1 | // =============================================================== // |
---|
2 | // // |
---|
3 | // File : adoptimize.cxx // |
---|
4 | // Purpose : // |
---|
5 | // // |
---|
6 | // Institute of Microbiology (Technical University Munich) // |
---|
7 | // http://www.arb-home.de/ // |
---|
8 | // // |
---|
9 | // =============================================================== // |
---|
10 | |
---|
11 | #include <climits> |
---|
12 | #include <netinet/in.h> |
---|
13 | |
---|
14 | #include <arbdbt.h> |
---|
15 | |
---|
16 | #include "gb_compress.h" |
---|
17 | #include "gb_dict.h" |
---|
18 | #include "arb_progress.h" |
---|
19 | |
---|
20 | #if defined(DEBUG) |
---|
21 | // #define TEST_DICT |
---|
22 | #endif // DEBUG |
---|
23 | |
---|
24 | typedef unsigned char unsigned_char; |
---|
25 | typedef unsigned char *u_str; |
---|
26 | typedef const unsigned char *cu_str; |
---|
27 | |
---|
28 | static int gbdByKey_cnt; |
---|
29 | struct O_gbdByKey { // one for each diff. keyQuark |
---|
30 | int cnt; |
---|
31 | GBDATA **gbds; // gbdoff |
---|
32 | }; |
---|
33 | |
---|
34 | struct FullDictTree; |
---|
35 | struct SingleDictTree; |
---|
36 | |
---|
37 | union DictTree { |
---|
38 | FullDictTree *full; |
---|
39 | SingleDictTree *single; |
---|
40 | void *exists; |
---|
41 | |
---|
42 | }; |
---|
43 | |
---|
44 | enum DictNodeType { SINGLE_NODE, FULL_NODE }; |
---|
45 | |
---|
46 | struct FullDictTree { |
---|
47 | DictNodeType typ; // always FULL_NODE |
---|
48 | int usedSons; |
---|
49 | int count[256]; |
---|
50 | DictTree son[256]; // index == character |
---|
51 | }; |
---|
52 | |
---|
53 | struct SingleDictTree { |
---|
54 | DictNodeType typ; // always SINGLE_NODE |
---|
55 | unsigned_char ch; // the character |
---|
56 | int count; // no of occurrences of this branch |
---|
57 | DictTree son; |
---|
58 | DictTree brother; |
---|
59 | |
---|
60 | }; |
---|
61 | |
---|
62 | // ************************************************** |
---|
63 | |
---|
64 | #define COMPRESSIBLE(type) ((type) >= GB_BYTES && (type)<=GB_STRING) |
---|
65 | #define DICT_MEM_WEIGHT 4 |
---|
66 | |
---|
67 | #define WORD_HELPFUL(wordlen, occurrences) ((long)((occurrences)*3 + DICT_MEM_WEIGHT*(2*sizeof(GB_NINT)+(wordlen))) \ |
---|
68 | < \ |
---|
69 | (long)((occurrences)*(wordlen))) |
---|
70 | /* (occurrences)*4 compressed size |
---|
71 | * 2*sizeof(GB_NINT)+(wordlen) size in dictionary |
---|
72 | * (occurrences)*(wordlen) uncompressed size |
---|
73 | */ |
---|
74 | |
---|
75 | // ************************************************** |
---|
76 | |
---|
77 | #define MIN_WORD_LEN 8 // minimum length of words in dictionary |
---|
78 | #define MAX_WORD_LEN 50 // maximum length of words in dictionary |
---|
79 | #define MAX_BROTHERS 10 /* maximum no of brothers linked with SingleDictTree |
---|
80 | * above we use FullDictTree */ |
---|
81 | #define MAX_DIFFER 2 /* percentage of difference (of occurrences of strings) below which two |
---|
82 | * consecutive parts are treated as EQUAL # of occurrences */ |
---|
83 | #define INCR_DIFFER 1 // the above percentage is incremented from 0 to MAX_DIFFER by INCR_DIFFER per step |
---|
84 | |
---|
85 | #define DICT_STRING_INCR 1024 // dictionary string will be incremented by this size |
---|
86 | |
---|
87 | // ******************* Tool functions ****************** |
---|
88 | |
---|
89 | static inline cu_str get_data_n_size(GBDATA *gbd, long *size) { |
---|
90 | GB_CSTR data; |
---|
91 | int type = GB_TYPE(gbd); |
---|
92 | |
---|
93 | *size = 0; |
---|
94 | |
---|
95 | switch (type) { |
---|
96 | case GB_STRING: data = GB_read_char_pntr(gbd); break; |
---|
97 | case GB_LINK: data = GB_read_link_pntr(gbd); break; |
---|
98 | case GB_BYTES: data = GB_read_bytes_pntr(gbd); break; |
---|
99 | case GB_INTS: data = (char*)GB_read_ints_pntr(gbd); break; |
---|
100 | case GB_FLOATS: data = (char*)GB_read_floats_pntr(gbd); break; |
---|
101 | default: |
---|
102 | data = 0; |
---|
103 | gb_assert(0); |
---|
104 | break; |
---|
105 | } |
---|
106 | |
---|
107 | if (data) *size = GB_UNCOMPRESSED_SIZE(gbd, type); |
---|
108 | return (cu_str)data; |
---|
109 | } |
---|
110 | |
---|
111 | static inline long min(long a, long b) { |
---|
112 | return a<b ? a : b; |
---|
113 | } |
---|
114 | |
---|
115 | // ************************************************** |
---|
116 | |
---|
117 | static void g_b_opti_scanGbdByKey(GB_MAIN_TYPE *Main, GBDATA *gbd, O_gbdByKey *gbk) |
---|
118 | { |
---|
119 | GBQUARK quark; |
---|
120 | |
---|
121 | if (GB_TYPE(gbd) == GB_DB) // CONTAINER |
---|
122 | { |
---|
123 | int idx; |
---|
124 | GBCONTAINER *gbc = (GBCONTAINER *)gbd; |
---|
125 | GBDATA *gbd2; |
---|
126 | |
---|
127 | for (idx=0; idx < gbc->d.nheader; idx++) |
---|
128 | if ((gbd2=GBCONTAINER_ELEM(gbc, idx))!=NULL) |
---|
129 | g_b_opti_scanGbdByKey(Main, gbd2, gbk); |
---|
130 | } |
---|
131 | |
---|
132 | quark = GB_KEY_QUARK(gbd); |
---|
133 | |
---|
134 | if (quark) |
---|
135 | { |
---|
136 | gb_assert(gbk[quark].cnt < Main->keys[quark].nref || quark==0); |
---|
137 | gb_assert(gbk[quark].gbds != 0); |
---|
138 | |
---|
139 | gbk[quark].gbds[gbk[quark].cnt] = gbd; |
---|
140 | gbk[quark].cnt++; |
---|
141 | } |
---|
142 | } |
---|
143 | |
---|
144 | static O_gbdByKey *g_b_opti_createGbdByKey(GB_MAIN_TYPE *Main) |
---|
145 | { |
---|
146 | int idx; |
---|
147 | O_gbdByKey *gbk = (O_gbdByKey *)GB_calloc(Main->keycnt, sizeof(O_gbdByKey)); |
---|
148 | |
---|
149 | gbdByKey_cnt = Main->keycnt; // always use gbdByKey_cnt instead of Main->keycnt cause Main->keycnt can change |
---|
150 | |
---|
151 | for (idx=1; idx<gbdByKey_cnt; idx++) { |
---|
152 | gbk[idx].cnt = 0; |
---|
153 | |
---|
154 | if (Main->keys[idx].key && Main->keys[idx].nref>0) { |
---|
155 | gbk[idx].gbds = (GBDATA **) GB_calloc(Main->keys[idx].nref, sizeof(GBDATA*)); |
---|
156 | } |
---|
157 | else { |
---|
158 | gbk[idx].gbds = NULL; |
---|
159 | } |
---|
160 | } |
---|
161 | |
---|
162 | gbk[0].cnt = 0; |
---|
163 | gbk[0].gbds = (GBDATA **)GB_calloc(1, sizeof(GBDATA*)); |
---|
164 | |
---|
165 | g_b_opti_scanGbdByKey(Main, (GBDATA*)Main->data, gbk); |
---|
166 | |
---|
167 | for (idx=0; idx<gbdByKey_cnt; idx++) { |
---|
168 | if (gbk[idx].cnt != Main->keys[idx].nref && idx) |
---|
169 | { |
---|
170 | printf("idx=%i gbk[idx].cnt=%i Main->keys[idx].nref=%li\n", // Main->keys[].nref ist falsch |
---|
171 | idx, gbk[idx].cnt, Main->keys[idx].nref); |
---|
172 | |
---|
173 | Main->keys[idx].nref = gbk[idx].cnt; |
---|
174 | } |
---|
175 | } |
---|
176 | return gbk; |
---|
177 | } |
---|
178 | |
---|
179 | static void g_b_opti_freeGbdByKey(O_gbdByKey *gbk) { |
---|
180 | for (int idx=0; idx<gbdByKey_cnt; idx++) free(gbk[idx].gbds); |
---|
181 | free(gbk); |
---|
182 | } |
---|
183 | |
---|
184 | // ******************* Convert old compression style to new style ****************** |
---|
185 | |
---|
186 | static GB_ERROR gb_convert_compression(GBDATA *source) { |
---|
187 | GB_ERROR error = 0; |
---|
188 | long type = GB_TYPE(source); |
---|
189 | |
---|
190 | if (type == GB_DB) { |
---|
191 | GBDATA *gb_p; |
---|
192 | for (gb_p = GB_child(source); gb_p; gb_p = GB_nextChild(gb_p)) { |
---|
193 | if (gb_p->flags.compressed_data || GB_TYPE(gb_p) == GB_DB) { |
---|
194 | error = gb_convert_compression(gb_p); |
---|
195 | if (error) break; |
---|
196 | } |
---|
197 | } |
---|
198 | } |
---|
199 | else { |
---|
200 | char *string = 0; |
---|
201 | long elems = GB_GETSIZE(source); |
---|
202 | long data_size = GB_UNCOMPRESSED_SIZE(source, type); |
---|
203 | long new_size = -1; |
---|
204 | int expectData = 1; |
---|
205 | |
---|
206 | switch (type) { |
---|
207 | case GB_STRING: |
---|
208 | case GB_LINK: |
---|
209 | case GB_BYTES: |
---|
210 | string = gb_uncompress_bytes(GB_GETDATA(source), data_size, &new_size); |
---|
211 | if (string) { |
---|
212 | gb_assert(new_size == data_size); |
---|
213 | string = GB_memdup(string, data_size); |
---|
214 | } |
---|
215 | break; |
---|
216 | |
---|
217 | case GB_INTS: |
---|
218 | case GB_FLOATS: |
---|
219 | string = gb_uncompress_longs_old(GB_GETDATA(source), elems, &new_size); |
---|
220 | if (string) { |
---|
221 | gb_assert(new_size == data_size); |
---|
222 | string = GB_memdup(string, data_size); |
---|
223 | } |
---|
224 | break; |
---|
225 | |
---|
226 | default: |
---|
227 | expectData = 0; |
---|
228 | break; |
---|
229 | } |
---|
230 | |
---|
231 | if (!string) { |
---|
232 | if (expectData) { |
---|
233 | error = GBS_global_string("Can't read old data to convert compression (Reason: %s)", GB_await_error()); |
---|
234 | } |
---|
235 | } |
---|
236 | else { |
---|
237 | switch (type) { |
---|
238 | case GB_STRING: |
---|
239 | error = GB_write_string(source, ""); |
---|
240 | if (!error) error = GB_write_string(source, string); |
---|
241 | break; |
---|
242 | |
---|
243 | case GB_LINK: |
---|
244 | error = GB_write_link(source, ""); |
---|
245 | if (!error) error = GB_write_link(source, string); |
---|
246 | break; |
---|
247 | |
---|
248 | case GB_BYTES: |
---|
249 | error = GB_write_bytes(source, "", 0); |
---|
250 | if (!error) error = GB_write_bytes(source, string, data_size); |
---|
251 | break; |
---|
252 | |
---|
253 | case GB_INTS: |
---|
254 | case GB_FLOATS: |
---|
255 | error = GB_write_pntr(source, string, data_size, elems); |
---|
256 | break; |
---|
257 | |
---|
258 | default: |
---|
259 | gb_assert(0); |
---|
260 | break; |
---|
261 | } |
---|
262 | |
---|
263 | free(string); |
---|
264 | } |
---|
265 | } |
---|
266 | return error; |
---|
267 | } |
---|
268 | |
---|
269 | GB_ERROR gb_convert_V2_to_V3(GBDATA *gb_main) { |
---|
270 | GB_ERROR error = 0; |
---|
271 | GBDATA *gb_system = GB_search(gb_main, GB_SYSTEM_FOLDER, GB_FIND); |
---|
272 | |
---|
273 | if (!gb_system) { |
---|
274 | gb_system = GB_create_container(gb_main, GB_SYSTEM_FOLDER); |
---|
275 | if (GB_entry(gb_main, "extended_data")) { |
---|
276 | GB_warning("Converting data from old V2.0 to V2.1 Format:\n" |
---|
277 | " Please Wait (may take some time)"); |
---|
278 | } |
---|
279 | error = gb_convert_compression(gb_main); |
---|
280 | GB_disable_quicksave(gb_main, "Database converted to new format"); |
---|
281 | } |
---|
282 | return error; |
---|
283 | } |
---|
284 | |
---|
285 | |
---|
286 | // ********************* Compress by dictionary ******************** |
---|
287 | |
---|
288 | |
---|
289 | /* compression tag format: |
---|
290 | * |
---|
291 | * unsigned int compressed:1; |
---|
292 | * if compressed==0: |
---|
293 | * unsigned int last:1; ==1 -> this is the last block |
---|
294 | * unsigned int len:6; length of uncompressible bytes |
---|
295 | * char[len]; |
---|
296 | * if compressed==1: |
---|
297 | * unsigned int idxlen:1; ==0 -> 10-bit index |
---|
298 | * ==1 -> 18-bit index |
---|
299 | * unsigned int idxhigh:2; the 2 highest bits of the index |
---|
300 | * unsigned int len:4; (length of word) - (MIN_COMPR_WORD_LEN-1) |
---|
301 | * if len==0: |
---|
302 | * char extralen; (length of word) - |
---|
303 | * char[idxlen+1]; index (low,high) |
---|
304 | * |
---|
305 | * tag == 64 -> end of dictionary compressed block (if not coded in last uncompressed block) |
---|
306 | */ |
---|
307 | |
---|
308 | inline int INDEX_DICT_OFFSET(int idx, GB_DICTIONARY *dict) { |
---|
309 | gb_assert(idx<dict->words); |
---|
310 | return ntohl(dict->offsets[idx]); |
---|
311 | } |
---|
312 | inline int ALPHA_DICT_OFFSET(int idx, GB_DICTIONARY *dict) { |
---|
313 | int realIndex; |
---|
314 | gb_assert(idx<dict->words); |
---|
315 | realIndex = ntohl(dict->resort[idx]); |
---|
316 | return INDEX_DICT_OFFSET(realIndex, dict); |
