |
---|
637 | |
---|
638 | if (log_a < log_eps){ |
---|
639 | if (first_minus && minus_add>0) goto end; |
---|
640 | break; // cannot go with so many minus, try next |
---|
641 | } |
---|
642 | double a = exp(log_a); |
---|
643 | //printf("\t\t%i %i %6f %e\n",tsum,n_minus,log_a,a); |
---|
644 | prob += a; |
---|
645 | } |
---|
646 | } |
---|
647 | } |
---|
648 | end:; |
---|
649 | } |
---|
650 | } |
---|
651 | //printf("&&&&&&&& result %e\n",prob); |
---|
652 | return prob; |
---|
653 | } |
---|
654 | |
---|
655 | void ap_calc_bootstrap_remark(AP_tree_nlen *son_node,AP_BL_MODE mode){ |
---|
656 | if (!son_node->is_leaf){ |
---|
657 | int seq_len = son_node->sequence->root->filter->real_len; |
---|
658 | float one = ap_calc_bootstrap_remark_sub(seq_len, |
---|
659 | &AP_sequence::static_mutation_per_site[0][0], |
---|
660 | &AP_sequence::static_mutation_per_site[1][0]); |
---|
661 | float two = ap_calc_bootstrap_remark_sub(seq_len, |
---|
662 | &AP_sequence::static_mutation_per_site[0][0], |
---|
663 | &AP_sequence::static_mutation_per_site[2][0]); |
---|
664 | if ((mode & AP_BL_BOOTSTRAP_ESTIMATE) == AP_BL_BOOTSTRAP_ESTIMATE){ |
---|
665 | one = one * two; // assume independent bootstrap values for both nnis |
---|
666 | }else{ |
---|
667 | if (two<one) one = two; // dependent bootstrap values, take minimum (safe) |
---|
668 | } |
---|
669 | const char *text = 0; |
---|
670 | if (one < 1.0){ // was: < 0.99 |
---|
671 | text = GBS_global_string("%i%%",int(100.0 * one + 0.5)); |
---|
672 | } |
---|
673 | else { |
---|
674 | text = "100%"; |
---|
675 | } |
---|
676 | freedup(son_node->remark_branch, text); |
---|
677 | freedup(son_node->Brother()->remark_branch, text); |
---|
678 | } |
---|
679 | |
---|
680 | freeset(AP_sequence::static_mutation_per_site[0], NULL); |
---|
681 | freeset(AP_sequence::static_mutation_per_site[1], NULL); |
---|
682 | freeset(AP_sequence::static_mutation_per_site[2], NULL); |
---|
683 | } |
---|
684 | |
---|
685 | |
---|
686 | void ap_calc_leaf_branch_length(AP_tree_nlen *leaf){ |
---|
687 | AP_FLOAT Seq_len = leaf->sequence->real_len(); |
---|
688 | if (Seq_len <=1.0) Seq_len = 1.0; |
---|
689 | |
---|
690 | AP_FLOAT parsbest = rootNode()->costs(); |
---|
691 | ap_main->push(); |
---|
692 | leaf->remove(); |
---|
693 | AP_FLOAT Blen = parsbest - rootNode()->costs(); |
---|
694 | ap_main->pop(); |
---|
695 | double blen = Blen/Seq_len; |
---|
696 | |
---|
697 | #if defined(DEBUG) |
---|
698 | // printf("Blen=%f name=%s\n", Blen, leaf->name); |
---|
699 | #endif // DEBUG |
---|
700 | |
---|
701 | |
---|
702 | if (!leaf->father->father){ // at root |
---|
703 | leaf->father->leftlen = blen*.5; |
---|
704 | leaf->father->rightlen = blen*.5; |
---|
705 | }else{ |
---|
706 | if (leaf->father->leftson == leaf){ |
---|
707 | leaf->father->leftlen = blen; |
---|
708 | }else{ |
---|
709 | leaf->father->rightlen = blen; |
---|
710 | } |
---|
711 | } |
---|
712 | } |
---|
713 | |
---|
714 | |
