1 | #include <stdio.h> |
---|
2 | #include <stdlib.h> |
---|
3 | #include <memory.h> |
---|
4 | #include <malloc.h> |
---|
5 | #include <string.h> |
---|
6 | |
---|
7 | #include <math.h> |
---|
8 | |
---|
9 | #include <arbdb.h> |
---|
10 | #include <arbdbt.h> |
---|
11 | |
---|
12 | #include <aw_root.hxx> |
---|
13 | #include <aw_device.hxx> |
---|
14 | #include <aw_window.hxx> |
---|
15 | #include <aw_preset.hxx> |
---|
16 | #include <awt.hxx> |
---|
17 | |
---|
18 | #include <awt_tree.hxx> |
---|
19 | #include "dist.hxx" |
---|
20 | #include <BI_helix.hxx> |
---|
21 | #include <awt_csp.hxx> |
---|
22 | |
---|
23 | #include "ph_matr.hxx" |
---|
24 | #include "ph_mldist.hxx" |
---|
25 | |
---|
26 | #define epsilon 0.000001/* a small number */ |
---|
27 | |
---|
28 | |
---|
29 | void ph_mldist::givens(ph_ml_matrix a,long i,long j,long n,double ctheta,double stheta,GB_BOOL left) |
---|
30 | { |
---|
31 | /* Givens transform at i,j for 1..n with angle theta */ |
---|
32 | long k; |
---|
33 | double d; |
---|
34 | |
---|
35 | for (k = 0; k < n; k++) { |
---|
36 | if (left) { |
---|
37 | d = ctheta * a[i - 1][k] + stheta * a[j - 1][k]; |
---|
38 | a[j - 1][k] = ctheta * a[j - 1][k] - stheta * a[i - 1][k]; |
---|
39 | a[i - 1][k] = d; |
---|
40 | } else { |
---|
41 | d = ctheta * a[k][i - 1] + stheta * a[k][j - 1]; |
---|
42 | a[k][j - 1] = ctheta * a[k][j - 1] - stheta * a[k][i - 1]; |
---|
43 | a[k][i - 1] = d; |
---|
44 | } |
---|
45 | } |
---|
46 | } /* givens */ |
---|
47 | |
---|
48 | void ph_mldist::coeffs(double x,double y,double *c,double *s,double accuracy) |
---|
49 | { |
---|
50 | /* compute cosine and sine of theta */ |
---|
51 | double root; |
---|
52 | |
---|
53 | root = sqrt(x * x + y * y); |
---|
54 | if (root < accuracy) { |
---|
55 | *c = 1.0; |
---|
56 | *s = 0.0; |
---|
57 | } else { |
---|
58 | *c = x / root; |
---|
59 | *s = y / root; |
---|
60 | } |
---|
61 | } /* coeffs */ |
---|
62 | |
---|
63 | void ph_mldist::tridiag(ph_ml_matrix a,long n,double accuracy) |
---|
64 | { |
---|
65 | /* Givens tridiagonalization */ |
---|
66 | long i, j; |
---|
67 | double s, c; |
---|
68 | |
---|
69 | for (i = 2; i < n; i++) { |
---|
70 | for (j = i + 1; j <= n; j++) { |
---|
71 | coeffs(a[i - 2][i - 1], a[i - 2][j - 1], &c, &s, accuracy); |
---|
72 | givens(a, i, j, n, c, s, GB_TRUE); |
---|
73 | givens(a, i, j, n, c, s, GB_FALSE); |
---|
74 | givens(eigvecs, i, j, n, c, s, GB_TRUE); |
---|
75 | } |
---|
76 | } |
---|
77 | } /* tridiag */ |
---|
78 | |
---|
79 | void ph_mldist::shiftqr(ph_ml_matrix a, long n, double accuracy) |
---|
80 | { |
---|
81 | /* QR eigenvalue-finder */ |
---|
82 | long i, j; |
---|
83 | double approx, s, c, d, TEMP, TEMP1; |
---|
84 | |
---|
85 | for (i = n; i >= 2; i--) { |
---|
