1 | // ============================================================= // |
---|
2 | // // |
---|
3 | // File : CT_ntree.cxx // |
---|
4 | // Purpose : // |
---|
5 | // // |
---|
6 | // Institute of Microbiology (Technical University Munich) // |
---|
7 | // http://www.arb-home.de/ // |
---|
8 | // // |
---|
9 | // ============================================================= // |
---|
10 | |
---|
11 | #include "CT_ntree.hxx" |
---|
12 | #include <arbdbt.h> |
---|
13 | |
---|
14 | // Einen Binaerbaum erzeugen ueber einen Multitree |
---|
15 | |
---|
16 | static NT_NODE *ntree = NULp; |
---|
17 | |
---|
18 | |
---|
19 | const NT_NODE *ntree_get() { |
---|
20 | // returns the current ntree |
---|
21 | return ntree; |
---|
22 | } |
---|
23 | |
---|
24 | |
---|
25 | static NT_NODE *new_ntnode(PART*& p) { |
---|
26 | // build a new node and store the partition p in it |
---|
27 | NT_NODE *n = ARB_calloc<NT_NODE>(1); |
---|
28 | n->part = p; |
---|
29 | n->son_list = NULp; |
---|
30 | |
---|
31 | p = NULp; |
---|
32 | return n; |
---|
33 | } |
---|
34 | |
---|
35 | |
---|
36 | static void del_tree(NT_NODE *tree) { |
---|
37 | // delete the tree |
---|
38 | if (tree) { |
---|
39 | for (NSONS *nsonp = tree->son_list; nsonp;) { |
---|
40 | NSONS *nson_next = nsonp->next; |
---|
41 | del_tree(nsonp->node); |
---|
42 | free(nsonp); |
---|
43 | nsonp = nson_next; |
---|
44 | } |
---|
45 | tree->son_list = NULp; |
---|
46 | |
---|
47 | // now is leaf |
---|
48 | delete tree->part; |
---|
49 | tree->part = NULp; |
---|
50 | freenull(tree); |
---|
51 | } |
---|
52 | } |
---|
53 | |
---|
54 | |
---|
55 | void ntree_init(const PartitionSize *registry) { |
---|
56 | // Initialization of the tree |
---|
57 | arb_assert(!ntree); // forgot to call ntree_cleanup ? |
---|
58 | PART *root = registry->create_root(); |
---|
59 | ntree = new_ntnode(root); // Set root to completely filled partition |
---|
60 | } |
---|
61 | |
---|
62 | void ntree_cleanup() { |
---|
63 | // Destruct old tree |
---|
64 | del_tree(ntree); |
---|
65 | ntree = NULp; |
---|
66 | } |
---|
67 | |
---|
68 | #if 0 |
---|
69 | // test if the tree is already complete (all necessary partitions are inserted) |
---|
70 | static int ntree_cont(int len) { |
---|
71 | return ntree_count<len; |
---|
72 | } |
---|
73 | #endif |
---|
74 | |
---|
75 | int ntree_count_sons(const NT_NODE *tree) { |
---|
76 | int sons = 0; |
---|
77 | if (tree->son_list) { |
---|
78 | for (NSONS *node = tree->son_list; node; node = node->next) { |
---|
79 | sons++; |
---|
80 | } |
---|
81 | } |
---|
82 | return sons; |
---|
83 | } |
---|
84 | |
---|
85 | static void move_son(NT_NODE *f_node, NT_NODE *s_node, NSONS *nson) { |
---|
86 | // Move son from parent-sonlist to new sonlist |
---|
87 | // nson is pointer on element in parent-sonlist |
---|
88 | // sonlist is new sonlist where to move in |
---|
89 | |
---|
90 | // Move out of parent-sonlist |
---|
91 | |
---|
92 | if (nson == f_node->son_list) f_node->son_list = f_node->son_list->next; |
---|
