| 1 | /* Phyle of filogenetic tree calculating functions for CLUSTAL W */ |
|---|
| 2 | /* DES was here FEB. 1994 */ |
|---|
| 3 | |
|---|
| 4 | #include <stdio.h> |
|---|
| 5 | #include <string.h> |
|---|
| 6 | #include <stdlib.h> |
|---|
| 7 | #include <math.h> |
|---|
| 8 | #include "clustalw.h" |
|---|
| 9 | #include "dayhoff.h" /* set correction for amino acid distances >= 75% */ |
|---|
| 10 | |
|---|
| 11 | |
|---|
| 12 | /* |
|---|
| 13 | * Prototypes |
|---|
| 14 | */ |
|---|
| 15 | Boolean transition(sint base1, sint base2); |
|---|
| 16 | void tree_gap_delete(void); |
|---|
| 17 | void distance_matrix_output(FILE *ofile); |
|---|
| 18 | void nj_tree(char **tree_description, FILE *tree); |
|---|
| 19 | void compare_tree(char **tree1, char **tree2, sint *hits, sint n); |
|---|
| 20 | void print_phylip_tree(char **tree_description, FILE *tree, sint bootstrap); |
|---|
| 21 | sint two_way_split(char **tree_description, FILE *tree, sint start_row, sint flag, sint bootstrap); |
|---|
| 22 | void print_tree(char **tree_description, FILE *tree, sint *totals); |
|---|
| 23 | |
|---|
| 24 | /* |
|---|
| 25 | * Global variables |
|---|
| 26 | */ |
|---|
| 27 | |
|---|
| 28 | extern sint max_names; |
|---|
| 29 | |
|---|
| 30 | extern double **tmat; /* general nxn array of reals; allocated from main */ |
|---|
| 31 | /* this is used as a distance matrix */ |
|---|
| 32 | extern Boolean dnaflag; /* TRUE for DNA seqs; FALSE for proteins */ |
|---|
| 33 | extern Boolean tossgaps; /* Ignore places in align. where ANY seq. has a gap*/ |
|---|
| 34 | extern Boolean kimura; /* Use correction for multiple substitutions */ |
|---|
| 35 | extern Boolean output_tree_clustal; /* clustal text output for trees */ |
|---|
| 36 | extern Boolean output_tree_phylip; /* phylip nested parentheses format */ |
|---|
| 37 | extern Boolean output_tree_distances; /* phylip distance matrix */ |
|---|
| 38 | extern sint bootstrap_format; /* bootstrap file format */ |
|---|
| 39 | extern Boolean empty; /* any sequences in memory? */ |
|---|
| 40 | extern Boolean usemenu; /* interactive (TRUE) or command line (FALSE) */ |
|---|
| 41 | extern sint nseqs; |
|---|
| 42 | extern sint max_aln_length; |
|---|
| 43 | extern sint *seqlen_array; /* the lengths of the sequences */ |
|---|
| 44 | extern char **seq_array; /* the sequences */ |
|---|
| 45 | extern char **names; /* the seq. names */ |
|---|
| 46 | extern char seqname[]; /* name of input file */ |
|---|
| 47 | extern sint gap_pos1,gap_pos2; |
|---|
| 48 | |
|---|
| 49 | static double *av; |
|---|
| 50 | static double *left_branch, *right_branch; |
|---|
| 51 | static double *save_left_branch, *save_right_branch; |
|---|
| 52 | static sint *boot_totals; |
|---|
| 53 | static sint *tkill; |
|---|
| 54 | /* |
|---|
| 55 | The next line is a fossil from the days of using the cc ran() |
|---|
| 56 | static int ran_factor; |
|---|
| 57 | */ |
|---|
| 58 | static sint *boot_positions; |
|---|
| 59 | static FILE *phylip_phy_tree_file; |
|---|
| 60 | static FILE *clustal_phy_tree_file; |
|---|
| 61 | static FILE *distances_phy_tree_file; |
|---|
| 62 | static Boolean verbose; |
|---|
| 63 | static char *tree_gaps; |
|---|
| 64 | static sint first_seq, last_seq; |
|---|
| 65 | /* array of weights; 1 for use this posn.; 0 don't */ |
|---|
| 66 | |
|---|
| 67 | extern sint boot_ntrials; /* number of bootstrap trials */ |
|---|
| 68 | extern unsigned sint boot_ran_seed; /* random number generator seed */ |
|---|
| 69 | |
|---|
| 70 | void phylogenetic_tree(char *phylip_name,char *clustal_name,char *dist_name) |
|---|
| 71 | /* |
|---|
| 72 | Calculate a tree using the distances in the nseqs*nseqs array tmat. |
|---|
| 73 | This is the routine for getting the REAL trees after alignment. |
|---|
| 74 | */ |
|---|
| 75 | { char path[FILENAMELEN+1]; |
|---|
| 76 | sint i, j; |
|---|
| 77 | sint overspill = 0; |
|---|
| 78 | sint total_dists; |
|---|
| 79 | static char **standard_tree; |
|---|
| 80 | char lin2[10]; |
|---|
| 81 | |
|---|
| 82 | if(empty) { |
|---|
| 83 | error("You must load an alignment first"); |
|---|
| 84 | return; |
|---|
| 85 | } |
|---|
| 86 | |
|---|
| 87 | if(nseqs<=3) { |
|---|
| 88 | error("Alignment has only %d sequences",nseqs); |
|---|
| 89 | return; |
|---|
| 90 | } |
|---|
| 91 | first_seq=1; |
|---|
| 92 | last_seq=nseqs; |
|---|
| 93 | |
|---|
| 94 | get_path(seqname,path); |
|---|
| 95 | |
|---|
| 96 | if(output_tree_clustal) { |
|---|
| 97 | if (clustal_name[0]!=EOS) { |
|---|
| 98 | if((clustal_phy_tree_file = open_explicit_file( |
|---|
| 99 | clustal_name))==NULL) return; |
|---|
| 100 | } |
|---|
| 101 | else { |
|---|
| 102 | if((clustal_phy_tree_file = open_output_file( |
|---|
| 103 | "\nEnter name for CLUSTAL tree output file ",path, |
|---|
| 104 | clustal_name,"nj")) == NULL) return; |
|---|
| 105 | } |
|---|
| 106 | } |
|---|
| 107 | |
|---|
| 108 | if(output_tree_phylip) { |
|---|
| 109 | if (phylip_name[0]!=EOS) { |
|---|
| 110 | if((phylip_phy_tree_file = open_explicit_file( |
|---|
| 111 | phylip_name))==NULL) return; |
|---|
| 112 | } |
|---|
| 113 | else { |
|---|
| 114 | if((phylip_phy_tree_file = open_output_file( |
|---|
| 115 | "\nEnter name for PHYLIP tree output file ",path, |
|---|
| 116 | phylip_name,"ph")) == NULL) return; |
|---|
| 117 | } |
|---|
| 118 | } |
|---|
| 119 | |
|---|
| 120 | if(output_tree_distances) |
|---|
| 121 | { |
|---|
| 122 | if (dist_name[0]!=EOS) { |
|---|
| 123 | if((distances_phy_tree_file = open_explicit_file( |
|---|
| 124 | dist_name))==NULL) return; |
|---|
| 125 | } |
|---|
| 126 | else { |
|---|
| 127 | if((distances_phy_tree_file = open_output_file( |
|---|
| 128 | "\nEnter name for distance matrix output file ",path, |
|---|
| 129 | dist_name,"dst")) == NULL) return; |
|---|
| 130 | } |
|---|
| 131 | } |
|---|
| 132 | |
|---|
| 133 | boot_positions = (sint *)ckalloc( (seqlen_array[first_seq]+2) * sizeof (sint) ); |
|---|
| 134 | |
|---|
| 135 | for(j=1; j<=seqlen_array[first_seq]; ++j) |
|---|
| 136 | boot_positions[j] = j; |
|---|
| 137 | |
|---|
| 138 | if(output_tree_clustal) { |
|---|
| 139 | verbose = TRUE; /* Turn on file output */ |
|---|
| 140 | if(dnaflag) |
|---|
| 141 | overspill = dna_distance_matrix(clustal_phy_tree_file); |
|---|
| 142 | else |
|---|
| 143 | overspill = prot_distance_matrix(clustal_phy_tree_file); |
