1 | // =============================================================== // |
---|
2 | // // |
---|
3 | // File : aw_position.hxx // |
---|
4 | // Purpose : Positions, Vectors and Angles // |
---|
5 | // // |
---|
6 | // Coded by Ralf Westram (coder@reallysoft.de) in July 2007 // |
---|
7 | // Institute of Microbiology (Technical University Munich) // |
---|
8 | // http://www.arb-home.de/ // |
---|
9 | // // |
---|
10 | // =============================================================== // |
---|
11 | |
---|
12 | #ifndef AW_POSITION_HXX |
---|
13 | #define AW_POSITION_HXX |
---|
14 | |
---|
15 | #ifndef AW_BASE_HXX |
---|
16 | #include "aw_base.hxx" |
---|
17 | #endif |
---|
18 | #ifndef ARB_ASSERT_H |
---|
19 | #include <arb_assert.h> |
---|
20 | #endif |
---|
21 | #ifndef ARBTOOLS_H |
---|
22 | #include <arbtools.h> |
---|
23 | #endif |
---|
24 | #ifndef _GLIBCXX_CMATH |
---|
25 | #include <cmath> |
---|
26 | #endif |
---|
27 | |
---|
28 | #ifndef aw_assert |
---|
29 | #define aw_assert(bed) arb_assert(bed) |
---|
30 | #endif |
---|
31 | |
---|
32 | // ------------------------ |
---|
33 | // validity checks |
---|
34 | |
---|
35 | #if defined(DEBUG) |
---|
36 | |
---|
37 | #define ISVALID(a) aw_assert((a).valid()) |
---|
38 | |
---|
39 | inline const double& NONAN(const double& d) { |
---|
40 | aw_assert(d == d); |
---|
41 | return d; |
---|
42 | } |
---|
43 | |
---|
44 | #else |
---|
45 | #define ISVALID(a) |
---|
46 | #define NONAN(d) (d) |
---|
47 | #endif // DEBUG |
---|
48 | |
---|
49 | namespace AW { |
---|
50 | |
---|
51 | const double EPSILON = 0.001; // how equal is nearly equal |
---|
52 | |
---|
53 | inline bool nearlyEqual(const double& val1, const double& val2) { return std::abs(val1-val2) < EPSILON; } |
---|
54 | inline bool nearlyZero(const double& val) { return nearlyEqual(val, 0.0); } |
---|
55 | inline double centroid(const double& val1, const double& val2) { return (val1+val2)*0.5; } |
---|
56 | |
---|
57 | // ------------------------------------------------------- |
---|
58 | // class Position represents 2-dimensional positions |
---|
59 | |
---|
60 | // Note: orientation of drawn canvases is like shown in this figure: |
---|
61 | // |
---|
62 | // __________________\ +x |
---|
63 | // | / . |
---|
64 | // | |
---|
65 | // | |
---|
66 | // | |
---|
67 | // | |
---|
68 | // | |
---|
69 | // | |
---|
70 | // \|/ |
---|
71 | // +y |
---|
72 | // |
---|
73 | // i.e. rotating an angle by 90 degrees, means rotating it 3 hours in clockwise direction |
---|
74 | |
---|
75 | class Vector; |
---|
76 | |
---|
77 | class Position { |
---|
78 | double x, y; |
---|
79 | |
---|
80 | static bool is_between(const double& coord1, const double& between, const double& coord2) { |
---|
81 | return ((coord1-between)*(between-coord2)) >= 0.0; |
---|
82 | } |
---|
83 | |
---|
84 | public: |
---|
85 | |
---|
86 | bool valid() const { return !is_nan_or_inf(x) && !is_nan_or_inf(y); } |
---|
87 | |
---|
88 | Position(double X, double Y) : x(X), y(Y) { ISVALID(*this); } |
---|
89 | // Position(const Position& other) : x(other.x), y(other.y) { ISVALID(*this); } |
---|
90 | Position() : x(NAN), y(NAN) {} // default is no position |
---|
91 | ~Position() {} |
---|
92 | |
---|
93 | inline Position& operator += (const Vector& v); |
---|
94 | inline Position& operator -= (const Vector& v); |
---|
95 | |
---|
96 | const double& xpos() const { return x; } |
---|
97 | const double& ypos() const { return y; } |
---|
98 | |
---|
99 | void setx(const double& X) { x = NONAN(X); } |
