| 1 | // ================================================================ // |
|---|
| 2 | // // |
|---|
| 3 | // File : TreeNode.cxx // |
|---|
| 4 | // Purpose : // |
|---|
| 5 | // // |
|---|
| 6 | // Coded by Ralf Westram (coder@reallysoft.de) in December 2013 // |
|---|
| 7 | // Institute of Microbiology (Technical University Munich) // |
|---|
| 8 | // http://www.arb-home.de/ // |
|---|
| 9 | // // |
|---|
| 10 | // ================================================================ // |
|---|
| 11 | |
|---|
| 12 | #include "TreeNode.h" |
|---|
| 13 | #include <arb_progress.h> |
|---|
| 14 | #include <map> |
|---|
| 15 | #include <set> |
|---|
| 16 | #include <cmath> // needed with 4.4.3 (but not with 4.7.3) |
|---|
| 17 | |
|---|
| 18 | // ------------------ |
|---|
| 19 | // TreeRoot |
|---|
| 20 | |
|---|
| 21 | TreeRoot::~TreeRoot() { |
|---|
| 22 | deleteWithNodes = false; // avoid recursive call of ~TreeRoot (obsolete?) |
|---|
| 23 | rt_assert(!rootNode); // you have to call TreeRoot::predelete() before dtor! you can do this is dtor of that derived class, which defines makeNode/destroyNode |
|---|
| 24 | // Note: destroying nodes from here is impossible (leads to pure virtual call, as derived class instance of 'this' is already under destruction) |
|---|
| 25 | } |
|---|
| 26 | |
|---|
| 27 | void TreeRoot::change_root(TreeNode *oldroot, TreeNode *newroot) { |
|---|
| 28 | rt_assert(rootNode == oldroot); |
|---|
| 29 | rt_assert(implicated(newroot, !newroot->father)); |
|---|
| 30 | rootNode = newroot; |
|---|
| 31 | |
|---|
| 32 | if (oldroot && oldroot->get_tree_root() && !oldroot->is_inside(newroot)) oldroot->set_tree_root(0); // unlink from this |
|---|
| 33 | if (newroot && newroot->get_tree_root() != this) newroot->set_tree_root(this); // link to this |
|---|
| 34 | } |
|---|
| 35 | |
|---|
| 36 | // -------------------- |
|---|
| 37 | // TreeNode |
|---|
| 38 | |
|---|
| 39 | #if defined(PROVIDE_TREE_STRUCTURE_TESTS) |
|---|
| 40 | |
|---|
| 41 | Validity TreeNode::is_valid() const { |
|---|
| 42 | rt_assert(knownNonNull(this)); |
|---|
| 43 | Validity valid; |
|---|
| 44 | |
|---|
| 45 | TreeRoot *troot = get_tree_root(); |
|---|
| 46 | if (troot) { |
|---|
| 47 | if (is_leaf) { |
|---|
| 48 | valid = Validity(!rightson && !leftson, "leaf has son"); |
|---|
| 49 | } |
|---|
| 50 | else { |
|---|
| 51 | valid = Validity(rightson && leftson, "inner node lacks sons"); |
|---|
| 52 | if (valid) valid = get_rightson()->is_valid(); |
|---|
| 53 | if (valid) valid = get_leftson()->is_valid(); |
|---|
| 54 | } |
|---|
| 55 | if (father) { |
|---|
| 56 | if (valid) valid = Validity(is_inside(get_father()), "node not inside father subtree"); |
|---|
| 57 | if (valid) valid = Validity(troot->get_root_node()->is_anchestor_of(this), "root is not nodes anchestor"); |
|---|
| 58 | if (valid) valid = Validity(get_father()->get_tree_root() == troot, "node and father have different TreeRoot"); |
|---|
| 59 | } |
|---|
| 60 | else { |
|---|
| 61 | if (valid) valid = Validity(troot->get_root_node() == this, "node has no father, but isn't root-node"); |
|---|
| 62 | if (valid) valid = Validity(!is_leaf, "root-node is leaf"); // leaf@root (tree has to have at least 2 leafs) |
|---|
| 63 | } |
|---|
| 64 | } |
|---|
| 65 | else { // removed node (may be incomplete) |
|---|
| 66 | if (is_leaf) { |
|---|
| 67 | valid = Validity(!rightson && !leftson, "(removed) leaf has son"); |
|---|
| 68 | } |
|---|
| 69 | else { |
|---|
| 70 | if (rightson) valid = get_rightson()->is_valid(); |
|---|
| 71 | if (leftson && valid) valid = get_leftson()->is_valid(); |
|---|
| 72 | } |
|---|
| 73 | if (father) { |
|---|
| 74 | if (valid) valid = Validity(is_inside(get_father()), "(removed) node not inside father subtree"); |
|---|
| 75 | if (valid) valid = Validity(get_father()->get_tree_root() == troot, "(removed) node and father have different TreeRoot"); |
|---|
| 76 | } |
|---|
| 77 | } |
|---|
| 78 | return valid; |
|---|
| 79 | } |
|---|
| 80 | #endif // PROVIDE_TREE_STRUCTURE_TESTS |
|---|
| 81 | |
|---|
| 82 | void TreeNode::set_tree_root(TreeRoot *new_root) { |
|---|
| 83 | if (tree_root != new_root) { |
|---|
| 84 | tree_root = new_root; |
|---|
| 85 | if (leftson) get_leftson()->set_tree_root(new_root); |
|---|
| 86 | if (rightson) get_rightson()->set_tree_root(new_root); |
|---|
| 87 | } |
|---|
| 88 | } |
|---|
| 89 | |
|---|
| 90 | void TreeNode::reorder_subtree(TreeOrder mode) { |
