| 1 | // ============================================================= // |
|---|
| 2 | // // |
|---|
| 3 | // File : CT_ntree.cxx // |
|---|
| 4 | // Purpose : // |
|---|
| 5 | // // |
|---|
| 6 | // Institute of Microbiology (Technical University Munich) // |
|---|
| 7 | // http://www.arb-home.de/ // |
|---|
| 8 | // // |
|---|
| 9 | // ============================================================= // |
|---|
| 10 | |
|---|
| 11 | #include "CT_ntree.hxx" |
|---|
| 12 | #include <arbdbt.h> |
|---|
| 13 | |
|---|
| 14 | // Einen Binaerbaum erzeugen ueber einen Multitree |
|---|
| 15 | |
|---|
| 16 | static NT_NODE *ntree = NULp; |
|---|
| 17 | |
|---|
| 18 | |
|---|
| 19 | const NT_NODE *ntree_get() { |
|---|
| 20 | // returns the current ntree |
|---|
| 21 | return ntree; |
|---|
| 22 | } |
|---|
| 23 | |
|---|
| 24 | |
|---|
| 25 | static NT_NODE *new_ntnode(PART*& p) { |
|---|
| 26 | // build a new node and store the partition p in it |
|---|
| 27 | NT_NODE *n = ARB_calloc<NT_NODE>(1); |
|---|
| 28 | n->part = p; |
|---|
| 29 | n->son_list = NULp; |
|---|
| 30 | |
|---|
| 31 | p = NULp; |
|---|
| 32 | return n; |
|---|
| 33 | } |
|---|
| 34 | |
|---|
| 35 | |
|---|
| 36 | static void del_tree(NT_NODE *tree) { |
|---|
| 37 | // delete the tree |
|---|
| 38 | if (tree) { |
|---|
| 39 | for (NSONS *nsonp = tree->son_list; nsonp;) { |
|---|
| 40 | NSONS *nson_next = nsonp->next; |
|---|
| 41 | del_tree(nsonp->node); |
|---|
| 42 | free(nsonp); |
|---|
| 43 | nsonp = nson_next; |
|---|
| 44 | } |
|---|
| 45 | tree->son_list = NULp; |
|---|
| 46 | |
|---|
| 47 | // now is leaf |
|---|
| 48 | delete tree->part; |
|---|
| 49 | tree->part = NULp; |
|---|
| 50 | freenull(tree); |
|---|
| 51 | } |
|---|
| 52 | } |
|---|
| 53 | |
|---|
| 54 | |
|---|
| 55 | void ntree_init(const PartitionSize *registry) { |
|---|
| 56 | // Initialization of the tree |
|---|
| 57 | arb_assert(!ntree); // forgot to call ntree_cleanup ? |
|---|
| 58 | PART *root = registry->create_root(); |
|---|
| 59 | ntree = new_ntnode(root); // Set root to completely filled partition |
|---|
| 60 | } |
|---|
| 61 | |
|---|
| 62 | void ntree_cleanup() { |
|---|
| 63 | // Destruct old tree |
|---|
| 64 | del_tree(ntree); |
|---|
| 65 | ntree = NULp; |
|---|
| 66 | } |
|---|
| 67 | |
|---|
| 68 | #if 0 |
|---|
| 69 | // test if the tree is already complete (all necessary partitions are inserted) |
|---|
| 70 | static int ntree_cont(int len) { |
|---|
| 71 | return ntree_count<len; |
|---|
| 72 | } |
|---|
| 73 | #endif |
|---|
| 74 | |
|---|
| 75 | int ntree_count_sons(const NT_NODE *tree) { |
|---|
| 76 | int sons = 0; |
|---|
| 77 | if (tree->son_list) { |
|---|
| 78 | for (NSONS *node = tree->son_list; node; node = node->next) { |
|---|
| 79 | sons++; |
|---|
| 80 | } |
|---|
| 81 | } |
|---|
| 82 | return sons; |
|---|
| 83 | } |
|---|
| 84 | |
|---|
| 85 | static void move_son(NT_NODE *f_node, NT_NODE *s_node, NSONS *nson) { |
|---|
| 86 | // Move son from parent-sonlist to new sonlist |
|---|
| 87 | // nson is pointer on element in parent-sonlist |
|---|
| 88 | // sonlist is new sonlist where to move in |
|---|
| 89 | |
|---|
| 90 | // Move out of parent-sonlist |
|---|
| 91 | |
|---|
| 92 | if (nson == f_node->son_list) f_node->son_list = f_node->son_list->next; |
|---|
