| 1 | // =============================================================== // |
|---|
| 2 | // // |
|---|
| 3 | // File : ED4_protein_2nd_structure.cxx // |
|---|
| 4 | // Purpose : // |
|---|
| 5 | // // |
|---|
| 6 | // Institute of Microbiology (Technical University Munich) // |
|---|
| 7 | // http://www.arb-home.de/ // |
|---|
| 8 | // // |
|---|
| 9 | // =============================================================== // |
|---|
| 10 | |
|---|
| 11 | |
|---|
| 12 | /*! \file ED4_protein_2nd_structure.cxx |
|---|
| 13 | * \brief Implements the functions defined in ed4_protein_2nd_structure.hxx. |
|---|
| 14 | * \author Markus Urban |
|---|
| 15 | * \date 2008-02-08 |
|---|
| 16 | * \sa Refer to ed4_protein_2nd_structure.hxx for details, please. |
|---|
| 17 | */ |
|---|
| 18 | |
|---|
| 19 | #include "ed4_protein_2nd_structure.hxx" |
|---|
| 20 | #include "ed4_class.hxx" |
|---|
| 21 | #include "ed4_awars.hxx" |
|---|
| 22 | |
|---|
| 23 | #include <aw_awar.hxx> |
|---|
| 24 | #include <aw_msg.hxx> |
|---|
| 25 | #include <aw_root.hxx> |
|---|
| 26 | #include "arbdbt.h" |
|---|
| 27 | |
|---|
| 28 | #include <iostream> |
|---|
| 29 | |
|---|
| 30 | #define e4_assert(bed) arb_assert(bed) |
|---|
| 31 | |
|---|
| 32 | using namespace std; |
|---|
| 33 | |
|---|
| 34 | // -------------------------------------------------------------------------------- |
|---|
| 35 | // exported data |
|---|
| 36 | |
|---|
| 37 | //! Awars for the match type; binds the #PFOLD_MATCH_TYPE to the corresponding awar name. |
|---|
| 38 | name_value_pair pfold_match_type_awars[] = { |
|---|
| 39 | { "Perfect_match", STRUCT_PERFECT_MATCH }, |
|---|
| 40 | { "Good_match", STRUCT_GOOD_MATCH }, |
|---|
| 41 | { "Medium_match", STRUCT_MEDIUM_MATCH }, |
|---|
| 42 | { "Bad_match", STRUCT_BAD_MATCH }, |
|---|
| 43 | { "No_match", STRUCT_NO_MATCH }, |
|---|
| 44 | { "Unknown_match", STRUCT_UNKNOWN }, |
|---|
| 45 | { 0, PFOLD_MATCH_TYPE_COUNT } |
|---|
| 46 | }; |
|---|
| 47 | |
|---|
| 48 | //! Symbols for the match quality (defined by #PFOLD_MATCH_TYPE) as used for match methods #SECSTRUCT_SECSTRUCT and #SECSTRUCT_SEQUENCE_PREDICT in ED4_pfold_calculate_secstruct_match(). |
|---|
| 49 | char *pfold_pair_chars[PFOLD_PAIRS] = { |
|---|
| 50 | strdup(" "), // STRUCT_PERFECT_MATCH |
|---|
| 51 | strdup("-"), // STRUCT_GOOD_MATCH |
|---|
| 52 | strdup("~"), // STRUCT_MEDIUM_MATCH |
|---|
| 53 | strdup("+"), // STRUCT_BAD_MATCH |
|---|
| 54 | strdup("#"), // STRUCT_NO_MATCH |
|---|
| 55 | strdup("?") // STRUCT_UNKNOWN |
|---|
| 56 | }; |
|---|
| 57 | |
|---|
| 58 | //! Match pair definition (see #PFOLD_MATCH_TYPE) as used for match methods #SECSTRUCT_SECSTRUCT and #SECSTRUCT_SEQUENCE_PREDICT in ED4_pfold_calculate_secstruct_match(). |
|---|
| 59 | char *pfold_pairs[PFOLD_PAIRS] = { |
|---|
| 60 | strdup("HH GG II TT EE BB SS -- -. .."), // STRUCT_PERFECT_MATCH |
|---|
| 61 | strdup("HG HI HS EB ES TS H- G- I- T- E- B- S-"), // STRUCT_GOOD_MATCH |
|---|
| 62 | strdup("HT GT IT"), // STRUCT_MEDIUM_MATCH |
|---|
| 63 | strdup("ET BT"), // STRUCT_BAD_MATCH |
|---|
| 64 | strdup("EH BH EG EI"), // STRUCT_NO_MATCH |
|---|
| 65 | strdup("") // STRUCT_UNKNOWN |
|---|
| 66 | }; |
|---|
| 67 | |
|---|
| 68 | static struct pfold_mem_handler { |
|---|
| 69 | ~pfold_mem_handler() { |
|---|
| 70 | for (int i = 0; i<PFOLD_PAIRS; ++i) { |
|---|
| 71 | freenull(pfold_pairs[i]); |
|---|
| 72 | freenull(pfold_pair_chars[i]); |
|---|
| 73 | } |
|---|
| 74 | } |
|---|
| 75 | } pfold_dealloc; |
|---|
| 76 | |
|---|
| 77 | // -------------------------------------------------------------------------------- |
|---|
| 78 | |
|---|
| 79 | /*! \brief Specifies the characters used for amino acid one letter code. |
|---|
| 80 | * |
|---|
| 81 | * These are the characters that represent amino acids in one letter code. |
|---|
| 82 | * The order is important as the array initializes #char2AA which is used to |
|---|
| 83 | * access array elements in the tables #cf_parameters and #cf_parameters_norm. |
|---|
| 84 | */ |
|---|
| 85 | static const char *amino_acids = "ARDNCEQGHILKMFPSTWYV"; |
|---|
| 86 | |
|---|
| 87 | /*! \brief Maps character to amino acid one letter code. |
|---|
| 88 | * |
|---|
| 89 | * This array maps a character to an integer value. It is initialized with the |
|---|
| 90 | * function ED4_pfold_init_statics() which creates an array of the size 256 |
|---|
| 91 | * (for ISO/IEC 8859-1 character encoding). Characters that represent an amino |
|---|
| 92 | * acid get values from 0 to 19 (according to their position in #amino_acids) |
|---|
| 93 | * and all others get the value -1. That way, it can be used to get parameters |
|---|
| 94 | * from the tables #cf_parameters and #cf_parameters_norm or to check if a |
|---|
| 95 | * certain character represents an amino acid. |
|---|
| 96 | */ |
|---|
| 97 | static int *char2AA = 0; |
|---|
| 98 | |
|---|
| 99 | /*! \brief Characters representing protein secondary structure. |
|---|
| 100 | * |
|---|
| 101 | * Defines the characters representing secondary structure as output by the |
|---|
| 102 | * function ED4_pfold_predict_structure(). According to common standards, |
|---|
| 103 | * these are: <BR> |
|---|
| 104 | * H = alpha-helix, <BR> |
|---|
| 105 | * E = beta-sheet, <BR> |
|---|
| 106 | * T = beta-turn. |
|---|
| 107 | */ |
|---|
| 108 | static char structure_chars[3] = { 'H', 'E', 'T' }; |
|---|
| 109 | |
|---|
| 110 | //! Amino acids that break a certain structure (#ALPHA_HELIX or #BETA_SHEET) as used in ED4_pfold_extend_nucleation_sites(). |
|---|
| 111 | static const char *structure_breaker[2] = { |
|---|
| 112 | "NYPG", |
|---|
| 113 | "PDESGK" |
|---|
| 114 | }; |
|---|
| 115 | |
|---|
| 116 | //! Amino acids that are indifferent for a certain structure (#ALPHA_HELIX or #BETA_SHEET) as used in ED4_pfold_extend_nucleation_sites(). |
|---|
| 117 | static const char *structure_indifferent[2] = { |
|---|
| 118 | "RTSC", |
|---|
| 119 | "RNHA" |
|---|
| 120 | }; |
|---|
| 121 | |
|---|
| 122 | //! Awars for the match method; binds the #PFOLD_MATCH_METHOD to the corresponding name that is used to create the menu in ED4_pfold_create_props_window(). |
|---|
| 123 | static name_value_pair pfold_match_method_awars[4] = { |
|---|
| 124 | { "Secondary Structure <-> Secondary Structure", SECSTRUCT_SECSTRUCT }, |
|---|
| 125 | { "Secondary Structure <-> Sequence", SECSTRUCT_SEQUENCE }, |
|---|
| 126 | { "Secondary Structure <-> Sequence (Full Prediction)", SECSTRUCT_SEQUENCE_PREDICT }, |
|---|
| 127 | { 0, PFOLD_MATCH_METHOD_COUNT } |
|---|
| 128 | }; |
|---|
| 129 | |
|---|
| 130 | static double max_former_value[3] = { 1.42, 1.62, 156 }; //!< Maximum former value for alpha-helix, beta-sheet (in #cf_parameters) and beta-turn (in #cf_parameters_norm). |
|---|
| 131 | static double min_former_value[3] = { 0.0, 0.0, 47 }; //!< Minimum former value for alpha-helix, beta-sheet (in #cf_parameters) and beta-turn (in #cf_parameters_norm). |
|---|
| 132 | static double max_breaker_value[3] = { 1.21, 2.03, 0.0 }; //!< Maximum breaker value for alpha-helix, beta-sheet (in #cf_parameters) and beta-turn (no breaker values => 0). |
|---|
| 133 | |
|---|
| 134 | // -------------------------------------------------------------------------------- |
|---|
| 135 | |
|---|
| 136 | // TODO: is there a way to prevent doxygen from stripping the comments from the table? |