|---|
| 91 | static const char *smallest_leafname; // has to be set to the alphabetically smallest name (when function exits) |
|---|
| 92 | |
|---|
| 93 | if (is_leaf) { |
|---|
| 94 | smallest_leafname = name; |
|---|
| 95 | } |
|---|
| 96 | else { |
|---|
| 97 | int leftsize = get_leftson() ->get_leaf_count(); |
|---|
| 98 | int rightsize = get_rightson()->get_leaf_count(); |
|---|
| 99 | |
|---|
| 100 | { |
|---|
| 101 | bool big_at_top = leftsize>rightsize; |
|---|
| 102 | bool big_at_bottom = leftsize<rightsize; |
|---|
| 103 | bool swap_branches = (mode&ORDER_BIG_DOWN) ? big_at_top : big_at_bottom; |
|---|
| 104 | if (swap_branches) swap_sons(); |
|---|
| 105 | } |
|---|
| 106 | |
|---|
| 107 | TreeOrder lmode, rmode; |
|---|
| 108 | if (mode & (ORDER_BIG_TO_EDGE|ORDER_BIG_TO_CENTER)) { // symmetric |
|---|
| 109 | if (mode & ORDER_ALTERNATING) mode = TreeOrder(mode^(ORDER_BIG_TO_EDGE|ORDER_BIG_TO_CENTER)); |
|---|
| 110 | |
|---|
| 111 | if (mode & ORDER_BIG_TO_CENTER) { |
|---|
| 112 | lmode = TreeOrder(mode | ORDER_BIG_DOWN); |
|---|
| 113 | rmode = TreeOrder(mode & ~ORDER_BIG_DOWN); |
|---|
| 114 | } |
|---|
| 115 | else { |
|---|
| 116 | lmode = TreeOrder(mode & ~ORDER_BIG_DOWN); |
|---|
| 117 | rmode = TreeOrder(mode | ORDER_BIG_DOWN); |
|---|
| 118 | } |
|---|
| 119 | } |
|---|
| 120 | else { // asymmetric |
|---|
| 121 | if (mode & ORDER_ALTERNATING) mode = TreeOrder(mode^ORDER_BIG_DOWN); |
|---|
| 122 | |
|---|
| 123 | lmode = mode; |
|---|
| 124 | rmode = mode; |
|---|
| 125 | } |
|---|
| 126 | |
|---|
| 127 | get_leftson()->reorder_subtree(lmode); |
|---|
| 128 | const char *leftleafname = smallest_leafname; |
|---|
| 129 | |
|---|
| 130 | get_rightson()->reorder_subtree(rmode); |
|---|
| 131 | const char *rightleafname = smallest_leafname; |
|---|
| 132 | |
|---|
| 133 | if (leftleafname && rightleafname) { |
|---|
| 134 | int name_cmp = strcmp(leftleafname, rightleafname); |
|---|
| 135 | if (name_cmp <= 0) { |
|---|
| 136 | smallest_leafname = leftleafname; |
|---|
| 137 | } |
|---|
| 138 | else { |
|---|
| 139 | smallest_leafname = rightleafname; |
|---|
| 140 | if (leftsize == rightsize) { // if sizes of subtrees are equal and rightleafname<leftleafname -> swap branches |
|---|
| 141 | const char *smallest_leafname_save = smallest_leafname; |
|---|
| 142 | |
|---|
| 143 | swap_sons(); |
|---|
| 144 | get_leftson ()->reorder_subtree(lmode); rt_assert(strcmp(smallest_leafname, rightleafname)== 0); |
|---|
| 145 | get_rightson()->reorder_subtree(rmode); rt_assert(strcmp(smallest_leafname, leftleafname) == 0); |
|---|
| 146 | |
|---|
| 147 | smallest_leafname = smallest_leafname_save; |
|---|
| 148 | } |
|---|
| 149 | } |
|---|
| 150 | } |
|---|
| 151 | } |
|---|
| 152 | rt_assert(smallest_leafname); |
|---|
| 153 | } |
|---|
| 154 | |
|---|
| 155 | void TreeNode::reorder_tree(TreeOrder mode) { |
|---|
| 156 | /*! beautify tree (does not change topology, only swaps branches) |
|---|
| 157 | */ |
|---|
| 158 | compute_tree(); |
|---|
| 159 | reorder_subtree(mode); |
|---|
| 160 | } |
|---|
| 161 | |
|---|
| 162 | void TreeNode::rotate_subtree() { |
|---|
| 163 | if (!is_leaf) { |
|---|
| 164 | swap_sons(); |
|---|
| 165 | get_leftson()->rotate_subtree(); |
|---|
| 166 | get_rightson()->rotate_subtree(); |
|---|
| 167 | } |
|---|
| 168 | } |
|---|
| 169 | |
|---|
| 170 | void TreeNode::set_root() { |
|---|
| 171 | /*! set the root at parent edge of this |
|---|
| 172 | * pointers to tree-nodes remain valid, but all parent-nodes of this change their meaning |
|---|
| 173 | * (afterwards they will point to [father+brother] instead of [this+brother]) |
|---|
| 174 | * esp. pointers to the root-node will still point to the root-node (which only changed children) |
|---|
| 175 | */ |
|---|
| 176 | |
|---|
| 177 | if (at_root()) return; // already root |
|---|
| 178 | |
|---|
| 179 | TreeNode *old_root = get_root_node(); |
|---|
| 180 | TreeNode *old_brother = is_inside(old_root->get_leftson()) ? old_root->get_rightson() : old_root->get_leftson(); |
|---|
| 181 | |
|---|
| 182 | // move remark branches to top |
|---|
| 183 | { |
|---|
| 184 | char *remark = nulldup(get_remark()); |
|---|
| 185 | for (TreeNode *node = this; node->father; node = node->get_father()) { |
|---|
| 186 | remark = node->swap_remark(remark); |
|---|
| 187 | } |
|---|
| 188 | free(remark); |
|---|
| 189 | } |
|---|
| 190 | |
|---|