---|
317 | } |
---|
318 | |
---|
319 | // #define ALPHA_DICT_OFFSET(i) ntohl(offset[ntohl(resort[i])]) |
---|
320 | // #define INDEX_DICT_OFFSET(i) ntohl(offset[i]) |
---|
321 | |
---|
322 | #define LEN_BITS 4 |
---|
323 | #define INDEX_BITS 2 |
---|
324 | #define INDEX_LEN_BITS 1 |
---|
325 | |
---|
326 | #define LEN_SHIFT 0 |
---|
327 | #define INDEX_SHIFT (LEN_SHIFT+LEN_BITS) |
---|
328 | #define INDEX_LEN_SHIFT (INDEX_SHIFT+INDEX_BITS) |
---|
329 | |
---|
330 | #define BITMASK(bits) ((1<<(bits))-1) |
---|
331 | #define GETVAL(tag, typ) (((tag)>>typ##_SHIFT)&BITMASK(typ##_BITS)) |
---|
332 | |
---|
333 | #define MIN_SHORTLEN 6 |
---|
334 | #define MAX_SHORTLEN (BITMASK(LEN_BITS)+MIN_SHORTLEN-1) |
---|
335 | #define MIN_LONGLEN (MAX_SHORTLEN+1) |
---|
336 | #define MAX_LONGLEN (MIN_LONGLEN+255) |
---|
337 | |
---|
338 | #define SHORTLEN_DECR (MIN_SHORTLEN-1) // !! zero is used as flag for long len !! |
---|
339 | #define LONGLEN_DECR MIN_LONGLEN |
---|
340 | |
---|
341 | #define MIN_COMPR_WORD_LEN MIN_SHORTLEN |
---|
342 | #define MAX_COMPR_WORD_LEN MAX_LONGLEN |
---|
343 | |
---|
344 | #define MAX_SHORT_INDEX BITMASK(INDEX_BITS+8) |
---|
345 | #define MAX_LONG_INDEX BITMASK(INDEX_BITS+16) |
---|
346 | |
---|
347 | #define LAST_COMPRESSED_BIT 64 |
---|
348 | |
---|
349 | #ifdef DEBUG |
---|
350 | # define DUMP_COMPRESSION_TEST 0 |
---|
351 | /* 0 = only compression ratio |
---|
352 | * 1 = + original/compressed/decompressed |
---|
353 | * 2 = + words used to compress/uncompress |
---|
354 | * 3 = + matching words in dictionary |
---|
355 | * 4 = + search of words in dictionary |
---|
356 | */ |
---|
357 | #else |
---|
358 | # define DUMP_COMPRESSION_TEST 0 |
---|
359 | #endif |
---|
360 | |
---|
361 | #ifdef DEBUG |
---|
362 | // #define COUNT_CHUNKS |
---|
363 | |
---|
364 | #if defined(COUNT_CHUNKS) |
---|
365 | |
---|
366 | static long uncompressedBlocks[64]; |
---|
367 | static long compressedBlocks[MAX_LONGLEN]; |
---|
368 | |
---|
369 | static void clearChunkCounters() { |
---|
370 | int i; |
---|
371 | |
---|
372 | for (i=0; i<64; i++) uncompressedBlocks[i] = 0; |
---|
373 | for (i=0; i<MAX_LONGLEN; i++) compressedBlocks[i] = 0; |
---|
374 | } |
---|
375 | |
---|
376 | static void dumpChunkCounters() { |
---|
377 | int i; |
---|
378 | |
---|
379 | printf("------------------------------\n" "Uncompressed blocks used:\n"); |
---|
380 | for (i=0; i<64; i++) if (uncompressedBlocks[i]) printf(" size=%i used=%li\n", i, uncompressedBlocks[i]); |
---|
381 | printf("------------------------------\n" "Words used:\n"); |
---|
382 | for (i=0; i<MAX_LONGLEN; i++) if (compressedBlocks[i]) printf(" size=%i used=%li\n", i, compressedBlocks[i]); |
---|
383 | printf("------------------------------\n"); |
---|
384 | } |
---|
385 | #endif // COUNT_CHUNKS |
---|
386 | |
---|
387 | static cu_str lstr(cu_str s, int len) { |
---|
388 | #define BUFLEN 10000 |
---|
389 | static unsigned_char buf[BUFLEN]; |
---|
390 | |
---|
391 | gb_assert(len<BUFLEN); |
---|
392 | memcpy(buf, s, len); |
---|
393 | buf[len] = 0; |
---|
394 | |
---|
395 | return buf; |
---|
396 | } |
---|
397 | |
---|
398 | #if DUMP_COMPRESSION_TEST>=2 |
---|
399 | |
---|
400 | static cu_str dict_word(GB_DICTIONARY *dict, int idx, int len) { |
---|
401 | return lstr(dict->text+INDEX_DICT_OFFSET(idx, dict), len); |
---|
402 | } |
---|
403 | |
---|
404 | #endif |
---|
405 | |
---|
406 | #if DUMP_COMPRESSION_TEST>=1 |
---|
407 | |
---|
408 | static void dumpBinary(u_str data, long size) { |
---|
409 | #define PER_LINE 12 |
---|
410 | int cnt = 0; |
---|
411 | |
---|
412 | while (size--) { |
---|
413 | unsigned_char c = *data++; |
---|
414 | int bitval = 128; |
---|
415 | int bits = 8; |
---|
416 | |
---|
417 | while (bits--) { |
---|
418 | putchar(c&bitval ? '1' : '0'); |
---|
419 | bitval>>=1; |
---|
420 | } |
---|
421 | putchar(' '); |
---|
422 | |
---|
423 | cnt = (cnt+1)%PER_LINE; |
---|
424 | if (!cnt) putchar('\n'); |
---|
425 | } |
---|
426 | |
---|
427 | if (cnt) putchar('\n'); |
---|
428 | } |
---|
429 | |
---|
430 | #endif |
---|
431 | |
---|
432 | #endif |
---|
433 | |
---|
434 | inline int GB_MEMCMP(const void *vm1, const void *vm2, long size) { |
---|
435 | char *c1 = (char*)vm1, |
---|
436 | *c2 = (char*)vm2; |
---|
437 | int diff = 0; |
---|
438 | |
---|
439 | while (size-- && !diff) diff = *c1++-*c2++; |
---|
440 | return diff; |
---|
441 | } |
---|
442 | |
---|
443 | // -------------------------------------------------- |
---|
444 | |
---|
445 | static int searchWord(GB_DICTIONARY *dict, cu_str source, long size, unsigned long *wordIndex, int *wordLen) |
---|
446 | { |
---|
447 | int idx = -1; |
---|
448 | int l = 0; |
---|
449 | int h = dict->words-1; |
---|
450 | cu_str text = dict->text; |
---|
451 | GB_NINT *resort = dict->resort; |
---|
452 | int dsize = dict->textlen; |
---|
453 | int ilen = 0; |
---|
454 | |
---|
455 | while (l<h-1) { |
---|
456 | int m = (l+h)/2; |
---|
457 | long off = ALPHA_DICT_OFFSET(m, dict); |
---|
458 | cu_str dictword = text+off; |
---|
459 | long msize = min(size, dsize-off); |
---|
460 | |
---|
461 | #if DUMP_COMPRESSION_TEST>=4 |
---|
462 | printf(" %s (%i)\n", lstr(dictword, 20), m); |
---|
463 | #endif |
---|
464 | |
---|
465 | if (GB_MEMCMP(source, dictword, msize)<=0) h = m; |
---|
466 | else l = m; |
---|
467 | } |
---|
468 | |
---|
469 | while (l<=h) { |
---|
470 | int off = ALPHA_DICT_OFFSET(l, dict); |
---|
471 | cu_str word = text+off; |
---|
472 | int msize = (int)min(size, dsize-off); |
---|
473 | int equal = 0; |
---|
474 | cu_str s = source; |
---|
475 | |
---|
476 | while (msize-- && *s++==*word++) equal++; |
---|
477 | |
---|
478 | #if DUMP_COMPRESSION_TEST>=3 |
---|
479 | if (equal>=MIN_COMPR_WORD_LEN) { |
---|
480 | printf(" EQUAL=%i '%s' (%i->%i, off=%i)", equal, lstr(text+off, equal), l, ntohl(resort[l]), ALPHA_DICT_OFFSET(l, dict)); |
---|
481 | printf(" (context=%s)\n", lstr(text+off-min(off, 20), min(off, 20)+equal+20)); |
---|
482 | } |
---|
483 | #endif |
---|
484 | |
---|
485 | if (equal>ilen) { |
---|
486 | ilen = equal; |
---|
487 | idx = ntohl(resort[l]); |
---|
488 | gb_assert(idx<dict->words); |
---|
489 | } |
---|
490 | |
---|
491 | l++; |
---|
492 | } |
---|
493 | |
---|
494 | *wordIndex = idx; |
---|
495 | *wordLen = (int)min(ilen, MAX_COMPR_WORD_LEN); |
---|
496 | |
---|
497 | return idx!=-1 && ilen>=MIN_COMPR_WORD_LEN; |
---|
498 | } |
---|
499 | |
---|
500 | #ifdef DEBUG |
---|
501 | int look(GB_DICTIONARY *dict, GB_CSTR source) { |
---|
502 | unsigned long wordIndex; |
---|
503 | int wordLen; |
---|
504 | int wordFound = searchWord(dict, (cu_str)source, strlen(source), &wordIndex, &wordLen); |
---|
505 | |
---|
506 | if (wordFound) { |
---|
507 | printf("'%s' (idx=%lu, off=%i)\n", lstr(dict->text+ntohl(dict->offsets[wordIndex]), wordLen), wordIndex, ntohl(dict->offsets[wordIndex])); |
---|
508 | } |
---|
509 | |
---|
510 | return wordFound; |
---|
511 | } |
---|
512 | #endif |
---|
513 | |
---|
514 | |
---|
515 | |
---|
516 | static char *gb_uncompress_by_dictionary_internal(GB_DICTIONARY *dict, /* GBDATA *gbd, */ GB_CSTR s_source, const long size, bool append_zero, long *new_size) { |
---|
517 | cu_str source = (cu_str)s_source; |
---|
518 | u_str dest; |
---|
519 | u_str buffer; |
---|
520 | cu_str text = dict->text; |
---|
521 | int done = 0; |
---|
522 | long left = size; |
---|
523 | |
---|
524 | dest = buffer = (u_str)GB_give_other_buffer(s_source, size+2); |
---|
525 | |
---|
526 | while (left && !done) { |
---|
527 | int c; |
---|
528 | |
---|
529 | if ((c=*source++)&128) { // compressed data |
---|
530 | int indexLen = GETVAL(c, INDEX_LEN); |
---|
531 | unsigned long idx = GETVAL(c, INDEX); |
---|
532 | |
---|
533 | c = GETVAL(c, LEN); // ==wordLen |
---|
534 | if (c) c += SHORTLEN_DECR; |
---|
535 | else c = *source+++LONGLEN_DECR; |
---|
536 | |
---|
537 | gb_assert(indexLen>=0 && indexLen<=1); |
---|
538 | |
---|
539 | if (indexLen==0) { |
---|
540 | idx = (idx << 8) | *source++; |
---|
541 | } |
---|
542 | else { |
---|
543 | idx = (((idx << 8) | source[1]) << 8) | source[0]; |
---|
544 | source += 2; |
---|
545 | } |
---|
546 | |
---|
547 | gb_assert(idx<(GB_ULONG)dict->words); |
---|
548 | |
---|
549 | { |
---|
550 | cu_str word = text+INDEX_DICT_OFFSET(idx, dict); |
---|
551 | |
---|
552 | #if DUMP_COMPRESSION_TEST>=2 |
---|
553 | printf(" word='%s' (idx=%lu, off=%li, len=%i)\n", |
---|
554 | lstr(word, c), idx, (long)ntohl(dict->offsets[idx]), c); |
---|
555 | #endif |
---|
556 | |
---|
557 | { |
---|
558 | u_str d = dest; |
---|
559 | gb_assert(((d + c) <= word) || (d >= (word + c))); |
---|
560 | while (c--) *d++ = *word++; |
---|
561 | dest = d; |
---|
562 | } |
---|
563 | } |
---|
564 | } |
---|
565 | else { // uncompressed bytes |
---|
566 | if (c & LAST_COMPRESSED_BIT) { |
---|
567 | done = 1; |
---|
568 | c ^= LAST_COMPRESSED_BIT; |
---|
569 | } |
---|
570 | |
---|
571 | left -= c; |
---|
572 | { |
---|
573 | u_str d = dest; |
---|
574 | gb_assert(((d + c) <= source) || (d >= (source + c))); |
---|
575 | while (c--) *d++ = *source++; |
---|
576 | dest=d; |
---|
577 | } |
---|
578 | } |
---|
579 | } |
---|
580 | |
---|
581 | if (append_zero) *dest++ = 0; |
---|
582 | |
---|
583 | *new_size = dest-buffer; |
---|
584 | gb_assert(size >= *new_size); // buffer overflow |
---|
585 | |
---|
586 | return (char *)buffer; |
---|
587 | } |
---|
588 | |
---|
589 | char *gb_uncompress_by_dictionary(GBDATA *gbd, GB_CSTR s_source, long size, long *new_size) |
---|
590 | { |
---|
591 | GB_DICTIONARY *dict = gb_get_dictionary(GB_MAIN(gbd), GB_KEY_QUARK(gbd)); |
---|
592 | bool append_zero = GB_TYPE(gbd)==GB_STRING || GB_TYPE(gbd) == GB_LINK; |
---|
593 | |
---|
594 | if (!dict) { |
---|
595 | GB_ERROR error = GBS_global_string("Cannot decompress db-entry '%s' (no dictionary found)\n", GB_get_db_path(gbd)); |
---|
596 | GB_export_error(error); |
---|
597 | return 0; |
---|
598 | } |
---|
599 | |
---|
600 | return gb_uncompress_by_dictionary_internal(dict, s_source, size, append_zero, new_size); |
---|
601 | } |
---|
602 | |
---|
603 | char *gb_compress_by_dictionary(GB_DICTIONARY *dict, GB_CSTR s_source, long size, long *msize, int last_flag, int search_backward, int search_forward) |
---|
604 | { |
---|
605 | cu_str source = (cu_str)s_source; |
---|
606 | u_str dest; |
---|
607 | u_str buffer; |
---|
608 | cu_str unknown = source; // start of uncompressible bytes |
---|
609 | u_str lastUncompressed = NULL; // ptr to start of last block of uncompressible bytes (in dest) |
---|
610 | |
---|
611 | #if defined(ASSERTION_USED) |
---|
612 | const long org_size = size; |
---|
613 | #endif // ASSERTION_USED |
---|
614 | |
---|
615 | gb_assert(size>0); // compression of zero-length data fails! |
---|
616 | |
---|
617 | dest = buffer = (u_str)GB_give_other_buffer((GB_CSTR)source, 1+(size/63+1)+size); |
---|
618 | *dest++ = GB_COMPRESSION_DICTIONARY | last_flag; |
---|
619 | |
---|
620 | while (size) { |
---|
621 | unsigned long wordIndex; |
---|
622 | int wordLen; |
---|
623 | int wordFound; |
---|
624 | |
---|
625 | if ((wordFound = searchWord(dict, source, size, &wordIndex, &wordLen))) { |
---|
626 | int length; |
---|
627 | |
---|
628 | takeRest : |
---|
629 | length = source-unknown; |
---|
630 | |
---|
631 | if (length) { |
---|
632 | int shift; |
---|
633 | int takeShift = 0; |
---|
634 | int maxShift = (int)min(search_forward, wordLen-1); |
---|
635 | |
---|
636 | for (shift=1; shift<=maxShift; shift++) { |
---|
637 | unsigned long wordIndex2; |
---|
638 | int wordLen2; |
---|
639 | int wordFound2; |
---|
640 | |
---|
