| 1 | /* |
|---|
| 2 | * Cma.cpp |
|---|
| 3 | * |
|---|
| 4 | * Created on: Dec 16, 2009 |
|---|
| 5 | * Author: Breno Faria |
|---|
| 6 | * |
|---|
| 7 | * Institute of Microbiology (Technical University Munich) |
|---|
| 8 | * http://www.arb-home.de/ |
|---|
| 9 | */ |
|---|
| 10 | |
|---|
| 11 | #include <iostream> |
|---|
| 12 | #include <iomanip> |
|---|
| 13 | #include <time.h> |
|---|
| 14 | |
|---|
| 15 | #include "Cma.h" |
|---|
| 16 | |
|---|
| 17 | //>--------------------------Global definitions-------------------------------- |
|---|
| 18 | |
|---|
| 19 | // Some local function prototypes. |
|---|
| 20 | void unifyCluster(int cluster1, int cluster2, VectorXi & result); |
|---|
| 21 | |
|---|
| 22 | //>-----------------------local helper functions------------------------------- |
|---|
| 23 | |
|---|
| 24 | /** |
|---|
| 25 | * Helper function for Cma::computeClusters. Compares MITuples by |
|---|
| 26 | * mutual information value. |
|---|
| 27 | * |
|---|
| 28 | * @param first: the first MITuple |
|---|
| 29 | * |
|---|
| 30 | * @param second: the second MITuple |
|---|
| 31 | * |
|---|
| 32 | * @returns whether the first element should be placed before the second. |
|---|
| 33 | */ |
|---|
| 34 | static bool compareMITuples(MITuple first, MITuple second) { |
|---|
| 35 | return first.MI > second.MI; |
|---|
| 36 | } |
|---|
| 37 | |
|---|
| 38 | /** |
|---|
| 39 | * Helper function for Cma::computeClusters. Unites two clusters. |
|---|
| 40 | * |
|---|
| 41 | * @param cluster1: the index of the first cluster. |
|---|
| 42 | * |
|---|
| 43 | * @param cluster2: the index of the second cluster. |
|---|
| 44 | */ |
|---|
| 45 | void unifyCluster(int cluster1, int cluster2, VectorXi & result) { |
|---|
| 46 | size_t size = result.size(); |
|---|
| 47 | for (size_t i = 0; i < size; ++i) { |
|---|
| 48 | if (result[i] == cluster2) { |
|---|
| 49 | result[i] = cluster1; |
|---|
| 50 | } |
|---|
| 51 | } |
|---|
| 52 | } |
|---|
| 53 | |
|---|
| 54 | //>---------------------------Public methods----------------------------------- |
|---|
| 55 | |
|---|
| 56 | /** |
|---|
| 57 | * Constructor. |
|---|
| 58 | * |
|---|
| 59 | * @param seq_num: the number of sequences. |
|---|
| 60 | * |
|---|
| 61 | * @param alph: the vector containing the alphabet. Notice that letters of the |
|---|
| 62 | * alphabet might be longer than one character. This is not used |
|---|
| 63 | * so far, but limiting the length to 1 seems wrong... |
|---|
| 64 | */ |
|---|
| 65 | Cma::Cma(vector<string> & alph, int seq_num) { |
|---|
| 66 | |
|---|
| 67 | initAlphabet(alph); |
|---|
| 68 | num_of_seqs = seq_num; |
|---|
| 69 | |
|---|
| 70 | } |
|---|
| 71 | |
|---|
| 72 | /** |
|---|
| 73 | * Destructor. |
|---|
| 74 | */ |
|---|
| 75 | Cma::~Cma() { |
|---|
| 76 | } |
|---|
| 77 | |
|---|
| 78 | /** |
|---|
| 79 | * Computes the mutual information of position pairs in a set of |
|---|
| 80 | * sequences. |
|---|