|---|
| 144 | } |
|---|
| 145 | |
|---|
| 146 | if(output_tree_phylip) { |
|---|
| 147 | verbose = FALSE; /* Turn off file output */ |
|---|
| 148 | if(dnaflag) |
|---|
| 149 | overspill = dna_distance_matrix(phylip_phy_tree_file); |
|---|
| 150 | else |
|---|
| 151 | overspill = prot_distance_matrix(phylip_phy_tree_file); |
|---|
| 152 | } |
|---|
| 153 | |
|---|
| 154 | if(output_tree_distances) { |
|---|
| 155 | verbose = FALSE; /* Turn off file output */ |
|---|
| 156 | if(dnaflag) |
|---|
| 157 | overspill = dna_distance_matrix(distances_phy_tree_file); |
|---|
| 158 | else |
|---|
| 159 | overspill = prot_distance_matrix(distances_phy_tree_file); |
|---|
| 160 | distance_matrix_output(distances_phy_tree_file); |
|---|
| 161 | } |
|---|
| 162 | |
|---|
| 163 | /* check if any distances overflowed the distance corrections */ |
|---|
| 164 | if ( overspill > 0 ) { |
|---|
| 165 | total_dists = (nseqs*(nseqs-1))/2; |
|---|
| 166 | fprintf(stdout,"\n"); |
|---|
| 167 | fprintf(stdout,"\n WARNING: %ld of the distances out of a total of %ld", |
|---|
| 168 | (long)overspill,(long)total_dists); |
|---|
| 169 | fprintf(stdout,"\n were out of range for the distance correction."); |
|---|
| 170 | fprintf(stdout,"\n This may not be fatal but you have been warned!"); |
|---|
| 171 | fprintf(stdout,"\n"); |
|---|
| 172 | fprintf(stdout,"\n SUGGESTIONS: 1) turn off the correction"); |
|---|
| 173 | fprintf(stdout,"\n or 2) remove the most distant sequences"); |
|---|
| 174 | fprintf(stdout,"\n or 3) use the PHYLIP package."); |
|---|
| 175 | fprintf(stdout,"\n\n"); |
|---|
| 176 | if (usemenu) |
|---|
| 177 | getstr("Press [RETURN] to continue",lin2); |
|---|
| 178 | } |
|---|
| 179 | |
|---|
| 180 | if(output_tree_clustal) verbose = TRUE; /* Turn on file output */ |
|---|
| 181 | |
|---|
| 182 | standard_tree = (char **) ckalloc( (nseqs+1) * sizeof (char *) ); |
|---|
| 183 | for(i=0; i<nseqs+1; i++) |
|---|
| 184 | standard_tree[i] = (char *) ckalloc( (nseqs+1) * sizeof(char) ); |
|---|
| 185 | |
|---|
| 186 | if(output_tree_clustal || output_tree_phylip) |
|---|
| 187 | nj_tree(standard_tree,clustal_phy_tree_file); |
|---|
| 188 | |
|---|
| 189 | if(output_tree_phylip) |
|---|
| 190 | print_phylip_tree(standard_tree,phylip_phy_tree_file,0); |
|---|
| 191 | |
|---|
| 192 | /* |
|---|
| 193 | print_tree(standard_tree,phy_tree_file); |
|---|
| 194 | */ |
|---|
| 195 | tree_gaps=ckfree((void *)tree_gaps); |
|---|
| 196 | boot_positions=ckfree((void *)boot_positions); |
|---|
| 197 | if (left_branch != NULL) left_branch=ckfree((void *)left_branch); |
|---|
| 198 | if (right_branch != NULL) right_branch=ckfree((void *)right_branch); |
|---|
| 199 | if (tkill != NULL) tkill=ckfree((void *)tkill); |
|---|
| 200 | if (av != NULL) av=ckfree((void *)av); |
|---|
| 201 | for (i=1;i<nseqs+1;i++) |
|---|
| 202 | standard_tree[i]=ckfree((void *)standard_tree[i]); |
|---|
| 203 | standard_tree=ckfree((void *)standard_tree); |
|---|
| 204 | |
|---|
| 205 | if(output_tree_clustal) { |
|---|
| 206 | fclose(clustal_phy_tree_file); |
|---|
| 207 | info("Phylogenetic tree file created: [%s]",clustal_name); |
|---|
| 208 | } |
|---|
| 209 | |
|---|
| 210 | if(output_tree_phylip) { |
|---|
| 211 | fclose(phylip_phy_tree_file); |
|---|
| 212 | info("Phylogenetic tree file created: [%s]",phylip_name); |
|---|
| 213 | } |
|---|
| 214 | |
|---|
| 215 | if(output_tree_distances) { |
|---|
| 216 | fclose(distances_phy_tree_file); |
|---|
| 217 | info("Distance matrix file created: [%s]",dist_name); |
|---|
| 218 | } |
|---|
| 219 | |
|---|
| 220 | |
|---|
| 221 | } |
|---|
| 222 | |
|---|
| 223 | |
|---|
| 224 | |
|---|
| 225 | |
|---|
| 226 | |
|---|
| 227 | Boolean transition(sint base1, sint base2) /* TRUE if transition; else FALSE */ |
|---|
| 228 | /* |
|---|
| 229 | |
|---|
| 230 | assumes that the bases of DNA sequences have been translated as |
|---|
| 231 | a,A = 0; c,C = 1; g,G = 2; t,T,u,U = 3; N = 4; |
|---|
| 232 | |
|---|
| 233 | A <--> G and T <--> C are transitions; all others are transversions. |
|---|
| 234 | |
|---|
| 235 | */ |
|---|
| 236 | { |
|---|
| 237 | if( ((base1 == 0) && (base2 == 2)) || ((base1 == 2) && (base2 == 0)) ) |
|---|
| 238 | return TRUE; /* A <--> G */ |
|---|
| 239 | if( ((base1 == 3) && (base2 == 1)) || ((base1 == 1) && (base2 == 3)) ) |
|---|
| 240 | return TRUE; /* T <--> C */ |
|---|
| 241 | return FALSE; |
|---|
| 242 | } |
|---|
| 243 | |
|---|
| 244 | |
|---|
| 245 | void tree_gap_delete(void) /* flag all positions in alignment that have a gap */ |
|---|
| 246 | { /* in ANY sequence */ |
|---|
| 247 | sint seqn; |
|---|
| 248 | sint posn; |
|---|
| 249 | |
|---|
| 250 | tree_gaps = (char *)ckalloc( (max_aln_length+1) * sizeof (char) ); |
|---|
| 251 | |
|---|
| 252 | for(posn=1; posn<=seqlen_array[first_seq]; ++posn) { |
|---|
| 253 | tree_gaps[posn] = 0; |
|---|
| 254 | for(seqn=1; seqn<=last_seq-first_seq+1; ++seqn) { |
|---|
| 255 | if((seq_array[seqn+first_seq-1][posn] == gap_pos1) || |
|---|
| 256 | (seq_array[seqn+first_seq-1][posn] == gap_pos2)) { |
|---|
| 257 | tree_gaps[posn] = 1; |
|---|
| 258 | break; |
|---|
| 259 | } |
|---|
| 260 | } |
|---|
| 261 | } |
|---|
| 262 | } |
|---|
| 263 | |
|---|
| 264 | void distance_matrix_output(FILE *ofile) |
|---|
| 265 | { |
|---|
| 266 | sint i,j; |
|---|
| 267 | |
|---|
| 268 | fprintf(ofile,"%6d",(pint)last_seq-first_seq+1); |
|---|
| 269 | for(i=1;i<=last_seq-first_seq+1;i++) { |
|---|
| 270 | fprintf(ofile,"\n%-*s ",max_names,names[i]); |
|---|
| 271 | for(j=1;j<=last_seq-first_seq+1;j++) { |
|---|
| 272 | fprintf(ofile,"%6.3f ",tmat[i][j]); |
|---|
| 273 | if(j % 8 == 0) { |
|---|
| 274 | if(j!=last_seq-first_seq+1) fprintf(ofile,"\n"); |
|---|
| 275 | if(j != last_seq-first_seq+1 ) fprintf(ofile," "); |
|---|
| 276 | } |
|---|
| 277 | } |
|---|
| 278 | } |
|---|
| 279 | } |
|---|
| 280 | |
|---|
| 281 | |
|---|
| 282 | |
|---|
| 283 | void nj_tree(char **tree_description, FILE *tree) |
|---|
| 284 | { |
|---|
| 285 | register int i; |
|---|
| 286 | sint l[4],nude,k; |
|---|
| 287 | sint nc,mini,minj,j,ii,jj; |
|---|
| 288 | double fnseqs,fnseqs2=0,sumd; |
|---|
| 289 | double diq,djq,dij,d2r,dr,dio,djo,da; |
|---|
| 290 | double tmin,total,dmin; |
|---|
| 291 | double bi,bj,b1,b2,b3,branch[4]; |
|---|
| 292 | sint typei,typej; /* 0 = node; 1 = OTU */ |
|---|
