| 1 | // =============================================================== // | 
|---|
| 2 | //                                                                 // | 
|---|
| 3 | //   File      : AP_tree_nlen.cxx                                  // | 
|---|
| 4 | //   Purpose   :                                                   // | 
|---|
| 5 | //                                                                 // | 
|---|
| 6 | //   Coded by Ralf Westram (coder@reallysoft.de) in Summer 1995    // | 
|---|
| 7 | //   Institute of Microbiology (Technical University Munich)       // | 
|---|
| 8 | //   http://www.arb-home.de/                                       // | 
|---|
| 9 | //                                                                 // | 
|---|
| 10 | // =============================================================== // | 
|---|
| 11 |  | 
|---|
| 12 | #include "ap_tree_nlen.hxx" | 
|---|
| 13 | #include "pars_debug.hxx" | 
|---|
| 14 |  | 
|---|
| 15 | #include <AP_seq_dna.hxx> | 
|---|
| 16 | #include <aw_root.hxx> | 
|---|
| 17 |  | 
|---|
| 18 | using namespace std; | 
|---|
| 19 |  | 
|---|
| 20 | // --------------------------------- | 
|---|
| 21 | //      Section base operations: | 
|---|
| 22 | // --------------------------------- | 
|---|
| 23 |  | 
|---|
| 24 | AP_UPDATE_FLAGS AP_tree_nlen::check_update() { | 
|---|
| 25 | AP_UPDATE_FLAGS res = AP_tree::check_update(); | 
|---|
| 26 |  | 
|---|
| 27 | return res == AP_UPDATE_RELOADED ? AP_UPDATE_OK : res; | 
|---|
| 28 | } | 
|---|
| 29 |  | 
|---|
| 30 | void AP_tree_nlen::copy(AP_tree_nlen *tree) { | 
|---|
| 31 | // like = operator | 
|---|
| 32 | // but copies sequence if is leaf | 
|---|
| 33 |  | 
|---|
| 34 | this->is_leaf = tree->is_leaf; | 
|---|
| 35 | this->leftlen = tree->leftlen; | 
|---|
| 36 | this->rightlen = tree->rightlen; | 
|---|
| 37 | this->gb_node = tree->gb_node; | 
|---|
| 38 |  | 
|---|
| 39 | if (tree->name != NULL) { | 
|---|
| 40 | this->name = strdup(tree->name); | 
|---|
| 41 | } | 
|---|
| 42 | else { | 
|---|
| 43 | this->name = NULL; | 
|---|
| 44 | } | 
|---|
| 45 |  | 
|---|
| 46 | if (is_leaf) { | 
|---|
| 47 | ap_assert(tree->get_seq()); /* oops - AP_tree_nlen expects to have sequences at leafs! | 
|---|
| 48 | * did you forget to remove_leafs() ? */ | 
|---|
| 49 |  | 
|---|
| 50 | set_seq(tree->get_seq()); | 
|---|
| 51 | // dangerous - no copy, just moves pointer | 
|---|
| 52 | // will result in undefined behavior | 
|---|
| 53 |  | 
|---|
| 54 | ap_assert(0); //  this will not work, but is only used in GA_genetic. | 
|---|
| 55 | //  Use some kind of SmartPtr there! | 
|---|
| 56 | } | 
|---|
| 57 | } | 
|---|
| 58 |  | 
|---|
| 59 | ostream& operator<<(ostream& out, const AP_tree_nlen& node) { | 
|---|
| 60 | out << ' '; | 
|---|
| 61 |  | 
|---|
| 62 | if (&node==NULL) { | 
|---|
| 63 | out << "NULL"; | 
|---|
| 64 | } | 
|---|
| 65 | if (node.is_leaf) { | 
|---|
| 66 | out << ((void *)&node) << '(' << node.name << ')'; | 
|---|
| 67 | } | 
|---|
| 68 | else { | 
|---|
| 69 | static int notTooDeep; | 
|---|
| 70 |  | 
|---|
| 71 | if (notTooDeep) { | 
|---|
| 72 | out << ((void *)&node); | 
|---|
| 73 | if (!node.father) out << " (ROOT)"; | 
|---|
| 74 | } | 
|---|
| 75 | else { | 
|---|
| 76 | notTooDeep = 1; | 
|---|
| 77 |  | 
|---|
| 78 | out << "NODE(" << ((void *)&node); | 
|---|
| 79 |  | 
|---|
| 80 | if (!node.father) { | 
|---|
| 81 | out << " (ROOT)"; | 
|---|
| 82 | } | 
|---|
| 83 | else { | 
|---|
| 84 | out << ", father=" << node.father; | 
|---|
| 85 | } | 
|---|
| 86 |  | 
|---|
| 87 | out << ", leftson=" << node.leftson | 
|---|
| 88 | << ", rightson=" << node.rightson | 
|---|
| 89 | << ", edge[0]=" << *(node.edge[0]) | 
|---|
| 90 | << ", edge[1]=" << *(node.edge[1]) | 
|---|
| 91 | << ", edge[2]=" << *(node.edge[2]) | 
|---|
| 92 | << ")"; | 
|---|
| 93 |  | 
|---|
| 94 | notTooDeep = 0; | 
|---|
| 95 | } | 
|---|
| 96 | } | 
|---|
| 97 |  | 
|---|
| 98 | return out << ' '; | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | int AP_tree_nlen::unusedEdgeIndex() const { | 
|---|
| 102 | for (int e=0; e<3; e++) if (edge[e]==NULL) return e; | 
|---|
| 103 | return -1; | 
|---|
| 104 | } | 
|---|
| 105 |  | 
|---|
| 106 | AP_tree_edge* AP_tree_nlen::edgeTo(const AP_tree_nlen *neighbour) const { | 
|---|
| 107 | for (int e=0; e<3; e++) { | 
|---|
| 108 | if (edge[e]!=NULL && edge[e]->node[1-index[e]]==neighbour) { | 
|---|
| 109 | return edge[e]; | 
|---|
| 110 | } | 
|---|
| 111 | } | 
|---|
| 112 | return NULL; | 
|---|
| 113 | } | 
|---|
| 114 |  | 
|---|
| 115 | AP_tree_edge* AP_tree_nlen::nextEdge(const AP_tree_edge *afterThatEdge) const { | 
|---|
| 116 | /*! @return one edge of 'this' | 
|---|
| 117 | * | 
|---|
| 118 | * @param afterThatEdge | 
|---|
| 119 | * - if == NULL -> returns the "first" edge (edge[0]) | 
|---|
| 120 | * - otherwise -> returns the next edge following 'afterThatEdge' in the array edge[] | 
|---|
| 121 | */ | 
|---|
| 122 | return edge[afterThatEdge ? ((indexOf(afterThatEdge)+1) % 3) : 0]; | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | void AP_tree_nlen::unlinkAllEdges(AP_tree_edge **edgePtr1, AP_tree_edge **edgePtr2, AP_tree_edge **edgePtr3) | 
|---|
| 126 | { | 
|---|
| 127 | ap_assert(edge[0]!=NULL); | 
|---|
| 128 | ap_assert(edge[1]!=NULL); | 
|---|
| 129 | ap_assert(edge[2]!=NULL); | 
|---|
| 130 |  | 
|---|
| 131 | *edgePtr1 = edge[0]->unlink(); | 
|---|
| 132 | *edgePtr2 = edge[1]->unlink(); | 
|---|
| 133 | *edgePtr3 = edge[2]->unlink(); | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | void AP_tree_nlen::linkAllEdges(AP_tree_edge *edge1, AP_tree_edge *edge2, AP_tree_edge *edge3) | 
|---|
| 137 | { | 
|---|
| 138 | ap_assert(edge[0]==NULL); | 
|---|
| 139 | ap_assert(edge[1]==NULL); | 
|---|
| 140 | ap_assert(edge[2]==NULL); | 
|---|
| 141 |  | 
|---|
| 142 | edge1->relink(this, get_father()->get_father() ? get_father() : get_brother()); | 
|---|
| 143 | edge2->relink(this, get_leftson()); | 
|---|
| 144 | edge3->relink(this, get_rightson()); | 
|---|
| 145 | } | 
|---|
| 146 |  | 
|---|
| 147 | // ----------------------------- | 
