1 | #include <stdio.h> |
---|
2 | #include <stdlib.h> |
---|
3 | #include <string.h> |
---|
4 | #include <math.h> |
---|
5 | #include "clustalw.h" |
---|
6 | #define ENDALN 127 |
---|
7 | |
---|
8 | #define MAX(a,b) ((a)>(b)?(a):(b)) |
---|
9 | #define MIN(a,b) ((a)<(b)?(a):(b)) |
---|
10 | |
---|
11 | /* |
---|
12 | * Prototypes |
---|
13 | */ |
---|
14 | static lint pdiff(sint A,sint B,sint i,sint j,sint go1,sint go2); |
---|
15 | static lint prfscore(sint n, sint m); |
---|
16 | static sint gap_penalty1(sint i, sint j,sint k); |
---|
17 | static sint open_penalty1(sint i, sint j); |
---|
18 | static sint ext_penalty1(sint i, sint j); |
---|
19 | static sint gap_penalty2(sint i, sint j,sint k); |
---|
20 | static sint open_penalty2(sint i, sint j); |
---|
21 | static sint ext_penalty2(sint i, sint j); |
---|
22 | static void padd(sint k); |
---|
23 | static void pdel(sint k); |
---|
24 | static void palign(void); |
---|
25 | static void ptracepath(sint *alen); |
---|
26 | static void add_ggaps(void); |
---|
27 | static char * add_ggaps_mask(char *mask, int len, char *path1, char *path2); |
---|
28 | |
---|
29 | /* |
---|
30 | * Global variables |
---|
31 | */ |
---|
32 | extern double **tmat; |
---|
33 | extern float gap_open, gap_extend; |
---|
34 | extern float transition_weight; |
---|
35 | extern sint gap_pos1, gap_pos2; |
---|
36 | extern sint max_aa; |
---|
37 | extern sint nseqs; |
---|
38 | extern sint *seqlen_array; |
---|
39 | extern sint *seq_weight; |
---|
40 | extern sint debug; |
---|
41 | extern Boolean neg_matrix; |
---|
42 | extern sint mat_avscore; |
---|
43 | extern short blosum30mt[], blosum40mt[], blosum45mt[]; |
---|
44 | extern short blosum62mt2[], blosum80mt[]; |
---|
45 | extern short pam20mt[], pam60mt[]; |
---|
46 | extern short pam120mt[], pam160mt[], pam350mt[]; |
---|
47 | extern short gon40mt[], gon80mt[]; |
---|
48 | extern short gon120mt[], gon160mt[], gon250mt[], gon350mt[]; |
---|
49 | extern short clustalvdnamt[],swgapdnamt[]; |
---|
50 | extern short idmat[]; |
---|
51 | extern short usermat[]; |
---|
52 | extern short userdnamat[]; |
---|
53 | extern Boolean user_series; |
---|
54 | extern UserMatSeries matseries; |
---|
55 | |
---|
56 | extern short def_dna_xref[],def_aa_xref[],dna_xref[],aa_xref[]; |
---|
57 | extern sint max_aln_length; |
---|
58 | extern Boolean distance_tree; |
---|
59 | extern Boolean dnaflag; |
---|
60 | extern char mtrxname[]; |
---|
61 | extern char dnamtrxname[]; |
---|
62 | extern char **seq_array; |
---|
63 | extern char *amino_acid_codes; |
---|
64 | extern char *gap_penalty_mask1,*gap_penalty_mask2; |
---|
65 | extern char *sec_struct_mask1,*sec_struct_mask2; |
---|
66 | extern sint struct_penalties1, struct_penalties2; |
---|
67 | extern Boolean use_ss1, use_ss2; |
---|
68 | extern Boolean endgappenalties; |
---|
69 | |
---|
70 | static sint print_ptr,last_print; |
---|
71 | static sint *displ; |
---|
72 | |
---|
73 | static char **alignment; |
---|
74 | static sint *aln_len; |
---|
75 | static sint *aln_weight; |
---|
76 | static char *aln_path1, *aln_path2; |
---|
77 | static sint alignment_len; |
---|
78 | static sint **profile1, **profile2; |
---|
79 | static lint *HH, *DD, *RR, *SS; |
---|
80 | static lint *gS; |
---|
81 | static sint matrix[NUMRES][NUMRES]; |
---|
82 | static sint nseqs1, nseqs2; |
---|
83 | static sint prf_length1, prf_length2; |
---|
84 | static sint *gaps; |
---|
85 | static sint gapcoef1,gapcoef2; |
---|
86 | static sint lencoef1,lencoef2; |
---|
87 | static Boolean switch_profiles; |