---|
100 | void sety(const double& Y) { y = NONAN(Y); } |
---|
101 | |
---|
102 | void movex(const double& X) { x += NONAN(X); } |
---|
103 | void movey(const double& Y) { y += NONAN(Y); } |
---|
104 | |
---|
105 | void move(const Vector& movement) { *this += movement; } |
---|
106 | void moveTo(const Position& pos) { *this = pos; } |
---|
107 | |
---|
108 | inline bool is_between(const Position& p1, const Position& p2) const { |
---|
109 | return is_between(p1.x, x, p2.x) && is_between(p1.y, y, p2.y); |
---|
110 | } |
---|
111 | }; |
---|
112 | |
---|
113 | extern const Position Origin; |
---|
114 | |
---|
115 | inline bool nearlyEqual(const Position& p1, const Position& p2) { |
---|
116 | return |
---|
117 | nearlyEqual(p1.xpos(), p2.xpos()) && |
---|
118 | nearlyEqual(p1.ypos(), p2.ypos()); |
---|
119 | } |
---|
120 | |
---|
121 | // ------------------------------- |
---|
122 | // a 2D vector |
---|
123 | |
---|
124 | class Vector { |
---|
125 | Position end; // endpoint of vector (vector starts at Position::origin) |
---|
126 | mutable double len; // once calculated, length of vector is stored here (negative value means "not calculated") |
---|
127 | |
---|
128 | public: |
---|
129 | bool valid() const { return end.valid() && !is_nan(len); } // infinite len is allowed (but untested) |
---|
130 | |
---|
131 | Vector() : len(NAN) {} // default is not a vector |
---|
132 | Vector(const double& X, const double& Y) : end(X, Y), len(-1) { ISVALID(*this); } // vector (0,0)->(X,Y) |
---|
133 | Vector(const double& X, const double& Y, const double& Length) : end(X, Y), len(Length) { ISVALID(*this); } // same with known length |
---|
134 | explicit Vector(const Position& to) : end(to), len(-1) { ISVALID(*this); } // vector origin->to |
---|
135 | Vector(const Position& from, const Position& to) : end(to.xpos()-from.xpos(), to.ypos()-from.ypos()), len(-1) { ISVALID(*this); } // vector from->to |
---|
136 | ~Vector() {} |
---|
137 | |
---|
138 | const double& x() const { return end.xpos(); } |
---|
139 | const double& y() const { return end.ypos(); } |
---|
140 | const Position& endpoint() const { return end; } |
---|
141 | |
---|
142 | Vector& set(const double& X, const double& Y, double Length = -1) { end = Position(X, Y); len = Length; return *this; } |
---|
143 | Vector& setx(const double& X) { end.setx(X); len = -1; return *this; } |
---|
144 | Vector& sety(const double& Y) { end.sety(Y); len = -1; return *this; } |
---|
145 | |
---|
146 | const double& length() const { |
---|
147 | if (len<0.0) len = sqrt(x()*x() + y()*y()); |
---|
148 | return len; |
---|
149 | } |
---|
150 | |
---|
151 | // length-modifying members: |
---|
152 | |
---|
153 | Vector& operator *= (const double& factor) { return set(x()*factor, y()*factor, length()*std::abs(factor)); } |
---|
154 | Vector& operator /= (const double& divisor) { return operator *= (1.0/divisor); } |
---|
155 | |
---|
156 | Vector& operator += (const Vector& other) { return set(x()+other.x(), y()+other.y()); } |
---|
157 | Vector& operator -= (const Vector& other) { return set(x()-other.x(), y()-other.y()); } |
---|
158 | |
---|
159 | Vector& normalize() { |
---|
160 | aw_assert(length()>0); // cannot normalize zero-Vector! |
---|
161 | return *this /= length(); |
---|
162 | } |
---|
163 | bool is_normalized() const { return nearlyEqual(length(), 1); } |
---|
164 | bool has_length() const { return !nearlyEqual(length(), 0); } |
---|
165 | |
---|
166 | Vector& set_length(double new_length) { |