| 81 | * Mutual information can be defined as: |
|---|
| 82 | * |
|---|
| 83 | * MI(pos1, pos2) = H(pos1) + H(pos2) - H(pos1, pos2), |
|---|
| 84 | * |
|---|
| 85 | * i.e. the sum of entropies at two positions minus the joint entropy |
|---|
| 86 | * of these positions. |
|---|
| 87 | * |
|---|
| 88 | * @param seq: the multiple sequence alignment. |
|---|
| 89 | * |
|---|
| 90 | * @returns a matrix with the MI values. |
|---|
| 91 | */ |
|---|
| 92 | MatrixXd Cma::computeMutualInformation(VecVecType & seq) { |
|---|
| 93 | |
|---|
| 94 | JointEntropy = computeJointEntropy(seq); |
|---|
| 95 | |
|---|
| 96 | JointEntropy = JointEntropy + JointEntropy.adjoint() - JointEntropy.diagonal().asDiagonal(); |
|---|
| 97 | |
|---|
| 98 | entropy = JointEntropy.diagonal(); |
|---|
| 99 | |
|---|
| 100 | cout << "computing Mutual Information... "; |
|---|
| 101 | flush(cout); |
|---|
| 102 | clock_t start = clock(); |
|---|
| 103 | |
|---|
| 104 | VectorXd Ones = VectorXd::Ones(entropy.size()); |
|---|
| 105 | MatrixXd Hx = (entropy * Ones.transpose()).transpose(); |
|---|
| 106 | MatrixXd Hy = Hx.transpose(); |
|---|
| 107 | |
|---|
| 108 | MutualInformation = Hx + Hy - JointEntropy; |
|---|
| 109 | |
|---|
| 110 | cout << "completed in " << ((double) clock() - start) / CLOCKS_PER_SEC |
|---|
| 111 | << "s." << endl; |
|---|
| 112 | |
|---|
| 113 | return MutualInformation; |
|---|
| 114 | |
|---|
| 115 | } |
|---|
| 116 | |
|---|
| 117 | /** |
|---|
| 118 | * Computes the noiseless mutual information, or MIp (see classdoc), which is |
|---|
| 119 | * defined as: |
|---|
| 120 | * |
|---|
| 121 | * MIp(pos1, pos2) = MI(pos1, pos2) - (mMI(pos1) * mMI(pos2)) / mMI, |
|---|
| 122 | * |
|---|
| 123 | * where MIp is the noiseless mutual information between positions 1 and 2 and |
|---|
| 124 | * MI similarly. mMI(x) is the mean mutual information of position x, which is |
|---|
| 125 | * defined as: |
|---|
| 126 | * |
|---|
| 127 | * mMI(pos1) = 1 / m * \sum_{i \in positions} MI(pos1, i), where m is the |
|---|
| 128 | * length of the sequences. |
|---|
| 129 | * |
|---|
| 130 | * mMI is the overall mean mutual information, defined as: |
|---|
| 131 | * |
|---|
| 132 | * mMI = 2 / m * \sum_{i \in positions} \sum_{j in positions} MI(i, j), where |
|---|
| 133 | * again m is the length of the sequences. |
|---|
| 134 | * |
|---|
| 135 | * @param seq: the multiple sequence alignment. |
|---|
| 136 | * |
|---|
| 137 | * @returns the noiseless mutual information. |
|---|
| 138 | */ |
|---|
| 139 | MatrixXd Cma::computeMutualInformationP(VecVecType & seq) { |
|---|
| 140 | |
|---|
| 141 | if (MutualInformation.size() == 0) { |
|---|
| 142 | computeMutualInformation(seq); |
|---|
| 143 | } |
|---|
| 144 | |
|---|
| 145 | cout << "computing noiseless Mutual Information (MIp)... "; |
|---|
| 146 | flush(cout); |
|---|
| 147 | clock_t start = clock(); |
|---|
| 148 | /* |
|---|
| 149 | * We must remove negative MI values (the negative values are artificially |