641 | if ((wordFound2 = searchWord(dict, source+shift, size-shift, &wordIndex2, &wordLen2))) { |
---|
642 | if (wordLen2>(wordLen+shift)) { |
---|
643 | wordIndex = wordIndex2; |
---|
644 | wordLen = wordLen2; |
---|
645 | takeShift = shift; |
---|
646 | } |
---|
647 | } |
---|
648 | } |
---|
649 | |
---|
650 | if (takeShift) { |
---|
651 | source += takeShift; |
---|
652 | size -= takeShift; |
---|
653 | length = source-unknown; |
---|
654 | } |
---|
655 | } |
---|
656 | |
---|
657 | while (length) { // if there were uncompressible bytes |
---|
658 | int take = (int)min(length, 63); |
---|
659 | |
---|
660 | #ifdef COUNT_CHUNKS |
---|
661 | uncompressedBlocks[take]++; |
---|
662 | #endif |
---|
663 | |
---|
664 | lastUncompressed = dest; |
---|
665 | |
---|
666 | *dest++ = take; // tag byte |
---|
667 | memcpy(dest, unknown, take); |
---|
668 | dest += take; |
---|
669 | unknown += take; |
---|
670 | length -= take; |
---|
671 | } |
---|
672 | |
---|
673 | gb_assert(unknown==source); |
---|
674 | |
---|
675 | while (wordFound) { // as long as we find words in dictionary |
---|
676 | int indexLen = wordIndex>MAX_SHORT_INDEX; |
---|
677 | int indexHighBits = indexLen==0 ? wordIndex>>8 : wordIndex>>16; |
---|
678 | int nextWordFound; |
---|
679 | int nextWordLen; |
---|
680 | unsigned long nextWordIndex; |
---|
681 | |
---|
682 | gb_assert((long)wordIndex<dict->words); |
---|
683 | gb_assert((long)wordIndex <= MAX_LONG_INDEX); |
---|
684 | gb_assert(indexHighBits==(indexHighBits & BITMASK(INDEX_BITS))); |
---|
685 | gb_assert(wordLen>=MIN_SHORTLEN); |
---|
686 | |
---|
687 | lastUncompressed = NULL; |
---|
688 | |
---|
689 | { |
---|
690 | cu_str source2 = source+wordLen; |
---|
691 | long size2 = size-wordLen; |
---|
692 | |
---|
693 | if (!(nextWordFound=searchWord(dict, source+wordLen, size-wordLen, &nextWordIndex, &nextWordLen))) { // no word right afterwards |
---|
694 | int shift; |
---|
695 | |
---|
696 | for (shift=1; shift<=search_backward && shift<(wordLen-MIN_COMPR_WORD_LEN); shift++) { |
---|
697 | // try to cut end of word to get a better result |
---|
698 | unsigned long wordIndex2; |
---|
699 | int wordLen2; |
---|
700 | int wordFound2; |
---|
701 | |
---|
702 | if ((wordFound2=searchWord(dict, source2-shift, size2+shift, &wordIndex2, &wordLen2))) { |
---|
703 | if (wordLen2>(shift+1)) { |
---|
704 | wordLen -= shift; |
---|
705 | |
---|
706 | nextWordFound = 1; |
---|
707 | nextWordIndex = wordIndex2; |
---|
708 | nextWordLen = wordLen2; |
---|
709 | break; |
---|
710 | } |
---|
711 | } |
---|
712 | } |
---|
713 | } |
---|
714 | } |
---|
715 | |
---|
716 | #ifdef COUNT_CHUNKS |
---|
717 | compressedBlocks[wordLen]++; |
---|
718 | #endif |
---|
719 | |
---|
720 | #if DUMP_COMPRESSION_TEST>=2 |
---|
721 | printf(" word='%s' (idx=%li, off=%i, len=%i)\n", |
---|
722 | dict_word(dict, wordIndex, wordLen), wordIndex, (int)ntohl(dict->offsets[wordIndex]), wordLen); |
---|
723 | #endif |
---|
724 | |
---|
725 | if (wordLen<=MAX_SHORTLEN) { |
---|
726 | *dest++ = 128 | |
---|
727 | (indexLen << INDEX_LEN_SHIFT) | |
---|
728 | (indexHighBits << INDEX_SHIFT) | |
---|
729 | ((wordLen-SHORTLEN_DECR) << LEN_SHIFT); |
---|
730 | } |
---|
731 | else { |
---|
732 | *dest++ = 128 | |
---|
733 | (indexLen << INDEX_LEN_SHIFT) | |
---|
734 | (indexHighBits << INDEX_SHIFT); |
---|
735 | *dest++ = wordLen-LONGLEN_DECR; // extra length byte |
---|
736 | } |
---|
737 | |
---|
738 | *dest++ = (char)wordIndex; // low index byte |
---|
739 | if (indexLen) |
---|
740 | *dest++ = (char)(wordIndex >> 8); // high index byte |
---|
741 | |
---|
742 | unknown = source += wordLen; |
---|
743 | size -= wordLen; |
---|
744 | |
---|
745 | wordFound = nextWordFound; |
---|
746 | wordIndex = nextWordIndex; |
---|
747 | wordLen = nextWordLen; |
---|
748 | } |
---|
749 | } |
---|
750 | else { |
---|
751 | source++; |
---|
752 | if (--size==0) goto takeRest; |
---|
753 | } |
---|
754 | } |
---|
755 | |
---|
756 | if (lastUncompressed) *lastUncompressed |= LAST_COMPRESSED_BIT; |
---|
757 | else *dest++ = LAST_COMPRESSED_BIT; |
---|
758 | |
---|
759 | *msize = dest-buffer; |
---|
760 | |
---|
761 | #if defined(ASSERTION_USED) |
---|
762 | { |
---|
763 | long new_size = -1; |
---|
764 | char *test = gb_uncompress_by_dictionary_internal(dict, (GB_CSTR)buffer+1, org_size + GB_COMPRESSION_TAGS_SIZE_MAX, true, &new_size); |
---|
765 | |
---|
766 | gb_assert(memcmp(test, s_source, org_size) == 0); |
---|
767 | gb_assert((org_size+1) == new_size); |
---|
768 | } |
---|
769 | #endif // ASSERTION_USED |
---|
770 | |
---|
771 | return (char*)buffer; |
---|
772 | } |
---|
773 | |
---|
774 | |
---|
775 | #if defined(TEST_DICT) |
---|
776 | |
---|
777 | static void test_dictionary(GB_DICTIONARY *dict, O_gbdByKey *gbk, long *uncompSum, long *compSum) |
---|
778 | { |
---|
779 | int cnt; |
---|
780 | long uncompressed_sum = 0; |
---|
781 | long compressed_sum = 0; |
---|
782 | long dict_size = (dict->words*2+1)*sizeof(GB_NINT)+dict->textlen; |
---|
783 | int i; |
---|
784 | long char_count[256]; |
---|
785 | |
---|
786 | for (i=0; i<256; i++) char_count[i] = 0; |
---|
787 | |
---|
788 | printf(" * Testing compression..\n"); |
---|
789 | |
---|
790 | #ifdef COUNT_CHUNKS |
---|
791 | clearChunkCounters(); |
---|
792 | #endif |
---|
793 | |
---|
794 | for (cnt=0; cnt<gbk->cnt; cnt++) { |
---|
795 | GBDATA *gbd = gbk->gbds[cnt]; |
---|
796 | int type = GB_TYPE(gbd); |
---|
797 | |
---|
798 | if (COMPRESSIBLE(type)) { |
---|
799 | long size; |
---|
800 | cu_str data = get_data_n_size(gbd, &size); |
---|
801 | u_str copy; |
---|
802 | long compressedSize; |
---|
803 | int last_flag = 0; |
---|
804 | u_str compressed; |
---|
805 | u_str uncompressed; |
---|
806 | |
---|
807 | if (type==GB_STRING || type == GB_LINK) size--; |
---|
808 | |
---|
809 | if (size<1) continue; |
---|
810 | |
---|
811 | #ifndef NDEBUG |
---|
812 | copy = (u_str)gbm_get_mem(size, GBM_DICT_INDEX); |
---|
813 | gb_assert(copy!=0); |
---|
814 | memcpy(copy, data, size); |
---|
815 | #endif |
---|
816 | |
---|
817 | #if DUMP_COMPRESSION_TEST>=1 |
---|
818 | printf("----------------------------\n"); |
---|
819 | printf("original : %3li b = '%s'\n", size, data); |
---|
820 | #endif |
---|
821 | |
---|
822 | compressed = (u_str)gb_compress_by_dictionary(dict, (GB_CSTR)data, size, &compressedSize, last_flag, 9999, 2); |
---|
823 | |
---|
824 | #if DUMP_COMPRESSION_TEST>=1 |
---|
825 | printf("compressed : %3li b = '%s'\n", compressedSize, lstr(compressed, compressedSize)); |
---|
826 | dumpBinary(compressed, compressedSize); |
---|
827 | #endif |
---|
828 | |
---|
829 | for (i=0; i<compressedSize; i++) char_count[compressed[i]]++; |
---|
830 | |
---|
831 | uncompressed = (u_str)gb_uncompress_by_dictionary(gbd, (char*)compressed+1, size); |
---|
832 | |
---|
833 | #if DUMP_COMPRESSION_TEST>=1 |
---|
834 | printf("copy : %3li b = '%s'\n", size, lstr(copy, size)); |
---|
835 | printf("decompressed: %3li b = '%s'\n", size, lstr(uncompressed, size)); |
---|
836 | #endif |
---|
837 | |
---|
838 | if (GB_MEMCMP(copy, uncompressed, size)!=0) { |
---|
839 | int byte = 0; |
---|
840 | |
---|
841 | while (copy[byte]==uncompressed[byte]) byte++; |
---|
842 | printf("Error in compression (off=%i, '%s'", byte, lstr(copy+byte, 10)); |
---|
843 | printf("!='%s'\n", lstr(uncompressed+byte, 10)); |
---|
844 | } |
---|
845 | |
---|
846 | if (compressedSize<size) { |
---|
847 | uncompressed_sum += size; |
---|
848 | compressed_sum += compressedSize; |
---|
849 | } |
---|
850 | else { |
---|
851 | uncompressed_sum += size; |
---|
852 | compressed_sum += size; |
---|
853 | } |
---|
854 | |
---|
855 | gbm_free_mem(copy, size, GBM_DICT_INDEX); |
---|
856 | } |
---|
857 | } |
---|
858 | |
---|
859 | #ifdef COUNT_CHUNKS |
---|
860 | dumpChunkCounters(); |
---|
861 | #endif |
---|
862 | |
---|
863 | { |
---|
864 | long compressed_plus_dict = compressed_sum+dict_size; |
---|
865 | char *dict_text = GBS_global_string_copy("+dict %li b", dict_size); |
---|
866 | long ratio = (compressed_plus_dict*100)/uncompressed_sum; |
---|
867 | |
---|
868 | printf(" uncompressed size = %10li b\n" |
---|
869 | " compressed size = %10li b\n" |
---|
870 | " %17s = %10li b (Ratio=%li%%)\n", |
---|
871 | uncompressed_sum, |
---|
872 | compressed_sum, |
---|
873 | dict_text, compressed_plus_dict, ratio); |
---|
874 | |
---|
875 | free(dict_text); |
---|
876 | } |
---|
877 | |
---|
878 | *uncompSum += uncompressed_sum; |
---|
879 | *compSum += compressed_sum+dict_size; |
---|
880 | } |
---|
881 | |
---|
882 | #endif // TEST_DICT |
---|
883 | |
---|
884 | |
---|
885 | // ******************* Build dictionary ****************** |
---|
886 | |
---|
887 | #ifdef DEBUG |
---|
888 | #define TEST // test trees? |
---|
889 | // #define DUMP_TREE // dump trees? |
---|
890 | |
---|
891 | // #define DUMP_EXPAND |
---|
892 | /* |
---|
893 | #define SELECT_WORDS |
---|
894 | #define SELECTED_WORDS "oropl" |
---|
895 | */ |
---|
896 | |
---|
897 | # ifdef SELECT_WORDS |
---|
898 | static char *strnstr(char *s1, int len, char *s2) { |
---|
899 | char c = *s2; |
---|
900 | int len2 = strlen(s2); |
---|
901 | |
---|
902 | while (len-->=len2) { |
---|
903 | if (*s1==c) { |
---|
904 | if (strncmp(s1, s2, len2)==0) return s1; |
---|
905 | } |
---|
906 | s1++; |
---|
907 | } |
---|
908 | |
---|
909 | return NULL; |
---|
910 | } |
---|
911 | # endif |
---|
912 | |
---|
913 | #ifdef DUMP_TREE |
---|
914 | static void dump_dtree(int deep, DictTree tree) |
---|
915 | { |
---|
916 | static unsigned_char buffer[1024]; |
---|
917 | |
---|
918 | if (tree.full) { |
---|
919 | switch (tree.full->typ) { |
---|
920 | case FULL_NODE: { |
---|
921 | int idx; |
---|
922 | |
---|
923 | for (idx=0; idx<256; idx++) { |
---|
924 | buffer[deep] = idx; |
---|
925 | buffer[deep+1] = 0; |
---|
926 | |
---|
927 | if (tree.full->son[idx].exists) dump_dtree(deep+1, tree.full->son[idx]); |
---|
928 | else if (tree.full->count[idx]>0) printf(" '%s' (%i) [array]\n", buffer, tree.full->count[idx]); |
---|
929 | } |
---|
930 | break; |
---|
931 | } |
---|
932 | case SINGLE_NODE: { |
---|
933 | buffer[deep] = tree.single->ch; |
---|
934 | buffer[deep+1] = 0; |
---|
935 | |
---|
936 | if (tree.single->son.exists) dump_dtree(deep+1, tree.single->son); |
---|
937 | else printf(" '%s' (%i) [single]\n", buffer, tree.single->count); |
---|
938 | |
---|
939 | if (tree.single->brother.exists) dump_dtree(deep, tree.single->brother); |
---|
940 | break; |
---|
941 | } |
---|
942 | } |
---|
943 | } |
---|
944 | } |
---|
945 | #endif |
---|
946 | |
---|
947 | #else |
---|
948 | #ifdef DUMP_TREE |
---|
949 | # define dump_dtree(deep, tree) |
---|
950 | #endif |
---|
951 | #endif |
---|
952 | |
---|
953 | #ifdef TEST |
---|
954 | static int testCounts(DictTree tree) { |
---|
955 | // tests if all inner nodes have correct 'count's |
---|
956 | int cnt = 0; |
---|
957 | |
---|
958 | if (tree.exists) { |
---|
959 | switch (tree.full->typ) { |
---|
960 | case SINGLE_NODE: { |
---|
961 | while (tree.exists) { |
---|
962 | if (tree.single->son.exists) { |
---|
963 | int son_cnt = testCounts(tree.single->son); |
---|
964 | #ifdef COUNT_EQUAL |
---|
965 | gb_assert(son_cnt==tree.single->count); |
---|
966 | #else |
---|
967 | gb_assert(son_cnt<=tree.single->count); |
---|
968 | #endif |
---|
969 | } |
---|
970 | |
---|
971 | gb_assert(tree.single->count>0); |
---|
972 | cnt += tree.single->count; |
---|
973 | tree = tree.single->brother; |
---|
974 | } |
---|
975 | break; |
---|
976 | } |
---|
977 | case FULL_NODE: { |
---|
978 | int idx, |
---|
979 | sons = 0; |
---|
980 | |
---|
981 | for (idx=0; idx<256; idx++) { |
---|