93 | if (nson->prev) nson->prev->next = nson->next; |
---|
94 | if (nson->next) nson->next->prev = nson->prev; |
---|
95 | |
---|
96 | // Move in node-sonlist |
---|
97 | nson->next = s_node->son_list; |
---|
98 | nson->prev = NULp; |
---|
99 | |
---|
100 | if (s_node->son_list) s_node->son_list->prev = nson; |
---|
101 | s_node->son_list = nson; |
---|
102 | } |
---|
103 | |
---|
104 | |
---|
105 | |
---|
106 | static int ins_ntree(NT_NODE *tree, PART*& newpart) { |
---|
107 | /* Construct a multitree under the constraint, |
---|
108 | * that the final tree may result in a binary tree. |
---|
109 | * |
---|
110 | * To ensure this, it is important to follow two ideas: |
---|
111 | * |
---|
112 | * 1. a son only fits below a father |
---|
113 | * - if the father has all son-bits set AND |
---|
114 | * - the father is different from the son (so it is possible to add a brother) |
---|
115 | * |
---|
116 | * 2. brothers are distinct (i.e. they do not share any bits) |
---|
117 | */ |
---|
118 | |
---|
119 | // Tree is leaf |
---|
120 | if (!tree->son_list) { |
---|
121 | #if defined(DUMP_PART_INSERTION) |
---|
122 | fputs("ins_ntree part=", stdout); newpart->print(); |
---|
123 | #endif |
---|
124 | |
---|
125 | ARB_calloc(tree->son_list, 1); |
---|
126 | tree->son_list->node = new_ntnode(newpart); |
---|
127 | |
---|
128 | return 1; |
---|
129 | } |
---|
130 | |
---|
131 | arb_assert(newpart->is_subset_of(tree->part)); // @@@ should be invariant for entering this function (really ensured by caller?) |
---|
132 | |
---|
133 | // test if part fits under one son of tree. if so, recurse. |
---|
134 | for (NSONS *nsonp = tree->son_list; nsonp; nsonp=nsonp->next) { |
---|
135 | const PART *sonpart = nsonp->node->part; |
---|
136 | if (newpart->is_subset_of(sonpart)) { |
---|
137 | if (newpart->equals(sonpart)) return 0; // already inserted -> drop |
---|
138 | |
---|
139 | arb_assert(newpart->is_real_son_of(sonpart)); |
---|
140 | int res = ins_ntree(nsonp->node, newpart); |
---|
141 | arb_assert(contradicted(newpart, res)); |
---|
142 | return res; |
---|
143 | } |
---|
144 | } |
---|
145 | |
---|
146 | // Now we are sure 'newpart' is not a son (of any of my sons)! |
---|
147 | // -> Test whether it is a brother of a son |
---|
148 | // If it is neither brother nor son -> don't fit here |
---|
149 | for (NSONS *nsonp = tree->son_list; nsonp; nsonp=nsonp->next) { |
---|
150 | const PART *sonpart = nsonp->node->part; |
---|
151 | if (sonpart->overlaps_with(newpart)) { |
---|
152 | if (!sonpart->is_subset_of(newpart)) { |
---|
153 | arb_assert(newpart); |
---|
154 | return 0; |
---|
155 | } |
---|
156 | arb_assert(sonpart->is_real_son_of(newpart)); |
---|
157 | // accept if nsonp is son of newpart (will be pulled down below) |
---|
158 | } |
---|
159 | } |
---|
160 | |
---|
161 | #if defined(DUMP_PART_INSERTION) |
---|
162 | fputs("ins_ntree part=", stdout); newpart->print(); |
---|
163 | #endif |
---|
164 | |
---|
165 | // Okay, insert part here ... |
---|
166 | NT_NODE *newntnode = new_ntnode(newpart); |
---|
167 | |
---|