| 293 | |
|---|
| 294 | fnseqs = (double)last_seq-first_seq+1; |
|---|
| 295 | |
|---|
| 296 | /*********************** First initialisation ***************************/ |
|---|
| 297 | |
|---|
| 298 | if(verbose) { |
|---|
| 299 | fprintf(tree,"\n\n\t\t\tNeighbor-joining Method\n"); |
|---|
| 300 | fprintf(tree,"\n Saitou, N. and Nei, M. (1987)"); |
|---|
| 301 | fprintf(tree," The Neighbor-joining Method:"); |
|---|
| 302 | fprintf(tree,"\n A New Method for Reconstructing Phylogenetic Trees."); |
|---|
| 303 | fprintf(tree,"\n Mol. Biol. Evol., 4(4), 406-425\n"); |
|---|
| 304 | fprintf(tree,"\n\n This is an UNROOTED tree\n"); |
|---|
| 305 | fprintf(tree,"\n Numbers in parentheses are branch lengths\n\n"); |
|---|
| 306 | } |
|---|
| 307 | |
|---|
| 308 | mini = minj = 0; |
|---|
| 309 | |
|---|
| 310 | left_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 311 | right_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 312 | tkill = (sint *) ckalloc( (nseqs+1) * sizeof (sint) ); |
|---|
| 313 | av = (double *) ckalloc( (nseqs+1) * sizeof (double) ); |
|---|
| 314 | |
|---|
| 315 | for(i=1;i<=last_seq-first_seq+1;++i) |
|---|
| 316 | { |
|---|
| 317 | tmat[i][i] = av[i] = 0.0; |
|---|
| 318 | tkill[i] = 0; |
|---|
| 319 | } |
|---|
| 320 | |
|---|
| 321 | /*********************** Enter The Main Cycle ***************************/ |
|---|
| 322 | |
|---|
| 323 | /* for(nc=1; nc<=(last_seq-first_seq+1-3); ++nc) { */ /**start main cycle**/ |
|---|
| 324 | for(nc=1; nc<=(last_seq-first_seq+1-3); ++nc) { |
|---|
| 325 | sumd = 0.0; |
|---|
| 326 | for(j=2; j<=last_seq-first_seq+1; ++j) |
|---|
| 327 | for(i=1; i<j; ++i) { |
|---|
| 328 | tmat[j][i] = tmat[i][j]; |
|---|
| 329 | sumd = sumd + tmat[i][j]; |
|---|
| 330 | } |
|---|
| 331 | |
|---|
| 332 | tmin = 99999.0; |
|---|
| 333 | |
|---|
| 334 | /*.................compute SMATij values and find the smallest one ........*/ |
|---|
| 335 | |
|---|
| 336 | for(jj=2; jj<=last_seq-first_seq+1; ++jj) |
|---|
| 337 | if(tkill[jj] != 1) |
|---|
| 338 | for(ii=1; ii<jj; ++ii) |
|---|
| 339 | if(tkill[ii] != 1) { |
|---|
| 340 | diq = djq = 0.0; |
|---|
| 341 | |
|---|
| 342 | for(i=1; i<=last_seq-first_seq+1; ++i) { |
|---|
| 343 | diq = diq + tmat[i][ii]; |
|---|
| 344 | djq = djq + tmat[i][jj]; |
|---|
| 345 | } |
|---|
| 346 | |
|---|
| 347 | dij = tmat[ii][jj]; |
|---|
| 348 | d2r = diq + djq - (2.0*dij); |
|---|
| 349 | dr = sumd - dij -d2r; |
|---|
| 350 | fnseqs2 = fnseqs - 2.0; |
|---|
| 351 | total= d2r+ fnseqs2*dij +dr*2.0; |
|---|
| 352 | total= total / (2.0*fnseqs2); |
|---|
| 353 | |
|---|
| 354 | if(total < tmin) { |
|---|
| 355 | tmin = total; |
|---|
| 356 | mini = ii; |
|---|
| 357 | minj = jj; |
|---|
| 358 | } |
|---|
| 359 | } |
|---|
| 360 | |
|---|
| 361 | |
|---|
| 362 | /*.................compute branch lengths and print the results ........*/ |
|---|
| 363 | |
|---|
| 364 | |
|---|
| 365 | dio = djo = 0.0; |
|---|
| 366 | for(i=1; i<=last_seq-first_seq+1; ++i) { |
|---|
| 367 | dio = dio + tmat[i][mini]; |
|---|
| 368 | djo = djo + tmat[i][minj]; |
|---|
| 369 | } |
|---|
| 370 | |
|---|
| 371 | dmin = tmat[mini][minj]; |
|---|
| 372 | dio = (dio - dmin) / fnseqs2; |
|---|
| 373 | djo = (djo - dmin) / fnseqs2; |
|---|
| 374 | bi = (dmin + dio - djo) * 0.5; |
|---|
| 375 | bj = dmin - bi; |
|---|
| 376 | bi = bi - av[mini]; |
|---|
| 377 | bj = bj - av[minj]; |
|---|
| 378 | |
|---|
| 379 | if( av[mini] > 0.0 ) |
|---|
| 380 | typei = 0; |
|---|
| 381 | else |
|---|
| 382 | typei = 1; |
|---|
| 383 | if( av[minj] > 0.0 ) |
|---|
| 384 | typej = 0; |
|---|
| 385 | else |
|---|
| 386 | typej = 1; |
|---|
| 387 | |
|---|
| 388 | if(verbose) |
|---|
| 389 | fprintf(tree,"\n Cycle%4d = ",(pint)nc); |
|---|
| 390 | |
|---|
| 391 | /* |
|---|
| 392 | set negative branch lengths to zero. Also set any tiny positive |
|---|
| 393 | branch lengths to zero. |
|---|
| 394 | */ if( fabs(bi) < 0.0001) bi = 0.0; |
|---|
| 395 | if( fabs(bj) < 0.0001) bj = 0.0; |
|---|
| 396 | |
|---|
| 397 | if(verbose) { |
|---|
| 398 | if(typei == 0) |
|---|
| 399 | fprintf(tree,"Node:%4d (%9.5f) joins ",(pint)mini,bi); |
|---|
| 400 | else |
|---|
| 401 | fprintf(tree," SEQ:%4d (%9.5f) joins ",(pint)mini,bi); |
|---|
| 402 | |
|---|
| 403 | if(typej == 0) |
|---|
| 404 | fprintf(tree,"Node:%4d (%9.5f)",(pint)minj,bj); |
|---|
| 405 | else |
|---|
| 406 | fprintf(tree," SEQ:%4d (%9.5f)",(pint)minj,bj); |
|---|
| 407 | |
|---|
| 408 | fprintf(tree,"\n"); |
|---|
| 409 | } |
|---|
| 410 | |
|---|
| 411 | |
|---|
| 412 | left_branch[nc] = bi; |
|---|
| 413 | right_branch[nc] = bj; |
|---|
| 414 | |
|---|
| 415 | for(i=1; i<=last_seq-first_seq+1; i++) |
|---|
| 416 | tree_description[nc][i] = 0; |
|---|
| 417 | |
|---|
| 418 | if(typei == 0) { |
|---|
| 419 | for(i=nc-1; i>=1; i--) |
|---|
| 420 | if(tree_description[i][mini] == 1) { |
|---|
| 421 | for(j=1; j<=last_seq-first_seq+1; j++) |
|---|
| 422 | if(tree_description[i][j] == 1) |
|---|
| 423 | tree_description[nc][j] = 1; |
|---|
| 424 | break; |
|---|
| 425 | } |
|---|
| 426 | } |
|---|
| 427 | else |
|---|
| 428 | tree_description[nc][mini] = 1; |
|---|
| 429 | |
|---|
| 430 | if(typej == 0) { |
|---|
| 431 | for(i=nc-1; i>=1; i--) |
|---|
| 432 | if(tree_description[i][minj] == 1) { |
|---|
| 433 | for(j=1; j<=last_seq-first_seq+1; j++) |
|---|
| 434 | if(tree_description[i][j] == 1) |
|---|
| 435 | tree_description[nc][j] = 1; |
|---|
| 436 | break; |
|---|
| 437 | } |
|---|
| 438 | } |
|---|
| 439 | else |
|---|
| 440 | tree_description[nc][minj] = 1; |
|---|
| 441 | |
|---|
| 442 | |
|---|
| 443 | /* |
|---|
| 444 | Here is where the -0.00005 branch lengths come from for 3 or more |
|---|
| 445 | identical seqs. |
|---|
| 446 | */ |
|---|
| 447 | /* if(dmin <= 0.0) dmin = 0.0001; */ |
|---|
| 448 | if(dmin <= 0.0) dmin = 0.000001; |
|---|
| 449 | av[mini] = dmin * 0.5; |
|---|
| 450 | |
|---|
| 451 | /*........................Re-initialisation................................*/ |
|---|
| 452 | |
|---|
| 453 | fnseqs = fnseqs - 1.0; |
|---|
| 454 | tkill[minj] = 1; |
|---|
| 455 | |
|---|
| 456 | for(j=1; j<=last_seq-first_seq+1; ++j) |
|---|
| 457 | if( tkill[j] != 1 ) { |
|---|
| 458 | da = ( tmat[mini][j] + tmat[minj][j] ) * 0.5; |
|---|
| 459 | if( (mini - j) < 0 ) |
|---|
| 460 | tmat[mini][j] = da; |
|---|
| 461 | if( (mini - j) > 0) |