---|
167 | double factor = new_length/length(); |
---|
168 | return (*this *= factor); |
---|
169 | } |
---|
170 | |
---|
171 | // length-constant members: |
---|
172 | |
---|
173 | Vector& neg() { end = Position(-x(), -y()); return *this; } |
---|
174 | Vector& negx() { end.setx(-x()); return *this; } |
---|
175 | Vector& negy() { end.sety(-y()); return *this; } |
---|
176 | |
---|
177 | Vector& flipxy() { end = Position(y(), x()); return *this; } |
---|
178 | |
---|
179 | Vector& rotate90deg() { return negy().flipxy(); } |
---|
180 | Vector& rotate180deg() { return neg(); } |
---|
181 | Vector& rotate270deg() { return negx().flipxy(); } |
---|
182 | |
---|
183 | Vector& rotate45deg(); |
---|
184 | Vector& rotate135deg() { return rotate45deg().rotate90deg(); } |
---|
185 | Vector& rotate225deg() { return rotate45deg().rotate180deg(); } |
---|
186 | Vector& rotate315deg() { return rotate45deg().rotate270deg(); } |
---|
187 | |
---|
188 | Vector operator-() const { return Vector(-x(), -y(), len); } // unary minus |
---|
189 | }; |
---|
190 | |
---|
191 | extern const Vector ZeroVector; |
---|
192 | |
---|
193 | inline bool nearlyEqual(const Vector& v1, const Vector& v2) { return nearlyEqual(v1.endpoint(), v2.endpoint()); } |
---|
194 | |
---|
195 | // ----------------------------------------- |
---|
196 | // inline Position members |
---|
197 | |
---|
198 | inline Position& Position::operator += (const Vector& v) { x += v.x(); y += v.y(); ISVALID(*this); return *this; } |
---|
199 | inline Position& Position::operator -= (const Vector& v) { x -= v.x(); y -= v.y(); ISVALID(*this); return *this; } |
---|
200 | |
---|
201 | // ------------------------------------------ |
---|
202 | // basic Position / Vector functions |
---|
203 | |
---|
204 | // Difference between Positions |
---|
205 | inline Vector operator-(const Position& to, const Position& from) { return Vector(from, to); } |
---|
206 | |
---|
207 | // Position +- Vector -> new Position |
---|
208 | inline Position operator+(const Position& p, const Vector& v) { return Position(p) += v; } |
---|
209 | inline Position operator+(const Vector& v, const Position& p) { return Position(p) += v; } |
---|
210 | inline Position operator-(const Position& p, const Vector& v) { return Position(p) -= v; } |
---|
211 | |
---|
212 | // Vector addition |
---|
213 | inline Vector operator+(const Vector& v1, const Vector& v2) { return Vector(v1) += v2; } |
---|
214 | inline Vector operator-(const Vector& v1, const Vector& v2) { return Vector(v1) -= v2; } |
---|
215 | |
---|
216 | // stretch/shrink Vector |
---|
217 | inline Vector operator*(const Vector& v, const double& f) { return Vector(v) *= f; } |
---|
218 | inline Vector operator*(const double& f, const Vector& v) { return Vector(v) *= f; } |
---|
219 | inline Vector operator/(const Vector& v, const double& d) { return Vector(v) /= d; } |
---|
220 | |
---|
221 | inline Position centroid(const Position& p1, const Position& p2) { return Position(centroid(p1.xpos(), p2.xpos()), centroid(p1.ypos(), p2.ypos())); } |
---|
222 | |
---|
223 | inline double Distance(const Position& from, const Position& to) { return Vector(from, to).length(); } |
---|
224 | inline double scalarProduct(const Vector& v1, const Vector& v2) { return v1.x()*v2.x() + v1.y()*v2.y(); } |
---|
225 | |
---|
226 | inline bool are_distinct(const Position& p1, const Position& p2) { return Vector(p1, p2).has_length(); } |
---|
227 | |
---|