|---|
| 150 | * generated, see comments in computeJointEntropy). |
|---|
| 151 | */ |
|---|
| 152 | for (int i = 0; i < MutualInformation.rows(); ++i) { |
|---|
| 153 | for (int j = 0; j < MutualInformation.cols(); ++j) { |
|---|
| 154 | if (MutualInformation(i, j) < 0.) { |
|---|
| 155 | MutualInformation(i, j) = 0.; |
|---|
| 156 | } |
|---|
| 157 | } |
|---|
| 158 | } |
|---|
| 159 | |
|---|
| 160 | VectorXd mMIs = computeMeanMutualInformationVector(); |
|---|
| 161 | double mMI = computeOveralMeanMutualInformation(); |
|---|
| 162 | |
|---|
| 163 | MutualInformationP = MutualInformation - ((mMIs * mMIs.transpose()) / mMI); |
|---|
| 164 | |
|---|
| 165 | cout << "completed in " << ((double) clock() - start) / CLOCKS_PER_SEC |
|---|
| 166 | << "s." << endl; |
|---|
| 167 | |
|---|
| 168 | return MutualInformationP; |
|---|
| 169 | |
|---|
| 170 | } |
|---|
| 171 | |
|---|
| 172 | /** |
|---|
| 173 | * Given a MI-matrix, computes the sorted list of the highest MI values. |
|---|
| 174 | * |
|---|
| 175 | * @param mutualInformation: a matrix with MI (or MIp) measures. |
|---|
| 176 | * |
|---|
| 177 | * @returns the list of tuples of positions sorted by their MI value. |
|---|
| 178 | */ |
|---|
| 179 | list<MITuple> Cma::compute_mituples(MatrixXd mutualInformation) { |
|---|
| 180 | size_t size = mutualInformation.cols(); |
|---|
| 181 | |
|---|
| 182 | list<MITuple> mituples; |
|---|
| 183 | |
|---|
| 184 | // populate the mituples list with all entries in the upper triangular matrix |
|---|
| 185 | // of mutualInformation. |
|---|
| 186 | for (size_t i = 0; i < size; ++i) { |
|---|
| 187 | for (size_t j = i + 1; j < size; ++j) { |
|---|
| 188 | MITuple curr; |
|---|
| 189 | curr.MI = mutualInformation(i, j); |
|---|
| 190 | curr.pos1 = i; |
|---|
| 191 | curr.pos2 = j; |
|---|
| 192 | mituples.push_back(curr); |
|---|
| 193 | } |
|---|
| 194 | } |
|---|
| 195 | |
|---|
| 196 | // sort mituples by MI-value |
|---|
| 197 | mituples.sort(compareMITuples); |
|---|
| 198 | |
|---|
| 199 | return mituples; |
|---|
| 200 | } |
|---|
| 201 | |
|---|
| 202 | /** |
|---|
| 203 | * Computes the clusters of positions that are most correlated, up to |
|---|
| 204 | * threshold. |
|---|
| 205 | * |
|---|
| 206 | * @param mituples: the mutualInformation matrix, as generated by |
|---|
| 207 | * Cma::computeMutualInformation. |
|---|
| 208 | * |
|---|
| 209 | * @param size: the original size of the alignment. |
|---|
| 210 | * |
|---|
| 211 | * @param threshold: the mutual information threshold. If two positions have |
|---|
| 212 | * mi < threshold, they won't be united in one cluster. |
|---|
| 213 | * |
|---|
| 214 | * @returns a vector with the cluster indices for each position. |
|---|
| 215 | */ |
|---|
| 216 | VectorXi Cma::computeClusters(list<MITuple> mituples, size_t size, |
|---|
| 217 | double threshold) { |
|---|
| 218 | |
|---|
