1 | /* |
---|
2 | * TransFig: Facility for Translating Fig code |
---|
3 | * Copyright (c) 1985 Supoj Sutantavibul |
---|
4 | * Copyright (c) 1991 Micah Beck |
---|
5 | * |
---|
6 | * Permission to use, copy, modify, distribute, and sell this software and its |
---|
7 | * documentation for any purpose is hereby granted without fee, provided that |
---|
8 | * the above copyright notice appear in all copies and that both that |
---|
9 | * copyright notice and this permission notice appear in supporting |
---|
10 | * documentation. The authors make no representations about the suitability |
---|
11 | * of this software for any purpose. It is provided "as is" without express |
---|
12 | * or implied warranty. |
---|
13 | * |
---|
14 | * THE AUTHORS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, |
---|
15 | * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO |
---|
16 | * EVENT SHALL THE AUTHORS BE LIABLE FOR ANY SPECIAL, INDIRECT OR |
---|
17 | * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, |
---|
18 | * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER |
---|
19 | * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR |
---|
20 | * PERFORMANCE OF THIS SOFTWARE. |
---|
21 | * |
---|
22 | */ |
---|
23 | |
---|
24 | #include <stdio.h> |
---|
25 | #include <math.h> |
---|
26 | /* |
---|
27 | * latex_line.c: |
---|
28 | * Subroutines for drawing and translating lines for the LaTeX |
---|
29 | * picture environment. |
---|
30 | * Written by Frank Schmuck (schmuck@svax.cs.cornell.edu) |
---|
31 | * June 1988 |
---|
32 | * |
---|
33 | * The LaTeX picture environment allows generating pictures in standard |
---|
34 | * LaTeX. However, some restrictions apply: lines and vectors (a vector |
---|
35 | * is a line with an arrow at the end) can only be drawn with a finite |
---|
36 | * number of slopes. The available slopes are given by dy/dx where |
---|
37 | * dx and dy must be integers <= 6 for lines and <= 4 for vectors. |
---|
38 | * |
---|
39 | * The subroutines in this file are used in fig2latex to approximate |
---|
40 | * an arbitrary line or vector by a LaTeX line/vector, and in fig to |
---|
41 | * restrict line drawing to slopes supported by LaTeX. |
---|
42 | */ |
---|
43 | |
---|
44 | /* |
---|
45 | * Constant for converting from radian to degrees |
---|
46 | */ |
---|
47 | double rad2deg = 57.295779513082320877; |
---|
48 | |
---|
49 | int pgcd(a,b) |
---|
50 | int a, b; |
---|
51 | /* |
---|
52 | * compute greatest common divisor, assuming 0 < a <= b |
---|
53 | */ |
---|
54 | { |
---|
55 | b = b % a; |
---|
56 | return (b)? gcd(b, a): a; |
---|
57 | } |
---|
58 | |
---|
59 | int gcd(a, b) |
---|
60 | int a, b; |
---|
61 | /* |
---|
62 | * compute greatest common divisor |
---|
63 | */ |
---|
64 | { |
---|
65 | if (a < 0) a = -a; |
---|
66 | if (b < 0) b = -b; |
---|
67 | return (a <= b)? pgcd(a, b): pgcd(b, a); |
---|
68 | } |
---|
69 | |
---|
70 | int lcm(a, b) |
---|
71 | int a, b; |
---|
72 | /* |
---|
73 | * Compute least common multiple |
---|
74 | */ |
---|
75 | { |
---|
76 | return abs(a*b)/gcd(a,b); |
---|
77 | } |
---|
78 | |
---|
79 | /* |
---|
80 | * Tables of line and vector slopes supported by LaTeX |
---|
81 | */ |
---|
82 | |
---|
83 | struct angle_table { |
---|
84 | int x, y; |
---|
85 | double angle; |
---|
86 | }; |
---|
87 | |
---|
88 | #define N_LINE 25 |
---|
89 | |
---|
90 | struct angle_table line_angles[N_LINE] = |
---|
91 | { {0, 1, 90.0}, |
---|
92 | {1, 0, 0.0}, |
---|
93 | {1, 1, 45.0}, |
---|
94 | {1, 2, 63.434948822922010648}, |
---|
95 | {1, 3, 71.565051177077989351}, |
---|
96 | {1, 4, 75.963756532073521417}, |
---|
97 | {1, 5, 78.690067525979786913}, |
---|
98 | {1, 6, 80.537677791974382609}, |
---|
99 | {2, 1, 26.565051177077989351}, |
---|
100 | {2, 3, 56.309932474020213086}, |