86 | do { |
---|
87 | TEMP = a[i - 2][i - 2] - a[i - 1][i - 1]; |
---|
88 | TEMP1 = a[i - 1][i - 2]; |
---|
89 | d = sqrt(TEMP * TEMP + TEMP1 * TEMP1); |
---|
90 | approx = a[i - 2][i - 2] + a[i - 1][i - 1]; |
---|
91 | if (a[i - 1][i - 1] < a[i - 2][i - 2]) |
---|
92 | approx = (approx - d) / 2.0; |
---|
93 | else |
---|
94 | approx = (approx + d) / 2.0; |
---|
95 | for (j = 0; j < i; j++) |
---|
96 | a[j][j] -= approx; |
---|
97 | for (j = 1; j < i; j++) { |
---|
98 | coeffs(a[j - 1][j - 1], a[j][j - 1], &c, &s, accuracy); |
---|
99 | givens(a, j, j + 1, i, c, s, GB_TRUE); |
---|
100 | givens(a, j, j + 1, i, c, s, GB_FALSE); |
---|
101 | givens(eigvecs, j, j + 1, n, c, s, GB_TRUE); |
---|
102 | } |
---|
103 | for (j = 0; j < i; j++) |
---|
104 | a[j][j] += approx; |
---|
105 | } while (fabs(a[i - 1][i - 2]) > accuracy); |
---|
106 | } |
---|
107 | } /* shiftqr */ |
---|
108 | |
---|
109 | |
---|
110 | void ph_mldist::qreigen(ph_ml_matrix proba,long n) |
---|
111 | { |
---|
112 | /* QR eigenvector/eigenvalue method for symmetric matrix */ |
---|
113 | double accuracy; |
---|
114 | long i, j; |
---|
115 | |
---|
116 | accuracy = 1.0e-6; |
---|
117 | for (i = 0; i < n; i++) { |
---|
118 | for (j = 0; j < n; j++) |
---|
119 | eigvecs[i][j] = 0.0; |
---|
120 | eigvecs[i][i] = 1.0; |
---|
121 | } |
---|
122 | tridiag(proba, n, accuracy); |
---|
123 | shiftqr(proba, n, accuracy); |
---|
124 | for (i = 0; i < n; i++) |
---|
125 | eig[i] = proba[i][i]; |
---|
126 | for (i = 0; i < n_states; i++) { |
---|
127 | for (j = 0; j < n_states; j++) |
---|
128 | proba[i][j] = sqrt(pi[j]) * eigvecs[i][j]; |
---|
129 | } |
---|
130 | /* proba[i][j] is the value of U' times pi^(1/2) */ |
---|
131 | } /* qreigen */ |
---|
132 | |
---|
133 | |
---|
134 | /* pameigen */ |
---|
135 | |
---|
136 | void ph_mldist::build_exptteig(double tt){ |
---|
137 | int m; |
---|
138 | for (m = 0; m < n_states; m++) { |
---|
139 | exptteig[m] = exp(tt * eig[m]); |
---|
140 | } |
---|
141 | } |
---|
142 | |
---|
143 | void ph_mldist::predict(double /*tt*/, long nb1,long nb2) |
---|
144 | { |
---|
145 | /* make contribution to prediction of this aa pair */ |
---|
146 | long m; |
---|
147 | double q; |
---|
148 | double TEMP; |
---|
149 | for (m = n_states-1; m >=0; m--) { |
---|
150 | q = prob[m][nb1] * prob[m][nb2] * exptteig[m]; |
---|
151 | p += q; |
---|
152 | TEMP = eig[m]; |
---|
153 | dp += TEMP * q; |
---|
154 | d2p += TEMP * TEMP * q; |
---|
155 | } |
---|
156 | } /* predict */ |
---|
157 | |
---|
158 | void ph_mldist::build_predikt_table(int pos){ |
---|
159 | int b1, b2; |
---|
160 | double tt = pos_2_tt(pos); |
---|
161 | build_exptteig(tt); |
---|
162 | akt_slopes = slopes[pos] = (ph_pml_matrix *) calloc(sizeof(ph_pml_matrix), 1); |