|---|
| 137 | // I simply added the parameter table as verbatim environment to show the comments in |
|---|
| 138 | // the documentation. |
|---|
| 139 | /*! \brief Former and breaker values for alpha-helices and beta-sheets (= strands). |
|---|
| 140 | * |
|---|
| 141 | * \hideinitializer |
|---|
| 142 | * \par Initial value: |
|---|
| 143 | * \verbatim |
|---|
| 144 | { |
|---|
| 145 | // Helix Former Strand Former Helix Breaker Strand Breaker Amino |
|---|
| 146 | // Value Value Value Value Acid |
|---|
| 147 | // ----------------------------------------------------------------------- |
|---|
| 148 | { 1.34, 0.00, 0.00, 0.00 }, // A |
|---|
| 149 | { 0.00, 0.00, 0.00, 0.00 }, // R |
|---|
| 150 | { 0.50, 0.00, 0.00, 1.39 }, // D |
|---|
| 151 | { 0.00, 0.00, 1.03, 0.00 }, // N |
|---|
| 152 | { 0.00, 1.13, 0.00, 0.00 }, // C |
|---|
| 153 | { 1.42, 0.00, 0.00, 2.03 }, // E |
|---|
| 154 | { 1.05, 1.05, 0.00, 0.00 }, // Q |
|---|
| 155 | { 0.00, 0.00, 1.21, 1.00 }, // G |
|---|
| 156 | { 0.50, 0.00, 0.00, 0.00 }, // H |
|---|
| 157 | { 1.02, 1.52, 0.00, 0.00 }, // I |
|---|
| 158 | { 1.14, 1.24, 0.00, 0.00 }, // L |
|---|
| 159 | { 1.09, 0.00, 0.00, 1.01 }, // K |
|---|
| 160 | { 1.37, 1.00, 0.00, 0.00 }, // M |
|---|
| 161 | { 1.07, 1.31, 0.00, 0.00 }, // F |
|---|
| 162 | { 0.00, 0.00, 1.21, 1.36 }, // P |
|---|
| 163 | { 0.00, 0.00, 0.00, 1.00 }, // S |
|---|
| 164 | { 0.00, 1.13, 0.00, 0.00 }, // T |
|---|
| 165 | { 1.02, 1.30, 0.00, 0.00 }, // W |
|---|
| 166 | { 0.00, 1.40, 1.00, 0.00 }, // Y |
|---|
| 167 | { 1.00, 1.62, 0.00, 0.00 }}; // V |
|---|
| 168 | \endverbatim |
|---|
| 169 | * |
|---|
| 170 | * The former and breaker values are used to find alpha-helix and beta-sheet |
|---|
| 171 | * nucleation sites in ED4_pfold_find_nucleation_sites() and to resolve overlaps |
|---|
| 172 | * in ED4_pfold_resolve_overlaps(). Addressing the array with the enums |
|---|
| 173 | * #ALPHA_HELIX or #BETA_SHEET as second index gives the former values and |
|---|
| 174 | * addressing it with #ALPHA_HELIX+2 or #BETA_SHEET+2 gives the breaker values. |
|---|
| 175 | * The first index is for the amino acid. Use #char2AA to convert an amino acid |
|---|
| 176 | * character to the corresponding index. |
|---|
| 177 | * |
|---|
| 178 | * \sa Refer to the definition in the source code for commented table. |
|---|
| 179 | */ |
|---|
| 180 | static double cf_parameters[20][4] = { |
|---|
| 181 | /* Helix Former Strand Former Helix Breaker Strand Breaker Amino |
|---|
| 182 | Value Value Value Value Acid |
|---|
| 183 | ----------------------------------------------------------------------- */ |
|---|
| 184 | { 1.34, 0.00, 0.00, 0.00 }, // A |
|---|
| 185 | { 0.00, 0.00, 0.00, 0.00 }, // R |
|---|
| 186 | { 0.50, 0.00, 0.00, 1.39 }, // D |
|---|
| 187 | { 0.00, 0.00, 1.03, 0.00 }, // N |
|---|
| 188 | { 0.00, 1.13, 0.00, 0.00 }, // C |
|---|
| 189 | { 1.42, 0.00, 0.00, 2.03 }, // E |
|---|
| 190 | { 1.05, 1.05, 0.00, 0.00 }, // Q |
|---|
| 191 | { 0.00, 0.00, 1.21, 1.00 }, // G |
|---|
| 192 | { 0.50, 0.00, 0.00, 0.00 }, // H |
|---|
| 193 | { 1.02, 1.52, 0.00, 0.00 }, // I |
|---|
| 194 | { 1.14, 1.24, 0.00, 0.00 }, // L |
|---|
| 195 | { 1.09, 0.00, 0.00, 1.01 }, // K |
|---|
| 196 | { 1.37, 1.00, 0.00, 0.00 }, // M |
|---|
| 197 | { 1.07, 1.31, 0.00, 0.00 }, // F |
|---|
| 198 | { 0.00, 0.00, 1.21, 1.36 }, // P |
|---|
| 199 | { 0.00, 0.00, 0.00, 1.00 }, // S |
|---|
| 200 | { 0.00, 1.13, 0.00, 0.00 }, // T |
|---|
| 201 | { 1.02, 1.30, 0.00, 0.00 }, // W |
|---|
| 202 | { 0.00, 1.40, 1.00, 0.00 }, // Y |
|---|
| 203 | { 1.00, 1.62, 0.00, 0.00 } }; // V |
|---|
| 204 | |
|---|
| 205 | /*! \brief Normalized former values for alpha-helices, beta-sheets (= strands) |
|---|
| 206 | * and beta-turns as well as beta-turn probabilities. |
|---|
| 207 | * |
|---|
| 208 | * \hideinitializer |
|---|
| 209 | * \par Initial value: |
|---|
| 210 | * \verbatim |
|---|
| 211 | { |
|---|
| 212 | // P(a) P(b) P(turn) f(i) f(i+1) f(i+2) f(i+3) Amino Acid |
|---|
| 213 | // -------------------------------------------------------------------- |
|---|
| 214 | { 142, 83, 66, 0.060, 0.076, 0.035, 0.058 }, // A |
|---|
| 215 | { 98, 93, 95, 0.070, 0.106, 0.099, 0.085 }, // R |
|---|
| 216 | { 101, 54, 146, 0.147, 0.110, 0.179, 0.081 }, // D |
|---|
| 217 | { 67, 89, 156, 0.161, 0.083, 0.191, 0.091 }, // N |
|---|
| 218 | { 70, 119, 119, 0.149, 0.050, 0.117, 0.128 }, // C |
|---|
| 219 | { 151, 37, 74, 0.056, 0.060, 0.077, 0.064 }, // E |
|---|
| 220 | { 111, 110, 98, 0.074, 0.098, 0.037, 0.098 }, // Q |
|---|
| 221 | { 57, 75, 156, 0.102, 0.085, 0.190, 0.152 }, // G |
|---|
| 222 | { 100, 87, 95, 0.140, 0.047, 0.093, 0.054 }, // H |
|---|
| 223 | { 108, 160, 47, 0.043, 0.034, 0.013, 0.056 }, // I |
|---|
| 224 | { 121, 130, 59, 0.061, 0.025, 0.036, 0.070 }, // L |
|---|
| 225 | { 116, 74, 101, 0.055, 0.115, 0.072, 0.095 }, // K |
|---|
| 226 | { 145, 105, 60, 0.068, 0.082, 0.014, 0.055 }, // M |
|---|
| 227 | { 113, 138, 60, 0.059, 0.041, 0.065, 0.065 }, // F |
|---|
| 228 | { 57, 55, 152, 0.102, 0.301, 0.034, 0.068 }, // P |
|---|
| 229 | { 77, 75, 143, 0.120, 0.139, 0.125, 0.106 }, // S |
|---|
| 230 | { 83, 119, 96, 0.086, 0.108, 0.065, 0.079 }, // T |
|---|
| 231 | { 108, 137, 96, 0.077, 0.013, 0.064, 0.167 }, // W |
|---|
| 232 | { 69, 147, 114, 0.082, 0.065, 0.114, 0.125 }, // Y |
|---|
| 233 | { 106, 170, 50, 0.062, 0.048, 0.028, 0.053 }}; // V |
|---|
| 234 | \endverbatim |
|---|
| 235 | * |
|---|
| 236 | * The normalized former values are used to find beta-turns in an amino acid |
|---|
| 237 | * sequence in ED4_pfold_find_turns(). Addressing the array with the enums |
|---|
| 238 | * #ALPHA_HELIX, #BETA_SHEET or #BETA_TURN as second index gives the former |
|---|
| 239 | * values and addressing it with #BETA_TURN+i \f$(1 <= i <= 4)\f$ gives the |
|---|
| 240 | * turn probabilities. The first index is for the amino acid. Use #char2AA to |
|---|
| 241 | * convert an amino acid character to the corresponding index. |
|---|
| 242 | * |
|---|
| 243 | * \sa Refer to the definition in the source code for commented table. |
|---|
| 244 | */ |
|---|
| 245 | static double cf_parameters_norm[20][7] = { |
|---|
| 246 | /* P(a) P(b) P(turn) f(i) f(i+1) f(i+2) f(i+3) Amino Acid |
|---|
| 247 | -------------------------------------------------------------------- */ |
|---|
| 248 | { 142, 83, 66, 0.060, 0.076, 0.035, 0.058 }, // A |
|---|
| 249 | { 98, 93, 95, 0.070, 0.106, 0.099, 0.085 }, // R |
|---|
| 250 | { 101, 54, 146, 0.147, 0.110, 0.179, 0.081 }, // D |
|---|
| 251 | { 67, 89, 156, 0.161, 0.083, 0.191, 0.091 }, // N |
|---|
| 252 | { 70, 119, 119, 0.149, 0.050, 0.117, 0.128 }, // C |
|---|
| 253 | { 151, 37, 74, 0.056, 0.060, 0.077, 0.064 }, // E |
|---|
| 254 | { 111, 110, 98, 0.074, 0.098, 0.037, 0.098 }, // Q |
|---|
| 255 | { 57, 75, 156, 0.102, 0.085, 0.190, 0.152 }, // G |
|---|
| 256 | { 100, 87, 95, 0.140, 0.047, 0.093, 0.054 }, // H |
|---|
| 257 | { 108, 160, 47, 0.043, 0.034, 0.013, 0.056 }, // I |
|---|
| 258 | { 121, 130, 59, 0.061, 0.025, 0.036, 0.070 }, // L |
|---|
| 259 | { 116, 74, 101, 0.055, 0.115, 0.072, 0.095 }, // K |
|---|
| 260 | { 145, 105, 60, 0.068, 0.082, 0.014, 0.055 }, // M |
|---|
| 261 | { 113, 138, 60, 0.059, 0.041, 0.065, 0.065 }, // F |
|---|
| 262 | { 57, 55, 152, 0.102, 0.301, 0.034, 0.068 }, // P |
|---|