982 | if (tree.full->son[idx].exists) { |
---|
983 | int son_cnt = testCounts(tree.full->son[idx]); |
---|
984 | #ifdef COUNT_EQUAL |
---|
985 | gb_assert(son_cnt==tree.full->count[idx]); |
---|
986 | #else |
---|
987 | gb_assert(son_cnt<=tree.full->count[idx]); |
---|
988 | #endif |
---|
989 | if (tree.full->usedSons) gb_assert(tree.full->count[idx]>0); |
---|
990 | else gb_assert(tree.full->count[idx]==0); |
---|
991 | |
---|
992 | sons++; |
---|
993 | } |
---|
994 | else if (tree.full->count[idx]) { |
---|
995 | sons++; |
---|
996 | } |
---|
997 | |
---|
998 | cnt += tree.full->count[idx]; |
---|
999 | } |
---|
1000 | |
---|
1001 | gb_assert(sons==tree.full->usedSons); |
---|
1002 | break; |
---|
1003 | } |
---|
1004 | } |
---|
1005 | } |
---|
1006 | |
---|
1007 | return cnt; |
---|
1008 | } |
---|
1009 | |
---|
1010 | // #define TEST_MAX_OCCUR_COUNT |
---|
1011 | |
---|
1012 | #ifdef TEST_MAX_OCCUR_COUNT |
---|
1013 | #define MAX_OCCUR_COUNT 600000 |
---|
1014 | #endif |
---|
1015 | |
---|
1016 | static DictTree test_dtree(DictTree tree) |
---|
1017 | // only correct while tree is under contruction (build_dict_tree()) |
---|
1018 | { |
---|
1019 | if (tree.exists) { |
---|
1020 | switch (tree.full->typ) { |
---|
1021 | case SINGLE_NODE: { |
---|
1022 | #if defined(TEST_MAX_OCCUR_COUNT) |
---|
1023 | gb_assert(tree.single->count<MAX_OCCUR_COUNT); // quite improbable |
---|
1024 | #endif // TEST_MAX_OCCUR_COUNT |
---|
1025 | |
---|
1026 | if (tree.single->son.exists) { |
---|
1027 | gb_assert(tree.single->count==0); |
---|
1028 | test_dtree(tree.single->son); |
---|
1029 | } |
---|
1030 | else { |
---|
1031 | gb_assert(tree.single->count>0); |
---|
1032 | } |
---|
1033 | |
---|
1034 | if (tree.single->brother.exists) test_dtree(tree.single->brother); |
---|
1035 | break; |
---|
1036 | } |
---|
1037 | case FULL_NODE: { |
---|
1038 | int idx; |
---|
1039 | int countSons = 0; |
---|
1040 | |
---|
1041 | for (idx=0; idx<256; idx++) { |
---|
1042 | #if defined(TEST_MAX_OCCUR_COUNT) |
---|
1043 | gb_assert(tree.full->count[idx]<MAX_OCCUR_COUNT); // quite improbable |
---|
1044 | #endif // TEST_MAX_OCCUR_COUNT |
---|
1045 | |
---|
1046 | if (tree.full->son[idx].exists) { |
---|
1047 | gb_assert(tree.full->count[idx]==0); |
---|
1048 | test_dtree(tree.full->son[idx]); |
---|
1049 | countSons++; |
---|
1050 | } |
---|
1051 | else { |
---|
1052 | gb_assert(tree.full->count[idx]>=0); |
---|
1053 | if (tree.full->count[idx]>0) |
---|
1054 | countSons++; |
---|
1055 | } |
---|
1056 | } |
---|
1057 | |
---|
1058 | gb_assert(countSons==tree.full->usedSons); |
---|
1059 | |
---|
1060 | break; |
---|
1061 | } |
---|
1062 | } |
---|
1063 | } |
---|
1064 | |
---|
1065 | return tree; |
---|
1066 | } |
---|
1067 | |
---|
1068 | #else |
---|
1069 | # define test_dtree(tree) // (tree) |
---|
1070 | # define testCounts(tree) // 0 |
---|
1071 | #endif |
---|
1072 | |
---|
1073 | |
---|
1074 | static DictTree new_dtree(cu_str text, long len, long *memcount) { |
---|
1075 | // creates a new (sub-)tree from 'text' (which has length 'len') |
---|
1076 | DictTree tree; |
---|
1077 | |
---|
1078 | if (len) { |
---|
1079 | SingleDictTree *tail = NULL; |
---|
1080 | SingleDictTree *head = NULL; |
---|
1081 | |
---|
1082 | while (len) { |
---|
1083 | if (tail) tail = tail->son.single = (SingleDictTree*)gbm_get_mem(sizeof(*tail), GBM_DICT_INDEX); |
---|
1084 | else tail = head = (SingleDictTree*)gbm_get_mem(sizeof(*tail), GBM_DICT_INDEX); |
---|
1085 | |
---|
1086 | (*memcount) += sizeof(*tail); |
---|
1087 | |
---|
1088 | tail->typ = SINGLE_NODE; |
---|
1089 | tail->ch = *text++; |
---|
1090 | len--; |
---|
1091 | |
---|
1092 | tail->brother.single = NULL; |
---|
1093 | tail->son.single = NULL; |
---|
1094 | } |
---|
1095 | |
---|
1096 | tail->count = 1; |
---|
1097 | tree.single = head; |
---|
1098 | } |
---|
1099 | else { |
---|
1100 | tree.single = NULL; |
---|
1101 | } |
---|
1102 | |
---|
1103 | return tree; |
---|
1104 | } |
---|
1105 | |
---|
1106 | static DictTree single2full_dtree(DictTree tree, long *memcount) { |
---|
1107 | if (tree.exists && tree.single->typ==SINGLE_NODE) { |
---|
1108 | FullDictTree *full = (FullDictTree*)gbm_get_mem(sizeof(*full), GBM_DICT_INDEX); |
---|
1109 | int idx; |
---|
1110 | |
---|
1111 | (*memcount) += sizeof(*full); |
---|
1112 | full->typ = FULL_NODE; |
---|
1113 | full->usedSons = 0; |
---|
1114 | |
---|
1115 | for (idx=0; idx<256; idx++) { |
---|
1116 | full->son[idx].exists = NULL; |
---|
1117 | full->count[idx] = 0; |
---|
1118 | } |
---|
1119 | |
---|
1120 | while (tree.exists) { |
---|
1121 | SingleDictTree *t = tree.single; |
---|
1122 | |
---|
1123 | gb_assert(t->typ==SINGLE_NODE); |
---|
1124 | gb_assert(full->son[t->ch].exists==NULL); |
---|
1125 | |
---|
1126 | full->son[t->ch] = t->son; |
---|
1127 | full->count[t->ch] = t->count; |
---|
1128 | full->usedSons++; |
---|
1129 | |
---|
1130 | tree.single = t->brother.single; |
---|
1131 | |
---|
1132 | gbm_free_mem(t, sizeof(*t), GBM_DICT_INDEX); |
---|
1133 | (*memcount) -= sizeof(*t); |
---|
1134 | } |
---|
1135 | |
---|
1136 | tree.full = full; |
---|
1137 | } |
---|
1138 | |
---|
1139 | return tree; |
---|
1140 | } |
---|
1141 | |
---|
1142 | static void free_dtree(DictTree tree) |
---|
1143 | { |
---|
1144 | if (tree.exists) { |
---|
1145 | switch (tree.full->typ) { |
---|
1146 | case SINGLE_NODE: { |
---|
1147 | if (tree.single->son.exists) free_dtree(tree.single->son); |
---|
1148 | if (tree.single->brother.exists) free_dtree(tree.single->brother); |
---|
1149 | |
---|
1150 | gbm_free_mem(tree.single, sizeof(*(tree.single)), GBM_DICT_INDEX); |
---|
1151 | break; |
---|
1152 | } |
---|
1153 | case FULL_NODE: { |
---|
1154 | int idx; |
---|
1155 | |
---|
1156 | for (idx=0; idx<256; idx++) if (tree.full->son[idx].exists) free_dtree(tree.full->son[idx]); |
---|
1157 | gbm_free_mem(tree.full, sizeof(*(tree.full)), GBM_DICT_INDEX); |
---|
1158 | break; |
---|
1159 | } |
---|
1160 | } |
---|
1161 | } |
---|
1162 | } |
---|
1163 | |
---|
1164 | |
---|
1165 | |
---|
1166 | static DictTree cut_dtree(DictTree tree, int cut_count, long *memcount, long *leafcount) |
---|
1167 | /* removes all branches from 'tree' which are referenced less/equal than cut_count |
---|
1168 | * returns: the reduced tree */ |
---|
1169 | { |
---|
1170 | if (tree.exists) { |
---|
1171 | switch (tree.full->typ) { |
---|
1172 | case SINGLE_NODE: { |
---|
1173 | if (tree.single->son.exists) tree.single->son = cut_dtree(tree.single->son, cut_count, memcount, leafcount); |
---|
1174 | |
---|
1175 | if (!tree.single->son.exists) { // leaf |
---|
1176 | if (tree.single->count<=cut_count) { // leaf with less/equal references |
---|
1177 | DictTree brother = tree.single->brother; |
---|
1178 | |
---|
1179 | gbm_free_mem(tree.single, sizeof(*tree.single), GBM_DICT_INDEX); |
---|
1180 | (*memcount) -= sizeof(*tree.single); |
---|
1181 | if (brother.exists) return cut_dtree(brother, cut_count, memcount, leafcount); |
---|
1182 | |
---|
1183 | tree.single = NULL; |
---|
1184 | break; |
---|
1185 | } |
---|
1186 | else { |
---|
1187 | (*leafcount)++; |
---|
1188 | } |
---|
1189 | } |
---|
1190 | |
---|
1191 | if (tree.single->brother.exists) tree.single->brother = cut_dtree(tree.single->brother, cut_count, memcount, leafcount); |
---|
1192 | break; |
---|
1193 | } |
---|
1194 | case FULL_NODE: { |
---|
1195 | int idx; |
---|
1196 | int count = 0; |
---|
1197 | |
---|
1198 | for (idx=0; idx<256; idx++) { |
---|
1199 | if (tree.full->son[idx].exists) { |
---|
1200 | tree.full->son[idx] = cut_dtree(tree.full->son[idx], cut_count, memcount, leafcount); |
---|
1201 | |
---|
1202 | if (tree.full->son[idx].exists) count++; |
---|
1203 | else tree.full->count[idx] = 0; |
---|
1204 | } |
---|
1205 | else if (tree.full->count[idx]>0) { |
---|
1206 | if (tree.full->count[idx]<=cut_count) { |
---|
1207 | tree.full->count[idx] = 0; |
---|
1208 | } |
---|
1209 | else { |
---|
1210 | count++; |
---|
1211 | (*leafcount)++; |
---|
1212 | } |
---|
1213 | } |
---|
1214 | } |
---|
1215 | |
---|
1216 | tree.full->usedSons = count; |
---|
1217 | |
---|
1218 | if (!count) { // no more sons |
---|
1219 | gbm_free_mem(tree.full, sizeof(*(tree.full)), GBM_DICT_INDEX); |
---|
1220 | (*memcount) -= sizeof(*(tree.full)); |
---|
1221 | tree.exists = NULL; |
---|
1222 | } |
---|
1223 | |
---|
1224 | break; |
---|
1225 | } |
---|
1226 | } |
---|
1227 | } |
---|
1228 | |
---|
1229 | return tree; |
---|
1230 | } |
---|
1231 | static DictTree cut_useless_words(DictTree tree, int deep, long *removed) |
---|
1232 | /* removes/shortens all branches of 'tree' which are not useful for compression |
---|
1233 | * 'deep' should be zero (incremented by cut_useless_words) |
---|
1234 | * 'removed' will be set to the # of removed occurrences |
---|
1235 | * returns: the reduced tree |
---|
1236 | */ |
---|
1237 | { |
---|
1238 | *removed = 0; |
---|
1239 | |
---|
1240 | if (tree.exists) { |
---|
1241 | deep++; |
---|
1242 | |
---|
1243 | switch (tree.full->typ) { |
---|
1244 | long removed_single; |
---|
1245 | |
---|
1246 | case SINGLE_NODE: { |
---|
1247 | if (tree.single->son.exists) { |
---|
1248 | tree.single->son = cut_useless_words(tree.single->son, deep, &removed_single); |
---|
1249 | tree.single->count -= removed_single; |
---|
1250 | *removed += removed_single; |
---|
1251 | } |
---|
1252 | |
---|
1253 | if (!tree.single->son.exists && !WORD_HELPFUL(deep, tree.single->count)) { |
---|
1254 | DictTree brother = tree.single->brother; |
---|
1255 | |
---|
1256 | *removed += tree.single->count; |
---|
1257 | gbm_free_mem(tree.single, sizeof(*tree.single), GBM_DICT_INDEX); |
---|
1258 | |
---|
1259 | if (brother.exists) { |
---|
1260 | tree = cut_useless_words(brother, deep-1, &removed_single); |
---|
1261 | *removed += removed_single; |
---|
1262 | } |
---|
1263 | else { |
---|
1264 | tree.exists = NULL; |
---|
1265 | } |
---|
1266 | |
---|
1267 | break; |
---|
1268 | } |
---|
1269 | |
---|
1270 | if (tree.single->brother.exists) { |
---|
1271 | tree.single->brother = cut_useless_words(tree.single->brother, deep-1, &removed_single); |
---|
1272 | *removed += removed_single; |
---|
1273 | } |
---|
1274 | |
---|
1275 | break; |
---|
1276 | } |
---|
1277 | case FULL_NODE: { |
---|
1278 | int idx; |
---|
1279 | int count = 0; |
---|
1280 | |
---|
1281 | for (idx=0; idx<256; idx++) { |
---|
1282 | if (tree.full->son[idx].exists) { |
---|
1283 | tree.full->son[idx] = cut_useless_words(tree.full->son[idx], deep, &removed_single); |
---|
1284 | tree.full->count[idx] -= removed_single; |
---|
1285 | *removed += removed_single; |
---|
1286 | } |
---|
1287 | |
---|
1288 | if (tree.full->son[idx].exists) { |
---|
1289 | count++; |
---|
1290 | } |
---|
1291 | else if (tree.full->count[idx]) { |
---|
1292 | if (!WORD_HELPFUL(deep, tree.full->count[idx])) { // useless! |
---|
1293 | *removed += tree.full->count[idx]; |
---|
1294 | tree.full->count[idx] = 0; |
---|
1295 | } |
---|
1296 | else { |
---|
1297 | count++; |
---|
1298 | } |
---|
1299 | } |
---|
1300 | } |
---|
1301 | |
---|
1302 | tree.full->usedSons = count; |
---|
1303 | |
---|
1304 | if (!count) { // no more sons |
---|
1305 | gbm_free_mem(tree.full, sizeof(*(tree.full)), GBM_DICT_INDEX); |
---|
1306 | tree.exists = NULL; |
---|
1307 | } |
---|
1308 | |
---|
1309 | break; |
---|
1310 | } |
---|
1311 | } |
---|
1312 | } |
---|
1313 | |
---|
1314 | return tree; |
---|
1315 | } |
---|
1316 | |
---|
1317 | static DictTree add_dtree_to_dtree(DictTree toAdd, DictTree to, long *memcount) |
---|
1318 | /* adds 'toAdd' as brother of 'to' (must be leftmost of all SINGLE_NODEs or a FULL_NODE) |