|---|
| 148 | //      Check tree structure | 
|---|
| 149 |  | 
|---|
| 150 | #if defined(PROVIDE_TREE_STRUCTURE_TESTS) | 
|---|
| 151 |  | 
|---|
| 152 | inline const AP_tree_edge *edge_between(const AP_tree_nlen *node1, const AP_tree_nlen *node2) { | 
|---|
| 153 | AP_tree_edge *edge_12 = node1->edgeTo(node2); | 
|---|
| 154 |  | 
|---|
| 155 | #if defined(ASSERTION_USED) | 
|---|
| 156 | AP_tree_edge *edge_21 = node2->edgeTo(node1); | 
|---|
| 157 | ap_assert(edge_12 == edge_21); // nodes should agree about their edge | 
|---|
| 158 | #endif | 
|---|
| 159 |  | 
|---|
| 160 | return edge_12; | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | void AP_tree_nlen::assert_edges_valid() const { | 
|---|
| 164 | if (get_father()) {                     // root has no edges | 
|---|
| 165 | if (get_father()->is_root_node()) { // sons of root have one edge between them | 
|---|
| 166 | ap_assert(edge_between(this, get_brother())); | 
|---|
| 167 | } | 
|---|
| 168 | else { | 
|---|
| 169 | ap_assert(edge_between(this, get_father())); | 
|---|
| 170 | if (!is_leaf) { | 
|---|
| 171 | ap_assert(edge_between(this, get_leftson())); | 
|---|
| 172 | ap_assert(edge_between(this, get_rightson())); | 
|---|
| 173 | } | 
|---|
| 174 | } | 
|---|
| 175 | } | 
|---|
| 176 |  | 
|---|
| 177 | if (!is_leaf) { | 
|---|
| 178 | get_leftson()->assert_edges_valid(); | 
|---|
| 179 | get_rightson()->assert_edges_valid(); | 
|---|
| 180 | } | 
|---|
| 181 | } | 
|---|
| 182 |  | 
|---|
| 183 | void AP_tree_nlen::assert_valid() const { | 
|---|
| 184 | ap_assert(this); | 
|---|
| 185 | assert_edges_valid(); | 
|---|
| 186 | AP_tree::assert_valid(); | 
|---|
| 187 | } | 
|---|
| 188 |  | 
|---|
| 189 | #endif // PROVIDE_TREE_STRUCTURE_TESTS | 
|---|
| 190 |  | 
|---|
| 191 | // ------------------------- | 
|---|
| 192 | //      Tree operations: | 
|---|
| 193 | // | 
|---|
| 194 | // insert | 
|---|
| 195 | // remove | 
|---|
| 196 | // swap | 
|---|
| 197 | // set_root | 
|---|
| 198 | // move | 
|---|
| 199 | // costs | 
|---|
| 200 |  | 
|---|
| 201 |  | 
|---|
| 202 | inline void push_all_upnode_sequences(AP_tree_nlen *nodeBelow) { | 
|---|
| 203 | for  (AP_tree_nlen *upnode = nodeBelow->get_father(); | 
|---|
| 204 | upnode; | 
|---|
| 205 | upnode = upnode->get_father()) | 
|---|
| 206 | { | 
|---|
| 207 | ap_main->push_node(upnode, SEQUENCE); | 
|---|
| 208 | } | 
|---|
| 209 | } | 
|---|
| 210 |  | 
|---|
| 211 | inline void sortOldestFirst(AP_tree_edge **e1, AP_tree_edge **e2) { | 
|---|
| 212 | if ((*e1)->Age() > (*e2)->Age()) { | 
|---|
| 213 | swap(*e1, *e2); | 
|---|
| 214 | } | 
|---|
| 215 | } | 
|---|
| 216 |  | 
|---|
| 217 | inline void sortOldestFirst(AP_tree_edge **e1, AP_tree_edge **e2, AP_tree_edge **e3) { | 
|---|
| 218 | sortOldestFirst(e1, e2); | 
|---|
| 219 | sortOldestFirst(e2, e3); | 
|---|
| 220 | sortOldestFirst(e1, e2); | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | void AP_tree_nlen::initial_insert(AP_tree_nlen *newBrother, AP_tree_root *troot) { | 
|---|
| 224 | // construct initial tree from 'this' and 'newBrother' | 
|---|
| 225 | // (both have to be leafs) | 
|---|
| 226 |  | 
|---|
| 227 | ap_assert(newBrother); | 
|---|
| 228 | ap_assert(is_leaf); | 
|---|
| 229 | ap_assert(newBrother->is_leaf); | 
|---|
| 230 |  | 
|---|
| 231 | AP_tree::initial_insert(newBrother, troot); | 
|---|
| 232 | new AP_tree_edge(newBrother, this); // build the root edge | 
|---|
| 233 |  | 
|---|
| 234 | ASSERT_VALID_TREE(this->get_father()); | 
|---|
| 235 | } | 
|---|
| 236 |  | 
|---|
| 237 | void AP_tree_nlen::insert(AP_tree_nlen *newBrother) { | 
|---|
| 238 | //  inserts 'this' (a new node) at the father-edge of 'newBrother' | 
|---|
| 239 | ap_assert(newBrother); | 
|---|
| 240 |  | 
|---|
| 241 | ASSERT_VALID_TREE(this); | 
|---|
| 242 | ASSERT_VALID_TREE(newBrother); | 
|---|
| 243 |  | 
|---|
| 244 | ap_main->push_node(newBrother, STRUCTURE); | 
|---|
| 245 |  | 
|---|
| 246 | AP_tree_nlen *brothersFather = newBrother->get_father(); | 
|---|
| 247 | if (brothersFather) { | 
|---|
| 248 | ap_main->push_node(brothersFather, BOTH); | 
|---|
| 249 | push_all_upnode_sequences(brothersFather); | 
|---|
| 250 |  | 
|---|
| 251 | if (brothersFather->get_father()) { | 
|---|
| 252 | AP_tree_edge *oldEdge = newBrother->edgeTo(newBrother->get_father())->unlink(); | 
|---|
| 253 | AP_tree::insert(newBrother); | 
|---|
| 254 | oldEdge->relink(get_father(), get_father()->get_father()); | 
|---|
| 255 | } | 
|---|
| 256 | else { // insert to son of root | 
|---|
| 257 | AP_tree_edge *oldEdge = newBrother->edgeTo(newBrother->get_brother())->unlink(); | 
|---|
| 258 | AP_tree::insert(newBrother); | 
|---|
| 259 | oldEdge->relink(get_father(), get_father()->get_brother()); | 
|---|
| 260 | } | 
|---|
| 261 |  | 
|---|
| 262 | new AP_tree_edge(this, get_father()); | 
|---|
| 263 | new AP_tree_edge(get_father(), newBrother); | 
|---|
| 264 |  | 
|---|
| 265 | ASSERT_VALID_TREE(get_father()->get_father()); | 
|---|
| 266 | } | 
|---|
| 267 | else { // insert at root | 
|---|
| 268 | ap_assert(!newBrother->is_leaf); // either swap 'this' and 'newBrother' or use initial_insert() to construct the initial tree | 
|---|
| 269 |  | 
|---|
| 270 | AP_tree_nlen *lson = newBrother->get_leftson(); | 
|---|
| 271 | AP_tree_nlen *rson = newBrother->get_rightson(); | 
|---|
| 272 |  | 
|---|
| 273 | ap_main->push_node(lson, STRUCTURE); | 
|---|
| 274 | ap_main->push_node(rson, STRUCTURE); | 
|---|
| 275 |  | 
|---|
| 276 | AP_tree_edge *oldEdge = lson->edgeTo(rson)->unlink(); | 
|---|
| 277 |  | 
|---|
| 278 | AP_tree::insert(newBrother); | 
|---|
| 279 |  | 
|---|
| 280 | oldEdge->relink(this, newBrother); | 
|---|
| 281 | new AP_tree_edge(newBrother, rson); | 
|---|
| 282 | new AP_tree_edge(newBrother, lson); | 
|---|
| 283 |  | 
|---|
| 284 | ASSERT_VALID_TREE(get_father()); | 
|---|
| 285 | } | 
|---|
| 286 | } | 
|---|
| 287 |  | 
|---|
| 288 | void AP_tree_nlen::remove() { | 
|---|
| 289 | // Removes the node and its father from the tree: | 
|---|
| 290 | // | 
|---|
| 291 | //       grandpa                grandpa | 