---|
715 | |
---|
716 | |
---|
717 | void ap_calc_branch_lengths(AP_tree_nlen */*root*/, AP_tree_nlen *son, double /*parsbest*/, double blen){ |
---|
718 | static double s_new = 0.0; |
---|
719 | static double s_old = 0.0; |
---|
720 | |
---|
721 | AP_FLOAT seq_len = son->sequence->real_len(); |
---|
722 | if (seq_len <=1.0) seq_len = 1.0; |
---|
723 | blen *= 0.5 / seq_len * 2.0; // doubled counted sum * corr |
---|
724 | |
---|
725 | AP_tree_nlen *fathr = son->Father(); |
---|
726 | double old_len = 0.0; |
---|
727 | if (!fathr->father){ // at root |
---|
728 | old_len = fathr->leftlen + fathr->rightlen; |
---|
729 | fathr->leftlen = blen *.5; |
---|
730 | fathr->rightlen = blen *.5; |
---|
731 | }else{ |
---|
732 | if (fathr->leftson == son){ |
---|
733 | old_len = fathr->leftlen; |
---|
734 | fathr->leftlen = blen; |
---|
735 | }else{ |
---|
736 | old_len = fathr->rightlen; |
---|
737 | fathr->rightlen = blen; |
---|
738 | } |
---|
739 | } |
---|
740 | if (old_len< 1e-5) old_len = 1e-5; |
---|
741 | s_new += blen; |
---|
742 | s_old += old_len; |
---|
743 | //printf("slen %5i Old\t%f, new\t%f, :\t%f\t%f\n",int(seq_len),old_len,blen,blen/old_len,s_new/s_old); |
---|
744 | |
---|
745 | if (son->leftson->is_leaf){ |
---|
746 | ap_calc_leaf_branch_length((AP_tree_nlen*)son->leftson); |
---|
747 | } |
---|
748 | |
---|
749 | if (son->rightson->is_leaf){ |
---|
750 | ap_calc_leaf_branch_length((AP_tree_nlen*)son->rightson); |
---|
751 | } |
---|
752 | } |
---|
753 | const double ap_undef_bl = 10.5; |
---|
754 | |
---|
755 | void ap_check_leaf_bl(AP_tree_nlen *node){ |
---|
756 | if (node->is_leaf){ |
---|
757 | if (!node->father->father){ |
---|
758 | if (node->father->leftlen + node->father->rightlen == ap_undef_bl){ |
---|
759 | ap_calc_leaf_branch_length(node); |
---|
760 | } |
---|
761 | }else if (node->father->leftson == node){ |
---|
762 | if (node->father->leftlen == ap_undef_bl){ |
---|
763 | ap_calc_leaf_branch_length(node); |
---|
764 | } |
---|
765 | }else{ |
---|
766 | if (node->father->rightlen == ap_undef_bl){ |
---|
767 | ap_calc_leaf_branch_length(node); |
---|
768 | } |
---|
769 | } |
---|
770 | return; |
---|
771 | }else{ |
---|
772 | if (node->leftlen == ap_undef_bl) ap_calc_leaf_branch_length((AP_tree_nlen *)node->leftson); |
---|
773 | if (node->rightlen== ap_undef_bl) ap_calc_leaf_branch_length((AP_tree_nlen *)node->rightson); |
---|
774 | } |
---|
775 | } |
---|
776 | |
---|
777 | AP_FLOAT AP_tree_edge::nni_rek(AP_BOOL useStatus, int &Abort, int deep, GB_BOOL skip_hidden, |
---|
778 | AP_BL_MODE mode, AP_tree_nlen *skipNode) |
---|
779 | { |
---|
780 | if (!rootNode()) return 0.0; |
---|
781 | if (rootNode()->is_leaf) return rootNode()->costs(); |
---|
782 | |
---|
783 | AP_tree_edge *oldRootEdge = rootEdge(); |
---|
784 | |
---|
785 | if (useStatus) aw_openstatus("Recursive NNI"); |
---|
786 | if (deep>=0) set_root(); |
---|
787 | |
---|
788 | AP_FLOAT old_parsimony = rootNode()->costs(); |