| 263 | { 77, 75, 143, 0.120, 0.139, 0.125, 0.106 }, // S |
|---|
| 264 | { 83, 119, 96, 0.086, 0.108, 0.065, 0.079 }, // T |
|---|
| 265 | { 108, 137, 96, 0.077, 0.013, 0.064, 0.167 }, // W |
|---|
| 266 | { 69, 147, 114, 0.082, 0.065, 0.114, 0.125 }, // Y |
|---|
| 267 | { 106, 170, 50, 0.062, 0.048, 0.028, 0.053 } }; // V |
|---|
| 268 | |
|---|
| 269 | // -------------------------------------------------------------------------------- |
|---|
| 270 | |
|---|
| 271 | /*! \brief Symmetric arithmetic rounding of a double value to an integer value. |
|---|
| 272 | * |
|---|
| 273 | * \param[in] d Value to be rounded |
|---|
| 274 | * \return Rounded value |
|---|
| 275 | * |
|---|
| 276 | * Rounds a double value to an integer value using symmetric arithmetic rounding, |
|---|
| 277 | * i.e. a number \f$x.y\f$ is rounded to \f$x\f$ if \f$y < 5\f$ and to \f$x+1\f$ |
|---|
| 278 | * otherwise. |
|---|
| 279 | */ |
|---|
| 280 | inline int ED4_pfold_round_sym(double d) { |
|---|
| 281 | return int(d + .5); |
|---|
| 282 | } |
|---|
| 283 | |
|---|
| 284 | |
|---|
| 285 | /*! \brief Initializes static variables. |
|---|
| 286 | * |
|---|
| 287 | * So far, this function only concerns #char2AA which gets initialized here. |
|---|
| 288 | * See #char2AA for details on the values. It is called by |
|---|
| 289 | * ED4_pfold_predict_structure() and ED4_pfold_calculate_secstruct_match(). |
|---|
| 290 | * |
|---|
| 291 | * \attention If any other prediction function is used alone before calling one |
|---|
| 292 | * of the mentioned functions, this function has to be called first. |
|---|
| 293 | */ |
|---|
| 294 | static void ED4_pfold_init_statics() { |
|---|
| 295 | // specify the characters used for amino acid one letter code |
|---|
| 296 | if (!char2AA) { |
|---|
| 297 | char2AA = new int [256]; |
|---|
| 298 | for (int i = 0; i < 256; i++) { |
|---|
| 299 | char2AA[i] = -1; |
|---|
| 300 | } |
|---|
| 301 | for (int i = 0; amino_acids[i]; i++) { |
|---|
| 302 | char2AA[(unsigned char)amino_acids[i]] = i; |
|---|
| 303 | } |
|---|
| 304 | } |
|---|
| 305 | } |
|---|
| 306 | |
|---|
| 307 | |
|---|
| 308 | /*! \brief Finds nucleation sites that initiate the specified structure. |
|---|
| 309 | * |
|---|
| 310 | * \param[in] sequence Amino acid sequence |
|---|
| 311 | * \param[out] structure Predicted secondary structure |
|---|
| 312 | * \param[in] length Size of \a sequence and \a structure |
|---|
| 313 | * \param[in] s Secondary structure type (either #ALPHA_HELIX or #BETA_SHEET) |
|---|
| 314 | * |
|---|
| 315 | * This function finds nucleation sites that initiate the specified structure |
|---|
| 316 | * (alpha-helix or beta-sheet). A window of a fixed size is moved over the |
|---|
| 317 | * sequence and former and breaker values (as defined by #cf_parameters) for |
|---|
| 318 | * the amino acids in the window are summed up. If the former values in this |
|---|
| 319 | * region reach a certain value and the breaker values do not exceed a certain |
|---|
| 320 | * limit a nucleation site is formed, i.e. the region is assumed to be the |
|---|
| 321 | * corresponding secondary structure. The result is stored in \a structure. |
|---|
| 322 | */ |
|---|
| 323 | static void ED4_pfold_find_nucleation_sites(const unsigned char *sequence, char *structure, int length, const PFOLD_STRUCTURE s) { |
|---|
| 324 | #ifdef SHOW_PROGRESS |
|---|
| 325 | cout << endl << "Searching for nucleation sites:" << endl; |
|---|
| 326 | #endif |
|---|
| 327 | e4_assert(s == ALPHA_HELIX || s == BETA_SHEET); // incorrect value for s |
|---|
| 328 | e4_assert(char2AA); // char2AA not initialized; ED4_pfold_init_statics() failed or hasn't been called yet |
|---|
| 329 | |
|---|
| 330 | char *gap_chars = ED4_ROOT->aw_root->awar(ED4_AWAR_GAP_CHARS)->read_string(); // gap characters |
|---|
| 331 | int windowSize = (s == ALPHA_HELIX ? 6 : 5); // window size used for finding nucleation sites |
|---|
| 332 | double sumOfFormVal = 0, sumOfBreakVal = 0; // sum of former resp. breaker values in window |
|---|
| 333 | int pos; // current position in sequence |
|---|
| 334 | int count; // number of amino acids found in window |
|---|
| 335 | |
|---|
| 336 | for (int i = 0; i < ((length + 1) - windowSize); i++) { |
|---|
| 337 | int aa = 0; // amino acid |
|---|
| 338 | |
|---|
| 339 | pos = i; |
|---|
| 340 | for (count = 0; count < windowSize; count++) { |
|---|
| 341 | // skip gaps |
|---|
| 342 | while (pos < ((length + 1) - windowSize) && |
|---|
| 343 | strchr(gap_chars, sequence[pos + count])) { |
|---|
| 344 | pos++; |
|---|
| 345 | } |
|---|
| 346 | aa = char2AA[sequence[pos + count]]; |
|---|
| 347 | if (aa == -1) break; // unknown character found |
|---|
| 348 | |
|---|
| 349 | // compute former and breaker values |
|---|
| 350 | sumOfFormVal += cf_parameters[aa][s]; |
|---|
| 351 | sumOfBreakVal += cf_parameters[aa][s+2]; |
|---|
| 352 | } |
|---|
| 353 | |
|---|
| 354 | // assign sequence and save start and end of nucleation site for later extension |
|---|
| 355 | if ((sumOfFormVal > (windowSize - 2)) && (sumOfBreakVal < 2)) { |
|---|
| 356 | for (int j = i; j < (pos + count); j++) { |
|---|
| 357 | if (char2AA[sequence[j]] != -1) structure[j] = structure_chars[s]; |
|---|
| 358 | } |
|---|
| 359 | } |
|---|
| 360 | if (aa == -1) i = pos + count; // skip unknown character |
|---|
| 361 | sumOfFormVal = 0, sumOfBreakVal = 0; |
|---|
| 362 | } |
|---|
| 363 | |
|---|
| 364 | free(gap_chars); |
|---|
| 365 | #ifdef SHOW_PROGRESS |
|---|
| 366 | cout << structure << endl; |
|---|
| 367 | #endif |
|---|
| 368 | } |
|---|
| 369 | |
|---|
| 370 | |
|---|
| 371 | /*! \brief Extends the found nucleation sites in both directions. |
|---|
| 372 | * |
|---|
| 373 | * \param[in] sequence Amino acid sequence |
|---|
| 374 | * \param[out] structure Predicted secondary structure |
|---|
| 375 | * \param[in] length Size of \a sequence and \a structure |
|---|
| 376 | * \param[in] s Secondary structure type (either #ALPHA_HELIX or #BETA_SHEET) |
|---|
| 377 | * |
|---|
| 378 | * The function extends the nucleation sites found by ED4_pfold_find_nucleation_sites() |
|---|
| 379 | * in both directions. Extension continues until a certain amino acid constellation |
|---|
| 380 | * is found. The amino acid 'P' breaks an alpha-helix and 'P' as well as 'E' break |
|---|
| 381 | * a beta-sheet. Also, two successive breakers or one breaker followed by an |
|---|
| 382 | * indifferent amino acid (as defined by #structure_breaker and #structure_indifferent) |
|---|
| 383 | * break the structure. The result is stored in \a structure. |
|---|
| 384 | */ |
|---|
| 385 | static void ED4_pfold_extend_nucleation_sites(const unsigned char *sequence, char *structure, int length, const PFOLD_STRUCTURE s) { |
|---|
| 386 | #ifdef SHOW_PROGRESS |
|---|
| 387 | cout << endl << "Extending nucleation sites:" << endl; |
|---|
| 388 | #endif |
|---|
| 389 | e4_assert(s == ALPHA_HELIX || s == BETA_SHEET); // incorrect value for s |
|---|
| 390 | e4_assert(char2AA); // char2AA not initialized; ED4_pfold_init_statics() failed or hasn't been called yet |
|---|
| 391 | |
|---|
| 392 | bool break_structure = false; // break the current structure |
|---|
| 393 | int start = 0, end = 0; // start and end of nucleation site |
|---|
| 394 | int neighbour = 0; // neighbour of start or end |
|---|
| 395 | |
|---|
