1 | /* |
---|
2 | * Analyser.cpp |
---|
3 | * |
---|
4 | * Responsible for interacting with the Cma code and Arb. |
---|
5 | * |
---|
6 | * Created on: Feb 15, 2010 |
---|
7 | * Author: breno |
---|
8 | * |
---|
9 | * Institute of Microbiology (Technical University Munich) |
---|
10 | * http://www.arb-home.de/ |
---|
11 | */ |
---|
12 | |
---|
13 | #include "Analyser.h" |
---|
14 | #include <time.h> |
---|
15 | #include <iostream> |
---|
16 | #include <iterator> |
---|
17 | #include "dbconn.h" |
---|
18 | |
---|
19 | /** |
---|
20 | * Constructor |
---|
21 | */ |
---|
22 | Analyser::Analyser() { |
---|
23 | |
---|
24 | //Definition of the alphabet |
---|
25 | vector<string> alphabet(0); |
---|
26 | alphabet.push_back("A"); |
---|
27 | alphabet.push_back("C"); |
---|
28 | alphabet.push_back("G"); |
---|
29 | alphabet.push_back("T"); |
---|
30 | |
---|
31 | loader = new AlignedSequenceLoader; |
---|
32 | VecVecType *seqs = loader->getSequences(); |
---|
33 | |
---|
34 | cma = new Cma(alphabet, seqs->size()); |
---|
35 | } |
---|
36 | |
---|
37 | /** |
---|
38 | * Destructor. |
---|
39 | */ |
---|
40 | Analyser::~Analyser() { |
---|
41 | delete loader; |
---|
42 | delete cma; |
---|
43 | } |
---|
44 | |
---|
45 | /** |
---|
46 | * Getter for the Cma object. |
---|
47 | * |
---|
48 | * @return the Cma object. |
---|
49 | */ |
---|
50 | Cma* Analyser::getCma() { |
---|
51 | return cma; |
---|
52 | } |
---|
53 | |
---|
54 | /** |
---|
55 | * Returns the AlignedSequenceLoader object. |
---|
56 | * |
---|
57 | * @return the AlignedSequenceLoader object. |
---|
58 | */ |
---|
59 | AlignedSequenceLoader* Analyser::getLoader() { |
---|
60 | return loader; |
---|
61 | } |
---|
62 | |
---|
63 | /** |
---|
64 | * Saves the clusters to the DB as SAI. |
---|
65 | * |
---|
66 | * @param clusters: the cluster indices. |
---|
67 | * @param threshold: the clustering threshold used. |
---|
68 | * |
---|
69 | * @return an GB_ERROR if some DB transaction fails. |
---|
70 | */ |
---|
71 | GB_ERROR Analyser::saveSAI(vector<size_t> clusters, double threshold) { |
---|
72 | |
---|
73 | GBDATA *gb_main = runningDatabase(); |
---|
74 | GB_ERROR error = GB_push_transaction(gb_main); |
---|
75 | if (error) { |
---|
76 | cout << "ERROR 1" << endl; |
---|
77 | } |
---|
78 | |
---|
79 | char *al_name = GBT_get_default_alignment(gb_main); |
---|
80 | |
---|
81 | vector<char> clusts = normalizeClusters(clusters); |
---|
82 | // build result string |
---|
83 | stringstream ss; |
---|
84 | copy(clusts.begin(), clusts.end(), ostream_iterator<char> (ss, "")); |
---|
85 | string result = ss.str(); |
---|
86 | |
---|
87 | //save |
---|
88 | GBDATA *gb_sai = GBT_find_or_create_SAI(gb_main, getSAIname()); |
---|
89 | GBDATA *gb_data = GBT_add_data(gb_sai, al_name, "data", GB_STRING); |
---|
90 | error = GB_write_string(gb_data, result.c_str()); |
---|
91 | if (error) { |
---|
92 | cout << "RNACMA-Error: " << error << "\n"; |
---|
93 | exit(EXIT_FAILURE); |
---|
94 | } |
---|
95 | |
---|
96 | GBDATA *gb_options = GBT_add_data(gb_sai, al_name, "_TYPE", GB_STRING); |
---|
97 | stringstream options; |
---|
98 | options << "CMA_CLUSTERING: [threshold: " << threshold << "]"; |
---|
99 | error = GB_write_string(gb_options, options.str().c_str()); |
---|
100 | |
---|
101 | GB_commit_transaction(gb_main); |
---|
102 | |
---|
103 | return error; |
---|
104 | } |
---|
105 | |
---|
106 | /** |
---|
107 | * Gives clusters a reasonable name. The clustering algorithm may return |
---|
108 | * clusters with indices 123 even though there are only 50 clusters. |
---|
109 | * Here we normalise the cluster names, in this example we would have |
---|
110 | * only clusters from 0..50 as result. |
---|
111 | * |
---|