228 | inline bool is_vertical(const Vector& v) { return nearlyZero(v.x()) && !nearlyZero(v.y()); } |
---|
229 | inline bool is_horizontal(const Vector& v) { return !nearlyZero(v.x()) && nearlyZero(v.y()); } |
---|
230 | |
---|
231 | inline Vector orthogonal_projection(const Vector& projectee, const Vector& target) { |
---|
232 | //! returns the orthogonal projection of 'projectee' onto 'target' |
---|
233 | double tlen = target.length(); |
---|
234 | return target * (scalarProduct(projectee, target) / (tlen*tlen)); |
---|
235 | } |
---|
236 | inline Vector normalized(const Vector& v) { |
---|
237 | //! returns the normalized Vector of 'v', i.e. a Vector with same orientation, but length 1 |
---|
238 | return Vector(v).normalize(); |
---|
239 | } |
---|
240 | inline bool are_parallel(const Vector& v1, const Vector& v2) { |
---|
241 | //! returns true, if two vectors have the same orientation |
---|
242 | Vector diff = normalized(v1)-normalized(v2); |
---|
243 | return !diff.has_length(); |
---|
244 | } |
---|
245 | //! returns true, if two vectors have opposite orientations |
---|
246 | inline bool are_antiparallel(const Vector& v1, const Vector& v2) { return are_parallel(v1, -v2); } |
---|
247 | |
---|
248 | // ------------------------------------------------- |
---|
249 | // a positioned vector, representing a line |
---|
250 | |
---|
251 | enum AW_screen_area_conversion_mode { INCLUSIVE_OUTLINE, UPPER_LEFT_OUTLINE }; |
---|
252 | |
---|
253 | class LineVector { |
---|
254 | Position Start; // start point |
---|
255 | Vector ToEnd; // vector to end point |
---|
256 | |
---|
257 | protected: |
---|
258 | void standardize(); |
---|
259 | |
---|
260 | public: |
---|
261 | bool valid() const { return Start.valid() && ToEnd.valid(); } |
---|
262 | |
---|
263 | LineVector(const Position& startpos, const Position& end) : Start(startpos), ToEnd(startpos, end) { ISVALID(*this); } |
---|
264 | LineVector(const Position& startpos, const Vector& to_end) : Start(startpos), ToEnd(to_end) { ISVALID(*this); } |
---|
265 | LineVector(double X1, double Y1, double X2, double Y2) : Start(X1, Y1), ToEnd(X2-X1, Y2-Y1) { ISVALID(*this); } |
---|
266 | explicit LineVector(const AW_screen_area& r, AW_screen_area_conversion_mode mode) { |
---|
267 | switch (mode) { |
---|
268 | case INCLUSIVE_OUTLINE: |
---|
269 | Start = Position(r.l, r.t); |
---|
270 | ToEnd = Vector(r.r-r.l+1, r.b-r.t+1); |
---|
271 | break; |
---|
272 | case UPPER_LEFT_OUTLINE: |
---|
273 | Start = Position(r.l, r.t); |
---|
274 | ToEnd = Vector(r.r-r.l, r.b-r.t); |
---|
275 | break; |
---|
276 | } |
---|
277 | ISVALID(*this); |
---|
278 | } |
---|
279 | explicit LineVector(const AW_world& r) : Start(r.l, r.t), ToEnd(r.r-r.l, r.b-r.t) { ISVALID(*this); } |
---|
280 | LineVector() {} |
---|
281 | |
---|
282 | const Vector& line_vector() const { return ToEnd; } |
---|
283 | const Position& start() const { return Start; } |
---|
284 | Position head() const { return Start+ToEnd; } |
---|
285 | |
---|
286 | Position centroid() const { return Start+ToEnd*0.5; } |
---|
287 | double length() const { return line_vector().length(); } |
---|
288 | bool has_length() const { return line_vector().has_length(); } |
---|
289 | |
---|
290 | const double& xpos() const { return Start.xpos(); } |
---|
291 | const double& ypos() const { return Start.ypos(); } |
---|
292 | |
---|
293 | void move(const Vector& movement) { Start += movement; } |
---|
294 | void moveTo(const Position& pos) { Start = pos; } |
---|
295 | |
---|