| 219 | cout << "computing clusters of correlated positions... "; |
|---|
| 220 | flush(cout); |
|---|
| 221 | |
|---|
| 222 | VectorXi result = VectorXi::Zero(size); |
|---|
| 223 | |
|---|
| 224 | //compute the clusters. |
|---|
| 225 | int cluster = 1; |
|---|
| 226 | int rest = int(size); |
|---|
| 227 | for (list<MITuple>::iterator it = mituples.begin(); it != mituples.end(); ++it) { |
|---|
| 228 | double result1 = abs(result[it->pos1]); |
|---|
| 229 | double result2 = abs(result[it->pos2]); |
|---|
| 230 | if (it->MI <= threshold || rest == 0) { |
|---|
| 231 | break; |
|---|
| 232 | } |
|---|
| 233 | if (result1 < epsilon and result2 < epsilon) { |
|---|
| 234 | result[it->pos1] = cluster; |
|---|
| 235 | result[it->pos2] = cluster++; |
|---|
| 236 | rest -= 2; |
|---|
| 237 | } |
|---|
| 238 | else if (result1 > epsilon and result2 < epsilon) { |
|---|
| 239 | result[it->pos2] = result[it->pos1]; |
|---|
| 240 | rest -= 1; |
|---|
| 241 | } |
|---|
| 242 | else if (result1 < epsilon and result2 > epsilon) { |
|---|
| 243 | result[it->pos1] = result[it->pos2]; |
|---|
| 244 | rest -= 1; |
|---|
| 245 | } |
|---|
| 246 | else if (result1 > epsilon and result2 > epsilon && result1 - result2 > epsilon) { |
|---|
| 247 | unifyCluster(result[it->pos1], result[it->pos2], result); |
|---|
| 248 | } |
|---|
| 249 | } |
|---|
| 250 | |
|---|
| 251 | clusters = result; |
|---|
| 252 | |
|---|
| 253 | cout << "done." << endl; |
|---|
| 254 | |
|---|
| 255 | return result; |
|---|
| 256 | } |
|---|
| 257 | |
|---|
| 258 | //>-------------------------getters and setters-------------------------------- |
|---|
| 259 | |
|---|
| 260 | MatrixXd Cma::getEntropy() { |
|---|
| 261 | |
|---|
| 262 | return entropy; |
|---|
| 263 | |
|---|
| 264 | } |
|---|
| 265 | |
|---|
| 266 | MatrixXd Cma::getJointEntropy() { |
|---|
| 267 | |
|---|
| 268 | return JointEntropy; |
|---|
| 269 | |
|---|
| 270 | } |
|---|
| 271 | |
|---|
| 272 | MatrixXd Cma::getMI() { |
|---|
| 273 | |
|---|
| 274 | return MutualInformation; |
|---|
| 275 | |
|---|
| 276 | } |
|---|
| 277 | |
|---|
| 278 | MatrixXd Cma::getMIp() { |
|---|
| 279 | |
|---|
| 280 | return MutualInformationP; |
|---|
| 281 | |
|---|
| 282 | } |
|---|
| 283 | |
|---|
| 284 | VectorXi Cma::getClusters() { |
|---|
| 285 | |
|---|
| 286 | return clusters; |
|---|
| 287 | |
|---|
| 288 | } |
|---|
| 289 | |
|---|
| 290 | //>----------------------------private methods--------------------------------- |
|---|
| 291 | |
|---|
| 292 | /** |
|---|
| 293 | * Here we define the alphabet. |
|---|
| 294 | */ |
|---|
| 295 | void Cma::initAlphabet(vector<string> alph) { |
|---|
| 296 | |
|---|
| 297 | alphabet = vector<string> (alph); |
|---|
| 298 | |
|---|
| 299 | int i = 0; |
|---|
| 300 | for (vector<string>::iterator it = alph.begin(); it != alph.end(); ++it) { |
|---|
| 301 | alphabet_map[*it] = i; |
|---|
| 302 | i++; |
|---|
| 303 | } |
|---|
| 304 | for (vector<string>::iterator it = alph.begin(); it != alph.end(); ++it) { |