168 | // Move sons from parent-sonlist into the new sons sonlist |
---|
169 | { |
---|
170 | NSONS *nsonp = tree->son_list; |
---|
171 | while (nsonp) { |
---|
172 | NSONS *nsonp_next = nsonp->next; |
---|
173 | const PART *sonpart = nsonp->node->part; |
---|
174 | if (sonpart->is_subset_of(newntnode->part)) { |
---|
175 | arb_assert(sonpart->is_real_son_of(newntnode->part)); |
---|
176 | move_son(tree, newntnode, nsonp); |
---|
177 | } |
---|
178 | nsonp = nsonp_next; |
---|
179 | } |
---|
180 | } |
---|
181 | |
---|
182 | // insert nsons-elem in son-list of father |
---|
183 | { |
---|
184 | NSONS *new_son = ARB_calloc<NSONS>(1); |
---|
185 | |
---|
186 | new_son->node = newntnode; |
---|
187 | new_son->prev = NULp; |
---|
188 | new_son->next = tree->son_list; |
---|
189 | |
---|
190 | if (tree->son_list) tree->son_list->prev = new_son; |
---|
191 | tree->son_list = new_son; |
---|
192 | } |
---|
193 | |
---|
194 | arb_assert(!newpart); |
---|
195 | |
---|
196 | return 1; |
---|
197 | } |
---|
198 | |
---|
199 | |
---|
200 | |
---|
201 | void insert_ntree(PART*& part) { |
---|
202 | /* Insert a partition in the NTree. |
---|
203 | * |
---|
204 | * Tries both representations, normal and inverse partition, which |
---|
205 | * represent the two subtrees at both sides of one edge. |
---|
206 | * |
---|
207 | * If neither can be inserted, the partition gets dropped. |
---|
208 | */ |
---|
209 | |
---|
210 | arb_assert(part->is_valid()); |
---|
211 | |
---|
212 | bool firstCall = !ntree->son_list; |
---|
213 | if (firstCall) { |
---|
214 | part->set_len(part->get_len()/2); // insert as root-edge -> distribute length |
---|
215 | |
---|
216 | PART *inverse = part->clone(); |
---|
217 | inverse->invert(); |
---|
218 | |
---|
219 | ASSERT_RESULT(bool, true, ins_ntree(ntree, part)); |
---|
220 | ASSERT_RESULT(bool, true, ins_ntree(ntree, inverse)); |
---|
221 | |
---|
222 | arb_assert(!inverse); |
---|
223 | } |
---|
224 | else { |
---|
225 | if (!ins_ntree(ntree, part)) { |
---|
226 | part->invert(); |
---|
227 | if (!ins_ntree(ntree, part)) { |
---|
228 | #if defined(DUMP_PART_INSERTION) |
---|
229 | fputs("insert_ntree drops part=", stdout); part->print(); |
---|
230 | #endif |
---|
231 | delete part; // drop non-fitting partition |
---|
232 | part = NULp; |
---|
233 | } |
---|
234 | } |
---|
235 | } |
---|
236 | arb_assert(!part); |
---|
237 | } |
---|
238 | |
---|
239 | // -------------------------------------------------------------------------------- |
---|
240 | |
---|
241 | #if defined(NTREE_DEBUG_FUNCTIONS) |
---|
242 | |
---|
243 | inline void do_indent(int indent) { |
---|
244 | for (int i = 0; i<indent; ++i) fputc(' ', stdout); |
---|
245 | } |
---|
246 | |
---|
247 | void print_ntree(NT_NODE *tree, int indent) { |
---|
248 | // testfunction to print a NTree |
---|
249 | |
---|
250 | NSONS *nsonp; |
---|
251 | if (!tree) { |
---|
252 | do_indent(indent); |
---|
253 | fputs("tree is empty\n", stdout); |
---|
254 | return; |
---|
255 | } |
---|
256 | |
---|
257 | // print father |