---|
789 | AP_FLOAT new_parsimony = old_parsimony; |
---|
790 | |
---|
791 | buildChain(deep,skip_hidden,0,skipNode); |
---|
792 | long cs = sizeofChain(); |
---|
793 | AP_tree_edge *follow; |
---|
794 | long count = 0; |
---|
795 | { // set all branch lengths to undef |
---|
796 | for (follow = this;follow; follow = follow->next){ |
---|
797 | follow->node[0]->leftlen = ap_undef_bl; |
---|
798 | follow->node[0]->rightlen = ap_undef_bl; |
---|
799 | follow->node[1]->leftlen = ap_undef_bl; |
---|
800 | follow->node[1]->rightlen = ap_undef_bl; |
---|
801 | follow->node[0]->father->leftlen = ap_undef_bl; |
---|
802 | follow->node[0]->father->rightlen = ap_undef_bl; |
---|
803 | } |
---|
804 | rootNode()->leftlen = ap_undef_bl *.5; |
---|
805 | rootNode()->rightlen = ap_undef_bl *.5; |
---|
806 | } |
---|
807 | |
---|
808 | if (useStatus) aw_status(0.0); |
---|
809 | |
---|
810 | for (follow = this; follow && Abort == 0; follow = follow->next){ |
---|
811 | AP_tree_nlen *son = follow->sonNode(); |
---|
812 | AP_tree_nlen *fath = son; |
---|
813 | |
---|
814 | if (follow->otherNode(fath)==fath->Father()) fath = fath->Father(); |
---|
815 | if (fath->father){ |
---|
816 | if (fath->father->father){ |
---|
817 | fath->set_root(); |
---|
818 | new_parsimony = rootNode()->costs(); |
---|
819 | } |
---|
820 | } |
---|
821 | if (mode & AP_BL_BOOTSTRAP_LIMIT){ |
---|
822 | if (fath->father){ |
---|
823 | son->set_root(); |
---|
824 | new_parsimony = rootNode()->costs(); |
---|
825 | } |
---|
826 | ap_init_bootstrap_remark(son); |
---|
827 | } |
---|
828 | new_parsimony = follow->nni(new_parsimony, mode); |
---|
829 | if (mode & AP_BL_BOOTSTRAP_LIMIT){ |
---|
830 | ap_calc_bootstrap_remark(son,mode); |
---|
831 | } |
---|
832 | if (useStatus ? aw_status(++count/(double)cs) : aw_status()) { Abort = 1; break; } |
---|
833 | } |
---|
834 | |
---|
835 | if (useStatus) { |
---|
836 | aw_status("Recalc modified branches"); |
---|
837 | aw_status(0.0); |
---|
838 | count = 0; |
---|
839 | } |
---|
840 | |
---|
841 | for (follow = this; follow && Abort == 0; follow = follow->next){ |
---|
842 | ap_check_leaf_bl(follow->node[0]); |
---|
843 | ap_check_leaf_bl(follow->node[1]); |
---|
844 | if (useStatus ? aw_status(++count/(double)cs) : aw_status()) { Abort = 1; break; } |
---|
845 | } |
---|
846 | oldRootEdge->set_root(); |
---|
847 | new_parsimony = rootNode()->costs(); |
---|
848 | if (useStatus) aw_closestatus(); |
---|
849 | |
---|
850 | return new_parsimony; |
---|
851 | } |
---|
852 | |
---|
853 | int AP_tree_edge::dumpNNI = 0; |
---|
854 | int AP_tree_edge::distInsertBorder; |
---|
855 | int AP_tree_edge::basesChanged; |
---|
856 | int AP_tree_edge::speciesInTree; |
---|
857 | int AP_tree_edge::nodesInTree; |
---|
858 | |
---|
859 | AP_FLOAT AP_tree_edge::nni(AP_FLOAT pars_one, AP_BL_MODE mode) |
---|
860 | { |
---|
861 | AP_tree_nlen *root = (AP_tree_nlen *) (*ap_main->tree_root); |
---|
862 | |
---|