296 | LineVector reverse() const { return LineVector(head(), Vector(ToEnd).neg()); } |
---|
297 | }; |
---|
298 | |
---|
299 | Position crosspoint(const LineVector& l1, const LineVector& l2, double& factor_l1, double& factor_l2); |
---|
300 | Position nearest_linepoint(const Position& pos, const LineVector& line, double& factor); |
---|
301 | inline Position nearest_linepoint(const Position& pos, const LineVector& line) { double dummy; return nearest_linepoint(pos, line, dummy); } |
---|
302 | inline double Distance(const Position& pos, const LineVector& line) { return Distance(pos, nearest_linepoint(pos, line)); } |
---|
303 | |
---|
304 | inline bool is_vertical(const LineVector& line) { return is_vertical(line.line_vector()); } |
---|
305 | inline bool is_horizontal(const LineVector& line) { return is_horizontal(line.line_vector()); } |
---|
306 | inline bool nearlyEqual(const LineVector& L1, const LineVector& L2) { |
---|
307 | return |
---|
308 | nearlyEqual(L1.line_vector(), L2.line_vector()) && |
---|
309 | nearlyEqual(L1.start(), L2.start()); |
---|
310 | } |
---|
311 | |
---|
312 | // --------------------- |
---|
313 | // a rectangle |
---|
314 | |
---|
315 | class Rectangle : public LineVector { // the LineVector describes one corner and the diagonal |
---|
316 | public: |
---|
317 | explicit Rectangle(const LineVector& Diagonal) : LineVector(Diagonal) { standardize(); } |
---|
318 | Rectangle(const Position& corner, const Position& opposite_corner) : LineVector(corner, opposite_corner) { standardize(); } |
---|
319 | Rectangle(const Position& corner, const Vector& to_opposite_corner) : LineVector(corner, to_opposite_corner) { standardize(); } |
---|
320 | Rectangle(double X1, double Y1, double X2, double Y2) : LineVector(X1, Y1, X2, Y2) { standardize(); } |
---|
321 | explicit Rectangle(const AW_screen_area& r, AW_screen_area_conversion_mode mode) : LineVector(r, mode) { standardize(); } |
---|
322 | explicit Rectangle(const AW_world& r) : LineVector(r) { standardize(); } |
---|
323 | Rectangle() {}; |
---|
324 | |
---|
325 | const Vector& diagonal() const { return line_vector(); } |
---|
326 | |
---|
327 | const Position& upper_left_corner() const { return start(); } |
---|
328 | Position lower_left_corner() const { return Position(start().xpos(), start().ypos()+line_vector().y()); } |
---|
329 | Position upper_right_corner() const { return Position(start().xpos()+line_vector().x(), start().ypos()); } |
---|
330 | Position lower_right_corner() const { return head(); } |
---|
331 | |
---|
332 | double left() const { return upper_left_corner().xpos(); } |
---|
333 | double top() const { return upper_left_corner().ypos(); } |
---|
334 | double right() const { return lower_right_corner().xpos(); } |
---|
335 | double bottom() const { return lower_right_corner().ypos(); } |
---|
336 | |
---|
337 | double width() const { return diagonal().x(); } |
---|
338 | double height() const { return diagonal().y(); } |
---|
339 | |
---|
340 | LineVector upper_edge() const { return LineVector(start(), Vector(line_vector().x(), 0)); } |
---|
341 | LineVector left_edge() const { return LineVector(start(), Vector(0, line_vector().y())); } |
---|
342 | LineVector lower_edge() const { return LineVector(head(), Vector(-line_vector().x(), 0)); } |
---|
343 | LineVector right_edge() const { return LineVector(head(), Vector(0, -line_vector().y())); } |
---|
344 | |
---|
345 | LineVector horizontal_extent() const { return LineVector(left_edge().centroid(), Vector(width(), 0.0)); } |