|---|
| 292 | //           /                    / | 
|---|
| 293 | //          /                    / | 
|---|
| 294 | //    father        =>        brother | 
|---|
| 295 | //       /     \                                            . | 
|---|
| 296 | //      /       \                                           . | 
|---|
| 297 | //   this       brother | 
|---|
| 298 | // | 
|---|
| 299 | // One of the edges is relinked between brother and grandpa. | 
|---|
| 300 | // The other two edges are lost. This is not very relevant in respect to | 
|---|
| 301 | // memory usage because very few remove()s are really performed - the majority | 
|---|
| 302 | // is undone by a pop(). | 
|---|
| 303 | // In the last case the two unlinked edges will be re-used, cause their | 
|---|
| 304 | // memory location was stored in the tree-stack. | 
|---|
| 305 |  | 
|---|
| 306 | AP_tree_nlen *oldBrother = get_brother(); | 
|---|
| 307 |  | 
|---|
| 308 | ASSERT_VALID_TREE(this); | 
|---|
| 309 |  | 
|---|
| 310 | ap_assert(father); // can't remove complete tree, | 
|---|
| 311 |  | 
|---|
| 312 | ap_main->push_node(this, STRUCTURE); | 
|---|
| 313 | ap_main->push_node(oldBrother, STRUCTURE); | 
|---|
| 314 | push_all_upnode_sequences(get_father()); | 
|---|
| 315 |  | 
|---|
| 316 | AP_tree_edge *oldEdge; | 
|---|
| 317 | AP_tree_nlen *grandPa = get_father()->get_father(); | 
|---|
| 318 | if (grandPa) { | 
|---|
| 319 | ASSERT_VALID_TREE(grandPa); | 
|---|
| 320 |  | 
|---|
| 321 | ap_main->push_node(get_father(), BOTH); | 
|---|
| 322 | ap_main->push_node(grandPa, STRUCTURE); | 
|---|
| 323 |  | 
|---|
| 324 | edgeTo(get_father())->unlink();                 // LOST_EDGE | 
|---|
| 325 | get_father()->edgeTo(oldBrother)->unlink();     // LOST_EDGE | 
|---|
| 326 |  | 
|---|
| 327 | if (grandPa->father) { | 
|---|
| 328 | oldEdge = get_father()->edgeTo(grandPa)->unlink(); | 
|---|
| 329 | AP_tree::remove(); | 
|---|
| 330 | oldEdge->relink(oldBrother, grandPa); | 
|---|
| 331 | } | 
|---|
| 332 | else { // remove grandson of root | 
|---|
| 333 | AP_tree_nlen *uncle = get_father()->get_brother(); | 
|---|
| 334 | ap_main->push_node(uncle, STRUCTURE); | 
|---|
| 335 |  | 
|---|
| 336 | oldEdge = get_father()->edgeTo(uncle)->unlink(); | 
|---|
| 337 | AP_tree::remove(); | 
|---|
| 338 | oldEdge->relink(oldBrother, uncle); | 
|---|
| 339 | } | 
|---|
| 340 | ASSERT_VALID_TREE(grandPa); | 
|---|
| 341 | } | 
|---|
| 342 | else {                                          // remove son of root | 
|---|
| 343 | AP_tree_nlen *oldRoot = get_father(); | 
|---|
| 344 | ASSERT_VALID_TREE(oldRoot); | 
|---|
| 345 |  | 
|---|
| 346 | if (oldBrother->is_leaf) { | 
|---|
| 347 | //           root | 
|---|
| 348 | //            oo | 
|---|
| 349 | //           o  o | 
|---|
| 350 | //          o    o | 
|---|
| 351 | // oldBrother --- this         ----->   NULL | 
|---|
| 352 | // | 
|---|
| 353 | ap_main->push_node(oldRoot, ROOT); | 
|---|
| 354 |  | 
|---|
| 355 | edgeTo(oldBrother)->unlink();           // LOST_EDGE | 
|---|
| 356 |  | 
|---|
| 357 | #if defined(ASSERTION_USED) | 
|---|
| 358 | AP_tree_root *troot = get_tree_root(); | 
|---|
| 359 | #endif // ASSERTION_USED | 
|---|
| 360 | AP_tree::remove(); | 
|---|
| 361 | ap_assert(!troot->get_root_node()); // tree should have been removed | 
|---|
| 362 | } | 
|---|
| 363 | else { | 
|---|
| 364 | // | 
|---|
| 365 | //           root | 
|---|
| 366 | //            oo                                                              . | 
|---|
| 367 | //           o  o                                     root (=oldBrother) | 
|---|
| 368 | //          o    o                                     oo                      . | 
|---|
| 369 | // oldBrother --- this          ----->                o  o                     . | 
|---|
| 370 | //       /\                                          o    o                    . | 
|---|
| 371 | //      /  \                                     lson ----- rson | 
|---|
| 372 | //     /    \                                                                . | 
|---|
| 373 | //    lson  rson | 
|---|
| 374 | // | 
|---|
| 375 | AP_tree_nlen *lson = oldBrother->get_leftson(); | 
|---|
| 376 | AP_tree_nlen *rson = oldBrother->get_rightson(); | 
|---|
| 377 |  | 
|---|
| 378 | ap_assert(lson && rson); | 
|---|
| 379 |  | 
|---|
| 380 | ap_main->push_node(lson, STRUCTURE); | 
|---|
| 381 | ap_main->push_node(rson, STRUCTURE); | 
|---|
| 382 | ap_main->push_node(oldRoot, ROOT); | 
|---|
| 383 |  | 
|---|
| 384 | edgeTo(oldBrother)->unlink();           // LOST_EDGE | 
|---|
| 385 | oldBrother->edgeTo(lson)->unlink();     // LOST_EDGE | 
|---|
| 386 |  | 
|---|
| 387 | oldEdge = oldBrother->edgeTo(rson)->unlink(); | 
|---|
| 388 | AP_tree::remove(); | 
|---|
| 389 | oldEdge->relink(lson, rson); | 
|---|
| 390 |  | 
|---|
| 391 | ap_assert(lson->get_tree_root()->get_root_node() == oldBrother); | 
|---|
| 392 | ASSERT_VALID_TREE(oldBrother); | 
|---|
| 393 | } | 
|---|
| 394 | } | 
|---|
| 395 |  | 
|---|
| 396 | father = NULL; | 
|---|
| 397 | set_tree_root(NULL); | 
|---|
| 398 |  | 
|---|
| 399 | ASSERT_VALID_TREE(this); | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 | void AP_tree_nlen::swap_sons() { | 
|---|
| 403 | ap_assert(!is_leaf); // cannot swap leafs | 
|---|
| 404 |  | 
|---|
| 405 | ap_main->push_node(this, STRUCTURE); | 
|---|
| 406 | AP_tree::swap_sons(); | 
|---|
| 407 | } | 
|---|
| 408 |  | 
|---|
| 409 | void AP_tree_nlen::swap_assymetric(AP_TREE_SIDE mode) { | 
|---|
| 410 | // mode AP_LEFT exchanges leftson with brother | 
|---|
| 411 | // mode AP_RIGHT exchanges rightson with brother | 
|---|
| 412 |  | 
|---|
| 413 | ap_assert(!is_leaf);                            // cannot swap leafs | 
|---|
| 414 | ap_assert(father);                              // cannot swap root (has no brother) | 
|---|
| 415 | ap_assert(mode == AP_LEFT || mode == AP_RIGHT); // illegal mode | 
|---|
| 416 |  | 
|---|
| 417 | AP_tree_nlen *oldBrother = get_brother(); | 
|---|
| 418 | AP_tree_nlen *movedSon   = mode == AP_LEFT ? get_leftson() : get_rightson(); | 
|---|