| 191 | GBT_LEN old_root_len = old_root->leftlen + old_root->rightlen; |
|---|
| 192 | |
|---|
| 193 | // new node & this init |
|---|
| 194 | old_root->leftson = this; |
|---|
| 195 | old_root->rightson = father; // will be set later |
|---|
| 196 | |
|---|
| 197 | if (father->leftson == this) { |
|---|
| 198 | old_root->leftlen = old_root->rightlen = father->leftlen*.5; |
|---|
| 199 | } |
|---|
| 200 | else { |
|---|
| 201 | old_root->leftlen = old_root->rightlen = father->rightlen*.5; |
|---|
| 202 | } |
|---|
| 203 | |
|---|
| 204 | TreeNode *next = get_father()->get_father(); |
|---|
| 205 | TreeNode *prev = old_root; |
|---|
| 206 | TreeNode *pntr = get_father(); |
|---|
| 207 | |
|---|
| 208 | if (father->leftson == this) father->leftson = old_root; // to set the flag correctly |
|---|
| 209 | |
|---|
| 210 | // loop from father to son of root, rotate tree |
|---|
| 211 | while (next->father) { |
|---|
| 212 | double len = (next->leftson == pntr) ? next->leftlen : next->rightlen; |
|---|
| 213 | |
|---|
| 214 | if (pntr->leftson == prev) { |
|---|
| 215 | pntr->leftson = next; |
|---|
| 216 | pntr->leftlen = len; |
|---|
| 217 | } |
|---|
| 218 | else { |
|---|
| 219 | pntr->rightson = next; |
|---|
| 220 | pntr->rightlen = len; |
|---|
| 221 | } |
|---|
| 222 | |
|---|
| 223 | pntr->father = prev; |
|---|
| 224 | prev = pntr; |
|---|
| 225 | pntr = next; |
|---|
| 226 | next = next->get_father(); |
|---|
| 227 | } |
|---|
| 228 | // now next points to the old root, which has been destroyed above |
|---|
| 229 | // |
|---|
| 230 | // pointer at oldroot |
|---|
| 231 | // pntr == brother before old root == next |
|---|
| 232 | |
|---|
| 233 | if (pntr->leftson == prev) { |
|---|
| 234 | pntr->leftlen = old_root_len; |
|---|
| 235 | pntr->leftson = old_brother; |
|---|
| 236 | } |
|---|
| 237 | else { |
|---|
| 238 | pntr->rightlen = old_root_len; |
|---|
| 239 | pntr->rightson = old_brother; |
|---|
| 240 | } |
|---|
| 241 | |
|---|
| 242 | old_brother->father = pntr; |
|---|
| 243 | pntr->father = prev; |
|---|
| 244 | father = old_root; |
|---|
| 245 | |
|---|
| 246 | rt_assert(get_root_node() == old_root); |
|---|
| 247 | } |
|---|
| 248 | |
|---|
| 249 | TreeNode *TreeNode::findLeafNamed(const char *wantedName) { |
|---|
| 250 | TreeNode *found = NULL; |
|---|
| 251 | if (is_leaf) { |
|---|
| 252 | if (name && strcmp(name, wantedName) == 0) found = this; |
|---|
| 253 | } |
|---|
| 254 | else { |
|---|
| 255 | found = get_leftson()->findLeafNamed(wantedName); |
|---|
| 256 | if (!found) found = get_rightson()->findLeafNamed(wantedName); |
|---|
| 257 | } |
|---|
| 258 | return found; |
|---|
| 259 | } |
|---|
| 260 | |
|---|
| 261 | // ---------------------------- |
|---|
| 262 | // find_innermost_edge |
|---|
| 263 | |
|---|
| 264 | class NodeLeafDistance { |
|---|
| 265 | GBT_LEN downdist, updist; |
|---|
| 266 | enum { NLD_NODIST = 0, NLD_DOWNDIST, NLD_BOTHDIST } state; |
|---|
| 267 | |
|---|
| 268 | public: |
|---|
| 269 | |
|---|
| 270 | NodeLeafDistance() |
|---|
| 271 | : downdist(-1.0), |
|---|
| 272 | updist(-1.0), |
|---|
| 273 | state(NLD_NODIST) |
|---|
| 274 | {} |
|---|
| 275 | |
|---|
| 276 | GBT_LEN get_downdist() const { rt_assert(state >= NLD_DOWNDIST); return downdist; } |
|---|
| 277 | void set_downdist(GBT_LEN DownDist) { |
|---|
| 278 | if (state < NLD_DOWNDIST) state = NLD_DOWNDIST; |
|---|
| 279 | downdist = DownDist; |
|---|
| 280 | } |
|---|
| 281 | |
|---|
| 282 | GBT_LEN get_updist() const { rt_assert(state >= NLD_BOTHDIST); return updist; } |
|---|
| 283 | void set_updist(GBT_LEN UpDist) { |
|---|
| 284 | if (state < NLD_BOTHDIST) state = NLD_BOTHDIST; |
|---|
| 285 | updist = UpDist; |
|---|
| 286 | } |
|---|
| 287 | |
|---|
| 288 | }; |
|---|
| 289 | |
|---|
| 290 | class EdgeFinder { |
|---|
| 291 | std::map<TreeNode*, NodeLeafDistance> data; // maximum distance to farthest leaf |
|---|
| 292 | |
|---|
| 293 | ARB_edge innermost; |
|---|
| 294 | double min_distdiff; // abs diff between up- and downdiff |
|---|
| 295 | |
|---|
| 296 | GBT_LEN calc_distdiff(GBT_LEN d1, GBT_LEN d2) { return fabs(d1-d2); } |
|---|
| 297 | |
|---|
| 298 | void insert_tree(TreeNode *node) { |
|---|
| 299 | if (node->is_leaf) { |
|---|
| 300 | data[node].set_downdist(0.0); |
|---|
| 301 | } |
|---|
| 302 | else { |
|---|
| 303 | insert_tree(node->get_leftson()); |
|---|
| 304 | insert_tree(node->get_rightson()); |
|---|
| 305 | |
|---|