---|
346 | LineVector vertical_extent() const { return LineVector(upper_edge().centroid(), Vector(0.0, height())); } |
---|
347 | |
---|
348 | LineVector bigger_extent() const { return width()>height() ? horizontal_extent() : vertical_extent(); } |
---|
349 | LineVector smaller_extent() const { return width()<height() ? horizontal_extent() : vertical_extent(); } |
---|
350 | |
---|
351 | void standardize() { LineVector::standardize(); } |
---|
352 | |
---|
353 | bool contains(const Position& pos) const { return pos.is_between(upper_left_corner(), lower_right_corner()); } |
---|
354 | bool contains(const LineVector& lvec) const { return contains(lvec.start()) && contains(lvec.head()); } |
---|
355 | |
---|
356 | bool distinct_from(const Rectangle& rect) const { |
---|
357 | // returns false for adjacent rectangles (even if they only share one corner) |
---|
358 | return |
---|
359 | top() > rect.bottom() || |
---|
360 | rect.top() > bottom() || |
---|
361 | left() > rect.right() || |
---|
362 | rect.left() > right(); |
---|
363 | } |
---|
364 | bool overlaps_with(const Rectangle& rect) const { return !distinct_from(rect); } |
---|
365 | |
---|
366 | Rectangle intersect_with(const Rectangle& rect) const { |
---|
367 | aw_assert(overlaps_with(rect)); |
---|
368 | return Rectangle(Rectangle(upper_left_corner(), rect.upper_left_corner()).lower_right_corner(), |
---|
369 | Rectangle(lower_right_corner(), rect.lower_right_corner()).upper_left_corner()); |
---|
370 | } |
---|
371 | |
---|
372 | Rectangle bounding_box(const Rectangle& rect) const { |
---|
373 | return Rectangle(Rectangle(upper_left_corner(), rect.upper_left_corner()).upper_left_corner(), |
---|
374 | Rectangle(lower_right_corner(), rect.lower_right_corner()).lower_right_corner()); |
---|
375 | } |
---|
376 | Rectangle bounding_box(const Position& pos) const { |
---|
377 | return Rectangle(Rectangle(upper_left_corner(), pos).upper_left_corner(), |
---|
378 | Rectangle(lower_right_corner(), pos).lower_right_corner()); |
---|
379 | } |
---|
380 | |
---|
381 | double surface() const { return width()*height(); } |
---|
382 | }; |
---|
383 | |
---|
384 | inline Rectangle bounding_box(const Rectangle& r1, const Rectangle& r2) { return r1.bounding_box(r2); } |
---|
385 | |
---|
386 | inline Rectangle bounding_box(const Rectangle& rect, const LineVector& line) { return rect.bounding_box(Rectangle(line)); } |
---|
387 | inline Rectangle bounding_box(const LineVector& line, const Rectangle& rect) { return rect.bounding_box(Rectangle(line)); } |
---|
388 | |
---|
389 | inline Rectangle bounding_box(const LineVector& l1, const LineVector& l2) { return Rectangle(l1).bounding_box(Rectangle(l2)); } |
---|
390 | |
---|
391 | inline Rectangle bounding_box(const Rectangle& rect, const Position& pos) { return rect.bounding_box(pos); } |
---|
392 | inline Rectangle bounding_box(const Position& pos, const Rectangle& rect) { return rect.bounding_box(pos); } |
---|
393 | |
---|
394 | inline Rectangle bounding_box(const LineVector& line, const Position& pos) { return Rectangle(line).bounding_box(pos); } |
---|
395 | inline Rectangle bounding_box(const Position& pos, const LineVector& line) { return Rectangle(line).bounding_box(pos); } |
---|
396 | |
---|
397 | inline Rectangle bounding_box(const Position& p1, const Position& p2) { return Rectangle(p1, p2); } |
---|
398 | |
---|
399 | |
---|
400 | // ------------------------------------------------------------------ |
---|
