| 1 | // =============================================================== // |
|---|
| 2 | // // |
|---|
| 3 | // File : AW_position.cxx // |
|---|
| 4 | // Purpose : Positions, Vectors and Angles // |
|---|
| 5 | // // |
|---|
| 6 | // Coded by Ralf Westram (coder@reallysoft.de) in July 2007 // |
|---|
| 7 | // Institute of Microbiology (Technical University Munich) // |
|---|
| 8 | // http://www.arb-home.de/ // |
|---|
| 9 | // // |
|---|
| 10 | // =============================================================== // |
|---|
| 11 | |
|---|
| 12 | #include "aw_position.hxx" |
|---|
| 13 | |
|---|
| 14 | using namespace std; |
|---|
| 15 | using namespace AW; |
|---|
| 16 | |
|---|
| 17 | const Position AW::Origin(0, 0); |
|---|
| 18 | const Vector AW::ZeroVector(0, 0, 0); |
|---|
| 19 | |
|---|
| 20 | const double AW::Angle::rad2deg = 180/M_PI; |
|---|
| 21 | const double AW::Angle::deg2rad = M_PI/180; |
|---|
| 22 | |
|---|
| 23 | void LineVector::standardize() { |
|---|
| 24 | // make diagonal positive (i.e. make it a Vector which contains width and height of a Rectangle) |
|---|
| 25 | // this changes the start position to the upper-left corner |
|---|
| 26 | |
|---|
| 27 | double dx = ToEnd.x(); |
|---|
| 28 | double dy = ToEnd.y(); |
|---|
| 29 | |
|---|
| 30 | if (dx<0) { |
|---|
| 31 | if (dy<0) { |
|---|
| 32 | Start += ToEnd; // lower-right to upper-left |
|---|
| 33 | ToEnd.rotate180deg(); |
|---|
| 34 | } |
|---|
| 35 | else { |
|---|
| 36 | Start.movex(dx); // upper-right to upper-left |
|---|
| 37 | ToEnd.negx(); |
|---|
| 38 | } |
|---|
| 39 | } |
|---|
| 40 | else if (dy<0) { |
|---|
| 41 | Start.movey(dy); // lower-left to upper-left |
|---|
| 42 | ToEnd.negy(); |
|---|
| 43 | } |
|---|
| 44 | } |
|---|
| 45 | |
|---|
| 46 | Vector& Vector::rotate45deg() { |
|---|
| 47 | static double inv_sqrt2 = 1/sqrt(2.0); |
|---|
| 48 | |
|---|
| 49 | *this = (*this+Vector(*this).rotate90deg()) * inv_sqrt2; |
|---|
| 50 | return *this; |
|---|
| 51 | } |
|---|
| 52 | |
|---|
| 53 | void Angle::recalcRadian() const { |
|---|
| 54 | Radian = atan2(Normal.y(), Normal.x()); |
|---|
| 55 | } |
|---|
| 56 | |
|---|
| 57 | void Angle::recalcNormal() const { |
|---|
| 58 | Normal = Vector(std::cos(Radian), std::sin(Radian)); |
|---|
| 59 | aw_assert(Normal.is_normalized()); |
|---|
| 60 | } |
|---|
| 61 | |
|---|
| 62 | // -------------------------------------------------------------------------------- |
|---|
| 63 | |
|---|
| 64 | namespace AW { |
|---|
| 65 | Position crosspoint(const LineVector& l1, const LineVector& l2, double& factor_l1, double& factor_l2) { |
|---|
| 66 | // calculates the crossing point of the two straight lines defined by l1 and l2. |
|---|
| 67 | // sets two factors, so that |
|---|
| 68 | // crosspoint == l1.start()+factor_l1*l1.line_vector(); |
|---|
| 69 | // crosspoint == l2.start()+factor_l2*l2.line_vector(); |
|---|
| 70 | |
|---|
| 71 | // Herleitung: |
|---|
| 72 | // x1+g*sx = x2+h*tx |
|---|
| 73 | // y1+g*sy = y2+h*ty |
|---|
| 74 | // |
|---|
| 75 | // h = -(x2-sx*g-x1)/tx |
|---|
| 76 | // h = (y1-y2+sy*g)/ty (h is factor_l2) |
|---|
| 77 | // |
|---|
| 78 | // -(x2-sx*g-x1)/tx = (y1-y2+sy*g)/ty |
|---|
| 79 | // |
|---|
| 80 | // g = (tx*y1+ty*x2-tx*y2-ty*x1)/(sx*ty-sy*tx) |
|---|
| 81 | // |
|---|
| 82 | // g = (tx*(y1-y2)+ty*(x2-x1))/(sx*ty-sy*tx) (g is factor_l1) |
|---|
| 83 | |
|---|
| 84 | const Position& p1 = l1.start(); |
|---|
| 85 | const Position& p2 = l2.start(); |
|---|
| 86 | |
|---|
| 87 | const Vector& s = l1.line_vector(); |
|---|
| 88 | const Vector& t = l2.line_vector(); |
|---|
| 89 | |
|---|
| 90 | aw_assert(s.has_length() && t.has_length()); |
|---|
| 91 | |
|---|
| 92 | factor_l1 = (t.x()*(p1.ypos()-p2.ypos()) + t.y()*(p2.xpos()-p1.xpos())) |
|---|
| 93 | / (s.x()*t.y() - s.y()*t.x()); |
|---|
| 94 | |
|---|
| 95 | factor_l2 = (p1.ypos()-p2.ypos()+s.y()*factor_l1) / t.y(); |
|---|
| 96 | |
|---|
| 97 | return p1 + factor_l1*s; |
|---|
| 98 | } |
|---|
| 99 | |
|---|
| 100 | Position nearest_linepoint(const Position& pos, const LineVector& line, double& factor) { |
|---|
| 101 | // returns the Position on 'line' with minimum distance to 'pos' |
|---|
| 102 | // factor is set to [0.0 .. 1.0], |
|---|
| 103 | // where 0.0 means "at line.start()" |
|---|
| 104 | // and 1.0 means "at line.head()" |
|---|
| 105 | |
|---|
| 106 | if (!line.has_length()) { |
|---|
| 107 | factor = 0.5; |
|---|
| 108 | return line.start(); |
|---|
| 109 | } |
|---|
| 110 | |
|---|
| 111 | Vector upright(line.line_vector()); |
|---|
| 112 | upright.rotate90deg(); |
|---|
| 113 | |
|---|
| 114 | LineVector pos2line(pos, upright); |
|---|
| 115 | |
|---|
| 116 | double unused; |
|---|
| 117 | Position nearest = crosspoint(line, pos2line, factor, unused); |
|---|
| 118 | |
|---|
| 119 | if (factor<0) { |
|---|
| 120 | nearest = line.start(); |
|---|
| 121 | factor = 0; |
|---|
| 122 | } |
|---|
| 123 | else if (factor>1) { |
|---|
| 124 | nearest = line.head(); |
|---|
| 125 | factor = 1; |
|---|
| 126 | } |
|---|
| 127 | return nearest; |
|---|
| 128 | } |
|---|
| 129 | }; |
|---|