---|
101 | {2, 5, 68.198590513648188229}, |
---|
102 | {3, 1, 18.434948822922010648}, |
---|
103 | {3, 2, 33.690067525979786913}, |
---|
104 | {3, 4, 53.130102354155978703}, |
---|
105 | {3, 5, 59.036243467926478582}, |
---|
106 | {4, 1, 14.036243467926478588}, |
---|
107 | {4, 3, 36.869897645844021297}, |
---|
108 | {4, 5, 51.340191745909909396}, |
---|
109 | {5, 1, 11.309932474020213086}, |
---|
110 | {5, 2, 21.801409486351811770}, |
---|
111 | {5, 3, 30.963756532073521417}, |
---|
112 | {5, 4, 38.659808254090090604}, |
---|
113 | {5, 6, 50.194428907734805993}, |
---|
114 | {6, 1, 9.4623222080256173906}, |
---|
115 | {6, 5, 39.805571092265194006} |
---|
116 | }; |
---|
117 | |
---|
118 | #define N_ARROW 13 |
---|
119 | |
---|
120 | struct angle_table arrow_angles[N_ARROW] = |
---|
121 | { {0, 1, 90.0}, |
---|
122 | {1, 0, 0.0}, |
---|
123 | {1, 1, 45.0}, |
---|
124 | {1, 2, 63.434948822922010648}, |
---|
125 | {1, 3, 71.565051177077989351}, |
---|
126 | {1, 4, 75.963756532073521417}, |
---|
127 | {2, 1, 26.565051177077989351}, |
---|
128 | {2, 3, 56.309932474020213086}, |
---|
129 | {3, 1, 18.434948822922010648}, |
---|
130 | {3, 2, 33.690067525979786913}, |
---|
131 | {3, 4, 53.130102354155978703}, |
---|
132 | {4, 1, 14.036243467926478588}, |
---|
133 | {4, 3, 36.869897645844021297}, |
---|
134 | }; |
---|
135 | |
---|
136 | get_slope(dx, dy, sxp, syp, arrow) |
---|
137 | int dx, dy, *sxp, *syp, arrow; |
---|
138 | /* |
---|
139 | * Find the LaTeX line slope that is closest to the one given by dx, dy. |
---|
140 | * Result is returned in *sxp, *syp. If (arrow != 0) the closest LaTeX |
---|
141 | * vector slope is selected. |
---|
142 | */ |
---|
143 | { |
---|
144 | double angle; |
---|
145 | int i, s, max; |
---|
146 | double d, d1; |
---|
147 | struct angle_table *st; |
---|
148 | |
---|
149 | if (dx == 0) { |
---|
150 | *sxp = 0; |
---|
151 | *syp = (dy < 0)? -1: 1; |
---|
152 | return; |
---|
153 | } |
---|
154 | angle = atan((double)abs(dy) / (double)abs(dx)) * rad2deg; |
---|
155 | if (arrow) { |
---|
156 | st = arrow_angles; |
---|
157 | max = N_ARROW; |
---|
158 | } else { |
---|
159 | st = line_angles; |
---|
160 | max = N_LINE; |
---|
161 | } |
---|
162 | s = 0; |
---|
163 | d = 9.9e9; |
---|
164 | for (i = 0; i < max; i++) { |
---|
165 | d1 = fabs(angle - st[i].angle); |
---|
166 | if (d1 < d) { |
---|
167 | s = i; |
---|
168 | d = d1; |
---|
169 | } |
---|
170 | } |
---|
171 | *sxp = st[s].x; |
---|
172 | if (dx < 0) *sxp = -*sxp; |
---|
173 | *syp = st[s].y; |
---|
174 | if (dy < 0) *syp = -*syp; |
---|
175 | } |
---|
176 | |
---|
177 | latex_endpoint(x1, y1, x2, y2, xout, yout, arrow, magnet) |
---|
178 | int x1, y1, x2, y2; |
---|
179 | int *xout, *yout; |
---|
180 | int arrow, magnet; |
---|
181 | /* |
---|
182 | * Computes a point "close" to (x2,y2) that is reachable from (x1,y1) |
---|
183 | * by a LaTeX line (LaTeX vector if arrow != 0). The result is returned |
---|
184 | * in *xout, *yout. If (magnet > 1) the point returned is selected such that |
---|
185 | * (*xout - x1) and (*yout - y1) are both multiples of magnet. |
---|
186 | */ |
---|
187 | { |
---|
188 | int dx, dy, sx, sy, ds, dsx, dsy; |
---|
189 | |
---|
190 | dx = x2-x1; |
---|
191 | dy = y2-y1; |
---|
192 | get_slope(dx, dy, &sx, &sy, arrow); |
---|
193 | if (abs(sx) >= abs(sy)) { |
---|
194 | ds = lcm(sx, magnet*gcd(sx,magnet)); |
---|
195 | dsx = (2*abs(dx)/ds + 1)/2; |
---|
196 | dsx = (dx >= 0)? dsx*ds: -dsx*ds; |
---|
197 | *xout = x1 + dsx; |
---|
198 | *yout = y1 + dsx*sy/sx; |
---|
199 | } else { |
---|
200 | ds = lcm(sy, magnet*gcd(sy,magnet)); |
---|
201 | dsy = (2*abs(dy)/ds + 1)/2; |
---|
202 | dsy = (dy >= 0)? dsy*ds: -dsy*ds; |
---|
203 | *yout = y1 + dsy; |
---|
204 | *xout = x1 + dsy*sx/sy; |
---|
205 | } |
---|
206 | } |
---|