---|
88 | |
---|
89 | lint prfalign(sint *group, sint *aligned) |
---|
90 | { |
---|
91 | |
---|
92 | static Boolean found; |
---|
93 | static Boolean negative; |
---|
94 | static Boolean error_given=FALSE; |
---|
95 | static sint i, j, count = 0; |
---|
96 | static sint NumSeq; |
---|
97 | static sint len, len1, len2, is, minlen; |
---|
98 | static sint se1, se2, sb1, sb2; |
---|
99 | static sint maxres; |
---|
100 | static sint int_scale; |
---|
101 | static short *matptr; |
---|
102 | static short *mat_xref; |
---|
103 | static char c; |
---|
104 | static lint score; |
---|
105 | static float scale; |
---|
106 | static double logmin,logdiff; |
---|
107 | static double pcid; |
---|
108 | |
---|
109 | |
---|
110 | alignment = (char **) ckalloc( nseqs * sizeof (char *) ); |
---|
111 | aln_len = (sint *) ckalloc( nseqs * sizeof (sint) ); |
---|
112 | aln_weight = (sint *) ckalloc( nseqs * sizeof (sint) ); |
---|
113 | |
---|
114 | for (i=0;i<nseqs;i++) |
---|
115 | if (aligned[i+1] == 0) group[i+1] = 0; |
---|
116 | |
---|
117 | nseqs1 = nseqs2 = 0; |
---|
118 | for (i=0;i<nseqs;i++) |
---|
119 | { |
---|
120 | if (group[i+1] == 1) nseqs1++; |
---|
121 | else if (group[i+1] == 2) nseqs2++; |
---|
122 | } |
---|
123 | |
---|
124 | if ((nseqs1 == 0) || (nseqs2 == 0)) return(0.0); |
---|
125 | |
---|
126 | if (nseqs2 > nseqs1) |
---|
127 | { |
---|
128 | switch_profiles = TRUE; |
---|
129 | for (i=0;i<nseqs;i++) |
---|
130 | { |
---|
131 | if (group[i+1] == 1) group[i+1] = 2; |
---|
132 | else if (group[i+1] == 2) group[i+1] = 1; |
---|
133 | } |
---|
134 | } |
---|
135 | else |
---|
136 | switch_profiles = FALSE; |
---|
137 | |
---|
138 | int_scale = 100; |
---|
139 | |
---|
140 | /* |
---|
141 | calculate the mean of the sequence pc identities between the two groups |
---|
142 | */ |
---|
143 | count = 0; |
---|
144 | pcid = 0.0; |
---|
145 | negative=neg_matrix; |
---|
146 | for (i=0;i<nseqs;i++) |
---|
147 | { |
---|
148 | if (group[i+1] == 1) |
---|
149 | for (j=0;j<nseqs;j++) |
---|
150 | if (group[j+1] == 2) |
---|
151 | { |
---|
152 | count++; |
---|
153 | pcid += tmat[i+1][j+1]; |
---|
154 | } |
---|
155 | } |
---|
156 | |
---|
157 | pcid = pcid/(float)count; |
---|
158 | |
---|
159 | if (debug > 0) fprintf(stdout,"mean tmat %3.1f\n", pcid); |
---|
160 | |
---|
161 | |
---|
162 | /* |
---|
163 | Make the first profile. |
---|
164 | */ |
---|
165 | prf_length1 = 0; |
---|
166 | for (i=0;i<nseqs;i++) |
---|
167 | if (group[i+1] == 1) |
---|
168 | if(seqlen_array[i+1]>prf_length1) prf_length1=seqlen_array[i+1]; |
---|
169 | |
---|
170 | nseqs1 = 0; |
---|
171 | if (debug>0) fprintf(stdout,"sequences profile 1:\n"); |
---|
172 | for (i=0;i<nseqs;i++) |
---|
173 | { |
---|
174 | if (group[i+1] == 1) |
---|
175 | { |
---|
176 | if (debug>0) { |
---|
177 | extern char **names; |
---|
178 | fprintf(stdout,"%s\n",names[i+1]); |
---|
179 | } |
---|
180 | len = seqlen_array[i+1]; |
---|
181 | alignment[nseqs1] = (char *) ckalloc( (prf_length1+2) * sizeof (char) ); |
---|
182 | for (j=0;j<len;j++) |
---|
183 | alignment[nseqs1][j] = seq_array[i+1][j+1]; |
---|
184 | for(j=len;j<prf_length1;j++) |
---|
185 | alignment[nseqs1][j]=gap_pos1; |
---|
186 | alignment[nseqs1][j] = ENDALN; |
---|
187 | aln_len[nseqs1] = prf_length1; |
---|
188 | aln_weight[nseqs1] = seq_weight[i]; |
---|
189 | nseqs1++; |
---|
190 | } |
---|
191 | } |
---|
192 | |
---|
193 | /* |
---|
194 | Make the second profile. |
---|
195 | */ |
---|
196 | prf_length2 = 0; |
---|
197 | for (i=0;i<nseqs;i++) |
---|