---|
163 | akt_curves = curves[pos] = (ph_pml_matrix *) calloc(sizeof(ph_pml_matrix), 1); |
---|
164 | akt_infs = infs[pos] = (ph_bool_matrix *) calloc(sizeof(ph_bool_matrix), 1); |
---|
165 | |
---|
166 | for (b1 = 0; b1 < this->n_states; b1++) { |
---|
167 | for (b2 = 0; b2 <= b1; b2++) { |
---|
168 | p = 0.0; |
---|
169 | dp = 0.0; |
---|
170 | d2p = 0.0; |
---|
171 | predict(tt, b1, b2); |
---|
172 | |
---|
173 | if (p > 0.0){ |
---|
174 | double ip = 1.0/p; |
---|
175 | akt_slopes[0][b1][b2] = dp * ip; |
---|
176 | akt_curves[0][b1][b2] = d2p * ip - dp * dp * (ip * ip); |
---|
177 | akt_infs[0][b1][b2] = 0; |
---|
178 | akt_slopes[0][b2][b1] = akt_slopes[0][b1][b2]; |
---|
179 | akt_curves[0][b2][b1] = akt_curves[0][b1][b2]; |
---|
180 | akt_infs[0][b2][b1] = 0; |
---|
181 | }else{ |
---|
182 | akt_infs[0][b1][b2] = 1; |
---|
183 | akt_infs[0][b2][b1] = 1; |
---|
184 | } |
---|
185 | } |
---|
186 | } |
---|
187 | } |
---|
188 | |
---|
189 | int ph_mldist::tt_2_pos(double tt) { |
---|
190 | int pos = (int)(tt * fracchange * PH_ML_RESOLUTION); |
---|
191 | if (pos >= PH_ML_RESOLUTION * PH_ML_MAX_DIST ) |
---|
192 | pos = PH_ML_RESOLUTION * PH_ML_MAX_DIST - 1; |
---|
193 | if (pos < 0) |
---|
194 | pos = 0; |
---|
195 | return pos; |
---|
196 | } |
---|
197 | |
---|
198 | double ph_mldist::pos_2_tt(int pos) { |
---|
199 | double tt = pos / (fracchange * PH_ML_RESOLUTION); |
---|
200 | return tt+epsilon; |
---|
201 | } |
---|
202 | |
---|
203 | void ph_mldist::build_akt_predikt(double tt) |
---|
204 | { |
---|
205 | /* take an aktual slope from the hash table, else calculate a new one */ |
---|
206 | int pos = tt_2_pos(tt); |
---|
207 | if (!slopes[pos]){ |
---|
208 | build_predikt_table(pos); |
---|
209 | } |
---|
210 | akt_slopes = slopes[pos]; |
---|
211 | akt_curves = curves[pos]; |
---|
212 | akt_infs = infs[pos]; |
---|
213 | return; |
---|
214 | |
---|
215 | } |
---|
216 | |
---|
217 | const char *ph_mldist::makedists() |
---|
218 | { |
---|
219 | /* compute the distances */ |
---|
220 | long i, j, k, iterations; |
---|
221 | double delta, slope, curv; |
---|
222 | int b1=0, b2=0; |
---|
223 | double tt=0; |
---|
224 | int pos; |
---|
225 | |
---|
226 | for (i = 0; i < spp; i++) { |
---|
227 | matrix->set(i,i,0.0); |
---|
228 | { |
---|
229 | double gauge = (double)i/(double)spp; |
---|
230 | if (aw_status(gauge*gauge)) return "Aborted"; |
---|
231 | } |
---|
232 | { |
---|
233 | /* move all unknown characters to del */ |
---|
234 | ap_pro *seq1 = entries[i]->sequence_protein->sequence; |
---|
235 | for (k = 0; k <chars ; k++) { |
---|
236 | b1 = seq1[k]; |
---|
237 | if (b1 <=val) continue; |
---|
238 | if (b1 == asx || b1 == glx) continue; |
---|
239 | seq1[k] = del; |
---|
240 | } |
---|
241 | } |