| 306 | data[node].set_downdist(std::max(data[node->get_leftson()].get_downdist()+node->leftlen, |
|---|
| 307 | data[node->get_rightson()].get_downdist()+node->rightlen)); |
|---|
| 308 | } |
|---|
| 309 | } |
|---|
| 310 | |
|---|
| 311 | void findBetterEdge_sub(TreeNode *node) { |
|---|
| 312 | TreeNode *father = node->get_father(); |
|---|
| 313 | TreeNode *brother = node->get_brother(); |
|---|
| 314 | |
|---|
| 315 | GBT_LEN len = node->get_branchlength(); |
|---|
| 316 | GBT_LEN brothLen = brother->get_branchlength(); |
|---|
| 317 | |
|---|
| 318 | GBT_LEN upDist = std::max(data[father].get_updist(), data[brother].get_downdist()+brothLen); |
|---|
| 319 | GBT_LEN downDist = data[node].get_downdist(); |
|---|
| 320 | |
|---|
| 321 | { |
|---|
| 322 | GBT_LEN edge_dd = calc_distdiff(upDist, downDist); |
|---|
| 323 | if (edge_dd<min_distdiff) { // found better edge |
|---|
| 324 | innermost = ARB_edge(node, father); |
|---|
| 325 | min_distdiff = edge_dd; |
|---|
| 326 | } |
|---|
| 327 | } |
|---|
| 328 | |
|---|
| 329 | data[node].set_updist(upDist+len); |
|---|
| 330 | |
|---|
| 331 | if (!node->is_leaf) { |
|---|
| 332 | findBetterEdge_sub(node->get_leftson()); |
|---|
| 333 | findBetterEdge_sub(node->get_rightson()); |
|---|
| 334 | } |
|---|
| 335 | } |
|---|
| 336 | |
|---|
| 337 | void findBetterEdge(TreeNode *node) { |
|---|
| 338 | if (!node->is_leaf) { |
|---|
| 339 | findBetterEdge_sub(node->get_leftson()); |
|---|
| 340 | findBetterEdge_sub(node->get_rightson()); |
|---|
| 341 | } |
|---|
| 342 | } |
|---|
| 343 | |
|---|
| 344 | public: |
|---|
| 345 | EdgeFinder(TreeNode *rootNode) |
|---|
| 346 | : innermost(rootNode->get_leftson(), rootNode->get_rightson()) // root-edge |
|---|
| 347 | { |
|---|
| 348 | insert_tree(rootNode); |
|---|
| 349 | |
|---|
| 350 | TreeNode *lson = rootNode->get_leftson(); |
|---|
| 351 | TreeNode *rson = rootNode->get_rightson(); |
|---|
| 352 | |
|---|
| 353 | GBT_LEN rootEdgeLen = rootNode->leftlen + rootNode->rightlen; |
|---|
| 354 | |
|---|
| 355 | GBT_LEN lddist = data[lson].get_downdist(); |
|---|
| 356 | GBT_LEN rddist = data[rson].get_downdist(); |
|---|
| 357 | |
|---|
| 358 | data[lson].set_updist(rddist+rootEdgeLen); |
|---|
| 359 | data[rson].set_updist(lddist+rootEdgeLen); |
|---|
| 360 | |
|---|
| 361 | min_distdiff = calc_distdiff(lddist, rddist); |
|---|
| 362 | |
|---|
| 363 | findBetterEdge(lson); |
|---|
| 364 | findBetterEdge(rson); |
|---|
| 365 | } |
|---|
| 366 | |
|---|
| 367 | const ARB_edge& innermost_edge() const { return innermost; } |
|---|
| 368 | }; |
|---|
| 369 | |
|---|
| 370 | ARB_edge TreeRoot::find_innermost_edge() { |
|---|
| 371 | EdgeFinder edgeFinder(get_root_node()); |
|---|
| 372 | return edgeFinder.innermost_edge(); |
|---|
| 373 | } |
|---|
| 374 | |
|---|
| 375 | // ------------------------ |
|---|
| 376 | // multifurcation |
|---|
| 377 | |
|---|
| 378 | class TreeNode::LengthCollector { |
|---|
| 379 | typedef std::map<TreeNode*,GBT_LEN> LengthMap; |
|---|
| 380 | typedef std::set<TreeNode*> NodeSet; |
|---|
| 381 | |
|---|
| 382 | LengthMap eliminatedParentLength; |
|---|
| 383 | LengthMap addedParentLength; |
|---|
| 384 | |
|---|
| 385 | public: |
|---|
| 386 | void eliminate_parent_edge(TreeNode *node) { |
|---|
| 387 | rt_assert(!node->is_root_node()); |
|---|
| 388 | eliminatedParentLength[node] += parentEdge(node).eliminate(); |
|---|
| 389 | } |
|---|
| 390 | |
|---|
| 391 | void add_parent_length(TreeNode *node, GBT_LEN addLen) { |
|---|
| 392 | rt_assert(!node->is_root_node()); |
|---|
| 393 | addedParentLength[node] += addLen; |
|---|
| 394 | } |
|---|
| 395 | |
|---|
| 396 | void independent_distribution(bool useProgress) { |
|---|
| 397 | // step 2: (see caller) |
|---|
| 398 | arb_progress *progress = NULL; |
|---|
| 399 | int redistCount = 0; |
|---|
| 400 | if (useProgress) progress = new arb_progress("Distributing eliminated lengths", eliminatedParentLength.size()); |
|---|
| 401 | |
|---|
| 402 | while (!eliminatedParentLength.empty()) { // got eliminated lengths which need to be distributed |
|---|
| 403 | for (LengthMap::iterator from = eliminatedParentLength.begin(); from != eliminatedParentLength.end(); ++from) { |
|---|
| 404 | ARB_edge elimEdge = parentEdge(from->first); |
|---|
| 405 | GBT_LEN elimLen = from->second; |
|---|
| 406 | |
|---|
| 407 | elimEdge.virtually_distribute_length(elimLen, *this); |
|---|
| 408 | if (progress) ++*progress; |
|---|