198 | if (group[i+1] == 2) |
---|
199 | if(seqlen_array[i+1]>prf_length2) prf_length2=seqlen_array[i+1]; |
---|
200 | |
---|
201 | nseqs2 = 0; |
---|
202 | if (debug>0) fprintf(stdout,"sequences profile 2:\n"); |
---|
203 | for (i=0;i<nseqs;i++) |
---|
204 | { |
---|
205 | if (group[i+1] == 2) |
---|
206 | { |
---|
207 | if (debug>0) { |
---|
208 | extern char **names; |
---|
209 | fprintf(stdout,"%s\n",names[i+1]); |
---|
210 | } |
---|
211 | len = seqlen_array[i+1]; |
---|
212 | alignment[nseqs1+nseqs2] = |
---|
213 | (char *) ckalloc( (prf_length2+2) * sizeof (char) ); |
---|
214 | for (j=0;j<len;j++) |
---|
215 | alignment[nseqs1+nseqs2][j] = seq_array[i+1][j+1]; |
---|
216 | for(j=len;j<prf_length2;j++) |
---|
217 | alignment[nseqs1+nseqs2][j]=gap_pos1; |
---|
218 | alignment[nseqs1+nseqs2][j] = ENDALN; |
---|
219 | aln_len[nseqs1+nseqs2] = prf_length2; |
---|
220 | aln_weight[nseqs1+nseqs2] = seq_weight[i]; |
---|
221 | nseqs2++; |
---|
222 | } |
---|
223 | } |
---|
224 | |
---|
225 | max_aln_length = prf_length1 + prf_length2+2; |
---|
226 | |
---|
227 | /* |
---|
228 | calculate real length of profiles - removing gaps! |
---|
229 | */ |
---|
230 | len1=0; |
---|
231 | for (i=0;i<nseqs1;i++) |
---|
232 | { |
---|
233 | is=0; |
---|
234 | for (j=0; j<MIN(aln_len[i],prf_length1); j++) |
---|
235 | { |
---|
236 | c = alignment[i][j]; |
---|
237 | if ((c !=gap_pos1) && (c != gap_pos2)) is++; |
---|
238 | } |
---|
239 | len1+=is; |
---|
240 | } |
---|
241 | len1/=(float)nseqs1; |
---|
242 | |
---|
243 | len2=0; |
---|
244 | for (i=nseqs1;i<nseqs2+nseqs1;i++) |
---|
245 | { |
---|
246 | is=0; |
---|
247 | for (j=0; j<MIN(aln_len[i],prf_length2); j++) |
---|
248 | { |
---|
249 | c = alignment[i][j]; |
---|
250 | if ((c !=gap_pos1) && (c != gap_pos2)) is++; |
---|
251 | } |
---|
252 | len2+=is; |
---|
253 | } |
---|
254 | len2/=(float)nseqs2; |
---|
255 | |
---|
256 | if (dnaflag) |
---|
257 | { |
---|
258 | scale=1.0; |
---|
259 | if (strcmp(dnamtrxname, "iub") == 0) |
---|
260 | { |
---|
261 | matptr = swgapdnamt; |
---|
262 | mat_xref = def_dna_xref; |
---|
263 | } |
---|
264 | else if (strcmp(dnamtrxname, "clustalw") == 0) |
---|
265 | { |
---|
266 | matptr = clustalvdnamt; |
---|
267 | mat_xref = def_dna_xref; |
---|
268 | scale=0.66; |
---|
269 | } |
---|
270 | else |
---|
271 | { |
---|
272 | matptr = userdnamat; |
---|
273 | mat_xref = dna_xref; |
---|
274 | } |
---|
275 | maxres = get_matrix(matptr, mat_xref, matrix, neg_matrix, int_scale); |
---|
276 | if (maxres == 0) return((sint)-1); |
---|
277 | /* |
---|
278 | matrix[0][4]=transition_weight*matrix[0][0]; |
---|
279 | matrix[4][0]=transition_weight*matrix[0][0]; |
---|
280 | matrix[2][11]=transition_weight*matrix[0][0]; |
---|
281 | matrix[11][2]=transition_weight*matrix[0][0]; |
---|
282 | matrix[2][12]=transition_weight*matrix[0][0]; |
---|
283 | matrix[12][2]=transition_weight*matrix[0][0]; |
---|
284 | */ |
---|
285 | /* fix suggested by Chanan Rubin at Compugen */ |
---|
286 | matrix[mat_xref[0]][mat_xref[4]]=transition_weight*matrix[0][0]; |
---|
287 | matrix[mat_xref[4]][mat_xref[0]]=transition_weight*matrix[0][0]; |
---|
288 | matrix[mat_xref[2]][mat_xref[11]]=transition_weight*matrix[0][0]; |
---|
289 | matrix[mat_xref[11]][mat_xref[2]]=transition_weight*matrix[0][0]; |
---|
290 | matrix[mat_xref[2]][mat_xref[12]]=transition_weight*matrix[0][0]; |
---|
291 | matrix[mat_xref[12]][mat_xref[2]]=transition_weight*matrix[0][0]; |
---|
292 | |
---|
293 | gapcoef1 = gapcoef2 = 100.0 * gap_open *scale; |
---|