| 93 | if (nson->prev) nson->prev->next = nson->next; |
|---|
| 94 | if (nson->next) nson->next->prev = nson->prev; |
|---|
| 95 | |
|---|
| 96 | // Move in node-sonlist |
|---|
| 97 | nson->next = s_node->son_list; |
|---|
| 98 | nson->prev = NULp; |
|---|
| 99 | |
|---|
| 100 | if (s_node->son_list) s_node->son_list->prev = nson; |
|---|
| 101 | s_node->son_list = nson; |
|---|
| 102 | } |
|---|
| 103 | |
|---|
| 104 | |
|---|
| 105 | |
|---|
| 106 | static int ins_ntree(NT_NODE *tree, PART*& newpart) { |
|---|
| 107 | /* Construct a multitree under the constraint, |
|---|
| 108 | * that the final tree may result in a binary tree. |
|---|
| 109 | * |
|---|
| 110 | * To ensure this, it is important to follow two ideas: |
|---|
| 111 | * |
|---|
| 112 | * 1. a son only fits below a father |
|---|
| 113 | * - if the father has all son-bits set AND |
|---|
| 114 | * - the father is different from the son (so it is possible to add a brother) |
|---|
| 115 | * |
|---|
| 116 | * 2. brothers are distinct (i.e. they do not share any bits) |
|---|
| 117 | */ |
|---|
| 118 | |
|---|
| 119 | // Tree is leaf |
|---|
| 120 | if (!tree->son_list) { |
|---|
| 121 | #if defined(DUMP_PART_INSERTION) |
|---|
| 122 | fputs("ins_ntree part=", stdout); newpart->print(); |
|---|
| 123 | #endif |
|---|
| 124 | |
|---|
| 125 | ARB_calloc(tree->son_list, 1); |
|---|
| 126 | tree->son_list->node = new_ntnode(newpart); |
|---|
| 127 | |
|---|
| 128 | return 1; |
|---|
| 129 | } |
|---|
| 130 | |
|---|
| 131 | arb_assert(newpart->is_subset_of(tree->part)); // @@@ should be invariant for entering this function (really ensured by caller?) |
|---|
| 132 | |
|---|
| 133 | // test if part fits under one son of tree. if so, recurse. |
|---|
| 134 | for (NSONS *nsonp = tree->son_list; nsonp; nsonp=nsonp->next) { |
|---|
| 135 | const PART *sonpart = nsonp->node->part; |
|---|
| 136 | if (newpart->is_subset_of(sonpart)) { |
|---|
| 137 | if (newpart->equals(sonpart)) return 0; // already inserted -> drop |
|---|
| 138 | |
|---|
| 139 | arb_assert(newpart->is_real_son_of(sonpart)); |
|---|
| 140 | int res = ins_ntree(nsonp->node, newpart); |
|---|
| 141 | arb_assert(contradicted(newpart, res)); |
|---|
| 142 | return res; |
|---|
| 143 | } |
|---|
| 144 | } |
|---|
| 145 | |
|---|
| 146 | // Now we are sure 'newpart' is not a son (of any of my sons)! |
|---|
| 147 | // -> Test whether it is a brother of a son |
|---|
| 148 | // If it is neither brother nor son -> don't fit here |
|---|
| 149 | for (NSONS *nsonp = tree->son_list; nsonp; nsonp=nsonp->next) { |
|---|
| 150 | const PART *sonpart = nsonp->node->part; |
|---|
| 151 | if (sonpart->overlaps_with(newpart)) { |
|---|
| 152 | if (!sonpart->is_subset_of(newpart)) { |
|---|
| 153 | arb_assert(newpart); |
|---|
| 154 | return 0; |
|---|
| 155 | } |
|---|
| 156 | arb_assert(sonpart->is_real_son_of(newpart)); |
|---|
| 157 | // accept if nsonp is son of newpart (will be pulled down below) |
|---|
| 158 | } |
|---|
| 159 | } |
|---|
| 160 | |
|---|
| 161 | #if defined(DUMP_PART_INSERTION) |
|---|
| 162 | fputs("ins_ntree part=", stdout); newpart->print(); |
|---|
| 163 | #endif |
|---|
| 164 | |
|---|
| 165 | // Okay, insert part here ... |
|---|
| 166 | NT_NODE *newntnode = new_ntnode(newpart); |
|---|
| 167 | |
|---|