112 | * @param clusters: the result of the clustering algorithm. |
---|
113 | * |
---|
114 | * @return the new cluster names (note that the cluster index is a char |
---|
115 | * because we have to be able to show it in the SAI, where we |
---|
116 | * are allowed to use only one character for each position). |
---|
117 | */ |
---|
118 | vector<char> Analyser::normalizeClusters(vector<size_t> clusters) { |
---|
119 | |
---|
120 | vector<char> result; |
---|
121 | map<unsigned int, char> rename_map; |
---|
122 | rename_map[0] = '-'; |
---|
123 | char classes = '0'; |
---|
124 | |
---|
125 | for (vector<size_t>::iterator it = clusters.begin(); it != clusters.end(); ++it) { |
---|
126 | if (rename_map.find(*it) == rename_map.end()) { |
---|
127 | rename_map[*it] = classes++; |
---|
128 | } |
---|
129 | result.push_back(rename_map[*it]); |
---|
130 | } |
---|
131 | return result; |
---|
132 | |
---|
133 | } |
---|
134 | |
---|
135 | //-------------------------------- |
---|
136 | |
---|
137 | int main(void) { |
---|
138 | cout |
---|
139 | << "arb_rnacma -- correlated mutation analysis" << endl |
---|
140 | << " computes clusters of correlated positions" << endl |
---|
141 | << "(C) 2010 Lehrstuhl fuer Mikrobiologie, TU Muenchen" << endl |
---|
142 | << "Written 2009/2010 by Breno Faria" << endl |
---|
143 | << endl |
---|
144 | << "arb_rnacma uses the eigen C++ library (http://eigen.tuxfamily.org/)" << endl |
---|
145 | << "eigen is copyrighted by LGPL3" << endl |
---|
146 | << endl; |
---|
147 | |
---|
148 | Analyser *a = new Analyser; |
---|
149 | Cma *cma = a->getCma(); |
---|
150 | |
---|
151 | cma->computeMutualInformationP(*(a->getLoader()->getSequences())); |
---|
152 | |
---|
153 | list<MITuple> mituple = cma->compute_mituples(cma->getMIp()); |
---|
154 | |
---|
155 | cout << endl |
---|
156 | << "The highest MI value was: " << mituple.begin()->MI |
---|
157 | << " at position (" << mituple.begin()->pos1 << ", " |
---|
158 | << mituple.begin()->pos2 << ")." << endl |
---|
159 | << "(Note: pairs with MI-values down to the threshold will be joined in one cluster)" << endl; |
---|
160 | |
---|
161 | while (true) { |
---|
162 | cout << endl |
---|
163 | << "Press Ctrl-d to quit or" << endl |
---|
164 | << "choose a threshold value for the clustering process: "; |
---|
165 | |
---|
166 | |
---|
167 | string input; |
---|
168 | cin >> input; |
---|
169 | |
---|
170 | if (input.empty()) { |
---|
171 | cout << endl << "quit" << endl; |
---|
172 | break; |
---|
173 | } |
---|
174 | |
---|
175 | double threshold = strtod(input.c_str(), NULL); |
---|
176 | cout << "Building clusters with threshold = " << threshold << endl; |
---|
177 | |
---|
178 | VectorXi cl = cma->computeClusters(mituple, size_t(cma->getMIp().cols()), threshold); |
---|
179 | vector<size_t> *clusters = new vector<size_t> (0, 0); |
---|
180 | AlignedSequenceLoader *l = a->getLoader(); |
---|
181 | size_t i = 0; |
---|
182 | size_t j = 0; |
---|
183 | for (vector<size_t>::iterator it = l->getPositionMap()->begin(); it |
---|
184 | != l->getPositionMap()->end(); ++it) { |
---|
185 | while (i < *it) { |
---|
186 | clusters->push_back(0); |
---|
187 | i++; |
---|
188 | } |
---|
189 | clusters->push_back(cl[j]); |
---|
190 | j++; |
---|
191 | i++; |
---|
192 | } |
---|
193 | |
---|
194 | GB_ERROR e = a->saveSAI(*clusters, threshold); |
---|
195 | |
---|
196 | if (e) { |
---|
197 | cout << "Error" << endl; |
---|
198 | } |
---|
199 | |
---|
200 | cout << "Saved results to SAI '" << Analyser::getSAIname() << "'" << endl |
---|
201 | << "(To analyse the results, open the editor and visualise the clusters using the SAI annotations)" << endl; |
---|
202 | } |
---|
203 | |
---|
204 | delete a; |
---|
205 | |
---|
206 | } |
---|