294 | lencoef1 = lencoef2 = 100.0 * gap_extend *scale; |
---|
295 | } |
---|
296 | else |
---|
297 | { |
---|
298 | if(len1==0 || len2==0) { |
---|
299 | logmin=1.0; |
---|
300 | logdiff=1.0; |
---|
301 | } |
---|
302 | else { |
---|
303 | minlen = MIN(len1,len2); |
---|
304 | logmin = 1.0/log10((double)minlen); |
---|
305 | if (len2<len1) |
---|
306 | logdiff = 1.0+0.5*log10((double)((float)len2/(float)len1)); |
---|
307 | else if (len1<len2) |
---|
308 | logdiff = 1.0+0.5*log10((double)((float)len1/(float)len2)); |
---|
309 | else logdiff=1.0; |
---|
310 | if(logdiff<0.9) logdiff=0.9; |
---|
311 | } |
---|
312 | if(debug>0) fprintf(stdout,"%d %d logmin %f logdiff %f\n", |
---|
313 | (pint)len1,(pint)len2, logmin,logdiff); |
---|
314 | scale=0.75; |
---|
315 | if (strcmp(mtrxname, "blosum") == 0) |
---|
316 | { |
---|
317 | scale=0.75; |
---|
318 | if (negative || distance_tree == FALSE) matptr = blosum40mt; |
---|
319 | else if (pcid > 80.0) |
---|
320 | { |
---|
321 | matptr = blosum80mt; |
---|
322 | } |
---|
323 | else if (pcid > 60.0) |
---|
324 | { |
---|
325 | matptr = blosum62mt2; |
---|
326 | } |
---|
327 | else if (pcid > 40.0) |
---|
328 | { |
---|
329 | matptr = blosum45mt; |
---|
330 | } |
---|
331 | else if (pcid > 30.0) |
---|
332 | { |
---|
333 | scale=0.5; |
---|
334 | matptr = blosum45mt; |
---|
335 | } |
---|
336 | else if (pcid > 20.0) |
---|
337 | { |
---|
338 | scale=0.6; |
---|
339 | matptr = blosum45mt; |
---|
340 | } |
---|
341 | else |
---|
342 | { |
---|
343 | scale=0.6; |
---|
344 | matptr = blosum30mt; |
---|
345 | } |
---|
346 | mat_xref = def_aa_xref; |
---|
347 | |
---|
348 | } |
---|
349 | else if (strcmp(mtrxname, "pam") == 0) |
---|
350 | { |
---|
351 | scale=0.75; |
---|
352 | if (negative || distance_tree == FALSE) matptr = pam120mt; |
---|
353 | else if (pcid > 80.0) matptr = pam20mt; |
---|
354 | else if (pcid > 60.0) matptr = pam60mt; |
---|
355 | else if (pcid > 40.0) matptr = pam120mt; |
---|
356 | else matptr = pam350mt; |
---|
357 | mat_xref = def_aa_xref; |
---|
358 | } |
---|
359 | else if (strcmp(mtrxname, "gonnet") == 0) |
---|
360 | { |
---|
361 | scale/=2.0; |
---|
362 | if (negative || distance_tree == FALSE) matptr = gon250mt; |
---|
363 | else if (pcid > 35.0) |
---|
364 | { |
---|
365 | matptr = gon80mt; |
---|
366 | scale/=2.0; |
---|
367 | } |
---|
368 | else if (pcid > 25.0) |
---|
369 | { |
---|
370 | if(minlen<100) matptr = gon250mt; |
---|
371 | else matptr = gon120mt; |
---|
372 | } |
---|
373 | else |
---|
374 | { |
---|
375 | if(minlen<100) matptr = gon350mt; |
---|
376 | else matptr = gon160mt; |
---|
377 | } |
---|
378 | mat_xref = def_aa_xref; |
---|
379 | int_scale /= 10; |
---|
380 | } |
---|
381 | else if (strcmp(mtrxname, "id") == 0) |
---|
382 | { |
---|
383 | matptr = idmat; |
---|
384 | mat_xref = def_aa_xref; |
---|
385 | } |
---|
386 | else if(user_series) |
---|
387 | { |
---|
388 | matptr=NULL; |
---|
389 | found=FALSE; |
---|
390 | for(i=0;i<matseries.nmat;i++) |
---|
391 | if(pcid>=matseries.mat[i].llimit && pcid<=matseries.mat[i].ulimit) |
---|
392 | { |
---|
393 | j=i; |
---|
394 | found=TRUE; |
---|
395 | break; |
---|
396 | } |
---|
397 | if(found==FALSE) |
---|
398 | { |
---|
399 | if(!error_given) |
---|
400 | warning( |
---|
401 | "\nSeries matrix not found for sequence percent identity = %d.\n" |
---|
402 | "(Using first matrix in series as a default.)\n" |
---|
403 | "This alignment may not be optimal!\n" |
---|
404 | "SUGGESTION: Check your matrix series input file and try again.",(int)pcid); |