|---|
| 462 | tmat[j][mini] = da; |
|---|
| 463 | } |
|---|
| 464 | |
|---|
| 465 | for(j=1; j<=last_seq-first_seq+1; ++j) |
|---|
| 466 | tmat[minj][j] = tmat[j][minj] = 0.0; |
|---|
| 467 | |
|---|
| 468 | |
|---|
| 469 | /****/ } /**end main cycle**/ |
|---|
| 470 | |
|---|
| 471 | /******************************Last Cycle (3 Seqs. left)********************/ |
|---|
| 472 | |
|---|
| 473 | nude = 1; |
|---|
| 474 | |
|---|
| 475 | for(i=1; i<=last_seq-first_seq+1; ++i) |
|---|
| 476 | if( tkill[i] != 1 ) { |
|---|
| 477 | l[nude] = i; |
|---|
| 478 | nude = nude + 1; |
|---|
| 479 | } |
|---|
| 480 | |
|---|
| 481 | b1 = (tmat[l[1]][l[2]] + tmat[l[1]][l[3]] - tmat[l[2]][l[3]]) * 0.5; |
|---|
| 482 | b2 = tmat[l[1]][l[2]] - b1; |
|---|
| 483 | b3 = tmat[l[1]][l[3]] - b1; |
|---|
| 484 | |
|---|
| 485 | branch[1] = b1 - av[l[1]]; |
|---|
| 486 | branch[2] = b2 - av[l[2]]; |
|---|
| 487 | branch[3] = b3 - av[l[3]]; |
|---|
| 488 | |
|---|
| 489 | /* Reset tiny negative and positive branch lengths to zero */ |
|---|
| 490 | if( fabs(branch[1]) < 0.0001) branch[1] = 0.0; |
|---|
| 491 | if( fabs(branch[2]) < 0.0001) branch[2] = 0.0; |
|---|
| 492 | if( fabs(branch[3]) < 0.0001) branch[3] = 0.0; |
|---|
| 493 | |
|---|
| 494 | left_branch[last_seq-first_seq+1-2] = branch[1]; |
|---|
| 495 | left_branch[last_seq-first_seq+1-1] = branch[2]; |
|---|
| 496 | left_branch[last_seq-first_seq+1] = branch[3]; |
|---|
| 497 | |
|---|
| 498 | for(i=1; i<=last_seq-first_seq+1; i++) |
|---|
| 499 | tree_description[last_seq-first_seq+1-2][i] = 0; |
|---|
| 500 | |
|---|
| 501 | if(verbose) |
|---|
| 502 | fprintf(tree,"\n Cycle%4d (Last cycle, trichotomy):\n",(pint)nc); |
|---|
| 503 | |
|---|
| 504 | for(i=1; i<=3; ++i) { |
|---|
| 505 | if( av[l[i]] > 0.0) { |
|---|
| 506 | if(verbose) |
|---|
| 507 | fprintf(tree,"\n\t\t Node:%4d (%9.5f) ",(pint)l[i],branch[i]); |
|---|
| 508 | for(k=last_seq-first_seq+1-3; k>=1; k--) |
|---|
| 509 | if(tree_description[k][l[i]] == 1) { |
|---|
| 510 | for(j=1; j<=last_seq-first_seq+1; j++) |
|---|
| 511 | if(tree_description[k][j] == 1) |
|---|
| 512 | tree_description[last_seq-first_seq+1-2][j] = i; |
|---|
| 513 | break; |
|---|
| 514 | } |
|---|
| 515 | } |
|---|
| 516 | else { |
|---|
| 517 | if(verbose) |
|---|
| 518 | fprintf(tree,"\n\t\t SEQ:%4d (%9.5f) ",(pint)l[i],branch[i]); |
|---|
| 519 | tree_description[last_seq-first_seq+1-2][l[i]] = i; |
|---|
| 520 | } |
|---|
| 521 | if(i < 3) { |
|---|
| 522 | if(verbose) |
|---|
| 523 | fprintf(tree,"joins"); |
|---|
| 524 | } |
|---|
| 525 | } |
|---|
| 526 | |
|---|
| 527 | if(verbose) |
|---|
| 528 | fprintf(tree,"\n"); |
|---|
| 529 | |
|---|
| 530 | } |
|---|
| 531 | |
|---|
| 532 | |
|---|
| 533 | |
|---|
| 534 | |
|---|
| 535 | void bootstrap_tree(char *phylip_name,char *clustal_name) |
|---|
| 536 | { |
|---|
| 537 | sint i,j; |
|---|
| 538 | int ranno; |
|---|
| 539 | char path[MAXLINE+1]; |
|---|
| 540 | char dummy[10]; |
|---|
| 541 | static char **sample_tree; |
|---|
| 542 | static char **standard_tree; |
|---|
| 543 | sint total_dists, overspill = 0, total_overspill = 0; |
|---|
| 544 | sint nfails = 0; |
|---|
| 545 | |
|---|
| 546 | if(empty) { |
|---|
| 547 | error("You must load an alignment first"); |
|---|
| 548 | return; |
|---|
| 549 | } |
|---|
| 550 | |
|---|
| 551 | if(nseqs<=3) { |
|---|
| 552 | error("Alignment has only %d sequences",nseqs); |
|---|
| 553 | return; |
|---|
| 554 | } |
|---|
| 555 | |
|---|
| 556 | if(!output_tree_clustal && !output_tree_phylip) { |
|---|
| 557 | error("You must select either clustal or phylip tree output format"); |
|---|
| 558 | return; |
|---|
| 559 | } |
|---|
| 560 | get_path(seqname, path); |
|---|
| 561 | |
|---|
| 562 | if (output_tree_clustal) { |
|---|
| 563 | if (clustal_name[0]!=EOS) { |
|---|
| 564 | if((clustal_phy_tree_file = open_explicit_file( |
|---|
| 565 | clustal_name))==NULL) return; |
|---|
| 566 | } |
|---|
| 567 | else { |
|---|
| 568 | if((clustal_phy_tree_file = open_output_file( |
|---|
| 569 | "\nEnter name for bootstrap output file ",path, |
|---|
| 570 | clustal_name,"njb")) == NULL) return; |
|---|
| 571 | } |
|---|
| 572 | } |
|---|
| 573 | |
|---|
| 574 | first_seq=1; |
|---|
| 575 | last_seq=nseqs; |
|---|
| 576 | |
|---|
| 577 | if (output_tree_phylip) { |
|---|
| 578 | if (phylip_name[0]!=EOS) { |
|---|
| 579 | if((phylip_phy_tree_file = open_explicit_file( |
|---|
| 580 | phylip_name))==NULL) return; |
|---|
| 581 | } |
|---|
| 582 | else { |
|---|
| 583 | if((phylip_phy_tree_file = open_output_file( |
|---|
| 584 | "\nEnter name for bootstrap output file ",path, |
|---|
| 585 | phylip_name,"phb")) == NULL) return; |
|---|
| 586 | } |
|---|
| 587 | } |
|---|
| 588 | |
|---|
| 589 | boot_totals = (sint *)ckalloc( (nseqs+1) * sizeof (sint) ); |
|---|
| 590 | for(i=0;i<nseqs+1;i++) |
|---|
| 591 | boot_totals[i]=0; |
|---|
| 592 | |
|---|
| 593 | boot_positions = (sint *)ckalloc( (seqlen_array[first_seq]+2) * sizeof (sint) ); |
|---|
| 594 | |
|---|
| 595 | for(j=1; j<=seqlen_array[first_seq]; ++j) /* First select all positions for */ |
|---|
| 596 | boot_positions[j] = j; /* the "standard" tree */ |
|---|
| 597 | |
|---|
| 598 | if(output_tree_clustal) { |
|---|
| 599 | verbose = TRUE; /* Turn on file output */ |
|---|
| 600 | if(dnaflag) |
|---|
| 601 | overspill = dna_distance_matrix(clustal_phy_tree_file); |
|---|
| 602 | else |
|---|
| 603 | overspill = prot_distance_matrix(clustal_phy_tree_file); |
|---|
| 604 | } |
|---|
| 605 | |
|---|
| 606 | if(output_tree_phylip) { |
|---|
| 607 | verbose = FALSE; /* Turn off file output */ |
|---|
| 608 | if(dnaflag) |
|---|
| 609 | overspill = dna_distance_matrix(phylip_phy_tree_file); |
|---|
| 610 | else |
|---|
| 611 | overspill = prot_distance_matrix(phylip_phy_tree_file); |
|---|
| 612 | } |
|---|
| 613 | |
|---|
| 614 | /* check if any distances overflowed the distance corrections */ |
|---|
| 615 | if ( overspill > 0 ) { |
|---|
| 616 | total_dists = (nseqs*(nseqs-1))/2; |
|---|
| 617 | fprintf(stdout,"\n"); |
|---|
| 618 | fprintf(stdout,"\n WARNING: %d of the distances out of a total of %d", |
|---|
| 619 | (pint)overspill,(pint)total_dists); |
|---|
| 620 | fprintf(stdout,"\n were out of range for the distance correction."); |
|---|
| 621 | fprintf(stdout,"\n This may not be fatal but you have been warned!"); |