| 396 | char *gap_chars = ED4_ROOT->aw_root->awar(ED4_AWAR_GAP_CHARS)->read_string(); // gap characters |
|---|
| 397 | |
|---|
| 398 | // find nucleation sites and extend them in both directions (for whole sequence) |
|---|
| 399 | for (int indStruct = 0; indStruct < length; indStruct++) { |
|---|
| 400 | |
|---|
| 401 | // search start and end of nucleated region |
|---|
| 402 | while (indStruct < length && |
|---|
| 403 | ((structure[indStruct] == ' ') || strchr(gap_chars, sequence[indStruct])) |
|---|
| 404 | ) indStruct++; |
|---|
| 405 | |
|---|
| 406 | if (indStruct >= length) break; |
|---|
| 407 | // get next amino acid that is not included in nucleation site |
|---|
| 408 | start = indStruct - 1; |
|---|
| 409 | while (indStruct < length && |
|---|
| 410 | (structure[indStruct] != ' ' || strchr(gap_chars, sequence[indStruct]))) { |
|---|
| 411 | indStruct++; |
|---|
| 412 | } |
|---|
| 413 | // get next amino acid that is not included in nucleation site |
|---|
| 414 | end = indStruct; |
|---|
| 415 | |
|---|
| 416 | // extend nucleated region in both directions |
|---|
| 417 | // left side: |
|---|
| 418 | while (start > 1 && strchr(gap_chars, sequence[start])) { |
|---|
| 419 | start--; // skip gaps |
|---|
| 420 | } |
|---|
| 421 | // break if no amino acid is found |
|---|
| 422 | if (start >= 0) break_structure = (char2AA[sequence[start]] == -1); |
|---|
| 423 | while (!break_structure && (start > 1) && (structure[start] == ' ')) { |
|---|
| 424 | // break if absolute breaker (P or E) is found |
|---|
| 425 | break_structure = (sequence[start] == 'P'); |
|---|
| 426 | if (s == BETA_SHEET) break_structure |= (sequence[start] == 'E'); |
|---|
| 427 | if (break_structure) break; |
|---|
| 428 | // check for breaker at current position |
|---|
| 429 | break_structure = (strchr(structure_breaker[s], sequence[start]) != 0); |
|---|
| 430 | neighbour = start - 1; // get neighbour |
|---|
| 431 | while (neighbour > 0 && strchr(gap_chars, sequence[neighbour])) { |
|---|
| 432 | neighbour--; // skip gaps |
|---|
| 433 | } |
|---|
| 434 | // break if out of bounds or no amino acid is found |
|---|
| 435 | if (neighbour <= 0 || char2AA[sequence[neighbour]] == -1) { |
|---|
| 436 | break; |
|---|
| 437 | } |
|---|
| 438 | // break if another breaker or indifferent amino acid is found |
|---|
| 439 | break_structure &= |
|---|
| 440 | (strchr(structure_breaker[s], sequence[neighbour]) != 0) || |
|---|
| 441 | (strchr(structure_indifferent[s], sequence[neighbour]) != 0); |
|---|
| 442 | if (!break_structure) { |
|---|
| 443 | structure[start] = structure_chars[s]; |
|---|
| 444 | } |
|---|
| 445 | start = neighbour; // continue with neighbour |
|---|
| 446 | } |
|---|
| 447 | |
|---|
| 448 | // right side: |
|---|
| 449 | while (end < (length - 2) && strchr(gap_chars, sequence[end])) { |
|---|
| 450 | end++; // skip gaps |
|---|
| 451 | } |
|---|
| 452 | // break if no amino acid is found |
|---|
| 453 | if (end <= (length - 1)) break_structure = (char2AA[sequence[end]] == -1); |
|---|
| 454 | while (!break_structure && (end < (length - 2))) { |
|---|
| 455 | // break if absolute breaker (P or E) is found |
|---|
| 456 | break_structure = (sequence[end] == 'P'); |
|---|
| 457 | if (s == BETA_SHEET) break_structure |= (sequence[end] == 'E'); |
|---|
| 458 | if (break_structure) break; |
|---|
| 459 | // check for breaker at current position |
|---|
| 460 | break_structure = (strchr(structure_breaker[s], sequence[end]) != 0); |
|---|
| 461 | neighbour = end + 1; // get neighbour |
|---|
| 462 | while (neighbour < (length - 2) && strchr(gap_chars, sequence[neighbour])) { |
|---|
| 463 | neighbour++; // skip gaps |
|---|
| 464 | } |
|---|
| 465 | // break if out of bounds or no amino acid is found |
|---|
| 466 | if (neighbour >= (length - 1) || char2AA[sequence[neighbour]] == -1) { |
|---|
| 467 | end = neighbour; |
|---|
| 468 | break; |
|---|
| 469 | } |
|---|
| 470 | // break if another breaker or indifferent amino acid is found |
|---|
| 471 | break_structure &= |
|---|
| 472 | (strchr(structure_breaker[s], sequence[neighbour]) != 0) || |
|---|
| 473 | (strchr(structure_indifferent[s], sequence[neighbour]) != 0); |
|---|
| 474 | if (!break_structure) { |
|---|
| 475 | structure[end] = structure_chars[s]; |
|---|
| 476 | } |
|---|
| 477 | end = neighbour; // continue with neighbour |
|---|
| 478 | } |
|---|
| 479 | indStruct = end; // continue with end |
|---|
| 480 | } |
|---|
| 481 | |
|---|
| 482 | free(gap_chars); |
|---|
| 483 | #ifdef SHOW_PROGRESS |
|---|
| 484 | cout << structure << endl; |
|---|
| 485 | #endif |
|---|
| 486 | } |
|---|
| 487 | |
|---|
| 488 | |
|---|
| 489 | /*! \brief Predicts beta-turns from the given amino acid sequence |
|---|
| 490 | * |
|---|
| 491 | * \param[in] sequence Amino acid sequence |
|---|
| 492 | * \param[out] structure Predicted secondary structure |
|---|
| 493 | * \param[in] length Size of \a sequence and \a structure |
|---|
| 494 | * |
|---|
| 495 | * A window of a fixed size is moved over the sequence and former values for |
|---|
| 496 | * alpha-helices, beta-sheets and beta-turns are summed up. In addition, |
|---|
| 497 | * beta-turn probabilities are multiplied. The values are specified in |
|---|
| 498 | * #cf_parameters_norm. If the former values for beta-turn are greater than |
|---|
| 499 | * the ones for alpha-helix and beta-sheet and the turn probabilities |
|---|
| 500 | * exceed a certain limit the region is assumed to be a beta-turn. The result |
|---|
| 501 | * is stored in \a structure. |
|---|
| 502 | */ |
|---|
| 503 | static void ED4_pfold_find_turns(const unsigned char *sequence, char *structure, int length) { |
|---|
| 504 | #ifdef SHOW_PROGRESS |
|---|
| 505 | cout << endl << "Searching for beta-turns: " << endl; |
|---|
| 506 | #endif |
|---|
| 507 | e4_assert(char2AA); // char2AA not initialized; ED4_pfold_init_statics() failed or hasn't been called yet |
|---|
| 508 | |
|---|
| 509 | char *gap_chars = ED4_ROOT->aw_root->awar(ED4_AWAR_GAP_CHARS)->read_string(); // gap characters |
|---|
| 510 | const int windowSize = 4; // window size |
|---|
| 511 | double P_a = 0, P_b = 0, P_turn = 0; // former values for helix, sheet and beta-turn |
|---|
| 512 | double p_t = 1; // probability for beta-turn |
|---|
| 513 | int pos; // position in sequence |
|---|
| 514 | int count; // position in window |
|---|
| 515 | int aa; // amino acid |
|---|
| 516 | |
|---|
| 517 | for (int i = 0; i < ((length + 1) - windowSize); i++) { |
|---|
| 518 | pos = i; |
|---|
| 519 | for (count = 0; count < windowSize; count++) { |
|---|
| 520 | // skip gaps |
|---|
| 521 | while (pos < ((length + 1) - windowSize) && |
|---|
| 522 | strchr(gap_chars, sequence[pos + count])) { |
|---|
| 523 | pos++; |
|---|
| 524 | } |
|---|
| 525 | aa = char2AA[sequence[pos + count]]; |
|---|
| 526 | if (aa == -1) break; // unknown character found |
|---|
| 527 | |
|---|
| 528 | // compute former values and turn probability |
|---|
| 529 | P_a += cf_parameters_norm[aa][0]; |
|---|
| 530 | P_b += cf_parameters_norm[aa][1]; |
|---|
| 531 | P_turn += cf_parameters_norm[aa][2]; |
|---|
| 532 | p_t *= cf_parameters_norm[aa][3 + count]; |
|---|
| 533 | } |
|---|
| 534 | if (count != 0) { |
|---|
| 535 | P_a /= count; |
|---|
| 536 | P_b /= count; |
|---|
| 537 | P_turn /= count; |
|---|
| 538 | if ((p_t > 0.000075) && (P_turn > 100) && (P_turn > P_a) && (P_turn > P_b)) { |