---|
405 | error_given=TRUE; |
---|
406 | j=0; |
---|
407 | } |
---|
408 | if (debug>0) fprintf(stdout,"pcid %d matrix %d\n",(pint)pcid,(pint)j+1); |
---|
409 | |
---|
410 | matptr = matseries.mat[j].matptr; |
---|
411 | mat_xref = matseries.mat[j].aa_xref; |
---|
412 | /* this gives a scale of 0.5 for pcid=llimit and 1.0 for pcid=ulimit */ |
---|
413 | scale=0.5+(pcid-matseries.mat[j].llimit)/((matseries.mat[j].ulimit-matseries.mat[j].llimit)*2.0); |
---|
414 | } |
---|
415 | else |
---|
416 | { |
---|
417 | matptr = usermat; |
---|
418 | mat_xref = aa_xref; |
---|
419 | } |
---|
420 | if(debug>0) fprintf(stdout,"pcid %3.1f scale %3.1f\n",pcid,scale); |
---|
421 | maxres = get_matrix(matptr, mat_xref, matrix, negative, int_scale); |
---|
422 | if (maxres == 0) |
---|
423 | { |
---|
424 | fprintf(stdout,"Error: matrix %s not found\n", mtrxname); |
---|
425 | return(-1); |
---|
426 | } |
---|
427 | |
---|
428 | if (negative) { |
---|
429 | gapcoef1 = gapcoef2 = 100.0 * (float)(gap_open); |
---|
430 | lencoef1 = lencoef2 = 100.0 * gap_extend; |
---|
431 | } |
---|
432 | else { |
---|
433 | if (mat_avscore <= 0) |
---|
434 | gapcoef1 = gapcoef2 = 100.0 * (float)(gap_open + logmin); |
---|
435 | else |
---|
436 | gapcoef1 = gapcoef2 = scale * mat_avscore * (float)(gap_open/(logdiff*logmin)); |
---|
437 | lencoef1 = lencoef2 = 100.0 * gap_extend; |
---|
438 | } |
---|
439 | } |
---|
440 | if (debug>0) |
---|
441 | { |
---|
442 | fprintf(stdout,"matavscore %d\n",mat_avscore); |
---|
443 | fprintf(stdout,"Gap Open1 %d Gap Open2 %d Gap Extend1 %d Gap Extend2 %d\n", |
---|
444 | (pint)gapcoef1,(pint)gapcoef2, (pint)lencoef1,(pint)lencoef2); |
---|
445 | fprintf(stdout,"Matrix %s\n", mtrxname); |
---|
446 | } |
---|
447 | |
---|
448 | profile1 = (sint **) ckalloc( (prf_length1+2) * sizeof (sint *) ); |
---|
449 | for(i=0; i<prf_length1+2; i++) |
---|
450 | profile1[i] = (sint *) ckalloc( (LENCOL+2) * sizeof(sint) ); |
---|
451 | |
---|
452 | profile2 = (sint **) ckalloc( (prf_length2+2) * sizeof (sint *) ); |
---|
453 | for(i=0; i<prf_length2+2; i++) |
---|
454 | profile2[i] = (sint *) ckalloc( (LENCOL+2) * sizeof(sint) ); |
---|
455 | |
---|
456 | /* |
---|
457 | calculate the Gap Coefficients. |
---|
458 | */ |
---|
459 | gaps = (sint *) ckalloc( (max_aln_length+1) * sizeof (sint) ); |
---|
460 | |
---|
461 | if (switch_profiles == FALSE) |
---|
462 | calc_gap_coeff(alignment, gaps, profile1, (struct_penalties1 && use_ss1), gap_penalty_mask1, |
---|
463 | (sint)0, nseqs1, prf_length1, gapcoef1, lencoef1); |
---|
464 | else |
---|
465 | calc_gap_coeff(alignment, gaps, profile1, (struct_penalties2 && use_ss2), gap_penalty_mask2, |
---|
466 | (sint)0, nseqs1, prf_length1, gapcoef1, lencoef1); |
---|
467 | /* |
---|
468 | calculate the profile matrix. |
---|
469 | */ |
---|
470 | calc_prf1(profile1, alignment, gaps, matrix, |
---|
471 | aln_weight, prf_length1, (sint)0, nseqs1); |
---|
472 | |
---|
473 | if (debug>4) |
---|
474 | { |
---|
475 | extern char *amino_acid_codes; |
---|
476 | for (j=0;j<=max_aa;j++) |
---|
477 | fprintf(stdout,"%c ", amino_acid_codes[j]); |
---|
478 | fprintf(stdout,"\n"); |
---|
479 | for (i=0;i<prf_length1;i++) |
---|
480 | { |
---|
481 | for (j=0;j<=max_aa;j++) |
---|
482 | fprintf(stdout,"%d ", (pint)profile1[i+1][j]); |
---|
483 | fprintf(stdout,"%d ", (pint)profile1[i+1][gap_pos1]); |
---|
484 | fprintf(stdout,"%d ", (pint)profile1[i+1][gap_pos2]); |
---|
485 | fprintf(stdout,"%d %d\n",(pint)profile1[i+1][GAPCOL],(pint)profile1[i+1][LENCOL]); |
---|