---|
1319 | * returns: the leftmost of all SINGLE_NODEs or a FULL_NODE |
---|
1320 | */ |
---|
1321 | { |
---|
1322 | DictTree tree = toAdd; |
---|
1323 | |
---|
1324 | gb_assert(toAdd.single->typ==SINGLE_NODE); |
---|
1325 | |
---|
1326 | if (to.exists) { |
---|
1327 | switch (to.full->typ) { |
---|
1328 | case SINGLE_NODE: { |
---|
1329 | SingleDictTree *left = to.single; |
---|
1330 | |
---|
1331 | gb_assert(left!=0); |
---|
1332 | |
---|
1333 | if (toAdd.single->ch < to.single->ch) { |
---|
1334 | toAdd.single->brother = to; |
---|
1335 | return toAdd; |
---|
1336 | } |
---|
1337 | |
---|
1338 | while (to.single->brother.exists) { |
---|
1339 | if (toAdd.single->ch < to.single->brother.single->ch) { |
---|
1340 | toAdd.single->brother = to.single->brother; |
---|
1341 | to.single->brother = toAdd; |
---|
1342 | |
---|
1343 | tree.single = left; |
---|
1344 | return tree; |
---|
1345 | } |
---|
1346 | to = to.single->brother; |
---|
1347 | } |
---|
1348 | |
---|
1349 | to.single->brother = toAdd; |
---|
1350 | tree.single = left; |
---|
1351 | break; |
---|
1352 | } |
---|
1353 | case FULL_NODE: { |
---|
1354 | unsigned_char ch = toAdd.single->ch; |
---|
1355 | |
---|
1356 | gb_assert(to.full->son[ch].exists==NULL); |
---|
1357 | gb_assert(to.full->count[ch]==0); // if this fails, count must be added & tested |
---|
1358 | gb_assert(toAdd.single->brother.exists==NULL); |
---|
1359 | |
---|
1360 | to.full->son[ch] = toAdd.single->son; |
---|
1361 | to.full->count[ch] = toAdd.single->count; |
---|
1362 | to.full->usedSons++; |
---|
1363 | |
---|
1364 | tree = to; |
---|
1365 | |
---|
1366 | gbm_free_mem(toAdd.single, sizeof(*(toAdd.single)), GBM_DICT_INDEX); |
---|
1367 | (*memcount) -= sizeof(toAdd.single); |
---|
1368 | |
---|
1369 | break; |
---|
1370 | } |
---|
1371 | } |
---|
1372 | } |
---|
1373 | |
---|
1374 | return tree; |
---|
1375 | } |
---|
1376 | |
---|
1377 | static DictTree add_to_dtree(DictTree tree, cu_str text, long len, long *memcount) |
---|
1378 | /* adds the string 'text' (which has length 'len') to 'tree' |
---|
1379 | * returns: new tree |
---|
1380 | */ |
---|
1381 | { |
---|
1382 | if (tree.exists) { |
---|
1383 | switch (tree.full->typ) { |
---|
1384 | case SINGLE_NODE: { |
---|
1385 | SingleDictTree *t = tree.single; |
---|
1386 | int count = 0; |
---|
1387 | |
---|
1388 | do { |
---|
1389 | count++; |
---|
1390 | if (t->ch==text[0]) { // we found an existing subtree |
---|
1391 | if (len>1) { |
---|
1392 | t->son = add_to_dtree(t->son, text+1, len-1, memcount); // add rest of text to subtree |
---|
1393 | } |
---|
1394 | else { |
---|
1395 | gb_assert(len==1); |
---|
1396 | gb_assert(t->son.exists==NULL); |
---|
1397 | t->count++; |
---|
1398 | } |
---|
1399 | |
---|
1400 | return count>MAX_BROTHERS ? single2full_dtree(tree, memcount) : tree; |
---|
1401 | } |
---|
1402 | else if (t->ch > text[0]) { |
---|
1403 | break; |
---|
1404 | } |
---|
1405 | } |
---|
1406 | while ((t=t->brother.single)!=NULL); |
---|
1407 | |
---|
1408 | tree = add_dtree_to_dtree(new_dtree(text, len, memcount), // otherwise we create a new subtree |
---|
1409 | count>MAX_BROTHERS ? single2full_dtree(tree, memcount) : tree, |
---|
1410 | memcount); |
---|
1411 | break; |
---|
1412 | } |
---|
1413 | case FULL_NODE: { |
---|
1414 | unsigned_char ch = text[0]; |
---|
1415 | |
---|
1416 | if (tree.full->son[ch].exists) { |
---|
1417 | tree.full->son[ch] = add_to_dtree(tree.full->son[ch], text+1, len-1, memcount); |
---|
1418 | } |
---|
1419 | else { |
---|
1420 | tree.full->son[ch] = new_dtree(text+1, len-1, memcount); |
---|
1421 | if (!tree.full->son[ch].exists) { |
---|
1422 | if (tree.full->count[ch]==0) tree.full->usedSons++; |
---|
1423 | tree.full->count[ch]++; |
---|
1424 | } |
---|
1425 | else { |
---|
1426 | tree.full->usedSons++; |
---|
1427 | } |
---|
1428 | } |
---|
1429 | break; |
---|
1430 | } |
---|
1431 | } |
---|
1432 | |
---|
1433 | return tree; |
---|
1434 | } |
---|
1435 | |
---|
1436 | return new_dtree(text, len, memcount); |
---|
1437 | } |
---|
1438 | |
---|
1439 | static long calcCounts(DictTree tree) |
---|
1440 | { |
---|
1441 | long cnt = 0; |
---|
1442 | |
---|
1443 | gb_assert(tree.exists!=0); |
---|
1444 | |
---|
1445 | switch (tree.full->typ) { |
---|
1446 | case SINGLE_NODE: { |
---|
1447 | while (tree.exists) { |
---|
1448 | if (tree.single->son.exists) tree.single->count = calcCounts(tree.single->son); |
---|
1449 | gb_assert(tree.single->count>0); |
---|
1450 | cnt += tree.single->count; |
---|
1451 | tree = tree.single->brother; |
---|
1452 | } |
---|
1453 | break; |
---|
1454 | } |
---|
1455 | case FULL_NODE: { |
---|
1456 | int idx; |
---|
1457 | |
---|
1458 | for (idx=0; idx<256; idx++) { |
---|
1459 | if (tree.full->son[idx].exists) { |
---|
1460 | tree.full->count[idx] = calcCounts(tree.full->son[idx]); |
---|
1461 | gb_assert(tree.full->count[idx]>0); |
---|
1462 | } |
---|
1463 | else { |
---|
1464 | gb_assert(tree.full->count[idx]>=0); |
---|
1465 | } |
---|
1466 | cnt += tree.full->count[idx]; |
---|
1467 | } |
---|
1468 | break; |
---|
1469 | } |
---|
1470 | } |
---|
1471 | |
---|
1472 | return cnt; |
---|
1473 | } |
---|
1474 | |
---|
1475 | static int count_dtree_leafs(DictTree tree, int deep, int *maxdeep) { |
---|
1476 | // returns # of leafs and max. depth of tree |
---|
1477 | int leafs = 0; |
---|
1478 | |
---|
1479 | gb_assert(tree.exists!=0); |
---|
1480 | |
---|
1481 | if (++deep>*maxdeep) *maxdeep = deep; |
---|
1482 | |
---|
1483 | switch (tree.full->typ) { |
---|
1484 | case SINGLE_NODE: { |
---|
1485 | if (tree.single->son.exists) leafs += count_dtree_leafs(tree.single->son, deep, maxdeep); |
---|
1486 | else leafs++; |
---|
1487 | if (tree.single->brother.exists) leafs += count_dtree_leafs(tree.single->brother, deep, maxdeep); |
---|
1488 | break; |
---|
1489 | } |
---|
1490 | case FULL_NODE: { |
---|
1491 | int idx; |
---|
1492 | |
---|
1493 | for (idx=0; idx<256; idx++) { |
---|
1494 | if (tree.full->son[idx].exists) leafs += count_dtree_leafs(tree.full->son[idx], deep, maxdeep); |
---|
1495 | else if (tree.full->count[idx]) leafs++; |
---|
1496 | } |
---|
1497 | break; |
---|
1498 | } |
---|
1499 | } |
---|
1500 | |
---|
1501 | return leafs; |
---|
1502 | } |
---|
1503 | |
---|
1504 | static int COUNT(DictTree tree) { |
---|
1505 | // counts sum of # of occurrences of tree |
---|
1506 | int cnt = 0; |
---|
1507 | |
---|
1508 | switch (tree.single->typ) { |
---|
1509 | case SINGLE_NODE: { |
---|
1510 | while (tree.exists) { |
---|
1511 | cnt += tree.single->count; |
---|
1512 | tree = tree.single->brother; |
---|
1513 | } |
---|
1514 | break; |
---|
1515 | } |
---|
1516 | case FULL_NODE: { |
---|
1517 | int idx; |
---|
1518 | |
---|
1519 | for (idx=0; idx<256; idx++) cnt += tree.full->count[idx]; |
---|
1520 | break; |
---|
1521 | } |
---|
1522 | } |
---|
1523 | |
---|
1524 | return cnt; |
---|
1525 | } |
---|
1526 | |
---|
1527 | static DictTree removeSubsequentString(DictTree *tree_pntr, cu_str buffer, int len, int max_occur) { |
---|
1528 | /* searches tree for 'buffer' (length='len') |
---|
1529 | * |
---|
1530 | * returns - rest below found string |
---|
1531 | * (if found and if the # of occurrences of the string is less/equal than 'max_occur') |
---|
1532 | * - NULL otherwise |
---|
1533 | * |
---|
1534 | * removes the whole found string from the tree (not only the rest!) |
---|
1535 | */ |
---|
1536 | DictTree tree = *tree_pntr, rest; |
---|
1537 | static int restCount; |
---|
1538 | |
---|
1539 | rest.exists = NULL; |
---|
1540 | |
---|
1541 | gb_assert(tree.exists!=0); |
---|
1542 | gb_assert(len>0); |
---|
1543 | |
---|
1544 | switch (tree.full->typ) { |
---|
1545 | case SINGLE_NODE: { |
---|
1546 | while (tree.single->ch <= buffer[0]) { |
---|
1547 | if (tree.single->ch == buffer[0]) { // found wanted character |
---|
1548 | if (tree.single->son.exists) { |
---|
1549 | if (len==1) { |
---|
1550 | if (tree.single->count <= max_occur) { |
---|
1551 | rest = tree.single->son; |
---|
1552 | restCount = COUNT(rest); |
---|
1553 | tree.single->son.exists = NULL; |
---|
1554 | } |
---|
1555 | } |
---|
1556 | else { |
---|
1557 | rest = removeSubsequentString(&tree.single->son, buffer+1, len-1, max_occur); |
---|
1558 | } |
---|
1559 | } |
---|
1560 | |
---|
1561 | if (rest.exists) { // the string was found |
---|
1562 | tree.single->count -= restCount; |
---|
1563 | gb_assert(tree.single->count >= 0); |
---|
1564 | |
---|
1565 | if (!tree.single->count) { // empty subtree -> delete myself |
---|
1566 | DictTree brother = tree.single->brother; |
---|
1567 | |
---|
1568 | tree.single->brother.exists = NULL; // elsewise it would be freed by free_dtree |
---|
1569 | free_dtree(tree); |
---|
1570 | *tree_pntr = tree = brother; |
---|
1571 | } |
---|
1572 | } |
---|
1573 | |
---|
1574 | break; |
---|
1575 | } |
---|
1576 | |
---|
1577 | tree_pntr = &(tree.single->brother); |
---|
1578 | if (!(tree = tree.single->brother).exists) break; |
---|
1579 | } |
---|
1580 | |
---|
1581 | break; |
---|
1582 | } |
---|
1583 | case FULL_NODE: { |
---|
1584 | unsigned_char ch; |
---|
1585 | |
---|
1586 | if (tree.full->son[ch=buffer[0]].exists) { |
---|
1587 | if (len==1) { |
---|
1588 | if (tree.full->count[ch] <= max_occur) { |
---|
1589 | rest = tree.full->son[ch]; |
---|
1590 | restCount = COUNT(rest); |
---|
1591 | tree.full->son[ch].exists = NULL; |
---|
1592 | } |
---|
1593 | } |
---|
1594 | else { |
---|
1595 | rest = removeSubsequentString(&tree.full->son[ch], buffer+1, len-1, max_occur); |
---|
1596 | } |
---|
1597 | |
---|
1598 | if (rest.exists) { |
---|
1599 | gb_assert(restCount>0); |
---|
1600 | tree.full->count[ch] -= restCount; |
---|
1601 | gb_assert(tree.full->count[ch]>=0); |
---|
1602 | if (tree.full->count[ch]==0) { |
---|
1603 | gb_assert(tree.full->son[ch].exists==NULL); |
---|
1604 | |
---|
1605 | if (--tree.full->usedSons==0) { // last son deleted -> delete myself |
---|
1606 | free_dtree(tree); |
---|
1607 | tree.exists = NULL; |
---|
1608 | *tree_pntr = tree; |
---|
1609 | } |
---|
1610 | } |
---|
1611 | } |
---|
1612 | } |
---|
1613 | |
---|
1614 | break; |
---|
1615 | } |
---|
1616 | } |
---|
1617 | |
---|
1618 | return rest; |
---|
1619 | } |
---|
1620 | |
---|
1621 | static cu_str memstr(cu_str stringStart, int stringStartLen, cu_str inString, int inStringLen) { |
---|
1622 | if (!inStringLen) return stringStart; // string of length zero is found everywhere |
---|
1623 | |
---|
1624 | while (stringStartLen) { |
---|
1625 | cu_str found = (cu_str)memchr(stringStart, inString[0], stringStartLen); |
---|
1626 | |
---|
1627 | if (!found) break; |
---|
1628 | |
---|
1629 | stringStartLen -= found-stringStart; |
---|
1630 | stringStart = found; |
---|
1631 | |
---|
1632 | if (stringStartLen<inStringLen) break; |
---|
1633 | |
---|
1634 | if (GB_MEMCMP(stringStart, inString, inStringLen)==0) return stringStart; |
---|
1635 | |
---|
1636 | stringStart++; |
---|
1637 | stringStartLen--; |
---|
1638 | } |
---|
1639 | |
---|
1640 | return NULL; |
---|
1641 | } |
---|
1642 | |
---|
1643 | |
---|
1644 | static int expandBranches(u_str buffer, int deep, int minwordlen, int maxdeep, DictTree tree, DictTree root, int max_percent) { |
---|
1645 | /* expands all branches in 'tree' |
---|
1646 | * |
---|
1647 | * this is done by searching every of these branches in 'root' and moving any subsequent parts from there to 'tree' |
---|
1648 | * (this is only done, if the # of occurrences of the found part does not exceed the # of occurrences of 'tree' more than 'max_percent' percent) |
---|
1649 | * |
---|