| 409 | } |
|---|
| 410 | eliminatedParentLength.clear(); // all distributed! |
|---|
| 411 | |
|---|
| 412 | // handle special cases where distributed length is negative and results in negative destination branches. |
|---|
| 413 | // Avoid generating negative dest. branchlengths by |
|---|
| 414 | // - eliminating the dest. branch |
|---|
| 415 | // - redistributing the additional (negative) length (may cause additional negative lengths on other dest. branches) |
|---|
| 416 | |
|---|
| 417 | NodeSet handled; |
|---|
| 418 | for (LengthMap::iterator to = addedParentLength.begin(); to != addedParentLength.end(); ++to) { |
|---|
| 419 | ARB_edge affectedEdge = parentEdge(to->first); |
|---|
| 420 | GBT_LEN additionalLen = to->second; |
|---|
| 421 | double effective_length = affectedEdge.length() + additionalLen; |
|---|
| 422 | |
|---|
| 423 | if (effective_length<=0.0) { // negative or zero |
|---|
| 424 | affectedEdge.set_length(effective_length); |
|---|
| 425 | eliminate_parent_edge(to->first); // adds entry to eliminatedParentLength and causes another additional loop |
|---|
| 426 | handled.insert(to->first); |
|---|
| 427 | } |
|---|
| 428 | } |
|---|
| 429 | |
|---|
| 430 | if (progress && !eliminatedParentLength.empty()) { |
|---|
| 431 | delete progress; |
|---|
| 432 | ++redistCount; |
|---|
| 433 | progress = new arb_progress(GBS_global_string("Redistributing negative lengths (#%i)", redistCount), eliminatedParentLength.size()); |
|---|
| 434 | } |
|---|
| 435 | |
|---|
| 436 | // remove all redistributed nodes |
|---|
| 437 | for (NodeSet::iterator del = handled.begin(); del != handled.end(); ++del) { |
|---|
| 438 | addedParentLength.erase(*del); |
|---|
| 439 | } |
|---|
| 440 | } |
|---|
| 441 | |
|---|
| 442 | // step 3: |
|---|
| 443 | for (LengthMap::iterator to = addedParentLength.begin(); to != addedParentLength.end(); ++to) { |
|---|
| 444 | ARB_edge affectedEdge = parentEdge(to->first); |
|---|
| 445 | GBT_LEN additionalLen = to->second; |
|---|
| 446 | double effective_length = affectedEdge.length() + additionalLen; |
|---|
| 447 | |
|---|
| 448 | affectedEdge.set_length(effective_length); |
|---|
| 449 | } |
|---|
| 450 | |
|---|
| 451 | if (progress) delete progress; |
|---|
| 452 | } |
|---|
| 453 | }; |
|---|
| 454 | |
|---|
| 455 | GBT_LEN ARB_edge::adjacent_distance() const { |
|---|
| 456 | //! return length of edges starting from this->dest() |
|---|
| 457 | |
|---|
| 458 | if (is_edge_to_leaf()) return 0.0; |
|---|
| 459 | return next().length_or_adjacent_distance() + counter_next().length_or_adjacent_distance(); |
|---|
| 460 | } |
|---|
| 461 | |
|---|
| 462 | void ARB_edge::virtually_add_or_distribute_length_forward(GBT_LEN len, TreeNode::LengthCollector& collect) const { |
|---|
| 463 | rt_assert(!is_nan_or_inf(len)); |
|---|
| 464 | if (length() > 0.0) { |
|---|
| 465 | collect.add_parent_length(son(), len); |
|---|
| 466 | } |
|---|
| 467 | else { |
|---|
| 468 | if (len != 0.0) virtually_distribute_length_forward(len, collect); |
|---|
| 469 | } |
|---|
| 470 | } |
|---|
| 471 | |
|---|
| 472 | |
|---|
| 473 | void ARB_edge::virtually_distribute_length_forward(GBT_LEN len, TreeNode::LengthCollector& collect) const { |
|---|
| 474 | /*! distribute length to edges adjacent in edge direction (i.e. edges starting from this->dest()) |
|---|
| 475 | * Split 'len' proportional to adjacent edges lengths. |
|---|
| 476 | * |
|---|
| 477 | * Note: length will not be distributed to tree-struction itself (yet), but collected in 'collect' |
|---|
| 478 | */ |
|---|
| 479 | |
|---|
| 480 | rt_assert(is_normal(len)); |
|---|
| 481 | rt_assert(!is_edge_to_leaf()); // cannot forward anything (nothing beyond leafs) |
|---|
| 482 | |
|---|
| 483 | ARB_edge e1 = next(); |
|---|
| 484 | ARB_edge e2 = counter_next(); |
|---|
| 485 | |
|---|
| 486 | GBT_LEN d1 = e1.length_or_adjacent_distance(); |
|---|
| 487 | GBT_LEN d2 = e2.length_or_adjacent_distance(); |
|---|
| 488 | |
|---|
| 489 | len = len/(d1+d2); |
|---|
| 490 | |
|---|
| 491 | e1.virtually_add_or_distribute_length_forward(len*d1, collect); |
|---|
| 492 | e2.virtually_add_or_distribute_length_forward(len*d2, collect); |
|---|
| 493 | } |
|---|
| 494 | |
|---|
| 495 | void ARB_edge::virtually_distribute_length(GBT_LEN len, TreeNode::LengthCollector& collect) const { |
|---|
| 496 | /*! distribute length to all adjacent edges. |
|---|
| 497 | * Longer edges receive more than shorter ones. |