|---|
| 622 | fprintf(stdout,"\n"); |
|---|
| 623 | fprintf(stdout,"\n SUGGESTIONS: 1) turn off the correction"); |
|---|
| 624 | fprintf(stdout,"\n or 2) remove the most distant sequences"); |
|---|
| 625 | fprintf(stdout,"\n or 3) use the PHYLIP package."); |
|---|
| 626 | fprintf(stdout,"\n\n"); |
|---|
| 627 | if (usemenu) |
|---|
| 628 | getstr("Press [RETURN] to continue",dummy); |
|---|
| 629 | } |
|---|
| 630 | |
|---|
| 631 | tree_gaps=ckfree((void *)tree_gaps); |
|---|
| 632 | |
|---|
| 633 | if (output_tree_clustal) verbose = TRUE; /* Turn on screen output */ |
|---|
| 634 | |
|---|
| 635 | standard_tree = (char **) ckalloc( (nseqs+1) * sizeof (char *) ); |
|---|
| 636 | for(i=0; i<nseqs+1; i++) |
|---|
| 637 | standard_tree[i] = (char *) ckalloc( (nseqs+1) * sizeof(char) ); |
|---|
| 638 | |
|---|
| 639 | /* compute the standard tree */ |
|---|
| 640 | |
|---|
| 641 | if(output_tree_clustal || output_tree_phylip) |
|---|
| 642 | nj_tree(standard_tree,clustal_phy_tree_file); |
|---|
| 643 | |
|---|
| 644 | if (output_tree_clustal) |
|---|
| 645 | fprintf(clustal_phy_tree_file,"\n\n\t\t\tBootstrap Confidence Limits\n\n"); |
|---|
| 646 | |
|---|
| 647 | /* save the left_branch and right_branch for phylip output */ |
|---|
| 648 | save_left_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 649 | save_right_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 650 | for (i=1;i<=nseqs;i++) { |
|---|
| 651 | save_left_branch[i] = left_branch[i]; |
|---|
| 652 | save_right_branch[i] = right_branch[i]; |
|---|
| 653 | } |
|---|
| 654 | /* |
|---|
| 655 | The next line is a fossil from the days of using the cc ran() |
|---|
| 656 | ran_factor = RAND_MAX / seqlen_array[first_seq]; |
|---|
| 657 | */ |
|---|
| 658 | |
|---|
| 659 | if(usemenu) |
|---|
| 660 | boot_ran_seed = |
|---|
| 661 | getint("\n\nEnter seed no. for random number generator ",1,1000,boot_ran_seed); |
|---|
| 662 | |
|---|
| 663 | /* do not use the native cc ran() |
|---|
| 664 | srand(boot_ran_seed); |
|---|
| 665 | */ |
|---|
| 666 | addrandinit((unsigned long) boot_ran_seed); |
|---|
| 667 | |
|---|
| 668 | if (output_tree_clustal) |
|---|
| 669 | fprintf(clustal_phy_tree_file,"\n Random number generator seed = %7u\n", |
|---|
| 670 | boot_ran_seed); |
|---|
| 671 | |
|---|
| 672 | if(usemenu) |
|---|
| 673 | boot_ntrials = |
|---|
| 674 | getint("\n\nEnter number of bootstrap trials ",1,10000,boot_ntrials); |
|---|
| 675 | |
|---|
| 676 | if (output_tree_clustal) { |
|---|
| 677 | fprintf(clustal_phy_tree_file,"\n Number of bootstrap trials = %7d\n", |
|---|
| 678 | (pint)boot_ntrials); |
|---|
| 679 | |
|---|
| 680 | fprintf(clustal_phy_tree_file, |
|---|
| 681 | "\n\n Diagrammatic representation of the above tree: \n"); |
|---|
| 682 | fprintf(clustal_phy_tree_file,"\n Each row represents 1 tree cycle;"); |
|---|
| 683 | fprintf(clustal_phy_tree_file," defining 2 groups.\n"); |
|---|
| 684 | fprintf(clustal_phy_tree_file,"\n Each column is 1 sequence; "); |
|---|
| 685 | fprintf(clustal_phy_tree_file,"the stars in each line show 1 group; "); |
|---|
| 686 | fprintf(clustal_phy_tree_file,"\n the dots show the other\n"); |
|---|
| 687 | fprintf(clustal_phy_tree_file,"\n Numbers show occurences in bootstrap samples."); |
|---|
| 688 | } |
|---|
| 689 | /* |
|---|
| 690 | print_tree(standard_tree, clustal_phy_tree_file, boot_totals); |
|---|
| 691 | */ |
|---|
| 692 | verbose = FALSE; /* Turn OFF screen output */ |
|---|
| 693 | |
|---|
| 694 | left_branch=ckfree((void *)left_branch); |
|---|
| 695 | right_branch=ckfree((void *)right_branch); |
|---|
| 696 | tkill=ckfree((void *)tkill); |
|---|
| 697 | av=ckfree((void *)av); |
|---|
| 698 | |
|---|
| 699 | sample_tree = (char **) ckalloc( (nseqs+1) * sizeof (char *) ); |
|---|
| 700 | for(i=0; i<nseqs+1; i++) |
|---|
| 701 | sample_tree[i] = (char *) ckalloc( (nseqs+1) * sizeof(char) ); |
|---|
| 702 | |
|---|
| 703 | if (usemenu) |
|---|
| 704 | fprintf(stdout,"\n\nEach dot represents 10 trials\n\n"); |
|---|
| 705 | total_overspill = 0; |
|---|
| 706 | nfails = 0; |
|---|
| 707 | for(i=1; i<=boot_ntrials; ++i) { |
|---|
| 708 | for(j=1; j<=seqlen_array[first_seq]; ++j) { /* select alignment */ |
|---|
| 709 | /* positions for */ |
|---|
| 710 | ranno = addrand( (unsigned long) seqlen_array[1]) + 1; |
|---|
| 711 | boot_positions[j] = ranno; /* bootstrap sample */ |
|---|
| 712 | } |
|---|
| 713 | if(output_tree_clustal) { |
|---|
| 714 | if(dnaflag) |
|---|
| 715 | overspill = dna_distance_matrix(clustal_phy_tree_file); |
|---|
| 716 | else |
|---|
| 717 | overspill = prot_distance_matrix(clustal_phy_tree_file); |
|---|
| 718 | } |
|---|
| 719 | |
|---|
| 720 | if(output_tree_phylip) { |
|---|
| 721 | if(dnaflag) |
|---|
| 722 | overspill = dna_distance_matrix(phylip_phy_tree_file); |
|---|
| 723 | else |
|---|
| 724 | overspill = prot_distance_matrix(phylip_phy_tree_file); |
|---|
| 725 | } |
|---|
| 726 | |
|---|
| 727 | if( overspill > 0) { |
|---|
| 728 | total_overspill = total_overspill + overspill; |
|---|
| 729 | nfails++; |
|---|
| 730 | } |
|---|
| 731 | |
|---|
| 732 | tree_gaps=ckfree((void *)tree_gaps); |
|---|
| 733 | |
|---|
| 734 | if(output_tree_clustal || output_tree_phylip) |
|---|
| 735 | nj_tree(sample_tree,clustal_phy_tree_file); |
|---|
| 736 | |
|---|
| 737 | left_branch=ckfree((void *)left_branch); |
|---|
| 738 | right_branch=ckfree((void *)right_branch); |
|---|
| 739 | tkill=ckfree((void *)tkill); |
|---|
| 740 | av=ckfree((void *)av); |
|---|
| 741 | |
|---|
| 742 | compare_tree(standard_tree, sample_tree, boot_totals, last_seq-first_seq+1); |
|---|
| 743 | if (usemenu) { |
|---|
| 744 | if(i % 10 == 0) fprintf(stdout,"."); |
|---|
| 745 | if(i % 100 == 0) fprintf(stdout,"\n"); |
|---|
| 746 | } |
|---|
| 747 | } |
|---|
| 748 | |
|---|
| 749 | /* check if any distances overflowed the distance corrections */ |
|---|
| 750 | if ( nfails > 0 ) { |
|---|
| 751 | total_dists = (nseqs*(nseqs-1))/2; |
|---|
| 752 | fprintf(stdout,"\n"); |
|---|
| 753 | fprintf(stdout,"\n WARNING: %ld of the distances out of a total of %ld times %ld", |
|---|
| 754 | (long)total_overspill,(long)total_dists,(long)boot_ntrials); |
|---|
| 755 | fprintf(stdout,"\n were out of range for the distance correction."); |
|---|
| 756 | fprintf(stdout,"\n This affected %d out of %d bootstrap trials.", |