1650 | * 'buffer' strings are rebuild here while descending the tree (length of buffer==MAX_WORD_LEN) |
---|
1651 | * 'deep' recursion level |
---|
1652 | * 'maxdeep' maximum recursion level |
---|
1653 | * 'minwordlen' is the length of the words to search (usually equal to MIN_WORD_LEN-1) |
---|
1654 | * |
---|
1655 | * returns the # of occurrences which were added to 'tree' |
---|
1656 | */ |
---|
1657 | int expand = 0; // calculate count-sum of added subsequent parts |
---|
1658 | |
---|
1659 | gb_assert(tree.exists!=0); |
---|
1660 | |
---|
1661 | if (deep<maxdeep) { |
---|
1662 | switch (tree.full->typ) { |
---|
1663 | case SINGLE_NODE: { |
---|
1664 | while (tree.exists) { |
---|
1665 | buffer[deep] = tree.single->ch; |
---|
1666 | |
---|
1667 | if (!tree.single->son.exists) { |
---|
1668 | DictTree rest; |
---|
1669 | u_str buf = buffer+1; |
---|
1670 | int len = deep; |
---|
1671 | |
---|
1672 | if (len>minwordlen) { // do not search more than MIN_WORD_LEN-1 chars |
---|
1673 | buf += len-minwordlen; |
---|
1674 | len = minwordlen; |
---|
1675 | } |
---|
1676 | |
---|
1677 | if (len==minwordlen) { |
---|
1678 | cu_str self = memstr(buffer, deep+1, buf, len); |
---|
1679 | |
---|
1680 | gb_assert(self!=0); |
---|
1681 | if (self==buf) rest = removeSubsequentString(&root, buf, len, ((100+max_percent)*tree.single->count)/100); |
---|
1682 | else rest.exists = NULL; |
---|
1683 | } |
---|
1684 | else { |
---|
1685 | rest.exists = NULL; |
---|
1686 | } |
---|
1687 | |
---|
1688 | if (rest.exists) { |
---|
1689 | int cnt = COUNT(rest); |
---|
1690 | |
---|
1691 | tree.single->son = rest; |
---|
1692 | tree.single->count += cnt; |
---|
1693 | expand += cnt; |
---|
1694 | #ifdef DUMP_EXPAND |
---|
1695 | #define DUMP_MORE 1 |
---|
1696 | printf("expanding '%s'", lstr(buffer, deep+1+DUMP_MORE)); |
---|
1697 | printf(" (searching for '%s') -> found %i nodes\n", lstr(buf, len+DUMP_MORE), cnt); |
---|
1698 | #endif |
---|
1699 | } |
---|
1700 | } |
---|
1701 | |
---|
1702 | if (tree.single->son.exists) { |
---|
1703 | int added = expandBranches(buffer, deep+1, minwordlen, maxdeep, tree.single->son, root, max_percent); |
---|
1704 | |
---|
1705 | expand += added; |
---|
1706 | tree.single->count += added; |
---|
1707 | } |
---|
1708 | |
---|
1709 | tree = tree.single->brother; |
---|
1710 | } |
---|
1711 | |
---|
1712 | break; |
---|
1713 | } |
---|
1714 | case FULL_NODE: { |
---|
1715 | int idx; |
---|
1716 | |
---|
1717 | for (idx=0; idx<256; idx++) { |
---|
1718 | buffer[deep] = idx; |
---|
1719 | |
---|
1720 | if (!tree.full->son[idx].exists && tree.full->count[idx]) { // leaf |
---|
1721 | DictTree rest; |
---|
1722 | u_str buf = buffer+1; |
---|
1723 | int len = deep; |
---|
1724 | |
---|
1725 | if (len>minwordlen) { // do not search more than MIN_WORD_LEN-1 chars |
---|
1726 | buf += len-minwordlen; |
---|
1727 | len = minwordlen; |
---|
1728 | } |
---|
1729 | |
---|
1730 | if (len==minwordlen) { |
---|
1731 | cu_str self = memstr(buffer, deep+1, buf, len); |
---|
1732 | |
---|
1733 | gb_assert(self!=0); |
---|
1734 | if (self==buf) |
---|
1735 | rest = removeSubsequentString(&root, buf, len, ((100+max_percent)*tree.full->count[idx])/100); |
---|
1736 | else |
---|
1737 | rest.exists = NULL; |
---|
1738 | } |
---|
1739 | else { |
---|
1740 | rest.exists = NULL; |
---|
1741 | } |
---|
1742 | |
---|
1743 | if (rest.exists) { // substring found! |
---|
1744 | int cnt = COUNT(rest); |
---|
1745 | |
---|
1746 | if (tree.full->count[idx]==0) tree.full->usedSons++; |
---|
1747 | tree.full->son[idx] = rest; |
---|
1748 | tree.full->count[idx] += cnt; |
---|
1749 | |
---|
1750 | expand += cnt; |
---|
1751 | #ifdef DUMP_EXPAND |
---|
1752 | printf("expanding '%s'", lstr(buffer, deep+1+DUMP_MORE)); |
---|
1753 | printf(" (searching for '%s') -> found %i nodes\n", lstr(buf, len+DUMP_MORE), cnt); |
---|
1754 | #endif |
---|
1755 | } |
---|
1756 | } |
---|
1757 | |
---|
1758 | if (tree.full->son[idx].exists) { |
---|
1759 | int added = expandBranches(buffer, deep+1, minwordlen, maxdeep, tree.full->son[idx], root, max_percent); |
---|
1760 | |
---|
1761 | expand += added; |
---|
1762 | tree.full->count[idx] += added; |
---|
1763 | } |
---|
1764 | } |
---|
1765 | |
---|
1766 | break; |
---|
1767 | } |
---|
1768 | } |
---|
1769 | } |
---|
1770 | |
---|
1771 | return expand; |
---|
1772 | } |
---|
1773 | |
---|
1774 | static DictTree build_dict_tree(O_gbdByKey *gbk, long maxmem, long maxdeep, long minwordlen, long *data_sum) |
---|
1775 | /* builds a tree of the most used words |
---|
1776 | * |
---|
1777 | * 'maxmem' is the amount of memory that will be allocated |
---|
1778 | * 'maxdeep' is the maximum length of the _returned_ words |
---|
1779 | * 'minwordlen' is the minimum length a word needs to get into the tree |
---|
1780 | * this is used in the first pass as maximum tree depth |
---|
1781 | * 'data_sum' will be set to the overall-size of data of which the tree was built |
---|
1782 | */ |
---|
1783 | { |
---|
1784 | DictTree tree; |
---|
1785 | long memcount = 0; |
---|
1786 | long leafs = 0; |
---|
1787 | |
---|
1788 | *data_sum = 0; |
---|
1789 | |
---|
1790 | { |
---|
1791 | int cnt; |
---|
1792 | long lowmem = (maxmem*9)/10; |
---|
1793 | int cut_count = 1; |
---|
1794 | |
---|
1795 | // Build 8-level-deep tree of all existing words |
---|
1796 | |
---|
1797 | tree.exists = NULL; // empty tree |
---|
1798 | |
---|
1799 | for (cnt=0; cnt<gbk->cnt; cnt++) { |
---|
1800 | GBDATA *gbd = gbk->gbds[cnt]; |
---|
1801 | int type = GB_TYPE(gbd); |
---|
1802 | |
---|
1803 | if (COMPRESSIBLE(type)) { |
---|
1804 | long size; |
---|
1805 | cu_str data = get_data_n_size(gbd, &size); |
---|
1806 | cu_str lastWord; |
---|
1807 | |
---|
1808 | if (type==GB_STRING || type == GB_LINK) size--; |
---|
1809 | if (size<minwordlen) continue; |
---|
1810 | |
---|
1811 | *data_sum += size; |
---|
1812 | lastWord = data+size-minwordlen; |
---|
1813 | |
---|
1814 | #ifdef SELECT_WORDS |
---|
1815 | if (strnstr(data, size, SELECTED_WORDS)) // test some words only |
---|
1816 | #endif |
---|
1817 | { |
---|
1818 | |
---|
1819 | for (; data<=lastWord; data++) { |
---|
1820 | tree = add_to_dtree(tree, data, minwordlen, &memcount); |
---|
1821 | |
---|
1822 | while (memcount>maxmem) { |
---|
1823 | leafs = 0; |
---|
1824 | tree = cut_dtree(tree, cut_count, &memcount, &leafs); |
---|
1825 | if (memcount<=lowmem) break; |
---|
1826 | cut_count++; |
---|
1827 | } |
---|
1828 | } |
---|
1829 | } |
---|
1830 | } |
---|
1831 | } |
---|
1832 | } |
---|
1833 | |
---|
1834 | { |
---|
1835 | int cutoff = 1; |
---|
1836 | |
---|
1837 | leafs = 0; |
---|
1838 | tree = cut_dtree(tree, cutoff, &memcount, &leafs); // cut all single elements |
---|
1839 | test_dtree(tree); |
---|
1840 | |
---|
1841 | #if defined(DEBUG) |
---|
1842 | if (tree.exists) { |
---|
1843 | int maxdeep2 = 0; |
---|
1844 | long counted = count_dtree_leafs(tree, 0, &maxdeep2); |
---|
1845 | gb_assert(leafs == counted); |
---|
1846 | } |
---|
1847 | #endif // DEBUG |
---|
1848 | |
---|
1849 | // avoid directory overflow (max. 18bit) |
---|
1850 | while (leafs >= MAX_LONG_INDEX) { |
---|
1851 | leafs = 0; |
---|
1852 | ++cutoff; |
---|
1853 | #if defined(DEBUG) |
---|
1854 | printf("Directory overflow (%li) -- reducing size (cutoff = %i)\n", leafs, cutoff); |
---|
1855 | #endif // DEBUG |
---|
1856 | tree = cut_dtree(tree, cutoff, &memcount, &leafs); |
---|
1857 | } |
---|
1858 | } |
---|
1859 | #ifdef DUMP_TREE |
---|
1860 | printf("----------------------- tree with short branches:\n"); |
---|
1861 | dump_dtree(0, tree); |
---|
1862 | printf("---------------------------\n"); |
---|
1863 | #endif |
---|
1864 | |
---|
1865 | // Try to create longer branches |
---|
1866 | |
---|
1867 | if (tree.exists) { |
---|
1868 | int add_count; |
---|
1869 | u_str buffer = (u_str)gbm_get_mem(maxdeep, GBM_DICT_INDEX); |
---|
1870 | int max_differ; |
---|
1871 | long dummy; |
---|
1872 | |
---|
1873 | if (tree.full->typ != FULL_NODE) tree = single2full_dtree(tree, &memcount); // ensure root is FULL_NODE |
---|
1874 | |
---|
1875 | test_dtree(tree); |
---|
1876 | calcCounts(tree); // calculate counters of inner nodes |
---|
1877 | testCounts(tree); |
---|
1878 | |
---|
1879 | for (max_differ=0; max_differ<=MAX_DIFFER; max_differ+=INCR_DIFFER) { // percent of allowed difference for concatenating tree branches |
---|
1880 | do { |
---|
1881 | int idx; |
---|
1882 | add_count = 0; |
---|
1883 | |
---|
1884 | for (idx=0; idx<256; idx++) { |
---|
1885 | if (tree.full->son[idx].exists) { |
---|
1886 | int added; |
---|
1887 | |
---|
1888 | buffer[0] = idx; |
---|
1889 | added = expandBranches(buffer, 1, minwordlen-1, maxdeep, tree.full->son[idx], tree, max_differ); |
---|
1890 | tree.full->count[idx] += added; |
---|
1891 | add_count += added; |
---|
1892 | } |
---|
1893 | } |
---|
1894 | } |
---|
1895 | while (add_count); |
---|
1896 | } |
---|
1897 | |
---|
1898 | gbm_free_mem(buffer, maxdeep, GBM_DICT_INDEX); |
---|
1899 | |
---|
1900 | tree = cut_useless_words(tree, 0, &dummy); |
---|
1901 | } |
---|
1902 | |
---|
1903 | #ifdef DUMP_TREE |
---|
1904 | printf("----------------------- tree with expanded branches:\n"); |
---|
1905 | dump_dtree(0, tree); |
---|
1906 | printf("-----------------------\n"); |
---|
1907 | #endif |
---|
1908 | testCounts(tree); |
---|
1909 | |
---|
1910 | return tree; |
---|
1911 | } |
---|
1912 | |
---|
1913 | static DictTree remove_word_from_dtree(DictTree tree, cu_str wordStart, int wordLen, u_str resultBuffer, int *resultLen, long *resultFrequency, long *removed) { |
---|
1914 | /* searches 'tree' for a word starting with 'wordStart' an removes it from the tree |
---|
1915 | * if there are more than one possibilities, the returned word will be the one with the most occurrences |
---|
1916 | * if there was no possibility -> resultLen==0, tree unchanged |
---|
1917 | * otherwise: resultBuffer contains the word, returns new tree with word removed |
---|
1918 | */ |
---|
1919 | long removed_single = 0; |
---|
1920 | gb_assert(tree.exists!=0); |
---|
1921 | *removed = 0; |
---|
1922 | |
---|
1923 | if (wordLen) { // search wanted path into tree |
---|
1924 | switch (tree.full->typ) { |
---|
1925 | case SINGLE_NODE: { |
---|
1926 | if (tree.single->ch==*wordStart) { |
---|
1927 | *resultBuffer = *wordStart; |
---|
1928 | |
---|
1929 | if (tree.single->son.exists) { |
---|
1930 | gb_assert(tree.single->count>0); |
---|
1931 | tree.single->son = remove_word_from_dtree(tree.single->son, wordStart+1, wordLen-1, |
---|
1932 | resultBuffer+1, resultLen, resultFrequency, |
---|
1933 | &removed_single); |
---|
1934 | if (*resultLen) { // word removed |
---|
1935 | gb_assert(tree.single->count>=removed_single); |
---|
1936 | tree.single->count -= removed_single; |
---|
1937 | *removed += removed_single; |
---|
1938 | (*resultLen)++; |
---|
1939 | } |
---|
1940 | } |
---|
1941 | else { |
---|
1942 | *resultLen = wordLen==1; // if wordLen==1 -> fully overlapping word found |
---|
1943 | *resultFrequency = tree.single->count; |
---|
1944 | } |
---|
1945 | |
---|
1946 | if (!tree.single->son.exists && *resultLen) { // if no son and a word was found -> remove branch |
---|
1947 | DictTree brother = tree.single->brother; |
---|
1948 | |
---|
1949 | *removed += tree.single->count; |
---|
1950 | gbm_free_mem(tree.single, sizeof(*tree.single), GBM_DICT_INDEX); |
---|
1951 | |
---|
1952 | if (brother.exists) tree = brother; |
---|
1953 | else tree.exists = NULL; |
---|
1954 | } |
---|
1955 | } |
---|
1956 | else if (tree.single->ch < *wordStart && tree.single->brother.exists) { |
---|