486 | } |
---|
487 | } |
---|
488 | |
---|
489 | /* |
---|
490 | calculate the Gap Coefficients. |
---|
491 | */ |
---|
492 | |
---|
493 | if (switch_profiles == FALSE) |
---|
494 | calc_gap_coeff(alignment, gaps, profile2, (struct_penalties2 && use_ss2), gap_penalty_mask2, |
---|
495 | nseqs1, nseqs1+nseqs2, prf_length2, gapcoef2, lencoef2); |
---|
496 | else |
---|
497 | calc_gap_coeff(alignment, gaps, profile2, (struct_penalties1 && use_ss1), gap_penalty_mask1, |
---|
498 | nseqs1, nseqs1+nseqs2, prf_length2, gapcoef2, lencoef2); |
---|
499 | /* |
---|
500 | calculate the profile matrix. |
---|
501 | */ |
---|
502 | calc_prf2(profile2, alignment, aln_weight, |
---|
503 | prf_length2, nseqs1, nseqs1+nseqs2); |
---|
504 | |
---|
505 | aln_weight=ckfree((void *)aln_weight); |
---|
506 | |
---|
507 | if (debug>4) |
---|
508 | { |
---|
509 | extern char *amino_acid_codes; |
---|
510 | for (j=0;j<=max_aa;j++) |
---|
511 | fprintf(stdout,"%c ", amino_acid_codes[j]); |
---|
512 | fprintf(stdout,"\n"); |
---|
513 | for (i=0;i<prf_length2;i++) |
---|
514 | { |
---|
515 | for (j=0;j<=max_aa;j++) |
---|
516 | fprintf(stdout,"%d ", (pint)profile2[i+1][j]); |
---|
517 | fprintf(stdout,"%d ", (pint)profile2[i+1][gap_pos1]); |
---|
518 | fprintf(stdout,"%d ", (pint)profile2[i+1][gap_pos2]); |
---|
519 | fprintf(stdout,"%d %d\n",(pint)profile2[i+1][GAPCOL],(pint)profile2[i+1][LENCOL]); |
---|
520 | } |
---|
521 | } |
---|
522 | |
---|
523 | aln_path1 = (char *) ckalloc( (max_aln_length+1) * sizeof(char) ); |
---|
524 | aln_path2 = (char *) ckalloc( (max_aln_length+1) * sizeof(char) ); |
---|
525 | |
---|
526 | |
---|
527 | /* |
---|
528 | align the profiles |
---|
529 | */ |
---|
530 | /* use Myers and Miller to align two sequences */ |
---|
531 | |
---|
532 | last_print = 0; |
---|
533 | print_ptr = 1; |
---|
534 | |
---|
535 | sb1 = sb2 = 0; |
---|
536 | se1 = prf_length1; |
---|
537 | se2 = prf_length2; |
---|
538 | |
---|
539 | HH = (lint *) ckalloc( (max_aln_length+1) * sizeof (lint) ); |
---|
540 | DD = (lint *) ckalloc( (max_aln_length+1) * sizeof (lint) ); |
---|
541 | RR = (lint *) ckalloc( (max_aln_length+1) * sizeof (lint) ); |
---|
542 | SS = (lint *) ckalloc( (max_aln_length+1) * sizeof (lint) ); |
---|
543 | gS = (lint *) ckalloc( (max_aln_length+1) * sizeof (lint) ); |
---|
544 | displ = (sint *) ckalloc( (max_aln_length+1) * sizeof (sint) ); |
---|
545 | |
---|
546 | score = pdiff(sb1, sb2, se1-sb1, se2-sb2, profile1[0][GAPCOL], profile1[prf_length1][GAPCOL]); |
---|
547 | |
---|
548 | HH=ckfree((void *)HH); |
---|
549 | DD=ckfree((void *)DD); |
---|
550 | RR=ckfree((void *)RR); |
---|
551 | SS=ckfree((void *)SS); |
---|
552 | gS=ckfree((void *)gS); |
---|
553 | |
---|
554 | ptracepath( &alignment_len); |
---|
555 | |
---|
556 | displ=ckfree((void *)displ); |
---|
557 | |
---|
558 | add_ggaps(); |
---|
559 | |
---|
560 | for (i=0;i<prf_length1+2;i++) |
---|
561 | profile1[i]=ckfree((void *)profile1[i]); |
---|
562 | profile1=ckfree((void *)profile1); |
---|
563 | |
---|
564 | for (i=0;i<prf_length2+2;i++) |
---|
565 | profile2[i]=ckfree((void *)profile2[i]); |
---|
566 | profile2=ckfree((void *)profile2); |
---|
567 | |
---|
568 | prf_length1 = alignment_len; |
---|
569 | |
---|
570 | aln_path1=ckfree((void *)aln_path1); |
---|
571 | aln_path2=ckfree((void *)aln_path2); |
---|
572 | |
---|
573 | NumSeq = 0; |
---|
574 | for (j=0;j<nseqs;j++) |
---|
575 | { |
---|
576 | if (group[j+1] == 1) |
---|
577 | { |
---|
578 | seqlen_array[j+1] = prf_length1; |
---|
579 | realloc_seq(j+1,prf_length1); |