|---|
| 305 | for (vector<string>::iterator it2 = alph.begin(); it2 != alph.end(); ++it2) { |
|---|
| 306 | alphabet_map[*it + *it2] = i; |
|---|
| 307 | i++; |
|---|
| 308 | } |
|---|
| 309 | } |
|---|
| 310 | alphabet_map["total"] = i; |
|---|
| 311 | } |
|---|
| 312 | |
|---|
| 313 | /** |
|---|
| 314 | * Computes an approximation of the joint entropy for each pair of positions. |
|---|
| 315 | * |
|---|
| 316 | * The joint entropy of two positions in a set of aligned sequences |
|---|
| 317 | * is defined as: |
|---|
| 318 | * - ( p(A,A) * log2(p(A,A)) + p(A,C) * log2(p(A,C)) + ... + |
|---|
| 319 | * p(C,A) * log2(p(C,A)) + p(C,C) * log2(p(C,A)) + ... + |
|---|
| 320 | * ... + |
|---|
| 321 | * p(T,A) * log2(p(T,A)) + ... + p(T) * log2(p(T,T)) ), |
|---|
| 322 | * where p(x,y) is the probability of observing base x at position 1 and |
|---|
| 323 | * base y at position 2. |
|---|
| 324 | * |
|---|
| 325 | * @param seqs: the aligned sequences |
|---|
| 326 | * |
|---|
| 327 | * @returns a square matrix with the joint entropy values for |
|---|
| 328 | * each pair of positions. |
|---|
| 329 | */ |
|---|
| 330 | MatrixXd Cma::computeJointEntropy(const VecVecType & seqs) { |
|---|
| 331 | |
|---|
| 332 | MapMatrixType hist = buildJointHistogram(seqs); |
|---|
| 333 | return Cma::computeJointEntropy(hist); |
|---|
| 334 | |
|---|
| 335 | } |
|---|
| 336 | |
|---|
| 337 | /** |
|---|
| 338 | * Computes an approximation of the joint entropy for each pair of positions. |
|---|
| 339 | * The measure also includes an heuristic to penalise mismatches in occurrences |
|---|
| 340 | * (see the documentation of this project for further explanations). |
|---|
| 341 | * |
|---|
| 342 | * @param hist: the histogram of labels for each position in the sequence. |
|---|
| 343 | * |
|---|
| 344 | * @returns a square matrix with the joint entropy values for |
|---|
| 345 | * each pair of positions. |
|---|
| 346 | */ |
|---|
| 347 | MatrixXd Cma::computeJointEntropy(MapMatrixType & hist) { |
|---|
| 348 | |
|---|
| 349 | cout << "computing joint entropy (this may take a while)... "; |
|---|
| 350 | flush(cout); |
|---|
| 351 | clock_t start = clock(); |
|---|
| 352 | |
|---|
| 353 | int hist_size = int(hist.size()); |
|---|
| 354 | MatrixXd result(hist_size, hist_size); |
|---|
| 355 | result.setZero(hist_size, hist_size); |
|---|
| 356 | for (unsigned int i = 0; i < (unsigned int) hist_size; ++i) { |
|---|
| 357 | |
|---|
| 358 | //progress "bar" |
|---|
| 359 | if (hist_size > 30 and i % (hist_size / 30) == 0) { |
|---|
| 360 | cout << "(" << setw(6) << setiosflags(ios::fixed) |
|---|
| 361 | << setprecision(2) << i / float(hist_size) * 100 << "%)"; |
|---|
| 362 | flush(cout); |
|---|
| 363 | } |
|---|
| 364 | |
|---|
| 365 | for (unsigned int j = i; j < hist[i].size(); ++j) { |
|---|
| 366 | int total_i_j = hist[i][j][alphabet_map.at("total")]; |
|---|