|---|
| 757 | (pint)nfails,(pint)boot_ntrials); |
|---|
| 758 | fprintf(stdout,"\n This may not be fatal but you have been warned!"); |
|---|
| 759 | fprintf(stdout,"\n"); |
|---|
| 760 | fprintf(stdout,"\n SUGGESTIONS: 1) turn off the correction"); |
|---|
| 761 | fprintf(stdout,"\n or 2) remove the most distant sequences"); |
|---|
| 762 | fprintf(stdout,"\n or 3) use the PHYLIP package."); |
|---|
| 763 | fprintf(stdout,"\n\n"); |
|---|
| 764 | if (usemenu) |
|---|
| 765 | getstr("Press [RETURN] to continue",dummy); |
|---|
| 766 | } |
|---|
| 767 | |
|---|
| 768 | |
|---|
| 769 | boot_positions=ckfree((void *)boot_positions); |
|---|
| 770 | |
|---|
| 771 | for (i=1;i<nseqs+1;i++) |
|---|
| 772 | sample_tree[i]=ckfree((void *)sample_tree[i]); |
|---|
| 773 | sample_tree=ckfree((void *)sample_tree); |
|---|
| 774 | /* |
|---|
| 775 | fprintf(clustal_phy_tree_file,"\n\n Bootstrap totals for each group\n"); |
|---|
| 776 | */ |
|---|
| 777 | if (output_tree_clustal) |
|---|
| 778 | print_tree(standard_tree, clustal_phy_tree_file, boot_totals); |
|---|
| 779 | |
|---|
| 780 | if(output_tree_phylip) { |
|---|
| 781 | left_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 782 | right_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 783 | for (i=1;i<=nseqs;i++) { |
|---|
| 784 | left_branch[i] = save_left_branch[i]; |
|---|
| 785 | right_branch[i] = save_right_branch[i]; |
|---|
| 786 | } |
|---|
| 787 | print_phylip_tree(standard_tree,phylip_phy_tree_file, |
|---|
| 788 | bootstrap_format); |
|---|
| 789 | left_branch=ckfree((void *)left_branch); |
|---|
| 790 | right_branch=ckfree((void *)right_branch); |
|---|
| 791 | } |
|---|
| 792 | |
|---|
| 793 | boot_totals=ckfree((void *)boot_totals); |
|---|
| 794 | save_left_branch=ckfree((void *)save_left_branch); |
|---|
| 795 | save_right_branch=ckfree((void *)save_right_branch); |
|---|
| 796 | |
|---|
| 797 | for (i=1;i<nseqs+1;i++) |
|---|
| 798 | standard_tree[i]=ckfree((void *)standard_tree[i]); |
|---|
| 799 | standard_tree=ckfree((void *)standard_tree); |
|---|
| 800 | |
|---|
| 801 | if (output_tree_clustal) |
|---|
| 802 | fclose(clustal_phy_tree_file); |
|---|
| 803 | |
|---|
| 804 | if (output_tree_phylip) |
|---|
| 805 | fclose(phylip_phy_tree_file); |
|---|
| 806 | |
|---|
| 807 | if (output_tree_clustal) |
|---|
| 808 | info("Bootstrap output file completed [%s]" |
|---|
| 809 | ,clustal_name); |
|---|
| 810 | if (output_tree_phylip) |
|---|
| 811 | info("Bootstrap output file completed [%s]" |
|---|
| 812 | ,phylip_name); |
|---|
| 813 | } |
|---|
| 814 | |
|---|
| 815 | |
|---|
| 816 | void compare_tree(char **tree1, char **tree2, sint *hits, sint n) |
|---|
| 817 | { |
|---|
| 818 | sint i,j,k; |
|---|
| 819 | sint nhits1, nhits2; |
|---|
| 820 | |
|---|
| 821 | for(i=1; i<=n-3; i++) { |
|---|
| 822 | for(j=1; j<=n-3; j++) { |
|---|
| 823 | nhits1 = 0; |
|---|
| 824 | nhits2 = 0; |
|---|
| 825 | for(k=1; k<=n; k++) { |
|---|
| 826 | if(tree1[i][k] == tree2[j][k]) nhits1++; |
|---|
| 827 | if(tree1[i][k] != tree2[j][k]) nhits2++; |
|---|
| 828 | } |
|---|
| 829 | if((nhits1 == last_seq-first_seq+1) || (nhits2 == last_seq-first_seq+1)) hits[i]++; |
|---|
| 830 | } |
|---|
| 831 | } |
|---|
| 832 | } |
|---|
| 833 | |
|---|
| 834 | |
|---|
| 835 | void print_phylip_tree(char **tree_description, FILE *tree, sint bootstrap) |
|---|
| 836 | { |
|---|
| 837 | sint old_row; |
|---|
| 838 | |
|---|
| 839 | fprintf(tree,"(\n"); |
|---|
| 840 | |
|---|
| 841 | old_row=two_way_split(tree_description, tree, last_seq-first_seq+1-2,1,bootstrap); |
|---|
| 842 | fprintf(tree,":%7.5f",left_branch[last_seq-first_seq+1-2]); |
|---|
| 843 | if ((bootstrap==BS_BRANCH_LABELS) && (old_row>0) && (boot_totals[old_row]>0)) |
|---|
| 844 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 845 | fprintf(tree,",\n"); |
|---|
| 846 | |
|---|
| 847 | old_row=two_way_split(tree_description, tree, last_seq-first_seq+1-2,2,bootstrap); |
|---|
| 848 | fprintf(tree,":%7.5f",left_branch[last_seq-first_seq+1-1]); |
|---|
| 849 | if ((bootstrap==BS_BRANCH_LABELS) && (old_row>0) && (boot_totals[old_row]>0)) |
|---|
| 850 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 851 | fprintf(tree,",\n"); |
|---|
| 852 | |
|---|
| 853 | old_row=two_way_split(tree_description, tree, last_seq-first_seq+1-2,3,bootstrap); |
|---|
| 854 | fprintf(tree,":%7.5f",left_branch[last_seq-first_seq+1]); |
|---|
| 855 | if ((bootstrap==BS_BRANCH_LABELS) && (old_row>0) && (boot_totals[old_row]>0)) |
|---|
| 856 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 857 | fprintf(tree,")"); |
|---|
| 858 | if (bootstrap==BS_NODE_LABELS) fprintf(tree,"TRICHOTOMY"); |
|---|
| 859 | fprintf(tree,";\n"); |
|---|
| 860 | } |
|---|
| 861 | |
|---|
| 862 | |
|---|
| 863 | sint two_way_split |
|---|
| 864 | (char **tree_description, FILE *tree, sint start_row, sint flag, sint bootstrap) |
|---|
| 865 | { |
|---|
| 866 | sint row, new_row = 0, old_row, col, test_col = 0; |
|---|
| 867 | Boolean single_seq; |
|---|
| 868 | |
|---|
| 869 | if(start_row != last_seq-first_seq+1-2) fprintf(tree,"(\n"); |
|---|
| 870 | |
|---|
| 871 | for(col=1; col<=last_seq-first_seq+1; col++) { |
|---|
| 872 | if(tree_description[start_row][col] == flag) { |
|---|
| 873 | test_col = col; |
|---|
| 874 | break; |
|---|
| 875 | } |
|---|
| 876 | } |
|---|
| 877 | |
|---|
| 878 | single_seq = TRUE; |
|---|
| 879 | for(row=start_row-1; row>=1; row--) |
|---|
| 880 | if(tree_description[row][test_col] == 1) { |
|---|
| 881 | single_seq = FALSE; |
|---|
| 882 | new_row = row; |
|---|
| 883 | break; |
|---|
| 884 | } |
|---|
| 885 | |
|---|
| 886 | if(single_seq) { |
|---|
| 887 | tree_description[start_row][test_col] = 0; |
|---|
| 888 | fprintf(tree,"%.*s",max_names,names[test_col+first_seq-1]); |
|---|
| 889 | if(start_row == last_seq-first_seq+1-2) { |
|---|
| 890 | return(0); |
|---|
| 891 | } |
|---|
| 892 | |
|---|
| 893 | fprintf(tree,":%7.5f,\n",left_branch[start_row]); |
|---|
| 894 | } |
|---|
| 895 | else { |
|---|
| 896 | for(col=1; col<=last_seq-first_seq+1; col++) { |
|---|
| 897 | if((tree_description[start_row][col]==1)&& |
|---|
| 898 | (tree_description[new_row][col]==1)) |
|---|
| 899 | tree_description[start_row][col] = 0; |
|---|
| 900 | } |
|---|
| 901 | old_row=two_way_split(tree_description, tree, new_row, (sint)1, bootstrap); |