---|
580 | for (i=0;i<prf_length1;i++) |
---|
581 | seq_array[j+1][i+1] = alignment[NumSeq][i]; |
---|
582 | NumSeq++; |
---|
583 | } |
---|
584 | } |
---|
585 | for (j=0;j<nseqs;j++) |
---|
586 | { |
---|
587 | if (group[j+1] == 2) |
---|
588 | { |
---|
589 | seqlen_array[j+1] = prf_length1; |
---|
590 | seq_array[j+1] = (char *)realloc(seq_array[j+1], (prf_length1+2) * sizeof (char)); |
---|
591 | realloc_seq(j+1,prf_length1); |
---|
592 | for (i=0;i<prf_length1;i++) |
---|
593 | seq_array[j+1][i+1] = alignment[NumSeq][i]; |
---|
594 | NumSeq++; |
---|
595 | } |
---|
596 | } |
---|
597 | |
---|
598 | for (i=0;i<nseqs1+nseqs2;i++) |
---|
599 | alignment[i]=ckfree((void *)alignment[i]); |
---|
600 | alignment=ckfree((void *)alignment); |
---|
601 | |
---|
602 | aln_len=ckfree((void *)aln_len); |
---|
603 | gaps=ckfree((void *)gaps); |
---|
604 | |
---|
605 | return(score/100); |
---|
606 | } |
---|
607 | |
---|
608 | static void add_ggaps(void) |
---|
609 | { |
---|
610 | sint j; |
---|
611 | sint i,ix; |
---|
612 | sint len; |
---|
613 | char *ta; |
---|
614 | |
---|
615 | ta = (char *) ckalloc( (alignment_len+1) * sizeof (char) ); |
---|
616 | |
---|
617 | for (j=0;j<nseqs1;j++) |
---|
618 | { |
---|
619 | ix = 0; |
---|
620 | for (i=0;i<alignment_len;i++) |
---|
621 | { |
---|
622 | if (aln_path1[i] == 2) |
---|
623 | { |
---|
624 | if (ix < aln_len[j]) |
---|
625 | ta[i] = alignment[j][ix]; |
---|
626 | else |
---|
627 | ta[i] = ENDALN; |
---|
628 | ix++; |
---|
629 | } |
---|
630 | else if (aln_path1[i] == 1) |
---|
631 | { |
---|
632 | /* |
---|
633 | insertion in first alignment... |
---|
634 | */ |
---|
635 | ta[i] = gap_pos1; |
---|
636 | } |
---|
637 | else |
---|
638 | { |
---|
639 | fprintf(stdout,"Error in aln_path\n"); |
---|
640 | } |
---|
641 | } |
---|
642 | ta[i] = ENDALN; |
---|
643 | |
---|
644 | len = alignment_len; |
---|
645 | alignment[j] = (char *)realloc(alignment[j], (len+2) * sizeof (char)); |
---|
646 | for (i=0;i<len;i++) |
---|
647 | alignment[j][i] = ta[i]; |
---|
648 | alignment[j][len] = ENDALN; |
---|
649 | aln_len[j] = len; |
---|
650 | } |
---|
651 | |
---|
652 | for (j=nseqs1;j<nseqs1+nseqs2;j++) |
---|
653 | { |
---|
654 | ix = 0; |
---|
655 | for (i=0;i<alignment_len;i++) |
---|
656 | { |
---|
657 | if (aln_path2[i] == 2) |
---|
658 | { |
---|
659 | if (ix < aln_len[j]) |
---|
660 | ta[i] = alignment[j][ix]; |
---|
661 | else |
---|
662 | ta[i] = ENDALN; |
---|
663 | ix++; |
---|
664 | } |
---|
665 | else if (aln_path2[i] == 1) |
---|
666 | { |
---|
667 | /* |
---|
668 | insertion in second alignment... |
---|
669 | */ |
---|
670 | ta[i] = gap_pos1; |
---|
671 | } |
---|
672 | else |
---|
673 | { |
---|
674 | fprintf(stdout,"Error in aln_path\n"); |
---|
675 | } |
---|
676 | } |
---|
677 | ta[i] = ENDALN; |
---|
678 | |
---|
679 | len = alignment_len; |
---|
680 | alignment[j] = (char *) realloc(alignment[j], (len+2) * sizeof (char) ); |
---|
681 | for (i=0;i<len;i++) |
---|
682 | alignment[j][i] = ta[i]; |
---|
683 | alignment[j][len] = ENDALN; |
---|
684 | aln_len[j] = len; |
---|
685 | } |
---|
686 | |
---|
687 | ta=ckfree((void *)ta); |
---|
688 | |
---|
689 | if (struct_penalties1 != NONE) |
---|
690 | gap_penalty_mask1 = add_ggaps_mask(gap_penalty_mask1,alignment_len,aln_path1,aln_path2); |
---|
691 | if (struct_penalties1 == SECST) |
---|
692 | sec_struct_mask1 = add_ggaps_mask(sec_struct_mask1,alignment_len,aln_path1,aln_path2); |
---|
693 | |
---|
694 | if (struct_penalties2 != NONE) |
---|