| 367 | int total_i_i = hist[i][i][alphabet_map.at("total")]; |
|---|
| 368 | int total_j_j = hist[j][j][alphabet_map.at("total")]; |
|---|
| 369 | int mismatches = total_i_i + total_j_j - 2 * total_i_j; |
|---|
| 370 | if (total_i_j != 0) { |
|---|
| 371 | double result_i_j = 0.; |
|---|
| 372 | for (map<int, int>::iterator it = hist[i][j].begin(); it |
|---|
| 373 | != hist[i][j].end(); ++it) { |
|---|
| 374 | double pair = double(it->second) + Cma::epsilon; |
|---|
| 375 | result_i_j += (pair / total_i_j) * log2(pair / total_i_j); |
|---|
| 376 | } |
|---|
| 377 | |
|---|
| 378 | result(i, j) = -result_i_j + double(mismatches) / (total_i_i |
|---|
| 379 | + total_j_j) * Cma::penalty; |
|---|
| 380 | |
|---|
| 381 | } else { |
|---|
| 382 | /** |
|---|
| 383 | * We will only fall into this case if we have two positions which |
|---|
| 384 | * never occur simultaneously. In this case we cannot say anything about |
|---|
| 385 | * the MI. |
|---|
| 386 | * To guarantee that this joint entropy value will not come in our way in |
|---|
| 387 | * the MI calculation we set it artificially to 5.0, which is 1 greater than |
|---|
| 388 | * max(H(X) + H(Y)). |
|---|
| 389 | */ |
|---|
| 390 | result(i, j) = 5.; |
|---|
| 391 | } |
|---|
| 392 | |
|---|
| 393 | } |
|---|
| 394 | //progress "bar" |
|---|
| 395 | if (hist_size > 30 and i % (hist_size / 30) == 0) { |
|---|
| 396 | cout << "\b\b\b\b\b\b\b\b\b"; |
|---|
| 397 | } |
|---|
| 398 | } |
|---|
| 399 | flush(cout); |
|---|
| 400 | cout << "completed in " << ((double) clock() - start) / CLOCKS_PER_SEC |
|---|
| 401 | << "s." << endl; |
|---|
| 402 | return result; |
|---|
| 403 | |
|---|
| 404 | } |
|---|
| 405 | |
|---|
| 406 | /** |
|---|
| 407 | * Checks whether the key is valid (if it pertains to the alphabet). |
|---|
| 408 | * |
|---|
| 409 | * @param key: the base to be checked. |
|---|
| 410 | * |
|---|
| 411 | * @return whether the key is valid (if it pertains to the alphabet). |
|---|
| 412 | */ |
|---|
| 413 | bool Cma::isValid(string & key) { |
|---|
| 414 | |
|---|
| 415 | map<string, int>::iterator it = alphabet_map.find(key); |
|---|
| 416 | return (it != alphabet_map.end()); |
|---|
| 417 | |
|---|
| 418 | } |
|---|
| 419 | |
|---|
| 420 | /** |
|---|
| 421 | * This method computes a matrix of maps, one for each pair of positions of the |
|---|
| 422 | * aligned sequences. |
|---|
| 423 | * Each map has an entry for each pair of occurring letters to count the joint |
|---|
| 424 | * occurrences of these letters. |
|---|
| 425 | * |
|---|
| 426 | * @param alignedSequences: an array of string vectors, containing the sequences. |
|---|
| 427 | * |
|---|
| 428 | * @returns a matrix of maps (see method description) |
|---|
| 429 | */ |
|---|
| 430 | MapMatrixType Cma::buildJointHistogram(const VecVecType & alignedSequences) { |
|---|
| 431 | |
|---|
| 432 | cout << "building histogram (this may take a while)... "; |
|---|
| 433 | flush(cout); |
|---|