|---|
| 539 | for (int j = i; j < (pos + count); j++) { |
|---|
| 540 | if (char2AA[sequence[j]] != -1) structure[j] = structure_chars[BETA_TURN]; |
|---|
| 541 | } |
|---|
| 542 | } |
|---|
| 543 | } |
|---|
| 544 | if (aa == -1) i = pos + count; // skip unknown character |
|---|
| 545 | p_t = 1, P_a = 0, P_b = 0, P_turn = 0; |
|---|
| 546 | } |
|---|
| 547 | |
|---|
| 548 | free(gap_chars); |
|---|
| 549 | #ifdef SHOW_PROGRESS |
|---|
| 550 | cout << structure << endl; |
|---|
| 551 | #endif |
|---|
| 552 | } |
|---|
| 553 | |
|---|
| 554 | |
|---|
| 555 | /*! \brief Resolves overlaps of predicted secondary structures and creates structure summary. |
|---|
| 556 | * |
|---|
| 557 | * \param[in] sequence Amino acid sequence |
|---|
| 558 | * \param[in,out] structures Predicted secondary structures (#ALPHA_HELIX, #BETA_SHEET, |
|---|
| 559 | * #BETA_TURN and #STRUCTURE_SUMMARY, in this order) |
|---|
| 560 | * \param[in] length Size of \a sequence and \a structures[i] |
|---|
| 561 | * |
|---|
| 562 | * The function takes the given predicted structures (alpha-helix, beta-sheet |
|---|
| 563 | * and beta-turn) and searches for overlapping regions. If a beta-turn is found |
|---|
| 564 | * the structure summary is assumed to be a beta-turn. For overlapping alpha-helices |
|---|
| 565 | * and beta-sheets the former values are summed up for this region and the |
|---|
| 566 | * structure summary is assumed to be the structure type with the higher former |
|---|
| 567 | * value. The result is stored in \a structures[3] (= \a structures[#STRUCTURE_SUMMARY]). |
|---|
| 568 | * |
|---|
| 569 | * \attention I couldn't find a standard procedure for resolving overlaps and |
|---|
| 570 | * there might be other (possibly better) ways to do that. |
|---|
| 571 | */ |
|---|
| 572 | static void ED4_pfold_resolve_overlaps(const unsigned char *sequence, char *structures[4], int length) { |
|---|
| 573 | #ifdef SHOW_PROGRESS |
|---|
| 574 | cout << endl << "Resolving overlaps: " << endl; |
|---|
| 575 | #endif |
|---|
| 576 | e4_assert(char2AA); // char2AA not initialized; ED4_pfold_init_statics() failed or hasn't been called yet |
|---|
| 577 | |
|---|
| 578 | int start = -1; // start of overlap |
|---|
| 579 | int end = -1; // end of overlap |
|---|
| 580 | double P_a = 0; // sum of former values for alpha-helix in overlapping regions |
|---|
| 581 | double P_b = 0; // sum of former values for beta-sheet in overlapping regions |
|---|
| 582 | PFOLD_STRUCTURE s; // structure with the highest former values |
|---|
| 583 | char *gap_chars = ED4_ROOT->aw_root->awar(ED4_AWAR_GAP_CHARS)->read_string(); // gap characters |
|---|
| 584 | |
|---|
| 585 | // scan structures for overlaps |
|---|
| 586 | for (int pos = 0; pos < length; pos++) { |
|---|
| 587 | |
|---|
| 588 | // if beta-turn is found at position pos -> summary is beta-turn |
|---|
| 589 | if (structures[BETA_TURN][pos] != ' ') { |
|---|
| 590 | structures[STRUCTURE_SUMMARY][pos] = structure_chars[BETA_TURN]; |
|---|
| 591 | |
|---|
| 592 | // if helix and sheet are overlapping and no beta-turn is found -> check which structure has the highest sum of former values |
|---|
| 593 | } |
|---|
| 594 | else if ((structures[ALPHA_HELIX][pos] != ' ') && (structures[BETA_SHEET][pos] != ' ')) { |
|---|
| 595 | |
|---|
| 596 | // search start and end of overlap (as long as no beta-turn is found) |
|---|
| 597 | start = pos; |
|---|
| 598 | end = pos; |
|---|
| 599 | while (structures[ALPHA_HELIX][end] != ' ' && structures[BETA_SHEET][end] != ' ' && |
|---|
| 600 | structures[BETA_TURN][end] == ' ') { |
|---|
| 601 | end++; |
|---|
| 602 | } |
|---|
| 603 | |
|---|
| 604 | // calculate P_a and P_b for overlap |
|---|
| 605 | for (int i = start; i < end; i++) { |
|---|
| 606 | // skip gaps |
|---|
| 607 | while (i < end && strchr(gap_chars, sequence[i])) { |
|---|
| 608 | i++; |
|---|
| 609 | } |
|---|
| 610 | int aa = char2AA[sequence[i]]; |
|---|
| 611 | if (aa != -1) { |
|---|
| 612 | P_a += cf_parameters[aa][ALPHA_HELIX]; |
|---|
| 613 | P_b += cf_parameters[aa][BETA_SHEET]; |
|---|
| 614 | } |
|---|
| 615 | } |
|---|
| 616 | |
|---|
| 617 | // check which structure is more likely and set s appropriately |
|---|
| 618 | s = (P_a > P_b) ? ALPHA_HELIX : BETA_SHEET; |
|---|
| 619 | |
|---|
| 620 | // set structure for overlapping region |
|---|
| 621 | for (int i = start; i < end; i++) { |
|---|
| 622 | structures[STRUCTURE_SUMMARY][i] = structure_chars[s]; |
|---|
| 623 | } |
|---|
| 624 | |
|---|
| 625 | // set variables for next pass of loop resp. end of loop |
|---|
| 626 | P_a = 0, P_b = 0; |
|---|
| 627 | pos = end - 1; |
|---|
| 628 | |
|---|
| 629 | // if helix and sheet are not overlapping and no beta-turn is found -> set structure accordingly |
|---|
| 630 | } |
|---|
| 631 | else { |
|---|
| 632 | // summary at position pos is helix resp. sheet |
|---|
| 633 | if (structures[ALPHA_HELIX][pos] != ' ') { |
|---|
| 634 | structures[STRUCTURE_SUMMARY][pos] = structure_chars[ALPHA_HELIX]; |
|---|
| 635 | } |
|---|
| 636 | else if (structures[BETA_SHEET][pos] != ' ') { |
|---|
| 637 | structures[STRUCTURE_SUMMARY][pos] = structure_chars[BETA_SHEET]; |
|---|
| 638 | } |
|---|
| 639 | } |
|---|
| 640 | } |
|---|
| 641 | |
|---|
| 642 | free(gap_chars); |
|---|
| 643 | #ifdef SHOW_PROGRESS |
|---|
| 644 | cout << structures[summary] << endl; |
|---|
| 645 | #endif |
|---|
| 646 | } |
|---|
| 647 | |
|---|
| 648 | |
|---|
| 649 | /*! \brief Predicts protein secondary structures from the amino acid sequence. |
|---|
| 650 | * |
|---|
| 651 | * \param[in] sequence Amino acid sequence |
|---|
| 652 | * \param[out] structures Predicted secondary structures (#ALPHA_HELIX, #BETA_SHEET, |
|---|
| 653 | * #BETA_TURN and #STRUCTURE_SUMMARY, in this order) |
|---|
| 654 | * \param[in] length Size of \a sequence and \a structures[i] |
|---|
| 655 | * \return Error description, if an error occurred; 0 otherwise |
|---|
| 656 | * |
|---|
| 657 | * This function predicts the protein secondary structures from the amino acid |
|---|
| 658 | * sequence according to the Chou-Fasman algorithm. In a first step, nucleation sites |
|---|
| 659 | * for alpha-helices and beta-sheets are found using ED4_pfold_find_nucleation_sites(). |
|---|
| 660 | * In a next step, the found structures are extended obeying certain rules with |
|---|
| 661 | * ED4_pfold_extend_nucleation_sites(). Beta-turns are found with the function |
|---|
| 662 | * ED4_pfold_find_turns(). In a final step, overlapping regions are identified and |
|---|
| 663 | * resolved to create a structure summary with ED4_pfold_resolve_overlaps(). |
|---|
| 664 | * The results are written to \a structures[i] and can be accessed via the enums |
|---|
| 665 | * #ALPHA_HELIX, #BETA_SHEET, #BETA_TURN and #STRUCTURE_SUMMARY. |
|---|
| 666 | */ |
|---|
| 667 | static GB_ERROR ED4_pfold_predict_structure(const unsigned char *sequence, char *structures[4], int length) { |
|---|
| 668 | #ifdef SHOW_PROGRESS |
|---|
| 669 | cout << endl << "Predicting secondary structure for sequence:" << endl << sequence << endl; |
|---|
| 670 | #endif |
|---|
| 671 | GB_ERROR error = 0; |
|---|
| 672 | e4_assert((int)strlen((const char *)sequence) == length); |
|---|
| 673 | |
|---|
| 674 | // init memory |
|---|
| 675 | ED4_pfold_init_statics(); |
|---|
| 676 | e4_assert(char2AA); |
|---|