|---|
| 902 | if(start_row == last_seq-first_seq+1-2) { |
|---|
| 903 | return(new_row); |
|---|
| 904 | } |
|---|
| 905 | |
|---|
| 906 | fprintf(tree,":%7.5f",left_branch[start_row]); |
|---|
| 907 | if ((bootstrap==BS_BRANCH_LABELS) && (boot_totals[old_row]>0)) |
|---|
| 908 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 909 | |
|---|
| 910 | fprintf(tree,",\n"); |
|---|
| 911 | } |
|---|
| 912 | |
|---|
| 913 | |
|---|
| 914 | for(col=1; col<=last_seq-first_seq+1; col++) |
|---|
| 915 | if(tree_description[start_row][col] == flag) { |
|---|
| 916 | test_col = col; |
|---|
| 917 | break; |
|---|
| 918 | } |
|---|
| 919 | |
|---|
| 920 | single_seq = TRUE; |
|---|
| 921 | new_row = 0; |
|---|
| 922 | for(row=start_row-1; row>=1; row--) |
|---|
| 923 | if(tree_description[row][test_col] == 1) { |
|---|
| 924 | single_seq = FALSE; |
|---|
| 925 | new_row = row; |
|---|
| 926 | break; |
|---|
| 927 | } |
|---|
| 928 | |
|---|
| 929 | if(single_seq) { |
|---|
| 930 | tree_description[start_row][test_col] = 0; |
|---|
| 931 | fprintf(tree,"%.*s",max_names,names[test_col+first_seq-1]); |
|---|
| 932 | fprintf(tree,":%7.5f)\n",right_branch[start_row]); |
|---|
| 933 | } |
|---|
| 934 | else { |
|---|
| 935 | for(col=1; col<=last_seq-first_seq+1; col++) { |
|---|
| 936 | if((tree_description[start_row][col]==1)&& |
|---|
| 937 | (tree_description[new_row][col]==1)) |
|---|
| 938 | tree_description[start_row][col] = 0; |
|---|
| 939 | } |
|---|
| 940 | old_row=two_way_split(tree_description, tree, new_row, (sint)1, bootstrap); |
|---|
| 941 | fprintf(tree,":%7.5f",right_branch[start_row]); |
|---|
| 942 | if ((bootstrap==BS_BRANCH_LABELS) && (boot_totals[old_row]>0)) |
|---|
| 943 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 944 | |
|---|
| 945 | fprintf(tree,")\n"); |
|---|
| 946 | } |
|---|
| 947 | if ((bootstrap==BS_NODE_LABELS) && (boot_totals[start_row]>0)) |
|---|
| 948 | fprintf(tree,"%d",(pint)boot_totals[start_row]); |
|---|
| 949 | |
|---|
| 950 | return(start_row); |
|---|
| 951 | } |
|---|
| 952 | |
|---|
| 953 | |
|---|
| 954 | |
|---|
| 955 | void print_tree(char **tree_description, FILE *tree, sint *totals) |
|---|
| 956 | { |
|---|
| 957 | sint row,col; |
|---|
| 958 | |
|---|
| 959 | fprintf(tree,"\n"); |
|---|
| 960 | |
|---|
| 961 | for(row=1; row<=last_seq-first_seq+1-3; row++) { |
|---|
| 962 | fprintf(tree," \n"); |
|---|
| 963 | for(col=1; col<=last_seq-first_seq+1; col++) { |
|---|
| 964 | if(tree_description[row][col] == 0) |
|---|
| 965 | fprintf(tree,"*"); |
|---|
| 966 | else |
|---|
| 967 | fprintf(tree,"."); |
|---|
| 968 | } |
|---|
| 969 | if(totals[row] > 0) |
|---|
| 970 | fprintf(tree,"%7d",(pint)totals[row]); |
|---|
| 971 | } |
|---|
| 972 | fprintf(tree," \n"); |
|---|
| 973 | for(col=1; col<=last_seq-first_seq+1; col++) |
|---|
| 974 | fprintf(tree,"%1d",(pint)tree_description[last_seq-first_seq+1-2][col]); |
|---|
| 975 | fprintf(tree,"\n"); |
|---|
| 976 | } |
|---|
| 977 | |
|---|
| 978 | |
|---|
| 979 | |
|---|
| 980 | sint dna_distance_matrix(FILE *tree) |
|---|
| 981 | { |
|---|
| 982 | sint m,n; |
|---|
| 983 | sint j,i; |
|---|
| 984 | sint res1, res2; |
|---|
| 985 | sint overspill = 0; |
|---|
| 986 | double p,q,e,a,b,k; |
|---|
| 987 | |
|---|
| 988 | tree_gap_delete(); /* flag positions with gaps (tree_gaps[i] = 1 ) */ |
|---|
| 989 | |
|---|
| 990 | if(verbose) { |
|---|
| 991 | fprintf(tree,"\n"); |
|---|
| 992 | fprintf(tree,"\n DIST = percentage divergence (/100)"); |
|---|
| 993 | fprintf(tree,"\n p = rate of transition (A <-> G; C <-> T)"); |
|---|
| 994 | fprintf(tree,"\n q = rate of transversion"); |
|---|
| 995 | fprintf(tree,"\n Length = number of sites used in comparison"); |
|---|
| 996 | fprintf(tree,"\n"); |
|---|
| 997 | if(tossgaps) { |
|---|
| 998 | fprintf(tree,"\n All sites with gaps (in any sequence) deleted!"); |
|---|
| 999 | fprintf(tree,"\n"); |
|---|
| 1000 | } |
|---|
| 1001 | if(kimura) { |
|---|
| 1002 | fprintf(tree,"\n Distances corrected by Kimura's 2 parameter model:"); |
|---|
| 1003 | fprintf(tree,"\n\n Kimura, M. (1980)"); |
|---|
| 1004 | fprintf(tree," A simple method for estimating evolutionary "); |
|---|
| 1005 | fprintf(tree,"rates of base"); |
|---|
| 1006 | fprintf(tree,"\n substitutions through comparative studies of "); |
|---|
| 1007 | fprintf(tree,"nucleotide sequences."); |
|---|
| 1008 | fprintf(tree,"\n J. Mol. Evol., 16, 111-120."); |
|---|
| 1009 | fprintf(tree,"\n\n"); |
|---|
| 1010 | } |
|---|
| 1011 | } |
|---|
| 1012 | |
|---|
| 1013 | for(m=1; m<last_seq-first_seq+1; ++m) /* for every pair of sequence */ |
|---|
| 1014 | for(n=m+1; n<=last_seq-first_seq+1; ++n) { |
|---|
| 1015 | p = q = e = 0.0; |
|---|
| 1016 | tmat[m][n] = tmat[n][m] = 0.0; |
|---|
| 1017 | for(i=1; i<=seqlen_array[first_seq]; ++i) { |
|---|
| 1018 | j = boot_positions[i]; |
|---|
| 1019 | if(tossgaps && (tree_gaps[j] > 0) ) |
|---|
| 1020 | goto skip; /* gap position */ |
|---|
| 1021 | res1 = seq_array[m+first_seq-1][j]; |
|---|
| 1022 | res2 = seq_array[n+first_seq-1][j]; |
|---|
| 1023 | if( (res1 == gap_pos1) || (res1 == gap_pos2) || |
|---|
| 1024 | (res2 == gap_pos1) || (res2 == gap_pos2)) |
|---|
| 1025 | goto skip; /* gap in a seq*/ |
|---|
| 1026 | e = e + 1.0; |
|---|
| 1027 | if(res1 != res2) { |
|---|
| 1028 | if(transition(res1,res2)) |
|---|
| 1029 | p = p + 1.0; |
|---|
| 1030 | else |
|---|
| 1031 | q = q + 1.0; |
|---|
| 1032 | } |
|---|
| 1033 | skip:; |
|---|
| 1034 | } |
|---|
| 1035 | |
|---|
| 1036 | |
|---|
| 1037 | /* Kimura's 2 parameter correction for multiple substitutions */ |
|---|
| 1038 | |
|---|
| 1039 | if(!kimura) { |
|---|
| 1040 | if (e == 0) { |
|---|
| 1041 | fprintf(stdout,"\n WARNING: sequences %d and %d are non-overlapping\n",m,n); |
|---|
| 1042 | k = 0.0; |
|---|
| 1043 | p = 0.0; |
|---|
| 1044 | q = 0.0; |
|---|
| 1045 | } |
|---|
| 1046 | else { |
|---|
| 1047 | k = (p+q)/e; |
|---|
| 1048 | if(p > 0.0) |
|---|
| 1049 | p = p/e; |
|---|
| 1050 | else |
|---|
| 1051 | p = 0.0; |
|---|
| 1052 | if(q > 0.0) |
|---|
| 1053 | q = q/e; |
|---|
| 1054 | else |
|---|
| 1055 | q = 0.0; |
|---|
| 1056 | } |
|---|
| 1057 | tmat[m][n] = tmat[n][m] = k; |
|---|
| 1058 | if(verbose) /* if screen output */ |
|---|
| 1059 | fprintf(tree, |
|---|
| 1060 | "%4d vs.%4d: DIST = %7.4f; p = %6.4f; q = %6.4f; length = %6.0f\n" |