|---|
| 498 | * |
|---|
| 499 | * Edges with length zero will not be changed, instead both edges "beyond" |
|---|
| 500 | * the edge will be affected (they will be affected equally to direct edges, |
|---|
| 501 | * because edges at multifurcations are considered to BE direct edges). |
|---|
| 502 | * |
|---|
| 503 | * Note: length will not be distributed to tree-struction itself (yet), but collected in 'collect' |
|---|
| 504 | */ |
|---|
| 505 | |
|---|
| 506 | ARB_edge backEdge = inverse(); |
|---|
| 507 | GBT_LEN len_fwd, len_bwd; |
|---|
| 508 | { |
|---|
| 509 | GBT_LEN dist_fwd = adjacent_distance(); |
|---|
| 510 | GBT_LEN dist_bwd = backEdge.adjacent_distance(); |
|---|
| 511 | GBT_LEN lenW = len/(dist_fwd+dist_bwd); |
|---|
| 512 | len_fwd = lenW*dist_fwd; |
|---|
| 513 | len_bwd = lenW*dist_bwd; |
|---|
| 514 | |
|---|
| 515 | } |
|---|
| 516 | |
|---|
| 517 | if (is_normal(len_fwd)) virtually_distribute_length_forward(len_fwd, collect); |
|---|
| 518 | if (is_normal(len_bwd)) backEdge.virtually_distribute_length_forward(len_bwd, collect); |
|---|
| 519 | } |
|---|
| 520 | |
|---|
| 521 | void TreeNode::eliminate_and_collect(const multifurc_limits& below, LengthCollector& collect) { |
|---|
| 522 | /*! eliminate edges specified by 'below' and |
|---|
| 523 | * store their length in 'collect' for later distribution. |
|---|
| 524 | */ |
|---|
| 525 | rt_assert(!is_root_node()); |
|---|
| 526 | if (!is_leaf || below.applyAtLeafs) { |
|---|
| 527 | double value; |
|---|
| 528 | switch (parse_bootstrap(value)) { |
|---|
| 529 | case REMARK_NONE: |
|---|
| 530 | value = 100.0; |
|---|
| 531 | // fall-through |
|---|
| 532 | case REMARK_BOOTSTRAP: |
|---|
| 533 | if (value<below.bootstrap && get_branchlength_unrooted()<below.branchlength) { |
|---|
| 534 | collect.eliminate_parent_edge(this); |
|---|
| 535 | } |
|---|
| 536 | break; |
|---|
| 537 | |
|---|
| 538 | case REMARK_OTHER: break; |
|---|
| 539 | } |
|---|
| 540 | } |
|---|
| 541 | |
|---|
| 542 | if (!is_leaf) { |
|---|
| 543 | get_leftson() ->eliminate_and_collect(below, collect); |
|---|
| 544 | get_rightson()->eliminate_and_collect(below, collect); |
|---|
| 545 | } |
|---|
| 546 | } |
|---|
| 547 | |
|---|
| 548 | void ARB_edge::multifurcate() { |
|---|
| 549 | /*! eliminate edge and distribute length to adjacent edges |
|---|
| 550 | * - sets its length to zero |
|---|
| 551 | * - removes remark (bootstrap) |
|---|
| 552 | * - distributes length to neighbour-branches |
|---|
| 553 | */ |
|---|
| 554 | TreeNode::LengthCollector collector; |
|---|
| 555 | collector.eliminate_parent_edge(son()); |
|---|
| 556 | collector.independent_distribution(false); |
|---|
| 557 | } |
|---|
| 558 | void TreeNode::multifurcate() { |
|---|
| 559 | /*! eliminate branch from 'this' to 'father' (or brother @ root) |
|---|
| 560 | * @see ARB_edge::multifurcate() |
|---|
| 561 | */ |
|---|
| 562 | rt_assert(father); // cannot multifurcate at root; call with son of root to multifurcate root-edge |
|---|
| 563 | if (father) parentEdge(this).multifurcate(); |
|---|
| 564 | } |
|---|
| 565 | |
|---|
| 566 | void TreeNode::set_branchlength_preserving(GBT_LEN new_len) { |
|---|
| 567 | /*! set branchlength to 'new_len' while preserving overall distance in tree. |
|---|
| 568 | * |
|---|
| 569 | * Always works on unrooted tree (i.e. lengths @ root are treated correctly). |
|---|
| 570 | * Length is preserved as in multifurcate() |
|---|
| 571 | */ |
|---|
| 572 | |
|---|
| 573 | GBT_LEN old_len = get_branchlength_unrooted(); |
|---|
| 574 | GBT_LEN change = new_len-old_len; |
|---|
| 575 | |
|---|
| 576 | char *old_remark = nulldup(get_remark()); |
|---|
| 577 | |
|---|
| 578 | // distribute the negative 'change' to neighbours: |
|---|
| 579 | set_branchlength_unrooted(-change); |
|---|
| 580 | multifurcate(); |
|---|
| 581 | |
|---|
| 582 | set_branchlength_unrooted(new_len); |
|---|
| 583 | use_as_remark(old_remark); // restore remark (was removed by multifurcate()) |
|---|
| 584 | } |
|---|
| 585 | |
|---|
| 586 | void TreeNode::multifurcate_whole_tree(const multifurc_limits& below) { |
|---|
| 587 | /*! multifurcate all branches specified by 'below' |
|---|
| 588 | * - step 1: eliminate all branches, store eliminated lengths |
|---|
| 589 | * - step 2: calculate length distribution for all adjacent branches (proportionally to original length of each branch) |
|---|
| 590 | * - step 3: apply distributed length |