| 419 |  | 
|---|
| 420 | if (!father->father) { | 
|---|
| 421 | // son of root case | 
|---|
| 422 | // take leftson of brother to exchange with | 
|---|
| 423 |  | 
|---|
| 424 | if (!oldBrother->is_leaf) { // swap needed ? | 
|---|
| 425 | AP_tree_nlen *nephew = oldBrother->get_leftson(); | 
|---|
| 426 |  | 
|---|
| 427 | ap_main->push_node(this, BOTH); | 
|---|
| 428 | ap_main->push_node(movedSon, STRUCTURE); | 
|---|
| 429 | ap_main->push_node(get_father(), SEQUENCE); | 
|---|
| 430 | ap_main->push_node(nephew, STRUCTURE); | 
|---|
| 431 | ap_main->push_node(oldBrother, BOTH); | 
|---|
| 432 |  | 
|---|
| 433 | AP_tree_edge *edge1 = edgeTo(movedSon)->unlink(); | 
|---|
| 434 | AP_tree_edge *edge2 = oldBrother->edgeTo(nephew)->unlink(); | 
|---|
| 435 |  | 
|---|
| 436 | AP_tree::swap_assymetric(mode); | 
|---|
| 437 |  | 
|---|
| 438 | edge1->relink(this, nephew); | 
|---|
| 439 | edge2->relink(oldBrother, movedSon); | 
|---|
| 440 | } | 
|---|
| 441 | } | 
|---|
| 442 | else { | 
|---|
| 443 | ap_main->push_node(this, BOTH); | 
|---|
| 444 | ap_main->push_node(get_father(), BOTH); | 
|---|
| 445 | ap_main->push_node(oldBrother, STRUCTURE); | 
|---|
| 446 | ap_main->push_node(movedSon, STRUCTURE); | 
|---|
| 447 |  | 
|---|
| 448 | push_all_upnode_sequences(get_father()); | 
|---|
| 449 |  | 
|---|
| 450 | AP_tree_edge *edge1 = edgeTo(movedSon)->unlink(); | 
|---|
| 451 | AP_tree_edge *edge2 = get_father()->edgeTo(oldBrother)->unlink(); | 
|---|
| 452 |  | 
|---|
| 453 | AP_tree::swap_assymetric(mode); | 
|---|
| 454 |  | 
|---|
| 455 | edge1->relink(this, oldBrother); | 
|---|
| 456 | edge2->relink(get_father(), movedSon); | 
|---|
| 457 | } | 
|---|
| 458 | } | 
|---|
| 459 |  | 
|---|
| 460 | void AP_tree_nlen::set_root() { | 
|---|
| 461 | if (at_root()) return; // already root | 
|---|
| 462 |  | 
|---|
| 463 | // from this to root buffer the nodes | 
|---|
| 464 | ap_main->push_node(this,  STRUCTURE); | 
|---|
| 465 |  | 
|---|
| 466 | AP_tree_nlen *old_brother = 0; | 
|---|
| 467 | AP_tree_nlen *old_root    = 0; | 
|---|
| 468 | { | 
|---|
| 469 | AP_tree_nlen *pntr; | 
|---|
| 470 | for (pntr = get_father(); pntr->father; pntr = pntr->get_father()) { | 
|---|
| 471 | ap_main->push_node(pntr, BOTH); | 
|---|
| 472 | old_brother = pntr; | 
|---|
| 473 | } | 
|---|
| 474 | old_root = pntr; | 
|---|
| 475 | } | 
|---|
| 476 |  | 
|---|
| 477 | if (old_brother) { | 
|---|
| 478 | old_brother = old_brother->get_brother(); | 
|---|
| 479 | ap_main->push_node(old_brother,  STRUCTURE); | 
|---|
| 480 | } | 
|---|
| 481 |  | 
|---|
| 482 | ap_main->push_node(old_root, ROOT); | 
|---|
| 483 | AP_tree::set_root(); | 
|---|
| 484 | } | 
|---|
| 485 |  | 
|---|
| 486 | void AP_tree_nlen::moveNextTo(AP_tree_nlen *newBrother, AP_FLOAT rel_pos) { | 
|---|
| 487 | ap_assert(father); | 
|---|
| 488 | ap_assert(newBrother->father); | 
|---|
| 489 |  | 
|---|
| 490 | ASSERT_VALID_TREE(rootNode()); | 
|---|
| 491 |  | 
|---|
| 492 | // push everything that will be modified onto stack | 
|---|
| 493 | ap_main->push_node(this,  STRUCTURE); | 
|---|
| 494 | ap_main->push_node(get_brother(), STRUCTURE); | 
|---|
| 495 |  | 
|---|
| 496 | if (father->father) { | 
|---|
| 497 | AP_tree_nlen *grandpa = get_father()->get_father(); | 
|---|
| 498 |  | 
|---|
| 499 | ap_main->push_node(get_father(), BOTH); | 
|---|
| 500 |  | 
|---|
| 501 | if (grandpa->father) { | 
|---|
| 502 | ap_main->push_node(grandpa, BOTH); | 
|---|
| 503 | push_all_upnode_sequences(grandpa); | 
|---|
| 504 | } | 
|---|
| 505 | else { // grandson of root | 
|---|
| 506 | ap_main->push_node(grandpa, ROOT); | 
|---|
| 507 | ap_main->push_node(get_father()->get_brother(), STRUCTURE); | 
|---|
| 508 | } | 
|---|
| 509 | } | 
|---|
| 510 | else { // son of root | 
|---|
| 511 | ap_main->push_node(get_father(), ROOT); | 
|---|
| 512 |  | 
|---|
| 513 | if (!get_brother()->is_leaf) { | 
|---|
| 514 | ap_main->push_node(get_brother()->get_leftson(), STRUCTURE); | 
|---|
| 515 | ap_main->push_node(get_brother()->get_rightson(), STRUCTURE); | 
|---|
| 516 | } | 
|---|
| 517 | } | 
|---|
| 518 |  | 
|---|
| 519 | ap_main->push_node(newBrother,  STRUCTURE); | 
|---|
| 520 | if (newBrother->father) { | 
|---|
| 521 | if (newBrother->father->father) { | 
|---|
| 522 | ap_main->push_node(newBrother->get_father(), BOTH); | 
|---|
| 523 | } | 
|---|
| 524 | else { // move to son of root | 
|---|
| 525 | ap_main->push_node(newBrother->get_father(), BOTH); | 
|---|
| 526 | ap_main->push_node(newBrother->get_brother(), STRUCTURE); | 
|---|
| 527 | } | 
|---|
| 528 | push_all_upnode_sequences(newBrother->get_father()); | 
|---|
| 529 | } | 
|---|
| 530 |  | 
|---|
| 531 | AP_tree_nlen *thisFather        = get_father(); | 
|---|
| 532 | AP_tree_nlen *grandFather       = thisFather->get_father(); | 
|---|
| 533 | AP_tree_nlen *oldBrother        = get_brother(); | 
|---|
| 534 | AP_tree_nlen *newBrothersFather = newBrother->get_father(); | 
|---|
| 535 | int           edgesChange       = ! (father==newBrother || newBrother->father==father); | 
|---|
| 536 | AP_tree_edge *e1, *e2, *e3; | 
|---|
| 537 |  | 
|---|
| 538 | if (edgesChange) { | 
|---|
| 539 | if (thisFather==newBrothersFather->get_father()) { // son -> son of brother | 
|---|
| 540 | if (grandFather) { | 
|---|
| 541 | if (grandFather->get_father()) { | 
|---|
| 542 | thisFather->unlinkAllEdges(&e1, &e2, &e3); | 
|---|
| 543 | AP_tree_edge *e4 = newBrother->edgeTo(oldBrother)->unlink(); | 
|---|
| 544 |  | 
|---|
| 545 | AP_tree::moveNextTo(newBrother, rel_pos); | 
|---|
| 546 |  | 
|---|
| 547 | sortOldestFirst(&e1, &e2, &e3); | 
|---|
| 548 | e1->relink(oldBrother, grandFather); // use oldest edge at remove position | 
|---|
| 549 | thisFather->linkAllEdges(e2, e3, e4); | 
|---|
| 550 | } | 
|---|
| 551 | else { // grandson of root -> son of brother | 
|---|
| 552 | AP_tree_nlen *uncle = thisFather->get_brother(); | 
|---|
| 553 |  | 
|---|
| 554 | thisFather->unlinkAllEdges(&e1, &e2, &e3); | 
|---|
| 555 | AP_tree_edge *e4 = newBrother->edgeTo(oldBrother)->unlink(); | 
|---|
| 556 |  | 
|---|