1957 | tree.single->brother = remove_word_from_dtree(tree.single->brother, wordStart, wordLen, |
---|
1958 | resultBuffer, resultLen, resultFrequency, |
---|
1959 | &removed_single); |
---|
1960 | if (*resultLen) *removed += removed_single; |
---|
1961 | } |
---|
1962 | else { |
---|
1963 | *resultLen = 0; // not found |
---|
1964 | } |
---|
1965 | |
---|
1966 | break; |
---|
1967 | } |
---|
1968 | case FULL_NODE: { |
---|
1969 | unsigned_char ch = *wordStart; |
---|
1970 | *resultBuffer = ch; |
---|
1971 | |
---|
1972 | if (tree.full->son[ch].exists) { |
---|
1973 | tree.full->son[ch] = remove_word_from_dtree(tree.full->son[ch], wordStart+1, wordLen-1, |
---|
1974 | resultBuffer+1, resultLen, resultFrequency, |
---|
1975 | &removed_single); |
---|
1976 | if (*resultLen) { |
---|
1977 | if (tree.full->son[ch].exists) { // another son? |
---|
1978 | tree.full->count[ch] -= removed_single; |
---|
1979 | } |
---|
1980 | else { // last son -> remove whole branch |
---|
1981 | removed_single = tree.full->count[ch]; |
---|
1982 | tree.full->count[ch] = 0; |
---|
1983 | tree.full->usedSons--; |
---|
1984 | } |
---|
1985 | |
---|
1986 | *removed += removed_single; |
---|
1987 | (*resultLen)++; |
---|
1988 | } |
---|
1989 | } |
---|
1990 | else if (tree.full->count[ch]) { |
---|
1991 | *resultLen = (wordLen==1); |
---|
1992 | |
---|
1993 | if (*resultLen) { |
---|
1994 | *removed += removed_single = *resultFrequency = tree.full->count[ch]; |
---|
1995 | tree.full->count[ch] = 0; |
---|
1996 | tree.full->usedSons--; |
---|
1997 | } |
---|
1998 | } |
---|
1999 | else { |
---|
2000 | *resultLen = 0; // not found |
---|
2001 | } |
---|
2002 | |
---|
2003 | if (!tree.full->usedSons) { |
---|
2004 | free_dtree(tree); |
---|
2005 | tree.exists = NULL; |
---|
2006 | } |
---|
2007 | |
---|
2008 | break; |
---|
2009 | } |
---|
2010 | } |
---|
2011 | } |
---|
2012 | else { // take any word |
---|
2013 | switch (tree.full->typ) { |
---|
2014 | case SINGLE_NODE: { |
---|
2015 | *resultBuffer = tree.single->ch; |
---|
2016 | gb_assert(tree.single->count>0); |
---|
2017 | |
---|
2018 | if (tree.single->son.exists) { |
---|
2019 | tree.single->son = remove_word_from_dtree(tree.single->son, wordStart, wordLen, |
---|
2020 | resultBuffer+1, resultLen, resultFrequency, |
---|
2021 | &removed_single); |
---|
2022 | gb_assert(*resultLen); |
---|
2023 | (*resultLen)++; |
---|
2024 | } |
---|
2025 | else { |
---|
2026 | *resultLen = 1; |
---|
2027 | *resultFrequency = tree.single->count; |
---|
2028 | removed_single = tree.single->count; |
---|
2029 | } |
---|
2030 | |
---|
2031 | gb_assert(*resultFrequency>0); |
---|
2032 | |
---|
2033 | if (tree.single->son.exists) { |
---|
2034 | gb_assert(tree.single->count>=removed_single); |
---|
2035 | tree.single->count -= removed_single; |
---|
2036 | *removed += removed_single; |
---|
2037 | } |
---|
2038 | else { |
---|
2039 | DictTree brother = tree.single->brother; |
---|
2040 | |
---|
2041 | *removed += tree.single->count; |
---|
2042 | gbm_free_mem(tree.single, sizeof(*tree.single), GBM_DICT_INDEX); |
---|
2043 | |
---|
2044 | if (brother.exists) tree = brother; |
---|
2045 | else tree.exists = NULL; |
---|
2046 | } |
---|
2047 | |
---|
2048 | break; |
---|
2049 | } |
---|
2050 | case FULL_NODE: { |
---|
2051 | int idx; |
---|
2052 | |
---|
2053 | for (idx=0; idx<256; idx++) { |
---|
2054 | if (tree.full->son[idx].exists) { |
---|
2055 | *resultBuffer = idx; |
---|
2056 | tree.full->son[idx] = remove_word_from_dtree(tree.full->son[idx], wordStart, wordLen, |
---|
2057 | resultBuffer+1, resultLen, resultFrequency, |
---|
2058 | &removed_single); |
---|
2059 | gb_assert(*resultLen); |
---|
2060 | (*resultLen)++; |
---|
2061 | |
---|
2062 | if (!tree.full->son[idx].exists) { // son branch removed -> zero count |
---|
2063 | removed_single = tree.full->count[idx]; |
---|
2064 | tree.full->count[idx] = 0; |
---|
2065 | tree.full->usedSons--; |
---|
2066 | } |
---|
2067 | else { |
---|
2068 | tree.full->count[idx] -= removed_single; |
---|
2069 | gb_assert(tree.full->count[idx]>0); |
---|
2070 | } |
---|
2071 | |
---|
2072 | break; |
---|
2073 | } |
---|
2074 | else if (tree.full->count[idx]) { |
---|
2075 | *resultBuffer = idx; |
---|
2076 | *resultLen = 1; |
---|
2077 | *resultFrequency = tree.full->count[idx]; |
---|
2078 | removed_single = tree.full->count[idx]; |
---|
2079 | tree.full->count[idx] = 0; |
---|
2080 | tree.full->usedSons--; |
---|
2081 | break; |
---|
2082 | } |
---|
2083 | } |
---|
2084 | |
---|
2085 | gb_assert(idx<256); // gb_assert break was used to exit loop (== node had a son) |
---|
2086 | |
---|
2087 | *removed += removed_single; |
---|
2088 | |
---|
2089 | if (!tree.full->usedSons) { |
---|
2090 | free_dtree(tree); |
---|
2091 | tree.exists = NULL; |
---|
2092 | } |
---|
2093 | |
---|
2094 | break; |
---|
2095 | } |
---|
2096 | } |
---|
2097 | } |
---|
2098 | |
---|
2099 | #ifdef DEBUG |
---|
2100 | if (*resultLen) { |
---|
2101 | gb_assert(*resultLen>0); |
---|
2102 | gb_assert(*resultFrequency>0); |
---|
2103 | gb_assert(*resultLen>=wordLen); |
---|
2104 | } |
---|
2105 | #endif |
---|
2106 | |
---|
2107 | return tree; |
---|
2108 | } |
---|
2109 | |
---|
2110 | #define cmp(i1, i2) (heap2[i1]-heap2[i2]) |
---|
2111 | #define swap(i1, i2) do \ |
---|
2112 | { \ |
---|
2113 | int s = heap[i1]; \ |
---|
2114 | heap[i1] = heap[i2]; \ |
---|
2115 | heap[i2] = s; \ |
---|
2116 | \ |
---|
2117 | s = heap2[i1]; \ |
---|
2118 | heap2[i1] = heap2[i2]; \ |
---|
2119 | heap2[i2] = s; \ |
---|
2120 | } \ |
---|
2121 | while (0) |
---|
2122 | |
---|
2123 | static void downheap(int *heap, int *heap2, int me, int num) { |
---|
2124 | int lson = me*2; |
---|
2125 | int rson = lson+1; |
---|
2126 | |
---|
2127 | gb_assert(me>=1); |
---|
2128 | if (lson>num) return; |
---|
2129 | |
---|
2130 | if (cmp(lson, me)<0) { // left son smaller than me? (we sort in descending order!!!) |
---|
2131 | if (rson<=num && cmp(lson, rson)>0) { // right son smaller than left son? |
---|
2132 | swap(me, rson); |
---|
2133 | downheap(heap, heap2, rson, num); |
---|
2134 | } |
---|
2135 | else { |
---|
2136 | swap(me, lson); |
---|
2137 | downheap(heap, heap2, lson, num); |
---|
2138 | } |
---|
2139 | } |
---|
2140 | else if (rson<=num && cmp(me, rson)>0) { // right son smaller than me? |
---|
2141 | swap(me, rson); |
---|
2142 | downheap(heap, heap2, rson, num); |
---|
2143 | } |
---|
2144 | } |
---|
2145 | |
---|
2146 | #undef cmp |
---|
2147 | #undef swap |
---|
2148 | |
---|
2149 | |
---|
2150 | |
---|
2151 | #define cmp(i1, i2) GB_MEMCMP(dict->text+dict->offsets[heap[i1]], dict->text+dict->offsets[heap[i2]], dict->textlen) |
---|
2152 | #define swap(i1, i2) do { int s = heap[i1]; heap[i1] = heap[i2]; heap[i2] = s; } while (0) |
---|
2153 | |
---|
2154 | static void downheap2(int *heap, GB_DICTIONARY *dict, int me, int num) { |
---|
2155 | int lson = me*2; |
---|
2156 | int rson = lson+1; |
---|
2157 | |
---|
2158 | gb_assert(me>=1); |
---|
2159 | if (lson>num) return; |
---|
2160 | |
---|
2161 | if (cmp(lson, me)>0) { // left son bigger than me? |
---|
2162 | if (rson<=num && cmp(lson, rson)<0) { // right son bigger than left son? |
---|
2163 | swap(me, rson); |
---|
2164 | downheap2(heap, dict, rson, num); |
---|
2165 | } |
---|
2166 | else { |
---|
2167 | swap(me, lson); |
---|
2168 | downheap2(heap, dict, lson, num); |
---|
2169 | } |
---|
2170 | } |
---|
2171 | else if (rson<=num && cmp(me, rson)<0) { // right son bigger than me? |
---|
2172 | swap(me, rson); |
---|
2173 | downheap2(heap, dict, rson, num); |
---|
2174 | } |
---|
2175 | } |
---|
2176 | |
---|
2177 | #undef cmp |
---|
2178 | #undef swap |
---|
2179 | |
---|
2180 | static void sort_dict_offsets(GB_DICTIONARY *dict) { |
---|
2181 | /* 1. sorts the 'dict->offsets' by frequency |
---|
2182 | * (frequency of each offset is stored in the 'dict->resort' with the same index) |
---|
2183 | * 2. initializes & sorts 'dict->resort' in alphabetic order |
---|
2184 | */ |
---|
2185 | int i; |
---|
2186 | int num = dict->words; |
---|
2187 | int *heap = dict->offsets-1; |
---|
2188 | int *heap2 = dict->resort-1; |
---|
2189 | |
---|
2190 | // sort offsets |
---|
2191 | |
---|
2192 | for (i=num/2; i>=1; i--) downheap(heap, heap2, i, num); // make heap |
---|
2193 | |
---|
2194 | while (num>1) { // sort heap |
---|
2195 | int big = heap[1]; |
---|
2196 | int big2 = heap2[1]; |
---|
2197 | |
---|
2198 | heap[1] = heap[num]; |
---|
2199 | heap2[1] = heap2[num]; |
---|
2200 | |
---|
2201 | downheap(heap, heap2, 1, num-1); |
---|
2202 | |
---|
2203 | heap[num] = big; |
---|
2204 | heap2[num] = big2; |
---|
2205 | |
---|
2206 | num--; |
---|
2207 | } |
---|
2208 | |
---|
2209 | // initialize dict->resort |
---|
2210 | |
---|
2211 | for (i=0, num=dict->words; i<num; i++) dict->resort[i] = i; |
---|
2212 | |
---|
2213 | // sort dictionary alphabetically |
---|
2214 | |
---|
2215 | for (i=num/2; i>=1; i--) downheap2(heap2, dict, i, num); // make heap |
---|
2216 | |
---|
2217 | while (num>1) { |
---|
2218 | int big = heap2[1]; |
---|
2219 | |
---|
2220 | heap2[1] = heap2[num]; |
---|
2221 | downheap2(heap2, dict, 1, num-1); |
---|
2222 | heap2[num] = big; |
---|
2223 | num--; |
---|
2224 | } |
---|
2225 | } |
---|
2226 | |
---|
2227 | // Warning dictionary is not in network byte order !!!! |
---|
2228 | static GB_DICTIONARY *gb_create_dictionary(O_gbdByKey *gbk, long maxmem) { |
---|
2229 | long data_sum; |
---|
2230 | DictTree tree = build_dict_tree(gbk, maxmem, MAX_WORD_LEN, MIN_WORD_LEN, &data_sum); |
---|
2231 | |
---|
2232 | if (tree.exists) { |
---|
2233 | GB_DICTIONARY *dict = (GB_DICTIONARY*)gbm_get_mem(sizeof(*dict), GBM_DICT_INDEX); |
---|
2234 | int maxdeep = 0; |
---|
2235 | int words = count_dtree_leafs(tree, 0, &maxdeep); |
---|
2236 | u_str word; |
---|
2237 | |
---|
2238 | int wordLen; |
---|
2239 | long wordFrequency; |
---|
2240 | int offset = 0; // next free position in dict->text |
---|
2241 | int overlap = 0; // # of bytes overlapping with last word |
---|
2242 | u_str buffer; |
---|
2243 | long dummy; |
---|
2244 | long word_sum = 0; |
---|
2245 | long overlap_sum = 0; |
---|
2246 | long max_overlap = 0; |
---|
2247 | |
---|
2248 | // reduce tree as long as it has to many leafs (>MAX_LONG_INDEX) |
---|
2249 | while (words >= MAX_LONG_INDEX) { |
---|
2250 | |
---|
2251 | words = count_dtree_leafs(tree, 0, &maxdeep); |
---|
2252 | } |
---|
2253 | |
---|
2254 | buffer = (u_str)gbm_get_mem(maxdeep, GBM_DICT_INDEX); |
---|
2255 | |
---|
2256 | calcCounts(tree); |
---|
2257 | testCounts(tree); |
---|
2258 | |
---|
2259 | #if DEBUG |
---|
2260 | printf(" examined data was %li bytes\n", data_sum); |
---|
2261 | printf(" tree contains %i words *** maximum tree depth = %i\n", words, maxdeep); |
---|
2262 | #endif |
---|
2263 | |
---|
2264 | dict->words = 0; |
---|
2265 | dict->textlen = DICT_STRING_INCR; |
---|
2266 | dict->text = (u_str)gbm_get_mem(DICT_STRING_INCR, GBM_DICT_INDEX); |
---|
2267 | dict->offsets = (GB_NINT*)gbm_get_mem(sizeof(*(dict->offsets))*words, GBM_DICT_INDEX); |
---|
2268 | dict->resort = (GB_NINT*)gbm_get_mem(sizeof(*(dict->resort))*words, GBM_DICT_INDEX); |
---|
2269 | |
---|
2270 | memset(buffer, '*', maxdeep); |
---|
2271 | tree = remove_word_from_dtree(tree, NULL, 0, buffer, &wordLen, &wordFrequency, &dummy); |
---|
2272 | testCounts(tree); |
---|
2273 | |
---|
2274 | while (1) { |
---|
2275 | int nextWordLen = 0; |
---|
2276 | int len; |
---|
2277 | |
---|
2278 | #if DUMP_COMPRESSION_TEST>=4 |
---|
2279 | printf("word='%s' (occur=%li overlap=%i)\n", lstr(buffer, wordLen), wordFrequency, overlap); |
---|
2280 | #endif |
---|
2281 | |
---|
2282 | overlap_sum += overlap; |