|---|
| 591 | */ |
|---|
| 592 | TreeNode *root = get_root_node(); |
|---|
| 593 | LengthCollector collector; |
|---|
| 594 | arb_progress progress("Multifurcating tree"); |
|---|
| 595 | |
|---|
| 596 | // step 1: |
|---|
| 597 | progress.subtitle("Collecting branches to eliminate"); |
|---|
| 598 | root->get_leftson()->eliminate_and_collect(below, collector); |
|---|
| 599 | root->get_rightson()->eliminate_and_collect(below, collector); |
|---|
| 600 | // root-edge is handled twice by the above calls. |
|---|
| 601 | // Unproblematic: first call will eliminate root-edge, so second call will do nothing. |
|---|
| 602 | |
|---|
| 603 | // step 2 and 3: |
|---|
| 604 | collector.independent_distribution(true); |
|---|
| 605 | } |
|---|
| 606 | |
|---|
| 607 | TreeNode::bs100_mode TreeNode::toggle_bootstrap100(bs100_mode mode) { |
|---|
| 608 | if (!is_leaf) { |
|---|
| 609 | if (!is_root_node()) { |
|---|
| 610 | double bootstrap; |
|---|
| 611 | switch (parse_bootstrap(bootstrap)) { |
|---|
| 612 | case REMARK_NONE: |
|---|
| 613 | case REMARK_OTHER: |
|---|
| 614 | switch (mode) { |
|---|
| 615 | case BS_UNDECIDED: mode = BS_INSERT; |
|---|
| 616 | case BS_INSERT: set_bootstrap(100); |
|---|
| 617 | case BS_REMOVE: break; |
|---|
| 618 | } |
|---|
| 619 | break; |
|---|
| 620 | case REMARK_BOOTSTRAP: |
|---|
| 621 | if (bootstrap >= 99.5) { |
|---|
| 622 | switch (mode) { |
|---|
| 623 | case BS_UNDECIDED: mode = BS_REMOVE; |
|---|
| 624 | case BS_REMOVE: remove_remark(); |
|---|
| 625 | case BS_INSERT: break; |
|---|
| 626 | } |
|---|
| 627 | } |
|---|
| 628 | break; |
|---|
| 629 | } |
|---|
| 630 | } |
|---|
| 631 | |
|---|
| 632 | mode = get_leftson()->toggle_bootstrap100(mode); |
|---|
| 633 | mode = get_rightson()->toggle_bootstrap100(mode); |
|---|
| 634 | } |
|---|
| 635 | return mode; |
|---|
| 636 | } |
|---|
| 637 | void TreeNode::remove_bootstrap() { |
|---|
| 638 | freenull(remark_branch); |
|---|
| 639 | if (!is_leaf) { |
|---|
| 640 | get_leftson()->remove_bootstrap(); |
|---|
| 641 | get_rightson()->remove_bootstrap(); |
|---|
| 642 | } |
|---|
| 643 | } |
|---|
| 644 | void TreeNode::reset_branchlengths() { |
|---|
| 645 | if (!is_leaf) { |
|---|
| 646 | leftlen = rightlen = DEFAULT_BRANCH_LENGTH; |
|---|
| 647 | |
|---|
| 648 | get_leftson()->reset_branchlengths(); |
|---|
| 649 | get_rightson()->reset_branchlengths(); |
|---|
| 650 | } |
|---|
| 651 | } |
|---|
| 652 | |
|---|
| 653 | void TreeNode::scale_branchlengths(double factor) { |
|---|
| 654 | if (!is_leaf) { |
|---|
| 655 | leftlen *= factor; |
|---|
| 656 | rightlen *= factor; |
|---|
| 657 | |
|---|
| 658 | get_leftson()->scale_branchlengths(factor); |
|---|
| 659 | get_rightson()->scale_branchlengths(factor); |
|---|
| 660 | } |
|---|
| 661 | } |
|---|
| 662 | |
|---|
| 663 | GBT_LEN TreeNode::sum_child_lengths() const { |
|---|
| 664 | if (is_leaf) return 0.0; |
|---|
| 665 | return |
|---|
| 666 | leftlen + |
|---|
| 667 | rightlen + |
|---|
| 668 | get_leftson()->sum_child_lengths() + |
|---|
| 669 | get_rightson()->sum_child_lengths(); |
|---|
| 670 | } |
|---|
| 671 | |
|---|
| 672 | void TreeNode::bootstrap2branchlen() { |
|---|
| 673 | //! copy bootstraps to branchlengths |
|---|
| 674 | if (is_leaf) { |
|---|
| 675 | set_branchlength_unrooted(DEFAULT_BRANCH_LENGTH); |
|---|
| 676 | } |
|---|
| 677 | else { |
|---|
| 678 | if (father) { |
|---|
| 679 | double bootstrap; |
|---|
| 680 | GBT_RemarkType rtype = parse_bootstrap(bootstrap); |
|---|
| 681 | |
|---|
| 682 | if (rtype == REMARK_BOOTSTRAP) { |
|---|
| 683 | double len = bootstrap/100.0; |
|---|
| 684 | set_branchlength_unrooted(len); |
|---|
| 685 | } |
|---|
| 686 | else { |
|---|
| 687 | set_branchlength_unrooted(1.0); // no bootstrap means "100%" |
|---|
| 688 | } |
|---|
| 689 | } |
|---|
| 690 | get_leftson()->bootstrap2branchlen(); |
|---|
| 691 | get_rightson()->bootstrap2branchlen(); |
|---|
| 692 | } |
|---|
| 693 | } |
|---|
| 694 | |
|---|
| 695 | void TreeNode::branchlen2bootstrap() { |
|---|
| 696 | //! copy branchlengths to bootstraps |
|---|
| 697 | remove_remark(); |
|---|
| 698 | if (!is_leaf) { |
|---|
| 699 | if (!is_root_node()) { |
|---|
| 700 | set_bootstrap(get_branchlength_unrooted()*100.0); |
|---|
| 701 | } |
|---|
| 702 | get_leftson()->branchlen2bootstrap(); |
|---|
| 703 | get_rightson()->branchlen2bootstrap(); |
|---|
| 704 | } |
|---|
| 705 | } |
|---|
| 706 | |
|---|