863 | if (node[0]->is_leaf || node[1]->is_leaf) { // a son at root |
---|
864 | #if 0 |
---|
865 | // calculate branch lengths at root |
---|
866 | if (mode&AP_BL_BL_ONLY){ |
---|
867 | AP_tree_nlen *tip,*brother; |
---|
868 | |
---|
869 | if (node[0]->is_leaf){ |
---|
870 | tip = node[0]; brother = node[1]; |
---|
871 | }else{ |
---|
872 | tip = node[1]; brother = node[0]; |
---|
873 | } |
---|
874 | |
---|
875 | AP_FLOAT Blen = pars_one - brother->costs(); |
---|
876 | AP_FLOAT Seq_len = tip->sequence->real_len(); |
---|
877 | |
---|
878 | node[0]->father->leftlen = node[0]->father->rightlen = Blen/Seq_len*.5; |
---|
879 | } |
---|
880 | #endif |
---|
881 | return pars_one; |
---|
882 | } |
---|
883 | |
---|
884 | AP_tree_edge_data oldData = data; |
---|
885 | |
---|
886 | AP_FLOAT parsbest = pars_one, |
---|
887 | pars_two, |
---|
888 | pars_three; |
---|
889 | AP_tree_nlen *son = sonNode(); |
---|
890 | int betterValueFound = 0; |
---|
891 | { // ******** original tree |
---|
892 | if ( (mode & AP_BL_BOOTSTRAP_LIMIT)){ |
---|
893 | root->costs(); |
---|
894 | char *ms = AP_sequence::static_mutation_per_site[0]; |
---|
895 | AP_sequence::mutation_per_site = ms; |
---|
896 | son->unhash_sequence(); |
---|
897 | son->father->unhash_sequence(); |
---|
898 | ap_assert(!son->father->father); |
---|
899 | AP_tree_nlen *brother = son->Brother(); |
---|
900 | brother->unhash_sequence(); |
---|
901 | pars_one = 0.0; |
---|
902 | } |
---|
903 | if (pars_one==0.0) pars_one = root->costs(); |
---|
904 | } |
---|
905 | { // ********* first nni |
---|
906 | ap_main->push(); |
---|
907 | son->swap_assymetric(AP_LEFT); |
---|
908 | char *ms = AP_sequence::static_mutation_per_site[1]; |
---|
909 | AP_sequence::mutation_per_site = ms; |
---|
910 | pars_two = root->costs(); |
---|
911 | |
---|
912 | if (pars_two <= parsbest){ |
---|
913 | if ((mode & AP_BL_NNI_ONLY)==0) ap_main->pop(); |
---|
914 | else ap_main->clear(); |
---|
915 | parsbest = pars_two; |
---|
916 | betterValueFound = (int)(pars_one-pars_two); |
---|
917 | }else{ |
---|
918 | ap_main->pop(); |
---|
919 | } |
---|
920 | } |
---|
921 | { // ********** second nni |
---|
922 | ap_main->push(); |
---|
923 | son->swap_assymetric(AP_RIGHT); |
---|
924 | char *ms = AP_sequence::static_mutation_per_site[2]; |
---|
925 | AP_sequence::mutation_per_site = ms; |
---|
926 | pars_three = root->costs(); |
---|
927 | |
---|
928 | if (pars_three <= parsbest){ |
---|
929 | if ((mode & AP_BL_NNI_ONLY)==0) ap_main->pop(); |
---|
930 | else ap_main->clear(); |
---|
931 | parsbest = pars_three; |
---|
932 | betterValueFound = (int)(pars_one-pars_three); |
---|
933 | }else{ |
---|
934 | ap_main->pop(); |
---|
935 | } |
---|
936 | AP_sequence::mutation_per_site = 0; |
---|
937 | } |
---|
938 | |
---|
939 | if (mode & AP_BL_BL_ONLY){ // ************* calculate branch lengths ************** |
---|
940 | AP_FLOAT blen = (pars_one + pars_two + pars_three) - (3.0 * parsbest) ; |
---|