---|
258 | do_indent(indent); |
---|
259 | fputs("(\n", stdout); |
---|
260 | |
---|
261 | indent++; |
---|
262 | |
---|
263 | do_indent(indent); |
---|
264 | tree->part->print(); |
---|
265 | |
---|
266 | // and sons |
---|
267 | for (nsonp=tree->son_list; nsonp; nsonp = nsonp->next) { |
---|
268 | print_ntree(nsonp->node, indent); |
---|
269 | } |
---|
270 | |
---|
271 | indent--; |
---|
272 | |
---|
273 | do_indent(indent); |
---|
274 | fputs(")\n", stdout); |
---|
275 | } |
---|
276 | |
---|
277 | #define FAIL_IF_NOT_WELLFORMED |
---|
278 | |
---|
279 | #if defined(FAIL_IF_NOT_WELLFORMED) |
---|
280 | #define SHOW_FAILURE() arb_assert(0) |
---|
281 | #else |
---|
282 | #define SHOW_FAILURE() |
---|
283 | #endif |
---|
284 | |
---|
285 | bool is_well_formed(const NT_NODE *tree) { |
---|
286 | // checks whether |
---|
287 | // - tree has sons |
---|
288 | // - all sons are part of father |
---|
289 | // - all sons are distinct |
---|
290 | // - father is sum of sons |
---|
291 | |
---|
292 | int sons = ntree_count_sons(tree); |
---|
293 | bool well_formed = true; |
---|
294 | |
---|
295 | if (!sons) { |
---|
296 | if (tree->part->get_members() != 1) { // leafs should contain single species |
---|
297 | well_formed = false; |
---|
298 | SHOW_FAILURE(); |
---|
299 | } |
---|
300 | } |
---|
301 | else { |
---|
302 | arb_assert(tree->son_list); |
---|
303 | |
---|
304 | PART *pmerge = NULp; |
---|
305 | for (NSONS *nson = tree->son_list; nson; nson = nson->next) { |
---|
306 | PART *pson = nson->node->part; |
---|
307 | |
---|
308 | if (!pson->is_subset_of(tree->part)) { |
---|
309 | well_formed = false; |
---|
310 | SHOW_FAILURE(); // son is not a subset of father |
---|
311 | } |
---|
312 | if (pmerge) { |
---|
313 | if (pson->overlaps_with(pmerge)) { |
---|
314 | well_formed = false; |
---|
315 | SHOW_FAILURE(); // sons are not distinct |
---|
316 | } |
---|
317 | pmerge->add_members_from(pson); |
---|
318 | } |
---|
319 | else { |
---|
320 | pmerge = pson->clone(); |
---|
321 | } |
---|
322 | if (!is_well_formed(nson->node)) { |
---|
323 | well_formed = false; |
---|
324 | SHOW_FAILURE(); // son is not well formed |
---|
325 | } |
---|
326 | } |
---|
327 | arb_assert(pmerge); |
---|
328 | if (tree->part->differs(pmerge)) { |
---|
329 | well_formed = false; |
---|
330 | |
---|
331 | #if defined(FAIL_IF_NOT_WELLFORMED) |
---|
332 | printf("tree with %i sons {\n", sons); |
---|
333 | for (NSONS *nson = tree->son_list; nson; nson = nson->next) { |
---|
334 | PART *pson = nson->node->part; |
---|
335 | fputs(" pson =", stdout); pson->print(); |
---|
336 | } |
---|
337 | printf("} end of tree with %i sons\n", sons); |
---|
338 | |
---|
339 | fputs("tree part=", stdout); tree->part->print(); |
---|
340 | fputs("pmerge =", stdout); pmerge->print(); |
---|
341 | #endif |
---|
342 | SHOW_FAILURE(); // means: father is not same as sum of sons |
---|
343 | } |
---|
344 | delete pmerge; |
---|
345 | } |
---|
346 | return well_formed; |
---|
347 | } |
---|
348 | |
---|
349 | #endif |
---|
350 | |
---|