| 677 | |
|---|
| 678 | // predict structure |
|---|
| 679 | ED4_pfold_find_nucleation_sites(sequence, structures[ALPHA_HELIX], length, ALPHA_HELIX); |
|---|
| 680 | ED4_pfold_find_nucleation_sites(sequence, structures[BETA_SHEET], length, BETA_SHEET); |
|---|
| 681 | ED4_pfold_extend_nucleation_sites(sequence, structures[ALPHA_HELIX], length, ALPHA_HELIX); |
|---|
| 682 | ED4_pfold_extend_nucleation_sites(sequence, structures[BETA_SHEET], length, BETA_SHEET); |
|---|
| 683 | ED4_pfold_find_turns(sequence, structures[BETA_TURN], length); |
|---|
| 684 | ED4_pfold_resolve_overlaps(sequence, structures, length); |
|---|
| 685 | |
|---|
| 686 | return error; |
|---|
| 687 | } |
|---|
| 688 | |
|---|
| 689 | GB_ERROR ED4_pfold_calculate_secstruct_match(const unsigned char *structure_sai, const unsigned char *structure_cmp, const int start, const int end, char *result_buffer, PFOLD_MATCH_METHOD match_method) { |
|---|
| 690 | GB_ERROR error = 0; |
|---|
| 691 | e4_assert(structure_sai); |
|---|
| 692 | e4_assert(structure_cmp); |
|---|
| 693 | e4_assert(start >= 0); |
|---|
| 694 | e4_assert(result_buffer); |
|---|
| 695 | e4_assert(match_method >= 0 && match_method < PFOLD_MATCH_METHOD_COUNT); |
|---|
| 696 | ED4_pfold_init_statics(); |
|---|
| 697 | e4_assert(char2AA); |
|---|
| 698 | |
|---|
| 699 | e4_assert(end >= start); |
|---|
| 700 | |
|---|
| 701 | size_t end_minus_start = size_t(end-start); // @@@ use this |
|---|
| 702 | |
|---|
| 703 | size_t length = strlen((const char *)structure_sai); |
|---|
| 704 | size_t match_end = std::min(std::min(end_minus_start, length), strlen((const char *)structure_cmp)); |
|---|
| 705 | |
|---|
| 706 | enum { BEND = 3, NOSTRUCT = 4 }; |
|---|
| 707 | char *struct_chars[] = { |
|---|
| 708 | strdup("HGI"), // helical structures (enum ALPHA_HELIX) |
|---|
| 709 | strdup("EB"), // sheet-like structures (enum BETA_SHEET) |
|---|
| 710 | strdup("T"), // beta-turn (enum BETA_TURN) |
|---|
| 711 | strdup("S"), // bends (enum BEND) |
|---|
| 712 | strdup("") // no structure (enum NOSTRUCT) |
|---|
| 713 | }; |
|---|
| 714 | |
|---|
| 715 | // init awars |
|---|
| 716 | AW_root *awr = ED4_ROOT->aw_root; |
|---|
| 717 | char *gap_chars = awr->awar(ED4_AWAR_GAP_CHARS)->read_string(); |
|---|
| 718 | char *pairs[PFOLD_MATCH_TYPE_COUNT] = { 0 }; |
|---|
| 719 | char *pair_chars[PFOLD_MATCH_TYPE_COUNT] = { 0 }; |
|---|
| 720 | char *pair_chars_2 = awr->awar(PFOLD_AWAR_SYMBOL_TEMPLATE_2)->read_string(); |
|---|
| 721 | char awar[256]; |
|---|
| 722 | |
|---|
| 723 | for (int i = 0; pfold_match_type_awars[i].name; i++) { |
|---|
| 724 | sprintf(awar, PFOLD_AWAR_PAIR_TEMPLATE, pfold_match_type_awars[i].name); |
|---|
| 725 | pairs[i] = awr->awar(awar)->read_string(); |
|---|
| 726 | sprintf(awar, PFOLD_AWAR_SYMBOL_TEMPLATE, pfold_match_type_awars[i].name); |
|---|
| 727 | pair_chars[i] = awr->awar(awar)->read_string(); |
|---|
| 728 | } |
|---|
| 729 | |
|---|
| 730 | int struct_start = start; |
|---|
| 731 | int struct_end = start; |
|---|
| 732 | size_t count = 0; |
|---|
| 733 | int current_struct = 4; |
|---|
| 734 | int aa = -1; |
|---|
| 735 | double prob = 0; |
|---|
| 736 | |
|---|
| 737 | // TODO: move this check to callback for the corresponding field? |
|---|
| 738 | if (strlen(pair_chars_2) != 10) { |
|---|
| 739 | error = GB_export_error("You have to define 10 match symbols."); |
|---|
| 740 | } |
|---|
| 741 | |
|---|
| 742 | if (!error) { |
|---|
| 743 | switch (match_method) { |
|---|
| 744 | |
|---|
| 745 | case SECSTRUCT_SECSTRUCT: |
|---|
| 746 | // TODO: one could try to find out, if structure_cmp is really a secondary structure and not a sequence (define awar for allowed symbols in secondary structure) |
|---|
| 747 | for (count = 0; count < match_end; count++) { |
|---|
| 748 | result_buffer[count] = *pair_chars[STRUCT_UNKNOWN]; |
|---|
| 749 | for (int n_pt = 0; n_pt < PFOLD_MATCH_TYPE_COUNT; n_pt++) { |
|---|
| 750 | int len = strlen(pairs[n_pt])-1; |
|---|
| 751 | char *p = pairs[n_pt]; |
|---|
| 752 | for (int j = 0; j < len; j += 3) { |
|---|
| 753 | if ((p[j] == structure_sai[count + start] && p[j+1] == structure_cmp[count + start]) || |
|---|
| 754 | (p[j] == structure_cmp[count + start] && p[j+1] == structure_sai[count + start])) { |
|---|
| 755 | result_buffer[count] = *pair_chars[n_pt]; |
|---|
| 756 | n_pt = PFOLD_MATCH_TYPE_COUNT; // stop searching the pair types |
|---|
| 757 | break; // stop searching the pairs array |
|---|
| 758 | } |
|---|
| 759 | } |
|---|
| 760 | } |
|---|
| 761 | } |
|---|
| 762 | |
|---|
| 763 | // fill the remaining buffer with spaces |
|---|
| 764 | while (count <= end_minus_start) { |
|---|
| 765 | result_buffer[count] = ' '; |
|---|
| 766 | count++; |
|---|
| 767 | } |
|---|
| 768 | break; |
|---|
| 769 | |
|---|
| 770 | case SECSTRUCT_SEQUENCE: |
|---|
| 771 | // clear result buffer |
|---|
| 772 | for (size_t i = 0; i <= end_minus_start; i++) result_buffer[i] = ' '; |
|---|
| 773 | |
|---|
| 774 | // skip gaps |
|---|
| 775 | while (structure_sai[struct_start] != '\0' && structure_cmp[struct_start] != '\0' && |
|---|
| 776 | strchr(gap_chars, structure_sai[struct_start]) && |
|---|
| 777 | strchr(gap_chars, structure_cmp[struct_start])) { |
|---|
| 778 | struct_start++; |
|---|
| 779 | } |
|---|
| 780 | if (structure_sai[struct_start] == '\0' || structure_cmp[struct_start] == '\0') break; |
|---|
| 781 | |
|---|
| 782 | // check structure at the first displayed position and find out where it starts |
|---|
| 783 | for (current_struct = 0; current_struct < 4 && !strchr(struct_chars[current_struct], structure_sai[struct_start]); current_struct++) { |
|---|
| 784 | ; |
|---|
| 785 | } |
|---|
| 786 | if (current_struct != BEND && current_struct != NOSTRUCT) { |
|---|
| 787 | struct_start--; // check structure left of start |
|---|
| 788 | while (struct_start >= 0) { |
|---|
| 789 | // skip gaps |
|---|
| 790 | while (struct_start > 0 && |
|---|
| 791 | strchr(gap_chars, structure_sai[struct_start]) && |
|---|
| 792 | strchr(gap_chars, structure_cmp[struct_start])) { |
|---|
| 793 | struct_start--; |
|---|
| 794 | } |
|---|
| 795 | aa = char2AA[structure_cmp[struct_start]]; |
|---|
| 796 | if (struct_start == 0 && aa == -1) { // nothing was found |
|---|
| 797 | break; |
|---|
| 798 | } |
|---|
| 799 | else if (strchr(struct_chars[current_struct], structure_sai[struct_start]) && aa != -1) { |
|---|
| 800 | prob += cf_former(aa, current_struct) - cf_breaker(aa, current_struct); // sum up probabilities |
|---|
| 801 | struct_start--; |
|---|
| 802 | count++; |
|---|
| 803 | } |
|---|
| 804 | else { |
|---|
| 805 | break; |
|---|
| 806 | } |
|---|
| 807 | } |
|---|
| 808 | } |
|---|
| 809 | |
|---|
| 810 | // parse structures |
|---|
| 811 | struct_start = start; |
|---|
| 812 | // skip gaps |
|---|
| 813 | while (structure_sai[struct_start] != '\0' && structure_cmp[struct_start] != '\0' && |
|---|
| 814 | strchr(gap_chars, structure_sai[struct_start]) && |
|---|
| 815 | strchr(gap_chars, structure_cmp[struct_start])) { |
|---|
| 816 | struct_start++; |
|---|
| 817 | } |
|---|
| 818 | if (structure_sai[struct_start] == '\0' || structure_cmp[struct_start] == '\0') break; |
|---|
| 819 | struct_end = struct_start; |
|---|
| 820 | while (struct_end < end) { |
|---|
| 821 | aa = char2AA[structure_cmp[struct_end]]; |
|---|
| 822 | if (current_struct == NOSTRUCT) { // no structure found -> move on |