| 434 | clock_t start = clock(); |
|---|
| 435 | |
|---|
| 436 | if (alignedSequences.empty()) { |
|---|
| 437 | throw "Error: Cma::buildJointHistogram: parameter empty."; |
|---|
| 438 | } |
|---|
| 439 | |
|---|
| 440 | // here we defined one dimension of the matrix as being the same as the |
|---|
| 441 | // length of the sequences. |
|---|
| 442 | MapMatrixType result(alignedSequences[0].size(), MapVecType( |
|---|
| 443 | alignedSequences[0].size())); |
|---|
| 444 | |
|---|
| 445 | int ii = 0; |
|---|
| 446 | // for each sequence: |
|---|
| 447 | for (VecVecType::const_iterator it = alignedSequences.begin(); it |
|---|
| 448 | != alignedSequences.end(); ++it) { |
|---|
| 449 | |
|---|
| 450 | cout << "(" << setw(6) << setiosflags(ios::fixed) << setprecision(2) |
|---|
| 451 | << ii / float(num_of_seqs) * 100 << "%)"; |
|---|
| 452 | flush(cout); |
|---|
| 453 | |
|---|
| 454 | // for each first position in the sequence |
|---|
| 455 | for (size_t i = 0; i < it->size(); ++i) { |
|---|
| 456 | string key1 = it->at(i); |
|---|
| 457 | if (isValid(key1)) { |
|---|
| 458 | |
|---|
| 459 | //for each second position in the sequence |
|---|
| 460 | for (size_t j = i; j < it->size(); ++j) { |
|---|
| 461 | string key2 = it->at(j); |
|---|
| 462 | if (isValid(key2)) { |
|---|
| 463 | result[i][j][alphabet_map.at(key1 + key2)] += 1; |
|---|
| 464 | result[i][j][alphabet_map.at("total")] += 1; |
|---|
| 465 | } |
|---|
| 466 | } |
|---|
| 467 | } |
|---|
| 468 | } |
|---|
| 469 | cout << "\b\b\b\b\b\b\b\b\b"; |
|---|
| 470 | ii++; |
|---|
| 471 | } |
|---|
| 472 | flush(cout); |
|---|
| 473 | cout << "completed in " << ((double) clock() - start) / CLOCKS_PER_SEC |
|---|
| 474 | << "s." << endl; |
|---|
| 475 | |
|---|
| 476 | return result; |
|---|
| 477 | } |
|---|
| 478 | |
|---|
| 479 | /** |
|---|
| 480 | * Computes the vector of mean mutual information values mMI. |
|---|
| 481 | * |
|---|
| 482 | * mMI(pos1) = 1 / m * \sum_{i \in positions} MI(pos1, i), where m is the |
|---|
| 483 | * length of the sequences. |
|---|
| 484 | * |
|---|
| 485 | * @returns the vector of mean mutual information values mMI. |
|---|
| 486 | */ |
|---|
| 487 | VectorXd Cma::computeMeanMutualInformationVector() { |
|---|
| 488 | |
|---|
| 489 | return MutualInformation.rowwise().sum() / num_of_seqs; |
|---|
| 490 | |
|---|
| 491 | } |
|---|
| 492 | |
|---|
| 493 | /** |
|---|
| 494 | * Computes the overall mean mutual information value. |
|---|
| 495 | * |
|---|
| 496 | * mMI = 2 / m * \sum_{i \in positions} \sum_{j in positions} MI(i, j), where |
|---|
| 497 | * again m is the length of the sequences. |
|---|
| 498 | * |
|---|
| 499 | * @returns the overall mean mutual information value. |
|---|
| 500 | */ |
|---|
| 501 | double Cma::computeOveralMeanMutualInformation() { |
|---|
| 502 | |
|---|
| 503 | return 2. * MutualInformation.sum() / num_of_seqs / num_of_seqs; |
|---|
| 504 | |
|---|
| 505 | } |
|---|
| 506 | |
|---|