| 557 | AP_tree::moveNextTo(newBrother, rel_pos); | 
|---|
| 558 |  | 
|---|
| 559 | sortOldestFirst(&e1, &e2, &e3); | 
|---|
| 560 | e1->relink(oldBrother, uncle); | 
|---|
| 561 | thisFather->linkAllEdges(e2, e3, e4); | 
|---|
| 562 | } | 
|---|
| 563 | } | 
|---|
| 564 | else { // son of root -> grandson of root | 
|---|
| 565 | oldBrother->unlinkAllEdges(&e1, &e2, &e3); | 
|---|
| 566 | AP_tree::moveNextTo(newBrother, rel_pos); | 
|---|
| 567 | thisFather->linkAllEdges(e1, e2, e3); | 
|---|
| 568 | } | 
|---|
| 569 | } | 
|---|
| 570 | else if (grandFather==newBrothersFather) { // son -> brother of father | 
|---|
| 571 | if (grandFather->father) { | 
|---|
| 572 | thisFather->unlinkAllEdges(&e1, &e2, &e3); | 
|---|
| 573 | AP_tree_edge *e4 = grandFather->edgeTo(newBrother)->unlink(); | 
|---|
| 574 |  | 
|---|
| 575 | AP_tree::moveNextTo(newBrother, rel_pos); | 
|---|
| 576 |  | 
|---|
| 577 | sortOldestFirst(&e1, &e2, &e3); | 
|---|
| 578 | e1->relink(oldBrother, grandFather); | 
|---|
| 579 | thisFather->linkAllEdges(e2, e3, e4); | 
|---|
| 580 | } | 
|---|
| 581 | else { // no edges change if we move grandson of root -> son of root | 
|---|
| 582 | AP_tree::moveNextTo(newBrother, rel_pos); | 
|---|
| 583 | } | 
|---|
| 584 | } | 
|---|
| 585 | else { | 
|---|
| 586 | //  now we are sure, the minimal distance | 
|---|
| 587 | //  between 'this' and 'newBrother' is 4 edges | 
|---|
| 588 | //  or if the root-edge is between them, the | 
|---|
| 589 | //  minimal distance is 3 edges | 
|---|
| 590 |  | 
|---|
| 591 | if (!grandFather) { // son of root | 
|---|
| 592 | oldBrother->unlinkAllEdges(&e1, &e2, &e3); | 
|---|
| 593 | AP_tree_edge *e4 = newBrother->edgeTo(newBrothersFather)->unlink(); | 
|---|
| 594 |  | 
|---|
| 595 | AP_tree::moveNextTo(newBrother, rel_pos); | 
|---|
| 596 |  | 
|---|
| 597 | sortOldestFirst(&e1, &e2, &e3); | 
|---|
| 598 | e1->relink(oldBrother->get_leftson(), oldBrother->get_rightson()); // new root-edge | 
|---|
| 599 | thisFather->linkAllEdges(e2, e3, e4);   // old root | 
|---|
| 600 | } | 
|---|
| 601 | else if (!grandFather->get_father()) { // grandson of root | 
|---|
| 602 | if (newBrothersFather->get_father()->get_father()==NULL) { // grandson of root -> grandson of root | 
|---|
| 603 | thisFather->unlinkAllEdges(&e1, &e2, &e3); | 
|---|
| 604 | AP_tree_edge *e4 = newBrother->edgeTo(newBrothersFather)->unlink(); | 
|---|
| 605 |  | 
|---|
| 606 | AP_tree::moveNextTo(newBrother, rel_pos); | 
|---|
| 607 |  | 
|---|
| 608 | sortOldestFirst(&e1, &e2, &e3); | 
|---|
| 609 | e1->relink(oldBrother, newBrothersFather);  // new root-edge | 
|---|
| 610 | thisFather->linkAllEdges(e2, e3, e4); | 
|---|
| 611 | } | 
|---|
| 612 | else { | 
|---|
| 613 | AP_tree_nlen *uncle = thisFather->get_brother(); | 
|---|
| 614 |  | 
|---|
| 615 | thisFather->unlinkAllEdges(&e1, &e2, &e3); | 
|---|
| 616 | AP_tree_edge *e4 = newBrother->edgeTo(newBrothersFather)->unlink(); | 
|---|
| 617 |  | 
|---|
| 618 | AP_tree::moveNextTo(newBrother, rel_pos); | 
|---|
| 619 |  | 
|---|
| 620 | sortOldestFirst(&e1, &e2, &e3); | 
|---|
| 621 | e1->relink(oldBrother, uncle); | 
|---|
| 622 | thisFather->linkAllEdges(e2, e3, e4); | 
|---|
| 623 | } | 
|---|
| 624 | } | 
|---|
| 625 | else { | 
|---|
| 626 | if (newBrothersFather->get_father()==NULL) { // move to son of root | 
|---|
| 627 | AP_tree_nlen *newBrothersBrother = newBrother->get_brother(); | 
|---|
| 628 |  | 
|---|
| 629 | thisFather->unlinkAllEdges(&e1, &e2, &e3); | 
|---|
| 630 | AP_tree_edge *e4 = newBrother->edgeTo(newBrothersBrother)->unlink(); | 
|---|
| 631 |  | 
|---|
| 632 | AP_tree::moveNextTo(newBrother, rel_pos); | 
|---|
| 633 |  | 
|---|
| 634 | sortOldestFirst(&e1, &e2, &e3); | 
|---|
| 635 | e1->relink(oldBrother, grandFather); | 
|---|
| 636 | thisFather->linkAllEdges(e2, e3, e4); | 
|---|
| 637 | } | 
|---|
| 638 | else { // simple independent move | 
|---|
| 639 | thisFather->unlinkAllEdges(&e1, &e2, &e3); | 
|---|
| 640 | AP_tree_edge *e4 = newBrother->edgeTo(newBrothersFather)->unlink(); | 
|---|
| 641 |  | 
|---|
| 642 | AP_tree::moveNextTo(newBrother, rel_pos); | 
|---|
| 643 |  | 
|---|
| 644 | sortOldestFirst(&e1, &e2, &e3); | 
|---|
| 645 | e1->relink(oldBrother, grandFather); | 
|---|
| 646 | thisFather->linkAllEdges(e2, e3, e4); | 
|---|
| 647 | } | 
|---|
| 648 | } | 
|---|
| 649 | } | 
|---|
| 650 | } | 
|---|
| 651 | else { // edgesChange==0 | 
|---|
| 652 | AP_tree::moveNextTo(newBrother, rel_pos); | 
|---|
| 653 | } | 
|---|
| 654 |  | 
|---|
| 655 | ASSERT_VALID_TREE(this); | 
|---|
| 656 | ASSERT_VALID_TREE(rootNode()); | 
|---|
| 657 | } | 
|---|
| 658 |  | 
|---|
| 659 | void AP_tree_nlen::unhash_sequence() { | 
|---|
| 660 | /*! removes the parsimony sequence from an inner node | 
|---|
| 661 | * (has no effect for leafs) | 
|---|
| 662 | */ | 
|---|
| 663 |  | 
|---|
| 664 | AP_sequence *sequence = get_seq(); | 
|---|
| 665 | if (sequence && !is_leaf) sequence->forget_sequence(); | 
|---|
| 666 | } | 
|---|
| 667 |  | 
|---|
| 668 | bool AP_tree_nlen::clear(unsigned long datum, unsigned long user_buffer_count) { | 
|---|
| 669 | // returns | 
|---|
| 670 | // - true           if the first element is removed | 
|---|
| 671 | // - false          if it is copied into the previous level | 
|---|
| 672 | // according if user_buffer is greater than datum (wot?) | 
|---|
| 673 |  | 
|---|
| 674 | if (stack_level != datum) { | 
|---|
| 675 | ap_assert(0); // internal control number check failed | 
|---|
| 676 | return false; | 
|---|
| 677 | } | 
|---|
| 678 |  | 
|---|
| 679 | AP_tree_buffer * buff = stack.pop(); | 
|---|
| 680 | bool             result; | 
|---|
| 681 |  | 
|---|
| 682 | if (buff->controll == datum - 1 || user_buffer_count >= datum) { | 
|---|
| 683 | // previous node is buffered | 
|---|
| 684 |  | 
|---|
| 685 | if (buff->mode & SEQUENCE) delete buff->sequence; | 
|---|
| 686 |  | 
|---|
| 687 | stack_level = buff->controll; | 
|---|
| 688 | delete  buff; | 
|---|
| 689 | result      = true; | 
|---|
| 690 | } | 
|---|
| 691 | else { | 
|---|
| 692 | stack_level = datum - 1; | 
|---|
| 693 | stack.push(buff); | 