|---|
| 823 | struct_end++; |
|---|
| 824 | } |
|---|
| 825 | else if (aa == -1) { // structure found but no corresponding amino acid -> doesn't fit at all |
|---|
| 826 | result_buffer[struct_end - start] = pair_chars_2[0]; |
|---|
| 827 | struct_end++; |
|---|
| 828 | } |
|---|
| 829 | else if (current_struct == BEND) { // bend found -> fits perfectly everywhere |
|---|
| 830 | result_buffer[struct_end - start] = pair_chars_2[9]; |
|---|
| 831 | struct_end++; |
|---|
| 832 | } |
|---|
| 833 | else { // helix, sheet or beta-turn found -> while structure doesn't change: sum up probabilities |
|---|
| 834 | while (structure_sai[struct_end] != '\0') { |
|---|
| 835 | // skip gaps |
|---|
| 836 | while (strchr(gap_chars, structure_sai[struct_end]) && |
|---|
| 837 | strchr(gap_chars, structure_cmp[struct_end]) && |
|---|
| 838 | structure_sai[struct_end] != '\0' && structure_cmp[struct_end] != '\0') { |
|---|
| 839 | struct_end++; |
|---|
| 840 | } |
|---|
| 841 | aa = char2AA[structure_cmp[struct_end]]; |
|---|
| 842 | if (structure_sai[struct_end] != '\0' && structure_cmp[struct_end] != '\0' && |
|---|
| 843 | strchr(struct_chars[current_struct], structure_sai[struct_end]) && aa != -1) { |
|---|
| 844 | prob += cf_former(aa, current_struct) - cf_breaker(aa, current_struct); // sum up probabilities |
|---|
| 845 | struct_end++; |
|---|
| 846 | count++; |
|---|
| 847 | } |
|---|
| 848 | else { |
|---|
| 849 | break; |
|---|
| 850 | } |
|---|
| 851 | } |
|---|
| 852 | |
|---|
| 853 | if (count != 0) { |
|---|
| 854 | // compute average and normalize probability |
|---|
| 855 | prob /= count; |
|---|
| 856 | prob = (prob + max_breaker_value[current_struct] - min_former_value[current_struct]) / (max_breaker_value[current_struct] + max_former_value[current_struct] - min_former_value[current_struct]); |
|---|
| 857 | |
|---|
| 858 | #if 0 // code w/o effect |
|---|
| 859 | // map to match characters and store in result_buffer |
|---|
| 860 | int prob_normalized = ED4_pfold_round_sym(prob * 9); |
|---|
| 861 | // e4_assert(prob_normalized >= 0 && prob_normalized <= 9); // if this happens check if normalization is correct or some undefined characters mess everything up |
|---|
| 862 | char prob_symbol = *pair_chars[STRUCT_UNKNOWN]; |
|---|
| 863 | if (prob_normalized >= 0 && prob_normalized <= 9) { |
|---|
| 864 | prob_symbol = pair_chars_2[prob_normalized]; |
|---|
| 865 | } |
|---|
| 866 | #endif |
|---|
| 867 | } |
|---|
| 868 | } |
|---|
| 869 | |
|---|
| 870 | // find next structure type |
|---|
| 871 | if (structure_sai[struct_end] == '\0' || structure_cmp[struct_end] == '\0') { |
|---|
| 872 | break; |
|---|
| 873 | } |
|---|
| 874 | else { |
|---|
| 875 | prob = 0; |
|---|
| 876 | count = 0; |
|---|
| 877 | struct_start = struct_end; |
|---|
| 878 | for (current_struct = 0; current_struct < 4 && !strchr(struct_chars[current_struct], structure_sai[struct_start]); current_struct++) { |
|---|
| 879 | ; |
|---|
| 880 | } |
|---|
| 881 | } |
|---|
| 882 | } |
|---|
| 883 | break; |
|---|
| 884 | |
|---|
| 885 | case SECSTRUCT_SEQUENCE_PREDICT: |
|---|
| 886 | // predict structures from structure_cmp and compare with structure_sai |
|---|
| 887 | char *structures[4]; |
|---|
| 888 | for (int i = 0; i < 4 && !error; i++) { |
|---|
| 889 | structures[i] = new char [length + 1]; |
|---|
| 890 | if (!structures[i]) { |
|---|
| 891 | error = "Out of memory"; |
|---|
| 892 | } |
|---|
| 893 | else { |
|---|
| 894 | for (size_t j = 0; j < length; j++) { |
|---|
| 895 | structures[i][j] = ' '; |
|---|
| 896 | } |
|---|
| 897 | structures[i][length] = '\0'; |
|---|
| 898 | } |
|---|
| 899 | } |
|---|
| 900 | if (!error) error = ED4_pfold_predict_structure(structure_cmp, structures, length); |
|---|
| 901 | if (!error) { |
|---|
| 902 | for (count = 0; count < match_end; count++) { |
|---|
| 903 | result_buffer[count] = *pair_chars[STRUCT_UNKNOWN]; |
|---|
| 904 | if (!strchr(gap_chars, structure_sai[count + start]) && strchr(gap_chars, structure_cmp[count + start])) { |
|---|
| 905 | result_buffer[count] = *pair_chars[STRUCT_NO_MATCH]; |
|---|
| 906 | } else if (strchr(gap_chars, structure_sai[count + start]) || |
|---|
| 907 | (structures[ALPHA_HELIX][count + start] == ' ' && structures[BETA_SHEET][count + start] == ' ' && structures[BETA_TURN][count + start] == ' ')) { |
|---|
| 908 | result_buffer[count] = *pair_chars[STRUCT_PERFECT_MATCH]; |
|---|
| 909 | } |
|---|
| 910 | else { |
|---|
| 911 | // search for good match first |
|---|
| 912 | // if found: stop searching |
|---|
| 913 | // otherwise: continue searching for a less good match |
|---|
| 914 | for (int n_pt = 0; n_pt < PFOLD_MATCH_TYPE_COUNT; n_pt++) { |
|---|
| 915 | int len = strlen(pairs[n_pt])-1; |
|---|
| 916 | char *p = pairs[n_pt]; |
|---|
| 917 | for (int n_struct = 0; n_struct < 3; n_struct++) { |
|---|
| 918 | for (int j = 0; j < len; j += 3) { |
|---|
| 919 | if ((p[j] == structures[n_struct][count + start] && p[j+1] == structure_sai[count + start]) || |
|---|
| 920 | (p[j] == structure_sai[count + start] && p[j+1] == structures[n_struct][count + start])) { |
|---|
| 921 | result_buffer[count] = *pair_chars[n_pt]; |
|---|
| 922 | n_struct = 3; // stop searching the structures |
|---|
| 923 | n_pt = PFOLD_MATCH_TYPE_COUNT; // stop searching the pair types |
|---|
| 924 | break; // stop searching the pairs array |
|---|
| 925 | } |
|---|
| 926 | } |
|---|
| 927 | } |
|---|
| 928 | } |
|---|
| 929 | } |
|---|
| 930 | } |
|---|
| 931 | // fill the remaining buffer with spaces |
|---|
| 932 | while (count <= end_minus_start) { |
|---|
| 933 | result_buffer[count] = ' '; |
|---|
| 934 | count++; |
|---|
| 935 | } |
|---|
| 936 | } |
|---|
| 937 | // free buffer |
|---|
| 938 | for (int i = 0; i < 4; i++) { |
|---|
| 939 | if (structures[i]) { |
|---|
| 940 | delete structures[i]; |
|---|
| 941 | structures[i] = 0; |
|---|
| 942 | } |
|---|
| 943 | } |
|---|
| 944 | break; |
|---|
| 945 | |
|---|
| 946 | default: |
|---|
| 947 | e4_assert(0); // function called with invalid argument for 'match_method' |
|---|
| 948 | break; |
|---|
| 949 | } |
|---|
| 950 | } |
|---|
| 951 | |
|---|
| 952 | free(gap_chars); |
|---|
| 953 | free(pair_chars_2); |
|---|
| 954 | for (int i = 0; pfold_match_type_awars[i].name; i++) { |
|---|
| 955 | free(pairs[i]); |
|---|
| 956 | free(pair_chars[i]); |
|---|
| 957 | } |
|---|
| 958 | if (error) for (size_t i = 0; i <= end_minus_start; i++) result_buffer[i] = ' '; // clear result buffer |
|---|
| 959 | return error; |
|---|
| 960 | } |
|---|
| 961 | |
|---|
| 962 | |
|---|
| 963 | GB_ERROR ED4_pfold_set_SAI(char **protstruct, GBDATA *gb_main, const char *alignment_name, long *protstruct_len) { |
|---|
| 964 | GB_ERROR error = 0; |
|---|
| 965 | GB_transaction ta(gb_main); |
|---|
| 966 | AW_root *aw_root = ED4_ROOT->aw_root; |
|---|
| 967 | char *SAI_name = aw_root->awar(PFOLD_AWAR_SELECTED_SAI)->read_string(); |
|---|
| 968 | GBDATA *gb_protstruct = GBT_find_SAI(gb_main, SAI_name); |
|---|
| 969 | |
|---|
| 970 | freenull(*protstruct); |
|---|
| 971 | |
|---|
| 972 | if (gb_protstruct) { |
|---|
| 973 | GBDATA *gb_data = GBT_find_sequence(gb_protstruct, alignment_name); |
|---|
| 974 | if (gb_data) *protstruct = GB_read_string(gb_data); |
|---|
| 975 | } |
|---|
| 976 | |
|---|
| 977 | if (*protstruct) { |
|---|