| 168 | // Move sons from parent-sonlist into the new sons sonlist |
|---|
| 169 | { |
|---|
| 170 | NSONS *nsonp = tree->son_list; |
|---|
| 171 | while (nsonp) { |
|---|
| 172 | NSONS *nsonp_next = nsonp->next; |
|---|
| 173 | const PART *sonpart = nsonp->node->part; |
|---|
| 174 | if (sonpart->is_subset_of(newntnode->part)) { |
|---|
| 175 | arb_assert(sonpart->is_real_son_of(newntnode->part)); |
|---|
| 176 | move_son(tree, newntnode, nsonp); |
|---|
| 177 | } |
|---|
| 178 | nsonp = nsonp_next; |
|---|
| 179 | } |
|---|
| 180 | } |
|---|
| 181 | |
|---|
| 182 | // insert nsons-elem in son-list of father |
|---|
| 183 | { |
|---|
| 184 | NSONS *new_son = ARB_calloc<NSONS>(1); |
|---|
| 185 | |
|---|
| 186 | new_son->node = newntnode; |
|---|
| 187 | new_son->prev = NULp; |
|---|
| 188 | new_son->next = tree->son_list; |
|---|
| 189 | |
|---|
| 190 | if (tree->son_list) tree->son_list->prev = new_son; |
|---|
| 191 | tree->son_list = new_son; |
|---|
| 192 | } |
|---|
| 193 | |
|---|
| 194 | arb_assert(!newpart); |
|---|
| 195 | |
|---|
| 196 | return 1; |
|---|
| 197 | } |
|---|
| 198 | |
|---|
| 199 | |
|---|
| 200 | |
|---|
| 201 | void insert_ntree(PART*& part) { |
|---|
| 202 | /* Insert a partition in the NTree. |
|---|
| 203 | * |
|---|
| 204 | * Tries both representations, normal and inverse partition, which |
|---|
| 205 | * represent the two subtrees at both sides of one edge. |
|---|
| 206 | * |
|---|
| 207 | * If neither can be inserted, the partition gets dropped. |
|---|
| 208 | */ |
|---|
| 209 | |
|---|
| 210 | arb_assert(part->is_valid()); |
|---|
| 211 | |
|---|
| 212 | bool firstCall = !ntree->son_list; |
|---|
| 213 | if (firstCall) { |
|---|
| 214 | part->set_len(part->get_len()/2); // insert as root-edge -> distribute length |
|---|
| 215 | |
|---|
| 216 | PART *inverse = part->clone(); |
|---|
| 217 | inverse->invert(); |
|---|
| 218 | |
|---|
| 219 | ASSERT_RESULT(bool, true, ins_ntree(ntree, part)); |
|---|
| 220 | ASSERT_RESULT(bool, true, ins_ntree(ntree, inverse)); |
|---|
| 221 | |
|---|
| 222 | arb_assert(!inverse); |
|---|
| 223 | } |
|---|
| 224 | else { |
|---|
| 225 | if (!ins_ntree(ntree, part)) { |
|---|
| 226 | part->invert(); |
|---|
| 227 | if (!ins_ntree(ntree, part)) { |
|---|
| 228 | #if defined(DUMP_PART_INSERTION) |
|---|
| 229 | fputs("insert_ntree drops part=", stdout); part->print(); |
|---|
| 230 | #endif |
|---|
| 231 | delete part; // drop non-fitting partition |
|---|
| 232 | part = NULp; |
|---|
| 233 | } |
|---|
| 234 | } |
|---|
| 235 | } |
|---|
| 236 | arb_assert(!part); |
|---|
| 237 | } |
|---|
| 238 | |
|---|
| 239 | // -------------------------------------------------------------------------------- |
|---|
| 240 | |
|---|
| 241 | #if defined(NTREE_DEBUG_FUNCTIONS) |
|---|
| 242 | |
|---|
| 243 | inline void do_indent(int indent) { |
|---|
| 244 | for (int i = 0; i<indent; ++i) fputc(' ', stdout); |
|---|
| 245 | } |
|---|
| 246 | |
|---|
| 247 | void print_ntree(NT_NODE *tree, int indent) { |
|---|
| 248 | // testfunction to print a NTree |
|---|
| 249 | |
|---|
| 250 | NSONS *nsonp; |
|---|
| 251 | if (!tree) { |
|---|
| 252 | do_indent(indent); |
|---|
| 253 | fputs("tree is empty\n", stdout); |
|---|
| 254 | return; |
|---|
| 255 | } |
|---|
| 256 | |
|---|
| 257 | // print father |
|---|