---|
242 | |
---|
243 | for (j = 0; j < i ; j++) { |
---|
244 | tt = 1.0; |
---|
245 | delta = tt / 2.0; |
---|
246 | iterations = 0; |
---|
247 | do { |
---|
248 | slope = 0.0; |
---|
249 | curv = 0.0; |
---|
250 | pos = tt_2_pos(tt); |
---|
251 | tt = pos_2_tt(pos); |
---|
252 | build_akt_predikt(tt); |
---|
253 | ap_pro *seq1 = entries[i]->sequence_protein->sequence; |
---|
254 | ap_pro *seq2 = entries[j]->sequence_protein->sequence; |
---|
255 | for (k = chars; k >0; k--) { |
---|
256 | b1 = *(seq1++); |
---|
257 | b2 = *(seq2++); |
---|
258 | if (predict_infinity(b1,b2)){ |
---|
259 | break; |
---|
260 | } |
---|
261 | slope += predict_slope(b1,b2); |
---|
262 | curv += predict_curve(b1,b2); |
---|
263 | } |
---|
264 | iterations++; |
---|
265 | if (!predict_infinity(b1,b2)) { |
---|
266 | if (curv < 0.0) { |
---|
267 | tt -= slope / curv; |
---|
268 | if (tt > 10000.0) { |
---|
269 | aw_message(GB_export_error("INFINITE DISTANCE BETWEEN SPECIES %ld AND %ld; -1.0 WAS WRITTEN\n", i, j)); |
---|
270 | tt = -1.0 / fracchange; |
---|
271 | break; |
---|
272 | } |
---|
273 | int npos = tt_2_pos(tt); |
---|
274 | int d = npos - pos; if (d<0) d=-d; |
---|
275 | if (d<=1){ // cannot optimize |
---|
276 | break; |
---|
277 | } |
---|
278 | |
---|
279 | } else { |
---|
280 | if ((slope > 0.0 && delta < 0.0) || (slope < 0.0 && delta > 0.0)) |
---|
281 | delta /= -2; |
---|
282 | if (tt + delta < 0 && tt<= epsilon) { |
---|
283 | break; |
---|
284 | } |
---|
285 | tt += delta; |
---|
286 | } |
---|
287 | } else { |
---|
288 | delta /= -2; |
---|
289 | tt += delta; |
---|
290 | if (tt < 0) tt = 0; |
---|
291 | } |
---|
292 | } while (iterations < 20); |
---|
293 | } |
---|
294 | matrix->set(i,j,fracchange * tt); |
---|
295 | } |
---|
296 | return 0; |
---|
297 | } /* makedists */ |
---|
298 | |
---|
299 | |
---|
300 | void ph_mldist::clean_slopes(){ |
---|
301 | int i; |
---|
302 | if (slopes) { |
---|
303 | for (i=0;i<PH_ML_RESOLUTION*PH_ML_MAX_DIST;i++) { |
---|
304 | delete slopes[i]; slopes[i] = 0; |
---|
305 | delete curves[i]; curves[i] = 0; |
---|
306 | delete infs[i]; infs[i] = 0; |
---|
307 | } |
---|
308 | } |
---|
309 | akt_slopes = 0; |
---|
310 | akt_curves = 0; |
---|
311 | akt_infs = 0; |
---|
312 | } |
---|
313 | |
---|
314 | ph_mldist::~ph_mldist(){ |
---|
315 | clean_slopes(); |
---|
316 | } |
---|
317 | |
---|
318 | ph_mldist::ph_mldist(long nentries, PHENTRY **entriesi, long seq_len, AP_smatrix *matrixi){ |
---|
319 | memset((char *)this,0,sizeof(ph_mldist)); |
---|
320 | entries = entriesi; |
---|
321 | matrix = matrixi; |
---|
322 | |
---|
323 | spp = nentries; |
---|
324 | chars = seq_len; |
---|
325 | |
---|
326 | //maketrans(); |
---|
327 | qreigen(prob, 20L); |
---|
328 | } |
---|
329 | |
---|