|---|
| 694 | result      = false; | 
|---|
| 695 | } | 
|---|
| 696 |  | 
|---|
| 697 | return result; | 
|---|
| 698 | } | 
|---|
| 699 |  | 
|---|
| 700 |  | 
|---|
| 701 | bool AP_tree_nlen::push(AP_STACK_MODE mode, unsigned long datum) { | 
|---|
| 702 | // according to mode | 
|---|
| 703 | // tree_structure or sequence is buffered in the node | 
|---|
| 704 |  | 
|---|
| 705 | AP_tree_buffer *new_buff; | 
|---|
| 706 | bool            ret; | 
|---|
| 707 |  | 
|---|
| 708 | if (is_leaf && !(STRUCTURE & mode)) return false;    // tips push only structure | 
|---|
| 709 |  | 
|---|
| 710 | if (this->stack_level == datum) { | 
|---|
| 711 | AP_tree_buffer *last_buffer = stack.get_first(); | 
|---|
| 712 | AP_sequence    *sequence    = get_seq(); | 
|---|
| 713 |  | 
|---|
| 714 | if (sequence && (mode & SEQUENCE)) sequence->forget_sequence(); | 
|---|
| 715 | if (0 == (mode & ~last_buffer->mode)) { // already buffered | 
|---|
| 716 | return false; | 
|---|
| 717 | } | 
|---|
| 718 | new_buff = last_buffer; | 
|---|
| 719 | ret = false; | 
|---|
| 720 | } | 
|---|
| 721 | else { | 
|---|
| 722 | new_buff           = new AP_tree_buffer; | 
|---|
| 723 | new_buff->count    = 1; | 
|---|
| 724 | new_buff->controll = stack_level; | 
|---|
| 725 | new_buff->mode     = NOTHING; | 
|---|
| 726 |  | 
|---|
| 727 | stack.push(new_buff); | 
|---|
| 728 | this->stack_level = datum; | 
|---|
| 729 | ret = true; | 
|---|
| 730 | } | 
|---|
| 731 |  | 
|---|
| 732 | if ((mode & STRUCTURE) && !(new_buff->mode & STRUCTURE)) { | 
|---|
| 733 | new_buff->father   = get_father(); | 
|---|
| 734 | new_buff->leftson  = get_leftson(); | 
|---|
| 735 | new_buff->rightson = get_rightson(); | 
|---|
| 736 | new_buff->leftlen  = leftlen; | 
|---|
| 737 | new_buff->rightlen = rightlen; | 
|---|
| 738 | new_buff->root     = get_tree_root(); | 
|---|
| 739 | new_buff->gb_node  = gb_node; | 
|---|
| 740 | new_buff->distance = distance; | 
|---|
| 741 |  | 
|---|
| 742 | for (int e=0; e<3; e++) { | 
|---|
| 743 | new_buff->edge[e]      = edge[e]; | 
|---|
| 744 | new_buff->edgeIndex[e] = index[e]; | 
|---|
| 745 | if (edge[e]) { | 
|---|
| 746 | new_buff->edgeData[e]  = edge[e]->data; | 
|---|
| 747 | } | 
|---|
| 748 | } | 
|---|
| 749 | } | 
|---|
| 750 |  | 
|---|
| 751 | if ((mode & SEQUENCE) && !(new_buff->mode & SEQUENCE)) { | 
|---|
| 752 | AP_sequence *sequence   = take_seq(); | 
|---|
| 753 | new_buff->sequence      = sequence; | 
|---|
| 754 | new_buff->mutation_rate = mutation_rate; | 
|---|
| 755 | mutation_rate           = 0.0; | 
|---|
| 756 | } | 
|---|
| 757 |  | 
|---|
| 758 | new_buff->mode = (AP_STACK_MODE)(new_buff->mode|mode); | 
|---|
| 759 |  | 
|---|
| 760 | return ret; | 
|---|
| 761 | } | 
|---|
| 762 |  | 
|---|
| 763 | void AP_tree_nlen::pop(unsigned long IF_ASSERTION_USED(datum)) { // pop old tree costs | 
|---|
| 764 | ap_assert(stack_level == datum); // error in node stack | 
|---|
| 765 |  | 
|---|
| 766 | AP_tree_buffer *buff = stack.pop(); | 
|---|
| 767 | AP_STACK_MODE   mode = buff->mode; | 
|---|
| 768 |  | 
|---|
| 769 | if (mode&STRUCTURE) { | 
|---|
| 770 | father   = buff->father; | 
|---|
| 771 | leftson  = buff->leftson; | 
|---|
| 772 | rightson = buff->rightson; | 
|---|
| 773 | leftlen  = buff->leftlen; | 
|---|
| 774 | rightlen = buff->rightlen; | 
|---|
| 775 | set_tree_root(buff->root); | 
|---|
| 776 | gb_node  = buff->gb_node; | 
|---|
| 777 | distance = buff->distance; | 
|---|
| 778 |  | 
|---|
| 779 | for (int e=0; e<3; e++) { | 
|---|
| 780 | edge[e] = buff->edge[e]; | 
|---|
| 781 |  | 
|---|
| 782 | if (edge[e]) { | 
|---|
| 783 | index[e] = buff->edgeIndex[e]; | 
|---|
| 784 |  | 
|---|
| 785 | edge[e]->index[index[e]] = e; | 
|---|
| 786 | edge[e]->node[index[e]]  = this; | 
|---|
| 787 | edge[e]->data            = buff->edgeData[e]; | 
|---|
| 788 | } | 
|---|
| 789 | } | 
|---|
| 790 | } | 
|---|
| 791 |  | 
|---|
| 792 | if (mode&SEQUENCE) { | 
|---|
| 793 | replace_seq(buff->sequence); | 
|---|
| 794 | mutation_rate = buff->mutation_rate; | 
|---|
| 795 | } | 
|---|
| 796 |  | 
|---|
| 797 | if (ROOT==mode) { | 
|---|
| 798 | buff->root->change_root(buff->root->get_root_node(), this); | 
|---|
| 799 | } | 
|---|
| 800 |  | 
|---|
| 801 | stack_level = buff->controll; | 
|---|
| 802 | delete buff; | 
|---|
| 803 | } | 
|---|
| 804 |  | 
|---|
| 805 | void AP_tree_nlen::parsimony_rek(char *mutPerSite) { | 
|---|
| 806 | AP_sequence *sequence = get_seq(); | 
|---|
| 807 |  | 
|---|
| 808 | if (is_leaf) { | 
|---|
| 809 | ap_assert(sequence); // tree w/o aliview? | 
|---|
| 810 | sequence->ensure_sequence_loaded(); | 
|---|
| 811 | } | 
|---|
| 812 | else { | 
|---|
| 813 | if (!sequence) { | 
|---|
| 814 | sequence = set_seq(get_tree_root()->get_seqTemplate()->dup()); | 
|---|
| 815 | ap_assert(sequence); | 
|---|
| 816 | } | 
|---|
| 817 |  | 
|---|
| 818 | if (!sequence->got_sequence()) { | 
|---|
| 819 | AP_tree_nlen *lson = get_leftson(); | 
|---|
| 820 | AP_tree_nlen *rson = get_rightson(); | 
|---|
| 821 |  | 
|---|
| 822 | ap_assert(lson); | 
|---|
| 823 | ap_assert(rson); | 
|---|
| 824 |  | 
|---|
| 825 | lson->parsimony_rek(mutPerSite); | 
|---|
| 826 | rson->parsimony_rek(mutPerSite); | 
|---|
| 827 |  | 
|---|
| 828 | AP_sequence *lseq = lson->get_seq(); | 
|---|
| 829 | AP_sequence *rseq = rson->get_seq(); | 
|---|
| 830 |  | 
|---|
| 831 | ap_assert(lseq); | 
|---|
| 832 | ap_assert(rseq); | 
|---|
| 833 |  | 
|---|
| 834 | AP_FLOAT mutations_for_combine = sequence->combine(lseq, rseq, mutPerSite); | 
|---|
| 835 | mutation_rate                  = lson->mutation_rate + rson->mutation_rate + mutations_for_combine; | 
|---|
| 836 | } | 
|---|
| 837 | } | 
|---|
| 838 | } | 
|---|
| 839 |  | 
|---|
| 840 | AP_FLOAT AP_tree_nlen::costs(char *mutPerSite) { | 
|---|
| 841 | // returns costs of a tree ( = number of mutations) | 
|---|
| 842 |  | 
|---|
| 843 | ap_assert(get_tree_root()->get_seqTemplate());  // forgot to set_seqTemplate() ?  (previously returned 0.0 in this case) | 
|---|
| 844 | parsimony_rek(mutPerSite); | 
|---|
| 845 | return mutation_rate; | 
|---|