401 | // class angle represents an angle using a normalized vector |
---|
402 | |
---|
403 | class Angle { |
---|
404 | mutable Vector Normal; // the normal vector representing the angle (x = cos(angle), y = sin(angle)) |
---|
405 | mutable double Radian; // the radian of the angle |
---|
406 | |
---|
407 | void recalcRadian() const; |
---|
408 | void recalcNormal() const; |
---|
409 | |
---|
410 | public: |
---|
411 | bool valid() const { return Normal.valid() && !is_nan_or_inf(Radian); } |
---|
412 | |
---|
413 | static const double rad2deg; |
---|
414 | static const double deg2rad; |
---|
415 | |
---|
416 | explicit Angle(double Radian_) : Radian(Radian_) { recalcNormal(); ISVALID(*this); } |
---|
417 | Angle(double x, double y) : Normal(x, y) { Normal.normalize(); recalcRadian(); ISVALID(*this); } |
---|
418 | explicit Angle(const Vector& v) : Normal(v) { Normal.normalize(); recalcRadian(); ISVALID(*this); } |
---|
419 | Angle(const Vector& n, double r) : Normal(n), Radian(r) { aw_assert(n.is_normalized()); ISVALID(*this); } |
---|
420 | Angle(const Position& p1, const Position& p2) : Normal(p1, p2) { Normal.normalize(); recalcRadian(); ISVALID(*this); } |
---|
421 | Angle() : Radian(NAN) {} // default is not an angle |
---|
422 | |
---|
423 | Angle& operator = (const Angle& other) { Normal = other.Normal; Radian = other.Radian; return *this; } |
---|
424 | Angle& operator = (const Vector& vec) { Normal = vec; Normal.normalize(); recalcRadian(); return *this; } |
---|
425 | |
---|
426 | void fixRadian() const { // force radian into range [0, 2*M_PI[ |
---|
427 | while (Radian<0.0) Radian += 2*M_PI; |
---|
428 | while (Radian >= 2*M_PI) Radian -= 2*M_PI; |
---|
429 | } |
---|
430 | |
---|
431 | const double& radian() const { fixRadian(); return Radian; } |
---|
432 | double degrees() const { fixRadian(); return rad2deg*Radian; } |
---|
433 | const Vector& normal() const { return Normal; } |
---|
434 | |
---|
435 | const double& sin() const { return Normal.y(); } |
---|
436 | const double& cos() const { return Normal.x(); } |
---|
437 | |
---|
438 | Angle& operator += (const Angle& o) { |
---|
439 | Radian += o.Radian; |
---|
440 | |
---|
441 | double norm = normal().length()*o.normal().length(); |
---|
442 | if (nearlyEqual(norm, 1)) { // fast method |
---|
443 | Vector newNormal(cos()*o.cos() - sin()*o.sin(), |
---|
444 | sin()*o.cos() + cos()*o.sin()); |
---|
445 | aw_assert(newNormal.is_normalized()); |
---|
446 | Normal = newNormal; |
---|
447 | } |
---|
448 | else { |
---|
449 | recalcNormal(); |
---|
450 | } |
---|
451 | return *this; |
---|
452 | } |
---|
453 | Angle& operator -= (const Angle& o) { |
---|
454 | Radian -= o.Radian; |
---|
455 | |
---|
456 | double norm = normal().length()*o.normal().length(); |
---|
457 | if (nearlyEqual(norm, 1)) { // fast method |
---|
458 | Vector newNormal(cos()*o.cos() + sin()*o.sin(), |
---|
459 | sin()*o.cos() - cos()*o.sin()); |
---|
460 | aw_assert(newNormal.is_normalized()); |
---|
461 | |
---|
462 | Normal = newNormal; |
---|
463 | } |
---|
464 | else { |
---|
465 | recalcNormal(); |
---|
466 | } |
---|
467 | return *this; |
---|
468 | } |
---|
469 | |
---|
470 | Angle& operator *= (const double& fact) { |
---|
471 | fixRadian(); |
---|
472 | Radian *= fact; |
---|
473 | recalcNormal(); |
---|
474 | return *this; |
---|
475 | } |
---|
476 | |
---|
477 | Angle& rotate90deg() { Normal.rotate90deg(); Radian += 0.5*M_PI; return *this; } |
---|
478 | Angle& rotate180deg() { Normal.rotate180deg(); Radian += M_PI; return *this; } |