---|
2283 | if (overlap>max_overlap) max_overlap = overlap; |
---|
2284 | word_sum += wordLen; |
---|
2285 | |
---|
2286 | if (offset-overlap+wordLen > dict->textlen) { // if not enough space allocated -> realloc dictionary string |
---|
2287 | u_str ntext = (u_str)gbm_get_mem(dict->textlen+DICT_STRING_INCR, GBM_DICT_INDEX); |
---|
2288 | |
---|
2289 | memcpy(ntext, dict->text, dict->textlen); |
---|
2290 | gbm_free_mem(dict->text, dict->textlen, GBM_DICT_INDEX); |
---|
2291 | |
---|
2292 | dict->text = ntext; |
---|
2293 | dict->textlen += DICT_STRING_INCR; |
---|
2294 | } |
---|
2295 | |
---|
2296 | dict->offsets[dict->words] = offset-overlap; |
---|
2297 | dict->resort[dict->words] = wordFrequency; // temporarily miss-use this to store frequency |
---|
2298 | dict->words++; |
---|
2299 | |
---|
2300 | word = dict->text+offset-overlap; |
---|
2301 | gb_assert(overlap==0 || GB_MEMCMP(word, buffer, overlap)==0); // test overlapping string-part |
---|
2302 | memcpy(word, buffer, wordLen); // word -> dictionary string |
---|
2303 | offset += wordLen-overlap; |
---|
2304 | |
---|
2305 | if (!tree.exists) break; |
---|
2306 | |
---|
2307 | for (len=min(10, wordLen-1); len>=0 && nextWordLen==0; len--) { |
---|
2308 | memset(buffer, '*', maxdeep); |
---|
2309 | tree = remove_word_from_dtree(tree, word+wordLen-len, len, buffer, &nextWordLen, &wordFrequency, &dummy); |
---|
2310 | overlap = len; |
---|
2311 | } |
---|
2312 | |
---|
2313 | wordLen = nextWordLen; |
---|
2314 | } |
---|
2315 | |
---|
2316 | gb_assert(dict->words <= MAX_LONG_INDEX); |
---|
2317 | gb_assert(dict->words==words); /* dict->words == # of words stored in dictionary string |
---|
2318 | * words == # of words pre-calculated */ |
---|
2319 | |
---|
2320 | #if DEBUG |
---|
2321 | printf(" word_sum=%li overlap_sum=%li (%li%%) max_overlap=%li\n", |
---|
2322 | word_sum, overlap_sum, (overlap_sum*100)/word_sum, max_overlap); |
---|
2323 | #endif |
---|
2324 | |
---|
2325 | if (offset<dict->textlen) { // reallocate dict->text if it was allocated too large |
---|
2326 | u_str ntext = (u_str)gbm_get_mem(offset, GBM_DICT_INDEX); |
---|
2327 | |
---|
2328 | memcpy(ntext, dict->text, offset); |
---|
2329 | gbm_free_mem(dict->text, dict->textlen, GBM_DICT_INDEX); |
---|
2330 | |
---|
2331 | dict->text = ntext; |
---|
2332 | dict->textlen = offset; |
---|
2333 | } |
---|
2334 | |
---|
2335 | sort_dict_offsets(dict); |
---|
2336 | |
---|
2337 | gbm_free_mem(buffer, maxdeep, GBM_DICT_INDEX); |
---|
2338 | free_dtree(tree); |
---|
2339 | |
---|
2340 | return dict; |
---|
2341 | } |
---|
2342 | |
---|
2343 | return NULL; |
---|
2344 | } |
---|
2345 | |
---|
2346 | static GB_ERROR readAndWrite(O_gbdByKey *gbkp) { |
---|
2347 | int i; |
---|
2348 | GB_ERROR error = 0; |
---|
2349 | |
---|
2350 | for (i=0; i<gbkp->cnt && !error; i++) { |
---|
2351 | GBDATA *gbd = gbkp->gbds[i]; |
---|
2352 | int type = GB_TYPE(gbd); |
---|
2353 | |
---|
2354 | if (COMPRESSIBLE(type)) { |
---|
2355 | long size; |
---|
2356 | char *data; |
---|
2357 | |
---|
2358 | { |
---|
2359 | char *d = (char*)get_data_n_size(gbd, &size); |
---|
2360 | |
---|
2361 | data = (char*)gbm_get_mem(size, GBM_DICT_INDEX); |
---|
2362 | memcpy(data, d, size); |
---|
2363 | gb_assert(data[size-1] == 0); |
---|
2364 | } |
---|
2365 | |
---|
2366 | switch (type) { |
---|
2367 | case GB_STRING: |
---|
2368 | error = GB_write_string(gbd, ""); |
---|
2369 | if (!error) error = GB_write_string(gbd, data); |
---|
2370 | break; |
---|
2371 | case GB_LINK: |
---|
2372 | error = GB_write_link(gbd, ""); |
---|
2373 | if (!error) error = GB_write_link(gbd, data); |
---|
2374 | break; |
---|
2375 | case GB_BYTES: |
---|
2376 | error = GB_write_bytes(gbd, 0, 0); |
---|
2377 | if (!error) error = GB_write_bytes(gbd, data, size); |
---|
2378 | break; |
---|
2379 | case GB_INTS: |
---|
2380 | error = GB_write_ints(gbd, (GB_UINT4 *)0, 0); |
---|
2381 | if (!error) error = GB_write_ints(gbd, (GB_UINT4 *)data, size); |
---|
2382 | break; |
---|
2383 | case GB_FLOATS: |
---|
2384 | error = GB_write_floats(gbd, (float*)0, 0); |
---|
2385 | if (!error) error = GB_write_floats(gbd, (float*)data, size); |
---|
2386 | break; |
---|
2387 | default: |
---|
2388 | gb_assert(0); |
---|
2389 | break; |
---|
2390 | } |
---|
2391 | |
---|
2392 | gbm_free_mem(data, size, GBM_DICT_INDEX); |
---|
2393 | } |
---|
2394 | } |
---|
2395 | return error; |
---|
2396 | } |
---|
2397 | |
---|
2398 | static GB_ERROR gb_create_dictionaries(GB_MAIN_TYPE *Main, long maxmem) { |
---|
2399 | GB_ERROR error = NULL; |
---|
2400 | #if defined(TEST_DICT) |
---|
2401 | long uncompressed_sum = 0; |
---|
2402 | long compressed_sum = 0; |
---|
2403 | #endif // TEST_DICT |
---|
2404 | |
---|
2405 | printf("Creating GBDATA-Arrays..\n"); |
---|
2406 | |
---|
2407 | if (!error) { |
---|
2408 | O_gbdByKey *gbk = g_b_opti_createGbdByKey(Main); |
---|
2409 | int idx; |
---|
2410 | |
---|
2411 | printf("Creating dictionaries..\n"); |
---|
2412 | |
---|
2413 | #ifdef DEBUG |
---|
2414 | // #define TEST_ONE // test only key specified below |
---|
2415 | // #define TEST_SOME // test only some keys specified below |
---|
2416 | #if defined(TEST_ONE) |
---|
2417 | // select wanted index |
---|
2418 | for (idx=0; idx<gbdByKey_cnt; idx++) { // title author dew_author ebi_journal name ua_tax date full_name ua_title |
---|
2419 | if (gbk[idx].cnt && strcmp(Main->keys[idx].key, "tree")==0) break; |
---|
2420 | } |
---|
2421 | gb_assert(idx<gbdByKey_cnt); |
---|
2422 | #endif |
---|
2423 | #endif |
---|
2424 | |
---|
2425 | #ifdef TEST_ONE |
---|
2426 | // only create dictionary for index selected above (no loop) |
---|
2427 | #else |
---|
2428 | // create dictionaries for all indices (this is the normal operation) |
---|
2429 | arb_progress progress("Optimizing key data", gbdByKey_cnt-1); |
---|
2430 | for (idx = gbdByKey_cnt-1; idx >= 1 && !error; --idx, progress.inc_and_check_user_abort(error)) |
---|
2431 | #endif |
---|
2432 | |
---|
2433 | { |
---|
2434 | GB_DICTIONARY *dict; |
---|
2435 | int compression_mask; |
---|
2436 | GB_CSTR key_name = Main->keys[idx].key; |
---|
2437 | int type; |
---|
2438 | GBDATA *gb_main = (GBDATA*)Main->data; |
---|
2439 | |
---|
2440 | #ifdef TEST_SOME |
---|
2441 | if (!( // add all wanted keys here |
---|
2442 | strcmp(key_name, "REF") == 0 || |
---|
2443 | strcmp(key_name, "ref") == 0 |
---|
2444 | )) continue; |
---|
2445 | #endif // TEST_SOME |
---|
2446 | |
---|
2447 | #ifndef TEST_ONE |
---|
2448 | if (!gbk[idx].cnt) continue; // there are no entries with this quark |
---|
2449 | |
---|
2450 | type = GB_TYPE(gbk[idx].gbds[0]); |
---|
2451 | GB_begin_transaction(gb_main); |
---|
2452 | compression_mask = gb_get_compression_mask(Main, idx, type); |
---|
2453 | GB_commit_transaction(gb_main); |
---|
2454 | |
---|
2455 | if ((compression_mask & GB_COMPRESSION_DICTIONARY) == 0) continue; // compression with dictionary is not allowed |
---|
2456 | if (strcmp(key_name, "data") == 0) continue; |
---|
2457 | if (strcmp(key_name, "quality") == 0) continue; |
---|
2458 | #endif |
---|
2459 | |
---|
2460 | printf("- dictionary for '%s' (idx=%i)\n", key_name, idx); |
---|
2461 | GB_begin_transaction(gb_main); |
---|
2462 | dict = gb_create_dictionary(&(gbk[idx]), maxmem); |
---|
2463 | |
---|
2464 | if (dict) { |
---|
2465 | /* decompress with old dictionary and write |
---|
2466 | all data of actual type without compression: */ |
---|
2467 | |
---|
2468 | printf(" * Uncompressing all with old dictionary ...\n"); |
---|
2469 | |
---|
2470 | { |
---|
2471 | int old_compression_mask = Main->keys[idx].compression_mask; |
---|
2472 | |
---|
2473 | Main->keys[idx].compression_mask &= ~GB_COMPRESSION_DICTIONARY; |
---|
2474 | error = readAndWrite(&gbk[idx]); |
---|
2475 | Main->keys[idx].compression_mask = old_compression_mask; |
---|
2476 | } |
---|
2477 | |
---|
2478 | if (!error) { |
---|
2479 | /* dictionary is saved in the following format: |
---|
2480 | * |
---|
2481 | * GB_NINT size |
---|
2482 | * GB_NINT offsets[dict->words] |
---|
2483 | * GB_NINT resort[dict->words] |
---|
2484 | * char *text |
---|
2485 | */ |
---|
2486 | |
---|
2487 | int dict_buffer_size = sizeof(GB_NINT) * (1+dict->words*2) + dict->textlen; |
---|
2488 | char *dict_buffer = (char*)gbm_get_mem(dict_buffer_size, GBM_DICT_INDEX); |
---|
2489 | long old_dict_buffer_size; |
---|
2490 | char *old_dict_buffer; |
---|
2491 | |
---|
2492 | { |
---|
2493 | GB_NINT *nint = (GB_NINT*)dict_buffer; |
---|
2494 | int n; |
---|
2495 | |
---|
2496 | *nint++ = htonl(dict->words); |
---|
2497 | for (n=0; n<dict->words; n++) *nint++ = htonl(dict->offsets[n]); |
---|
2498 | for (n=0; n<dict->words; n++) *nint++ = htonl(dict->resort[n]); |
---|
2499 | |
---|
2500 | memcpy(nint, dict->text, dict->textlen); |
---|
2501 | } |
---|
2502 | |
---|
2503 | error = gb_load_dictionary_data(gb_main, Main->keys[idx].key, &old_dict_buffer, &old_dict_buffer_size); |
---|
2504 | if (!error) { |
---|
2505 | gb_save_dictionary_data(gb_main, Main->keys[idx].key, dict_buffer, dict_buffer_size); |
---|
2506 | |
---|
2507 | // compress all data with new dictionary |
---|
2508 | printf(" * Compressing all with new dictionary ...\n"); |
---|
2509 | error = readAndWrite(&gbk[idx]); |
---|
2510 | if (error) { |
---|
2511 | /* critical state: new dictionary has been written, but transaction will be aborted below. |
---|
2512 | * Solution: Write back old dictionary. |
---|
2513 | */ |
---|
2514 | gb_save_dictionary_data(gb_main, Main->keys[idx].key, old_dict_buffer, old_dict_buffer_size); |
---|
2515 | } |
---|
2516 | } |
---|
2517 | |
---|
2518 | gbm_free_mem(dict_buffer, dict_buffer_size, GBM_DICT_INDEX); |
---|
2519 | if (old_dict_buffer) gbm_free_mem(old_dict_buffer, old_dict_buffer_size, GBM_DICT_INDEX); |
---|
2520 | |
---|
2521 | #if defined(TEST_DICT) |
---|
2522 | if (!error) { |
---|
2523 | GB_DICTIONARY *dict_reloaded = gb_get_dictionary(Main, idx); |
---|
2524 | test_dictionary(dict_reloaded, &(gbk[idx]), &uncompressed_sum, &compressed_sum); |
---|
2525 | } |
---|
2526 | #endif // TEST_DICT |
---|
2527 | } |
---|
2528 | } |
---|
2529 | |
---|
2530 | error = GB_end_transaction(gb_main, error); |
---|
2531 | } |
---|
2532 | |
---|
2533 | #ifdef TEST_DICT |
---|
2534 | if (!error) { |
---|
2535 | printf(" overall uncompressed size = %li b\n" |
---|
2536 | " overall compressed size = %li b (Ratio=%li%%)\n", |
---|
2537 | uncompressed_sum, compressed_sum, |
---|
2538 | (compressed_sum*100)/uncompressed_sum); |
---|
2539 | } |
---|
2540 | #endif // TEST_DICT |
---|
2541 | |
---|
2542 | printf("Done.\n"); |
---|
2543 | |
---|
2544 | g_b_opti_freeGbdByKey(gbk); |
---|
2545 | } |
---|
2546 | |
---|
2547 | return error; |
---|
2548 | } |
---|
2549 | |
---|
2550 | GB_ERROR GB_optimize(GBDATA *gb_main) { |
---|
2551 | unsigned long maxKB = GB_get_physical_memory(); |
---|
2552 | long maxMem; |
---|
2553 | GB_ERROR error = 0; |
---|
2554 | GB_UNDO_TYPE prev_undo_type = GB_get_requested_undo_type(gb_main); |
---|
2555 | |
---|
2556 | #ifdef DEBUG |
---|
2557 | maxKB /= 2; |
---|
2558 | #endif |
---|
2559 | |
---|
2560 | if (maxKB<=(LONG_MAX/1024)) maxMem = maxKB*1024; |
---|
2561 | else maxMem = LONG_MAX; |
---|
2562 | |
---|
2563 | error = GB_request_undo_type(gb_main, GB_UNDO_KILL); |
---|
2564 | if (!error) { |
---|
2565 | error = gb_create_dictionaries(GB_MAIN(gb_main), maxMem); |
---|
2566 | if (!error) GB_disable_quicksave(gb_main, "Database optimized"); |
---|
2567 | ASSERT_NO_ERROR(GB_request_undo_type(gb_main, prev_undo_type)); |
---|
2568 | } |
---|
2569 | return error; |
---|
2570 | } |
---|