941 | if (blen <0) blen = 0; |
---|
942 | ap_calc_branch_lengths(root,son,parsbest, blen); |
---|
943 | } |
---|
944 | |
---|
945 | // zu Auswertungszwecken doch unsortiert uebernehmen: |
---|
946 | |
---|
947 | data.parsValue[0] = pars_one; |
---|
948 | data.parsValue[1] = pars_two; |
---|
949 | data.parsValue[2] = pars_three; |
---|
950 | |
---|
951 | |
---|
952 | if (dumpNNI) |
---|
953 | { |
---|
954 | if (dumpNNI==2) |
---|
955 | { |
---|
956 | fprintf(stderr,"Fatal! NNI called between optimize and statistics!\n"); |
---|
957 | exit(1); |
---|
958 | } |
---|
959 | AP_tree_nlen *node0 = this->node[0]; |
---|
960 | AP_tree_nlen *node1 = this->node[1]; |
---|
961 | if (node0->gr.leave_sum > node1->gr.leave_sum){ //node0 is final son |
---|
962 | node0 = node1; |
---|
963 | } |
---|
964 | static int num = 0; |
---|
965 | delete node0->remark_branch; |
---|
966 | node0->remark_branch = (char *)calloc(sizeof(char),100); |
---|
967 | sprintf(node0->remark_branch, "%i %4.0f:%4.0f:%4.0f %4.0f:%4.0f:%4.0f\n",num++, |
---|
968 | oldData.parsValue[0],oldData.parsValue[1],oldData.parsValue[2], |
---|
969 | data.parsValue[0],data.parsValue[1],data.parsValue[2]); |
---|
970 | |
---|
971 | |
---|
972 | cout |
---|
973 | << setw(4) << distInsertBorder |
---|
974 | << setw(6) << basesChanged |
---|
975 | << setw(4) << distanceToBorder() |
---|
976 | << setw(4) << data.distance |
---|
977 | << setw(4) << betterValueFound |
---|
978 | << setw(8) << oldData.parsValue[0] |
---|
979 | << setw(8) << oldData.parsValue[1] |
---|
980 | << setw(8) << oldData.parsValue[2] |
---|
981 | << setw(8) << data.parsValue[0] |
---|
982 | << setw(8) << data.parsValue[1] |
---|
983 | << setw(8) << data.parsValue[2] |
---|
984 | << '\n'; |
---|
985 | } |
---|
986 | |
---|
987 | return parsbest; |
---|
988 | } |
---|
989 | |
---|
990 | /************************** |
---|
991 | operator << |
---|
992 | **************************/ |
---|
993 | |
---|
994 | ostream& operator<<(ostream& out, const AP_tree_edge& e) |
---|
995 | { |
---|
996 | static int notTooDeep; |
---|
997 | |
---|
998 | out << ' '; |
---|
999 | |
---|
1000 | if (notTooDeep || &e==NULL) |
---|
1001 | { |
---|
1002 | out << e; |
---|
1003 | } |
---|
1004 | else |
---|
1005 | { |
---|
1006 | notTooDeep = 1; |
---|
1007 | out << "AP_tree_edge(" << e |
---|
1008 | << ", node[0]=" << *(e.node[0]) |
---|
1009 | << ", node[1]=" << *(e.node[1]) |
---|
1010 | << ")"; |
---|
1011 | notTooDeep = 0; |
---|
1012 | } |
---|
1013 | |
---|
1014 | return out << ' '; |
---|
1015 | } |
---|
1016 | |
---|
1017 | void AP_tree_edge::mixTree(int cnt) |
---|
1018 | { |
---|
1019 | buildChain(-1); |
---|
1020 | |
---|
1021 | while (cnt--) |
---|
1022 | { |
---|
1023 | AP_tree_edge *follow = this; |
---|
1024 | |
---|
1025 | while (follow) { |
---|
1026 | follow->sonNode()->swap_assymetric(GB_random(2) ? AP_LEFT : AP_RIGHT); |
---|
1027 | follow = follow->next; |
---|
1028 | } |
---|
1029 | } |
---|
1030 | } |
---|