| 846 | } | 
|---|
| 847 |  | 
|---|
| 848 | AP_FLOAT AP_tree_nlen::nn_interchange_rek(int deep, AP_BL_MODE mode, bool skip_hidden) | 
|---|
| 849 | { | 
|---|
| 850 | if (!father) | 
|---|
| 851 | { | 
|---|
| 852 | return rootEdge()->nni_rek(deep, skip_hidden, mode, NULL); | 
|---|
| 853 | } | 
|---|
| 854 |  | 
|---|
| 855 | if (!father->father) | 
|---|
| 856 | { | 
|---|
| 857 | AP_tree_edge *e = rootEdge(); | 
|---|
| 858 |  | 
|---|
| 859 | return e->nni_rek(deep, skip_hidden, mode, e->otherNode(this)); | 
|---|
| 860 | } | 
|---|
| 861 |  | 
|---|
| 862 | return edgeTo(get_father())->nni_rek(deep, skip_hidden, mode, get_father()); | 
|---|
| 863 | } | 
|---|
| 864 |  | 
|---|
| 865 |  | 
|---|
| 866 | void AP_tree_nlen::kernighan_rek(int rek_deep, int *rek_2_width, int rek_2_width_max, const int rek_deep_max, | 
|---|
| 867 | double(*function) (double, double *, int), double *param_liste, int param_anz, | 
|---|
| 868 | AP_FLOAT pars_best, AP_FLOAT pars_start, AP_FLOAT pars_prev, | 
|---|
| 869 | AP_KL_FLAG rek_width_type, bool *abort_flag) | 
|---|
| 870 | { | 
|---|
| 871 | // | 
|---|
| 872 | // rek_deep         Rekursionstiefe | 
|---|
| 873 | // rek_2_width      Verzweigungsgrad | 
|---|
| 874 | // neg_counter      zaehler fuer die Aeste in denen Kerninghan Lin schon angewendet wurde | 
|---|
| 875 | // function         Funktion fuer den dynamischen Schwellwert | 
|---|
| 876 | // pars_            Verschiedene Parsimonywerte | 
|---|
| 877 |  | 
|---|
| 878 | AP_FLOAT help, pars[8]; | 
|---|
| 879 | // acht parsimony werte | 
|---|
| 880 | AP_tree_nlen * pars_refpntr[8]; | 
|---|
| 881 | // zeiger auf die naechsten Aeste | 
|---|
| 882 | int             help_ref, pars_ref[8]; | 
|---|
| 883 | // referenzen auf die vertauschten parsimonies | 
|---|
| 884 | static AP_TREE_SIDE pars_side_ref[8]; | 
|---|
| 885 | // linker oder rechter ast | 
|---|
| 886 | int             i, t, bubblesort_change = 0; | 
|---|
| 887 | // | 
|---|
| 888 | int             rek_width, rek_width_static = 0, rek_width_dynamic = 0; | 
|---|
| 889 | AP_FLOAT        schwellwert = function(rek_deep, param_liste, param_anz) + pars_start; | 
|---|
| 890 |  | 
|---|
| 891 | // parameterausgabe | 
|---|
| 892 |  | 
|---|
| 893 | if (rek_deep >= rek_deep_max || is_leaf || *abort_flag)   return; | 
|---|
| 894 |  | 
|---|
| 895 | // Referenzzeiger auf die vier Kanten und zwei swapmoeglichkeiten initialisieren | 
|---|
| 896 | AP_tree_nlen *this_brother = this->get_brother(); | 
|---|
| 897 | if (rek_deep == 0) { | 
|---|
| 898 | for (i = 0; i < 8; i+=2) { | 
|---|
| 899 | pars_side_ref[i] = AP_LEFT; | 
|---|
| 900 | pars_side_ref[i+1] = AP_RIGHT; | 
|---|
| 901 | } | 
|---|
| 902 | pars_refpntr[0] = pars_refpntr[1] = this; | 
|---|
| 903 | pars_refpntr[2] = pars_refpntr[3] = 0; | 
|---|
| 904 | pars_refpntr[4] = pars_refpntr[5] = 0; | 
|---|
| 905 | pars_refpntr[6] = pars_refpntr[7] = 0; | 
|---|
| 906 | } | 
|---|
| 907 | else { | 
|---|
| 908 | pars_refpntr[0] = pars_refpntr[1] = this->get_leftson(); | 
|---|
| 909 | pars_refpntr[2] = pars_refpntr[3] = this->get_rightson(); | 
|---|
| 910 | if (father->father != 0) { | 
|---|
| 911 | // Referenzzeiger falls nicht an der Wurzel | 
|---|
| 912 | pars_refpntr[4] = pars_refpntr[5] = this->get_father(); | 
|---|
| 913 | pars_refpntr[6] = pars_refpntr[7] = this_brother; | 
|---|
| 914 | } | 
|---|
| 915 | else { | 
|---|
| 916 | // an der Wurzel nehme linken und rechten Sohns des Bruders | 
|---|
| 917 | if (!get_brother()->is_leaf) { | 
|---|
| 918 | pars_refpntr[4] = pars_refpntr[5] = this_brother->get_leftson(); | 
|---|
| 919 | pars_refpntr[6] = pars_refpntr[7] = this_brother->get_rightson(); | 
|---|
| 920 | } | 
|---|
| 921 | else { | 
|---|
| 922 | pars_refpntr[4] = pars_refpntr[5] = 0; | 
|---|
| 923 | pars_refpntr[6] = pars_refpntr[7] = 0; | 
|---|
| 924 | } | 
|---|
| 925 | } | 
|---|
| 926 | } | 
|---|
| 927 |  | 
|---|
| 928 |  | 
|---|
| 929 | if (!father) return;        // no kl at root | 
|---|
| 930 |  | 
|---|
| 931 | // | 
|---|
| 932 | // parsimony werte bestimmen | 
|---|
| 933 | // | 
|---|
| 934 |  | 
|---|
| 935 | // Wurzel setzen | 
|---|
| 936 |  | 
|---|
| 937 | ap_main->push(); | 
|---|
| 938 | this->set_root(); | 
|---|
| 939 | rootNode()->costs(); | 
|---|
| 940 |  | 
|---|
| 941 | int visited_subtrees = 0; | 
|---|
| 942 | int better_subtrees  = 0; | 
|---|
| 943 | for (i = 0; i < 8; i++) { | 
|---|
| 944 | pars_ref[i] = i; | 
|---|
| 945 | pars[i] = -1; | 
|---|
| 946 |  | 
|---|
| 947 | if (!pars_refpntr[i])   continue; | 
|---|
| 948 | if (pars_refpntr[i]->is_leaf) continue; | 
|---|
| 949 |  | 
|---|
| 950 | // KL recursion was broken (see changeset [11010] for how) | 
|---|
| 951 | // - IMO it should only descent into AP_NONE branches (see setters of 'kernighan'-flag) | 
|---|
| 952 | // - quick test shows calculation is much faster and results seem to be better. | 
|---|
| 953 | if (pars_refpntr[i]->kernighan != AP_NONE) continue; | 
|---|
| 954 |  | 
|---|
| 955 | if (pars_refpntr[i]->gr.hidden) continue; | 
|---|
| 956 | if (pars_refpntr[i]->get_father()->gr.hidden) continue; | 
|---|
| 957 |  | 
|---|
| 958 | // nur wenn kein Blatt ist | 
|---|
| 959 | ap_main->push(); | 
|---|
| 960 | pars_refpntr[i]->swap_assymetric(pars_side_ref[i]); | 
|---|
| 961 | pars[i] = rootNode()->costs(); | 
|---|
| 962 | if (pars[i] < pars_best) { | 
|---|
| 963 | better_subtrees++; | 
|---|
| 964 | pars_best      = pars[i]; | 
|---|
| 965 | rek_width_type = AP_BETTER; | 
|---|
| 966 | } | 
|---|
| 967 | if (pars[i] < schwellwert) { | 
|---|
| 968 | rek_width_dynamic++; | 
|---|
| 969 | } | 
|---|
| 970 | ap_main->pop(); | 
|---|
| 971 | visited_subtrees ++; | 
|---|
| 972 |  | 
|---|
| 973 | } | 
|---|
| 974 | // Bubblesort, in pars[0] steht kleinstes element | 
|---|
| 975 | // | 
|---|
| 976 | // CAUTION! The original parsimonies will be exchanged | 
|---|
| 977 |  | 
|---|
| 978 |  | 
|---|
| 979 | for (i=7, t=0; t<i; t++) { | 
|---|
| 980 | if (pars[t] <0) { | 
|---|
| 981 | pars[t]     = pars[i]; | 
|---|
| 982 | pars_ref[t] = i; | 
|---|
| 983 | t--; | 
|---|