| 258 | do_indent(indent); |
|---|
| 259 | fputs("(\n", stdout); |
|---|
| 260 | |
|---|
| 261 | indent++; |
|---|
| 262 | |
|---|
| 263 | do_indent(indent); |
|---|
| 264 | tree->part->print(); |
|---|
| 265 | |
|---|
| 266 | // and sons |
|---|
| 267 | for (nsonp=tree->son_list; nsonp; nsonp = nsonp->next) { |
|---|
| 268 | print_ntree(nsonp->node, indent); |
|---|
| 269 | } |
|---|
| 270 | |
|---|
| 271 | indent--; |
|---|
| 272 | |
|---|
| 273 | do_indent(indent); |
|---|
| 274 | fputs(")\n", stdout); |
|---|
| 275 | } |
|---|
| 276 | |
|---|
| 277 | #define FAIL_IF_NOT_WELLFORMED |
|---|
| 278 | |
|---|
| 279 | #if defined(FAIL_IF_NOT_WELLFORMED) |
|---|
| 280 | #define SHOW_FAILURE() arb_assert(0) |
|---|
| 281 | #else |
|---|
| 282 | #define SHOW_FAILURE() |
|---|
| 283 | #endif |
|---|
| 284 | |
|---|
| 285 | bool is_well_formed(const NT_NODE *tree) { |
|---|
| 286 | // checks whether |
|---|
| 287 | // - tree has sons |
|---|
| 288 | // - all sons are part of father |
|---|
| 289 | // - all sons are distinct |
|---|
| 290 | // - father is sum of sons |
|---|
| 291 | |
|---|
| 292 | int sons = ntree_count_sons(tree); |
|---|
| 293 | bool well_formed = true; |
|---|
| 294 | |
|---|
| 295 | if (!sons) { |
|---|
| 296 | if (tree->part->get_members() != 1) { // leafs should contain single species |
|---|
| 297 | well_formed = false; |
|---|
| 298 | SHOW_FAILURE(); |
|---|
| 299 | } |
|---|
| 300 | } |
|---|
| 301 | else { |
|---|
| 302 | arb_assert(tree->son_list); |
|---|
| 303 | |
|---|
| 304 | PART *pmerge = NULp; |
|---|
| 305 | for (NSONS *nson = tree->son_list; nson; nson = nson->next) { |
|---|
| 306 | PART *pson = nson->node->part; |
|---|
| 307 | |
|---|
| 308 | if (!pson->is_subset_of(tree->part)) { |
|---|
| 309 | well_formed = false; |
|---|
| 310 | SHOW_FAILURE(); // son is not a subset of father |
|---|
| 311 | } |
|---|
| 312 | if (pmerge) { |
|---|
| 313 | if (pson->overlaps_with(pmerge)) { |
|---|
| 314 | well_formed = false; |
|---|
| 315 | SHOW_FAILURE(); // sons are not distinct |
|---|
| 316 | } |
|---|
| 317 | pmerge->add_members_from(pson); |
|---|
| 318 | } |
|---|
| 319 | else { |
|---|
| 320 | pmerge = pson->clone(); |
|---|
| 321 | } |
|---|
| 322 | if (!is_well_formed(nson->node)) { |
|---|
| 323 | well_formed = false; |
|---|
| 324 | SHOW_FAILURE(); // son is not well formed |
|---|
| 325 | } |
|---|
| 326 | } |
|---|
| 327 | arb_assert(pmerge); |
|---|
| 328 | if (tree->part->differs(pmerge)) { |
|---|
| 329 | well_formed = false; |
|---|
| 330 | |
|---|
| 331 | #if defined(FAIL_IF_NOT_WELLFORMED) |
|---|
| 332 | printf("tree with %i sons {\n", sons); |
|---|
| 333 | for (NSONS *nson = tree->son_list; nson; nson = nson->next) { |
|---|
| 334 | PART *pson = nson->node->part; |
|---|
| 335 | fputs(" pson =", stdout); pson->print(); |
|---|
| 336 | } |
|---|
| 337 | printf("} end of tree with %i sons\n", sons); |
|---|
| 338 | |
|---|
| 339 | fputs("tree part=", stdout); tree->part->print(); |
|---|
| 340 | fputs("pmerge =", stdout); pmerge->print(); |
|---|
| 341 | #endif |
|---|
| 342 | SHOW_FAILURE(); // means: father is not same as sum of sons |
|---|
| 343 | } |
|---|
| 344 | delete pmerge; |
|---|
| 345 | } |
|---|
| 346 | return well_formed; |
|---|
| 347 | } |
|---|
| 348 | |
|---|
| 349 | #endif |
|---|
| 350 | |
|---|