|---|
| 1061 | ,(pint)m,(pint)n,k,p,q,e); |
|---|
| 1062 | } |
|---|
| 1063 | else { |
|---|
| 1064 | if (e == 0) { |
|---|
| 1065 | fprintf(stdout,"\n WARNING: sequences %d and %d are non-overlapping\n",m,n); |
|---|
| 1066 | p = 0.0; |
|---|
| 1067 | q = 0.0; |
|---|
| 1068 | } |
|---|
| 1069 | else { |
|---|
| 1070 | if(p > 0.0) |
|---|
| 1071 | p = p/e; |
|---|
| 1072 | else |
|---|
| 1073 | p = 0.0; |
|---|
| 1074 | if(q > 0.0) |
|---|
| 1075 | q = q/e; |
|---|
| 1076 | else |
|---|
| 1077 | q = 0.0; |
|---|
| 1078 | } |
|---|
| 1079 | |
|---|
| 1080 | if( ((2.0*p)+q) == 1.0 ) |
|---|
| 1081 | a = 0.0; |
|---|
| 1082 | else |
|---|
| 1083 | a = 1.0/(1.0-(2.0*p)-q); |
|---|
| 1084 | |
|---|
| 1085 | if( q == 0.5 ) |
|---|
| 1086 | b = 0.0; |
|---|
| 1087 | else |
|---|
| 1088 | b = 1.0/(1.0-(2.0*q)); |
|---|
| 1089 | |
|---|
| 1090 | /* watch for values going off the scale for the correction. */ |
|---|
| 1091 | if( (a<=0.0) || (b<=0.0) ) { |
|---|
| 1092 | overspill++; |
|---|
| 1093 | k = 3.5; /* arbitrary high score */ |
|---|
| 1094 | } |
|---|
| 1095 | else |
|---|
| 1096 | k = 0.5*log(a) + 0.25*log(b); |
|---|
| 1097 | tmat[m][n] = tmat[n][m] = k; |
|---|
| 1098 | if(verbose) /* if screen output */ |
|---|
| 1099 | fprintf(tree, |
|---|
| 1100 | "%4d vs.%4d: DIST = %7.4f; p = %6.4f; q = %6.4f; length = %6.0f\n" |
|---|
| 1101 | ,(pint)m,(pint)n,k,p,q,e); |
|---|
| 1102 | |
|---|
| 1103 | } |
|---|
| 1104 | } |
|---|
| 1105 | return overspill; /* return the number of off-scale values */ |
|---|
| 1106 | } |
|---|
| 1107 | |
|---|
| 1108 | |
|---|
| 1109 | sint prot_distance_matrix(FILE *tree) |
|---|
| 1110 | { |
|---|
| 1111 | sint m,n; |
|---|
| 1112 | sint j,i; |
|---|
| 1113 | sint res1, res2; |
|---|
| 1114 | sint overspill = 0; |
|---|
| 1115 | double p,e,k, table_entry; |
|---|
| 1116 | |
|---|
| 1117 | |
|---|
| 1118 | tree_gap_delete(); /* flag positions with gaps (tree_gaps[i] = 1 ) */ |
|---|
| 1119 | |
|---|
| 1120 | if(verbose) { |
|---|
| 1121 | fprintf(tree,"\n"); |
|---|
| 1122 | fprintf(tree,"\n DIST = percentage divergence (/100)"); |
|---|
| 1123 | fprintf(tree,"\n Length = number of sites used in comparison"); |
|---|
| 1124 | fprintf(tree,"\n\n"); |
|---|
| 1125 | if(tossgaps) { |
|---|
| 1126 | fprintf(tree,"\n All sites with gaps (in any sequence) deleted"); |
|---|
| 1127 | fprintf(tree,"\n"); |
|---|
| 1128 | } |
|---|
| 1129 | if(kimura) { |
|---|
| 1130 | fprintf(tree,"\n Distances up tp 0.75 corrected by Kimura's empirical method:"); |
|---|
| 1131 | fprintf(tree,"\n\n Kimura, M. (1983)"); |
|---|
| 1132 | fprintf(tree," The Neutral Theory of Molecular Evolution."); |
|---|
| 1133 | fprintf(tree,"\n Page 75. Cambridge University Press, Cambridge, England."); |
|---|
| 1134 | fprintf(tree,"\n\n"); |
|---|
| 1135 | } |
|---|
| 1136 | } |
|---|
| 1137 | |
|---|
| 1138 | for(m=1; m<nseqs; ++m) /* for every pair of sequence */ |
|---|
| 1139 | for(n=m+1; n<=nseqs; ++n) { |
|---|
| 1140 | p = e = 0.0; |
|---|
| 1141 | tmat[m][n] = tmat[n][m] = 0.0; |
|---|
| 1142 | for(i=1; i<=seqlen_array[1]; ++i) { |
|---|
| 1143 | j = boot_positions[i]; |
|---|
| 1144 | if(tossgaps && (tree_gaps[j] > 0) ) goto skip; /* gap position */ |
|---|
| 1145 | res1 = seq_array[m][j]; |
|---|
| 1146 | res2 = seq_array[n][j]; |
|---|
| 1147 | if( (res1 == gap_pos1) || (res1 == gap_pos2) || |
|---|
| 1148 | (res2 == gap_pos1) || (res2 == gap_pos2)) |
|---|
| 1149 | goto skip; /* gap in a seq*/ |
|---|
| 1150 | e = e + 1.0; |
|---|
| 1151 | if(res1 != res2) p = p + 1.0; |
|---|
| 1152 | skip:; |
|---|
| 1153 | } |
|---|
| 1154 | |
|---|
| 1155 | if(p <= 0.0) |
|---|
| 1156 | k = 0.0; |
|---|
| 1157 | else |
|---|
| 1158 | k = p/e; |
|---|
| 1159 | |
|---|
| 1160 | /* DES debug */ |
|---|
| 1161 | /* fprintf(stdout,"Seq1=%4d Seq2=%4d k =%7.4f \n",(pint)m,(pint)n,k); */ |
|---|
| 1162 | /* DES debug */ |
|---|
| 1163 | |
|---|
| 1164 | if(kimura) { |
|---|
| 1165 | if(k < 0.75) { /* use Kimura's formula */ |
|---|
| 1166 | if(k > 0.0) k = - log(1.0 - k - (k * k/5.0) ); |
|---|
| 1167 | } |
|---|
| 1168 | else { |
|---|
| 1169 | if(k > 0.930) { |
|---|
| 1170 | overspill++; |
|---|
| 1171 | k = 10.0; /* arbitrarily set to 1000% */ |
|---|
| 1172 | } |
|---|
| 1173 | else { |
|---|
| 1174 | table_entry = (k*1000.0) - 750.0; |
|---|
| 1175 | k = (double)dayhoff_pams[(int)table_entry]; |
|---|
| 1176 | k = k/100.0; |
|---|
| 1177 | } |
|---|
| 1178 | } |
|---|
| 1179 | } |
|---|
| 1180 | |
|---|
| 1181 | tmat[m][n] = tmat[n][m] = k; |
|---|
| 1182 | if(verbose) /* if screen output */ |
|---|
| 1183 | fprintf(tree, |
|---|
| 1184 | "%4d vs.%4d DIST = %6.4f; length = %6.0f\n", |
|---|
| 1185 | (pint)m,(pint)n,k,e); |
|---|
| 1186 | } |
|---|
| 1187 | return overspill; |
|---|
| 1188 | } |
|---|
| 1189 | |
|---|
| 1190 | |
|---|
| 1191 | void guide_tree(FILE *tree,sint firstseq,sint numseqs) |
|---|
| 1192 | /* |
|---|
| 1193 | Routine for producing unrooted NJ trees from seperately aligned |
|---|
| 1194 | pairwise distances. This produces the GUIDE DENDROGRAMS in |
|---|
| 1195 | PHYLIP format. |
|---|
| 1196 | */ |
|---|
| 1197 | { |
|---|
| 1198 | static char **standard_tree; |
|---|
| 1199 | sint i; |
|---|
| 1200 | |
|---|
| 1201 | phylip_phy_tree_file=tree; |
|---|
| 1202 | verbose = FALSE; |
|---|
| 1203 | first_seq=firstseq; |
|---|
| 1204 | last_seq=first_seq+numseqs-1; |
|---|
| 1205 | |
|---|
| 1206 | standard_tree = (char **) ckalloc( (last_seq-first_seq+2) * sizeof (char *) ); |
|---|
| 1207 | for(i=0; i<last_seq-first_seq+2; i++) |
|---|
| 1208 | standard_tree[i] = (char *) ckalloc( (last_seq-first_seq+2) * sizeof(char)); |
|---|
| 1209 | |
|---|
| 1210 | nj_tree(standard_tree,clustal_phy_tree_file); |
|---|
| 1211 | |
|---|
| 1212 | print_phylip_tree(standard_tree,phylip_phy_tree_file,0); |
|---|
| 1213 | |
|---|
| 1214 | left_branch=ckfree((void *)left_branch); |
|---|
| 1215 | right_branch=ckfree((void *)right_branch); |
|---|
| 1216 | tkill=ckfree((void *)tkill); |
|---|
| 1217 | av=ckfree((void *)av); |
|---|
| 1218 | for (i=1;i<last_seq-first_seq+2;i++) |
|---|
| 1219 | standard_tree[i]=ckfree((void *)standard_tree[i]); |
|---|
| 1220 | standard_tree=ckfree((void *)standard_tree); |
|---|
| 1221 | |
|---|
| 1222 | fclose(phylip_phy_tree_file); |
|---|
| 1223 | |
|---|
| 1224 | } |
|---|
| 1225 | |
|---|