| 978 | if (protstruct_len) *protstruct_len = (long)strlen(*protstruct); |
|---|
| 979 | } |
|---|
| 980 | else { |
|---|
| 981 | if (protstruct_len) protstruct_len = 0; |
|---|
| 982 | if (aw_root->awar(PFOLD_AWAR_ENABLE)->read_int()) { |
|---|
| 983 | error = GBS_global_string("SAI \"%s\" does not exist.\nDisabled protein structure display!", SAI_name); |
|---|
| 984 | aw_root->awar(PFOLD_AWAR_ENABLE)->write_int(0); |
|---|
| 985 | } |
|---|
| 986 | } |
|---|
| 987 | |
|---|
| 988 | free(SAI_name); |
|---|
| 989 | return error; |
|---|
| 990 | } |
|---|
| 991 | |
|---|
| 992 | /*! \brief Callback function to select the reference protein structure SAI and to |
|---|
| 993 | * update the SAI option menu. |
|---|
| 994 | * |
|---|
| 995 | * \param[in] aww The calling window |
|---|
| 996 | * \param[in,out] oms The SAI option menu |
|---|
| 997 | * \param[in] set_sai Specifies if SAI should be updated |
|---|
| 998 | * |
|---|
| 999 | * The function is called whenever the selected SAI or the SAI filter is changed |
|---|
| 1000 | * in the "Protein Match Settings" dialog (see ED4_pfold_create_props_window()). |
|---|
| 1001 | * It can be called with \a set_sai defined to update the reference protein secondary |
|---|
| 1002 | * structure SAI in the editor via ED4_pfold_set_SAI() and to update the selection in |
|---|
| 1003 | * the SAI option menu. If \a set_sai is 0 only the option menu is updated. This is |
|---|
| 1004 | * necessary if only the SAI filter changed but not the selected SAI. |
|---|
| 1005 | */ |
|---|
| 1006 | |
|---|
| 1007 | static void ED4_pfold_select_SAI_and_update_option_menu(AW_window *aww, AW_CL oms, AW_CL set_sai) { |
|---|
| 1008 | e4_assert(aww); |
|---|
| 1009 | AW_option_menu_struct *_oms = ((AW_option_menu_struct*)oms); |
|---|
| 1010 | e4_assert(_oms); |
|---|
| 1011 | char *selected_sai = ED4_ROOT->aw_root->awar(PFOLD_AWAR_SELECTED_SAI)->read_string(); |
|---|
| 1012 | char *sai_filter = ED4_ROOT->aw_root->awar(PFOLD_AWAR_SAI_FILTER)->read_string(); |
|---|
| 1013 | |
|---|
| 1014 | if (set_sai) { |
|---|
| 1015 | const char *err = ED4_pfold_set_SAI(&ED4_ROOT->protstruct, GLOBAL_gb_main, ED4_ROOT->alignment_name, &ED4_ROOT->protstruct_len); |
|---|
| 1016 | if (err) aw_message(err); |
|---|
| 1017 | } |
|---|
| 1018 | |
|---|
| 1019 | aww->clear_option_menu(_oms); |
|---|
| 1020 | aww->insert_default_option(selected_sai, "", selected_sai); |
|---|
| 1021 | GB_transaction ta(GLOBAL_gb_main); |
|---|
| 1022 | |
|---|
| 1023 | for (GBDATA *sai = GBT_first_SAI(GLOBAL_gb_main); |
|---|
| 1024 | sai; |
|---|
| 1025 | sai = GBT_next_SAI(sai)) |
|---|
| 1026 | { |
|---|
| 1027 | const char *sai_name = GBT_read_name(sai); |
|---|
| 1028 | if (strcmp(sai_name, selected_sai) != 0 && strstr(sai_name, sai_filter) != 0) { |
|---|
| 1029 | aww->callback(ED4_pfold_select_SAI_and_update_option_menu, (AW_CL)_oms, true); |
|---|
| 1030 | aww->insert_option(sai_name, "", sai_name); |
|---|
| 1031 | } |
|---|
| 1032 | } |
|---|
| 1033 | |
|---|
| 1034 | free(selected_sai); |
|---|
| 1035 | free(sai_filter); |
|---|
| 1036 | aww->update_option_menu(); |
|---|
| 1037 | // ED4_expose_all_windows(); |
|---|
| 1038 | // @@@ need update here ? |
|---|
| 1039 | } |
|---|
| 1040 | |
|---|
| 1041 | |
|---|
| 1042 | AW_window *ED4_pfold_create_props_window(AW_root *awr, void (*cb)(AW_window*)) { |
|---|
| 1043 | AW_window_simple *aws = new AW_window_simple; |
|---|
| 1044 | aws->init(awr, "PFOLD_PROPS", "PROTEIN_MATCH_SETTINGS"); |
|---|
| 1045 | |
|---|
| 1046 | // create close button |
|---|
| 1047 | aws->at(10, 10); |
|---|
| 1048 | aws->auto_space(5, 2); |
|---|
| 1049 | aws->callback(AW_POPDOWN); |
|---|
| 1050 | aws->create_button("CLOSE", "CLOSE", "C"); |
|---|
| 1051 | |
|---|
| 1052 | // create help button |
|---|
| 1053 | aws->callback(makeHelpCallback("pfold_props.hlp")); |
|---|
| 1054 | aws->create_button("HELP", "HELP"); |
|---|
| 1055 | aws->at_newline(); |
|---|
| 1056 | |
|---|
| 1057 | aws->label_length(27); |
|---|
| 1058 | int ex = 0, ey = 0; |
|---|
| 1059 | char awar[256]; |
|---|
| 1060 | |
|---|
| 1061 | // create toggle field for showing the protein structure match |
|---|
| 1062 | aws->label("Show protein structure match?"); |
|---|
| 1063 | aws->callback(makeWindowCallback(cb)); |
|---|
| 1064 | aws->create_toggle(PFOLD_AWAR_ENABLE); |
|---|
| 1065 | aws->at_newline(); |
|---|
| 1066 | |
|---|
| 1067 | // create SAI option menu |
|---|
| 1068 | aws->label_length(30); |
|---|
| 1069 | aws->label("Selected Protein Structure SAI"); |
|---|
| 1070 | AW_option_menu_struct *oms_sai = aws->create_option_menu(PFOLD_AWAR_SELECTED_SAI, true); |
|---|
| 1071 | ED4_pfold_select_SAI_and_update_option_menu(aws, (AW_CL)oms_sai, 0); |
|---|
| 1072 | aws->at_newline(); |
|---|
| 1073 | aws->label("-> Filter SAI names for"); |
|---|
| 1074 | aws->callback(ED4_pfold_select_SAI_and_update_option_menu, (AW_CL)oms_sai, 0); |
|---|
| 1075 | aws->create_input_field(PFOLD_AWAR_SAI_FILTER, 10); |
|---|
| 1076 | aws->at_newline(); |
|---|
| 1077 | |
|---|
| 1078 | // create match method option menu |
|---|
| 1079 | PFOLD_MATCH_METHOD match_method = (PFOLD_MATCH_METHOD) ED4_ROOT->aw_root->awar(PFOLD_AWAR_MATCH_METHOD)->read_int(); |
|---|
| 1080 | aws->label_length(12); |
|---|
| 1081 | aws->label("Match Method"); |
|---|
| 1082 | aws->create_option_menu(PFOLD_AWAR_MATCH_METHOD, true); |
|---|
| 1083 | for (int i = 0; const char *mm_aw = pfold_match_method_awars[i].name; i++) { |
|---|
| 1084 | aws->callback(makeWindowCallback(cb)); |
|---|
| 1085 | if (match_method == pfold_match_method_awars[i].value) { |
|---|
| 1086 | aws->insert_default_option(mm_aw, "", match_method); |
|---|
| 1087 | } |
|---|
| 1088 | else { |
|---|
| 1089 | aws->insert_option(mm_aw, "", pfold_match_method_awars[i].value); |
|---|
| 1090 | } |
|---|
| 1091 | } |
|---|
| 1092 | aws->update_option_menu(); |
|---|
| 1093 | aws->at_newline(); |
|---|
| 1094 | |
|---|
| 1095 | // create match symbols and/or match types input fields |
|---|
| 1096 | // TODO: show only fields that are relevant for current match method -> bind to callback function? |
|---|
| 1097 | aws->label_length(40); |
|---|
| 1098 | aws->label("Match Symbols (Range 0-100% in steps of 10%)"); |
|---|
| 1099 | aws->callback(makeWindowCallback(cb)); |
|---|
| 1100 | aws->create_input_field(PFOLD_AWAR_SYMBOL_TEMPLATE_2, 10); |
|---|
| 1101 | aws->at_newline(); |
|---|
| 1102 | for (int i = 0; pfold_match_type_awars[i].name; i++) { |
|---|
| 1103 | aws->label_length(12); |
|---|
| 1104 | sprintf(awar, PFOLD_AWAR_PAIR_TEMPLATE, pfold_match_type_awars[i].name); |
|---|
| 1105 | aws->label(pfold_match_type_awars[i].name); |
|---|
| 1106 | aws->callback(makeWindowCallback(cb)); |
|---|
| 1107 | aws->create_input_field(awar, 30); |
|---|
| 1108 | // TODO: is it possible to disable input field for STRUCT_UNKNOWN? |
|---|
| 1109 | // if (pfold_match_type_awars[i].value == STRUCT_UNKNOWN) |
|---|
| 1110 | if (!i) aws->get_at_position(&ex, &ey); |
|---|
| 1111 | sprintf(awar, PFOLD_AWAR_SYMBOL_TEMPLATE, pfold_match_type_awars[i].name); |
|---|
| 1112 | aws->callback(makeWindowCallback(cb)); |
|---|
| 1113 | aws->create_input_field(awar, 3); |
|---|
| 1114 | aws->at_newline(); |
|---|
| 1115 | } |
|---|
| 1116 | |
|---|
| 1117 | aws->window_fit(); |
|---|
| 1118 | return (AW_window *)aws; |
|---|
| 1119 | } |
|---|
| 1120 | |
|---|