| 984 | i--; | 
|---|
| 985 | } | 
|---|
| 986 | } | 
|---|
| 987 |  | 
|---|
| 988 | bubblesort_change = 0; | 
|---|
| 989 | for (t = visited_subtrees - 1; t > 0; t--) { | 
|---|
| 990 | for (i = 0; i < t; i++) { | 
|---|
| 991 | if (pars[i] > pars[i+1]) { | 
|---|
| 992 | bubblesort_change = 1; | 
|---|
| 993 | help_ref          = pars_ref[i]; | 
|---|
| 994 | pars_ref[i]       = pars_ref[i + 1]; | 
|---|
| 995 | pars_ref[i + 1]   = help_ref; | 
|---|
| 996 | help              = pars[i]; | 
|---|
| 997 | pars[i]           = pars[i + 1]; | 
|---|
| 998 | pars[i + 1]       = help; | 
|---|
| 999 | } | 
|---|
| 1000 | } | 
|---|
| 1001 | if (bubblesort_change == 0) | 
|---|
| 1002 | break; | 
|---|
| 1003 | } | 
|---|
| 1004 |  | 
|---|
| 1005 | display_out(pars, visited_subtrees, pars_prev, pars_start, rek_deep); | 
|---|
| 1006 | // Darstellen | 
|---|
| 1007 |  | 
|---|
| 1008 | if (rek_deep < rek_2_width_max) rek_width_static = rek_2_width[rek_deep]; | 
|---|
| 1009 | else rek_width_static                            = 1; | 
|---|
| 1010 |  | 
|---|
| 1011 | rek_width = visited_subtrees; | 
|---|
| 1012 | if (rek_width_type == AP_BETTER) { | 
|---|
| 1013 | rek_width =  better_subtrees; | 
|---|
| 1014 | } | 
|---|
| 1015 | else { | 
|---|
| 1016 | if (rek_width_type & AP_STATIC) { | 
|---|
| 1017 | if (rek_width> rek_width_static) rek_width = rek_width_static; | 
|---|
| 1018 | } | 
|---|
| 1019 | if (rek_width_type & AP_DYNAMIK) { | 
|---|
| 1020 | if (rek_width> rek_width_dynamic) rek_width = rek_width_dynamic; | 
|---|
| 1021 | } | 
|---|
| 1022 | else if (!(rek_width_type & AP_STATIC)) { | 
|---|
| 1023 | if (rek_width> 1) rek_width = 1; | 
|---|
| 1024 | } | 
|---|
| 1025 |  | 
|---|
| 1026 | } | 
|---|
| 1027 |  | 
|---|
| 1028 | if (rek_width > visited_subtrees)   rek_width = visited_subtrees; | 
|---|
| 1029 |  | 
|---|
| 1030 | for (i=0; i < rek_width; i++) { | 
|---|
| 1031 | ap_main->push(); | 
|---|
| 1032 | pars_refpntr[pars_ref[i]]->kernighan = pars_side_ref[pars_ref[i]]; | 
|---|
| 1033 | // Markieren | 
|---|
| 1034 | pars_refpntr[pars_ref[i]]->swap_assymetric(pars_side_ref[pars_ref[i]]); | 
|---|
| 1035 | // vertausche seite | 
|---|
| 1036 | rootNode()->parsimony_rek(); | 
|---|
| 1037 | switch (rek_width_type) { | 
|---|
| 1038 | case AP_BETTER: { | 
|---|
| 1039 | // starte kerninghan_rek mit rekursionstiefe 3, statisch | 
|---|
| 1040 | bool flag = false; | 
|---|
| 1041 | cout << "found better !\n"; | 
|---|
| 1042 | pars_refpntr[pars_ref[i]]->kernighan_rek(rek_deep + 1, rek_2_width, | 
|---|
| 1043 | rek_2_width_max, rek_deep_max + 4, | 
|---|
| 1044 | function, param_liste, param_anz, | 
|---|
| 1045 | pars_best, pars_start, pars[i], | 
|---|
| 1046 | AP_STATIC, &flag); | 
|---|
| 1047 | *abort_flag = true; | 
|---|
| 1048 | break; | 
|---|
| 1049 | } | 
|---|
| 1050 | default: | 
|---|
| 1051 | pars_refpntr[pars_ref[i]]->kernighan_rek(rek_deep + 1, rek_2_width, | 
|---|
| 1052 | rek_2_width_max, rek_deep_max, | 
|---|
| 1053 | function, param_liste, param_anz, | 
|---|
| 1054 | pars_best, pars_start, pars[i], | 
|---|
| 1055 | rek_width_type, abort_flag); | 
|---|
| 1056 | break; | 
|---|
| 1057 | } | 
|---|
| 1058 | pars_refpntr[pars_ref[i]]->kernighan = AP_NONE; | 
|---|
| 1059 | // Demarkieren | 
|---|
| 1060 | if (*abort_flag) { | 
|---|
| 1061 | cout << "   parsimony:  " << pars_best << "took: " << i << "\n"; | 
|---|
| 1062 | for (i=0; i<visited_subtrees; i++) cout << "  " << pars[i]; | 
|---|
| 1063 | cout << "\n"; | 
|---|
| 1064 | if (!rek_deep) { | 
|---|
| 1065 | cout << "NEW RECURSION\n\n"; | 
|---|
| 1066 | } | 
|---|
| 1067 | cout.flush(); | 
|---|
| 1068 |  | 
|---|
| 1069 | ap_main->clear(); | 
|---|
| 1070 | break; | 
|---|
| 1071 | } | 
|---|
| 1072 | else { | 
|---|
| 1073 | ap_main->pop(); | 
|---|
| 1074 | } | 
|---|
| 1075 | } | 
|---|
| 1076 | if (*abort_flag) {       // pop/clear wegen set_root | 
|---|
| 1077 | ap_main->clear(); | 
|---|
| 1078 | } | 
|---|
| 1079 | else { | 
|---|
| 1080 | ap_main->pop(); | 
|---|
| 1081 | } | 
|---|
| 1082 | return; | 
|---|
| 1083 | } | 
|---|
| 1084 |  | 
|---|
| 1085 |  | 
|---|
| 1086 | const char* AP_tree_nlen::sortByName() | 
|---|
| 1087 | { | 
|---|
| 1088 | if (name) return name;  // leafs | 
|---|
| 1089 |  | 
|---|
| 1090 | const char *n1 = get_leftson()->sortByName(); | 
|---|
| 1091 | const char *n2 = get_rightson()->sortByName(); | 
|---|
| 1092 |  | 
|---|
| 1093 | if (strcmp(n1, n2)<0) return n1; | 
|---|
| 1094 |  | 
|---|
| 1095 | AP_tree::swap_sons(); | 
|---|
| 1096 |  | 
|---|
| 1097 | return n2; | 
|---|
| 1098 | } | 
|---|
| 1099 |  | 
|---|
| 1100 | const char *AP_tree_nlen::fullname() const | 
|---|
| 1101 | { | 
|---|
| 1102 | if (!name) { | 
|---|
| 1103 | static char *buffer; | 
|---|
| 1104 | char        *lName = strdup(get_leftson()->fullname()); | 
|---|
| 1105 | char        *rName = strdup(get_rightson()->fullname()); | 
|---|
| 1106 | int          len   = strlen(lName)+strlen(rName)+4; | 
|---|
| 1107 |  | 
|---|
| 1108 | if (buffer) free(buffer); | 
|---|
| 1109 |  | 
|---|
| 1110 | buffer = (char*)malloc(len); | 
|---|
| 1111 |  | 
|---|
| 1112 | strcpy(buffer, "["); | 
|---|
| 1113 | strcat(buffer, lName); | 
|---|
| 1114 | strcat(buffer, ","); | 
|---|
| 1115 | strcat(buffer, rName); | 
|---|
| 1116 | strcat(buffer, "]"); | 
|---|
| 1117 |  | 
|---|
| 1118 | free(lName); | 
|---|
| 1119 | free(rName); | 
|---|
| 1120 |  | 
|---|
| 1121 | return buffer; | 
|---|
| 1122 | } | 
|---|
| 1123 |  | 
|---|
| 1124 | return name; | 
|---|
| 1125 | } | 
|---|
| 1126 |  | 
|---|
| 1127 |  | 
|---|
| 1128 | char* AP_tree_nlen::getSequenceCopy() { | 
|---|
| 1129 | costs(); | 
|---|
| 1130 |  | 
|---|
| 1131 | AP_sequence_parsimony *pseq = DOWNCAST(AP_sequence_parsimony*, get_seq()); | 
|---|
| 1132 | ap_assert(pseq->got_sequence()); | 
|---|
| 1133 |  | 
|---|
| 1134 | size_t  len = pseq->get_sequence_length(); | 
|---|
| 1135 | char   *s   = new char[len]; | 
|---|
| 1136 | memcpy(s, pseq->get_sequence(), len); | 
|---|
| 1137 |  | 
|---|
| 1138 | return s; | 
|---|
| 1139 | } | 
|---|
| 1140 |  | 
|---|