---|
479 | Angle& rotate270deg() { Normal.rotate270deg(); Radian += 1.5*M_PI; return *this; } |
---|
480 | |
---|
481 | Angle operator-() const { return Angle(Vector(Normal).negy(), 2*M_PI-Radian); } // unary minus |
---|
482 | }; |
---|
483 | |
---|
484 | inline Angle operator+(const Angle& a1, const Angle& a2) { return Angle(a1) += a2; } |
---|
485 | inline Angle operator-(const Angle& a1, const Angle& a2) { return Angle(a1) -= a2; } |
---|
486 | |
---|
487 | inline Angle operator*(const Angle& a, const double& fact) { return Angle(a) *= fact; } |
---|
488 | inline Angle operator/(const Angle& a, const double& divi) { return Angle(a) *= (1.0/divi); } |
---|
489 | |
---|
490 | // --------------------- |
---|
491 | // some helpers |
---|
492 | |
---|
493 | // pythagoras: |
---|
494 | |
---|
495 | inline double hypotenuse(double cath1, double cath2) { return sqrt(cath1*cath1 + cath2*cath2); } |
---|
496 | inline double cathetus(double hypotenuse, double cathetus) { |
---|
497 | aw_assert(hypotenuse>cathetus); |
---|
498 | return sqrt(hypotenuse*hypotenuse - cathetus*cathetus); |
---|
499 | } |
---|
500 | |
---|
501 | #if defined(DEBUG) |
---|
502 | // don't use these in release code - they are only approximations! |
---|
503 | |
---|
504 | // test whether two doubles are "equal" (slow - use for assertions only!) |
---|
505 | inline bool are_equal(const double& d1, const double& d2) { |
---|
506 | double diff = std::abs(d1-d2); |
---|
507 | return diff < 0.000001; |
---|
508 | } |
---|
509 | |
---|
510 | inline bool are_orthographic(const Vector& v1, const Vector& v2) { // orthogonal (dt.) |
---|
511 | return are_equal(scalarProduct(v1, v2), 0); |
---|
512 | } |
---|
513 | |
---|
514 | #endif // DEBUG |
---|
515 | |
---|
516 | inline bool isOrigin(const Position& p) { |
---|
517 | return p.xpos() == 0 && p.ypos() == 0; |
---|
518 | } |
---|
519 | |
---|
520 | #if defined(DEBUG) |
---|
521 | inline void aw_dump(const double& p, const char *varname) { |
---|
522 | fprintf(stderr, "%s=%f", varname, p); |
---|
523 | } |
---|
524 | inline void aw_dump(const Position& p, const char *varname) { |
---|
525 | fprintf(stderr, "Position %s={ ", varname); |
---|
526 | aw_dump(p.xpos(), "x"); fputs(", ", stderr); |
---|
527 | aw_dump(p.ypos(), "y"); fputs(" }", stderr); |
---|
528 | } |
---|
529 | inline void aw_dump(const Vector& v, const char *varname) { |
---|
530 | fprintf(stderr, "Vector %s={ ", varname); |
---|
531 | aw_dump(v.x(), "x"); fputs(", ", stderr); |
---|
532 | aw_dump(v.y(), "y"); fputs(" }", stderr); |
---|
533 | } |
---|
534 | inline void aw_dump(const LineVector& v, const char *varname) { |
---|
535 | fprintf(stderr, "LineVector %s={ ", varname); |
---|
536 | aw_dump(v.start(), "start"); fputs(", ", stderr); |
---|
537 | aw_dump(v.line_vector(), "line_vector"); fputs(" }", stderr); |
---|
538 | |
---|
539 | } |
---|
540 | inline void aw_dump(const Rectangle& r, const char *varname) { |
---|
541 | fprintf(stderr, "Rectangle %s={ ", varname); |
---|
542 | aw_dump(r.upper_left_corner(), "upper_left_corner"); fputs(", ", stderr); |
---|
543 | aw_dump(r.lower_right_corner(), "lower_right_corner"); fputs(" }", stderr); |
---|
544 | } |
---|
545 | |
---|
546 | #define AW_DUMP(x) do { aw_dump(x, #x); fputc('\n', stderr); } while(0) |
---|
547 | |
---|
548 | #endif |
---|
549 | |
---|
550 | }; |
---|
551 | |
---|
552 | #else |
---|
553 | #error aw_position.hxx included twice |
---|
554 | #endif // AW_POSITION_HXX |
---|