| 707 | TreeNode *TreeNode::fixDeletedSon() { |
|---|
| 708 | // fix node after one son has been deleted |
|---|
| 709 | TreeNode *result = NULL; |
|---|
| 710 | |
|---|
| 711 | if (leftson) { |
|---|
| 712 | gb_assert(!rightson); |
|---|
| 713 | result = get_leftson(); |
|---|
| 714 | leftson = NULL; |
|---|
| 715 | } |
|---|
| 716 | else { |
|---|
| 717 | gb_assert(!leftson); |
|---|
| 718 | gb_assert(rightson); |
|---|
| 719 | |
|---|
| 720 | result = get_rightson(); |
|---|
| 721 | rightson = NULL; |
|---|
| 722 | } |
|---|
| 723 | |
|---|
| 724 | // now 'result' contains the lasting tree |
|---|
| 725 | result->father = father; |
|---|
| 726 | |
|---|
| 727 | if (remark_branch && !result->remark_branch) { // rescue remarks if possible |
|---|
| 728 | result->remark_branch = remark_branch; |
|---|
| 729 | remark_branch = NULL; |
|---|
| 730 | } |
|---|
| 731 | if (gb_node && !result->gb_node) { // rescue group if possible |
|---|
| 732 | result->gb_node = gb_node; |
|---|
| 733 | gb_node = NULL; |
|---|
| 734 | } |
|---|
| 735 | |
|---|
| 736 | if (!result->father) { |
|---|
| 737 | get_tree_root()->change_root(this, result); |
|---|
| 738 | } |
|---|
| 739 | |
|---|
| 740 | gb_assert(!is_root_node()); |
|---|
| 741 | |
|---|
| 742 | forget_origin(); |
|---|
| 743 | forget_relatives(); |
|---|
| 744 | delete this; |
|---|
| 745 | |
|---|
| 746 | return result; |
|---|
| 747 | } |
|---|
| 748 | |
|---|
| 749 | const TreeNode *TreeNode::ancestor_common_with(const TreeNode *other) const { |
|---|
| 750 | if (this == other) return this; |
|---|
| 751 | if (is_anchestor_of(other)) return this; |
|---|
| 752 | if (other->is_anchestor_of(this)) return other; |
|---|
| 753 | return get_father()->ancestor_common_with(other->get_father()); |
|---|
| 754 | } |
|---|
| 755 | |
|---|
| 756 | // -------------------------------------------------------------------------------- |
|---|
| 757 | |
|---|
| 758 | #ifdef UNIT_TESTS |
|---|
| 759 | #ifndef TEST_UNIT_H |
|---|
| 760 | #include <test_unit.h> |
|---|
| 761 | #endif |
|---|
| 762 | |
|---|
| 763 | void TEST_tree_iterator() { |
|---|
| 764 | GB_shell shell; |
|---|
| 765 | GBDATA *gb_main = GB_open("TEST_trees.arb", "r"); |
|---|
| 766 | { |
|---|
| 767 | GB_transaction ta(gb_main); |
|---|
| 768 | TreeNode *tree = GBT_read_tree(gb_main, "tree_removal", new SimpleRoot); |
|---|
| 769 | |
|---|
| 770 | int leafs = GBT_count_leafs(tree); |
|---|
| 771 | TEST_EXPECT_EQUAL(leafs, 17); |
|---|
| 772 | TEST_EXPECT_EQUAL(leafs_2_edges(leafs, UNROOTED), 31); |
|---|
| 773 | |
|---|
| 774 | int iter_steps = ARB_edge::iteration_count(leafs); |
|---|
| 775 | TEST_EXPECT_EQUAL(iter_steps, 62); |
|---|
| 776 | |
|---|
| 777 | const ARB_edge start = rootEdge(tree->get_tree_root()); |
|---|
| 778 | |
|---|
| 779 | // iterate forward + count (until same edge reached) |
|---|
| 780 | int count = 0; |
|---|
| 781 | int count_leafs = 0; |
|---|
| 782 | ARB_edge edge = start; |
|---|
| 783 | do { |
|---|
| 784 | ARB_edge next = edge.next(); |
|---|
| 785 | TEST_EXPECT(next.previous() == edge); // test reverse operation |
|---|
| 786 | edge = next; |
|---|
| 787 | ++count; |
|---|
| 788 | if (edge.is_edge_to_leaf()) ++count_leafs; |
|---|
| 789 | } |
|---|
| 790 | while (edge != start); |
|---|
| 791 | TEST_EXPECT_EQUAL(count, iter_steps); |
|---|
| 792 | TEST_EXPECT_EQUAL(count_leafs, leafs); |
|---|
| 793 | |
|---|
| 794 | // iterate backward + count (until same edge reached) |
|---|
| 795 | count = 0; |
|---|
| 796 | count_leafs = 0; |
|---|
| 797 | edge = start; |
|---|
| 798 | do { |
|---|
| 799 | ARB_edge next = edge.previous(); |
|---|
| 800 | TEST_EXPECT(next.next() == edge); // test reverse operation |
|---|
| 801 | edge = next; |
|---|
| 802 | ++count; |
|---|
| 803 | if (edge.is_edge_to_leaf()) ++count_leafs; |
|---|
| 804 | } |
|---|
| 805 | while (edge != start); |
|---|
| 806 | TEST_EXPECT_EQUAL(count, iter_steps); |
|---|
| 807 | TEST_EXPECT_EQUAL(count_leafs, leafs); |
|---|
| 808 | |
|---|
| 809 | if (tree) { |
|---|
| 810 | gb_assert(tree->is_root_node()); |
|---|
| 811 | destroy(tree); |
|---|
| 812 | } |
|---|
| 813 | } |
|---|
| 814 | GB_close(gb_main); |
|---|
| 815 | } |
|---|
| 816 | |
|---|
| 817 | TEST_PUBLISH(TEST_tree_iterator); |
|---|
| 818 | |
|---|
| 819 | #endif // UNIT_TESTS |
|---|
| 820 | |
|---|
| 821 | // -------------------------------------------------------------------------------- |
|---|