695 | gap_penalty_mask2 = add_ggaps_mask(gap_penalty_mask2,alignment_len,aln_path2,aln_path1); |
---|
696 | if (struct_penalties2 == SECST) |
---|
697 | sec_struct_mask2 = add_ggaps_mask(sec_struct_mask2,alignment_len,aln_path2,aln_path1); |
---|
698 | |
---|
699 | if (debug>0) |
---|
700 | { |
---|
701 | char c; |
---|
702 | extern char *amino_acid_codes; |
---|
703 | |
---|
704 | for (i=0;i<nseqs1+nseqs2;i++) |
---|
705 | { |
---|
706 | for (j=0;j<alignment_len;j++) |
---|
707 | { |
---|
708 | if (alignment[i][j] == ENDALN) break; |
---|
709 | else if ((alignment[i][j] == gap_pos1) || (alignment[i][j] == gap_pos2)) c = '-'; |
---|
710 | else c = amino_acid_codes[alignment[i][j]]; |
---|
711 | fprintf(stdout,"%c", c); |
---|
712 | } |
---|
713 | fprintf(stdout,"\n\n"); |
---|
714 | } |
---|
715 | } |
---|
716 | |
---|
717 | } |
---|
718 | |
---|
719 | static char * add_ggaps_mask(char *mask, int len, char *path1, char *path2) |
---|
720 | { |
---|
721 | int i,ix; |
---|
722 | char *ta; |
---|
723 | |
---|
724 | ta = (char *) ckalloc( (len+1) * sizeof (char) ); |
---|
725 | |
---|
726 | ix = 0; |
---|
727 | if (switch_profiles == FALSE) |
---|
728 | { |
---|
729 | for (i=0;i<len;i++) |
---|
730 | { |
---|
731 | if (path1[i] == 2) |
---|
732 | { |
---|
733 | ta[i] = mask[ix]; |
---|
734 | ix++; |
---|
735 | } |
---|
736 | else if (path1[i] == 1) |
---|
737 | ta[i] = gap_pos1; |
---|
738 | } |
---|
739 | } |
---|
740 | else |
---|
741 | { |
---|
742 | for (i=0;i<len;i++) |
---|
743 | { |
---|
744 | if (path2[i] == 2) |
---|
745 | { |
---|
746 | ta[i] = mask[ix]; |
---|
747 | ix++; |
---|
748 | } |
---|
749 | else if (path2[i] == 1) |
---|
750 | ta[i] = gap_pos1; |
---|
751 | } |
---|
752 | } |
---|
753 | mask = (char *)realloc(mask,(len+2) * sizeof (char)); |
---|
754 | for (i=0;i<len;i++) |
---|
755 | mask[i] = ta[i]; |
---|
756 | mask[i] ='\0'; |
---|
757 | |
---|
758 | ta=ckfree((void *)ta); |
---|
759 | |
---|
760 | return(mask); |
---|
761 | } |
---|
762 | |
---|
763 | static lint prfscore(sint n, sint m) |
---|
764 | { |
---|
765 | sint ix; |
---|
766 | lint score; |
---|
767 | |
---|
768 | score = 0.0; |
---|
769 | for (ix=0; ix<=max_aa; ix++) |
---|
770 | { |
---|
771 | score += (profile1[n][ix] * profile2[m][ix]); |
---|
772 | } |
---|
773 | score += (profile1[n][gap_pos1] * profile2[m][gap_pos1]); |
---|
774 | score += (profile1[n][gap_pos2] * profile2[m][gap_pos2]); |
---|
775 | return(score/10); |
---|
776 | |
---|
777 | } |
---|
778 | |
---|
779 | static void ptracepath(sint *alen) |
---|
780 | { |
---|
781 | sint i,j,k,pos,to_do; |
---|
782 | |
---|
783 | pos = 0; |
---|
784 | |
---|
785 | to_do=print_ptr-1; |
---|
786 | |
---|
787 | for(i=1;i<=to_do;++i) { |
---|
788 | if (debug>1) fprintf(stdout,"%d ",(pint)displ[i]); |
---|
789 | if(displ[i]==0) { |
---|
790 | aln_path1[pos]=2; |
---|
791 | aln_path2[pos]=2; |
---|
792 | ++pos; |
---|
793 | } |
---|
794 | else { |
---|
795 | if((k=displ[i])>0) { |
---|
796 | for(j=0;j<=k-1;++j) { |
---|
797 | aln_path2[pos+j]=2; |
---|
798 | aln_path1[pos+j]=1; |
---|
799 | } |
---|
800 | pos += k; |
---|
801 | } |
---|
802 | else { |
---|
803 | k = (displ[i]<0) ? displ[i] * -1 : displ[i]; |
---|
804 | for(j=0;j<=k-1;++j) { |
---|
805 | aln_path1[pos+j]=2; |
---|
806 | aln_path2[pos+j]=1; |
---|
807 | } |
---|
808 | pos += k; |
---|
809 | } |
---|
810 | } |
---|
811 | } |
---|
812 | if (debug>1) fprintf(stdout,"\n"); |
---|
813 | |
---|
814 | (*alen) = pos; |
---|
815 | |
---|
816 | } |
---|
817 | |
---|
818 | static void pdel(sint k) |
---|
819 | { |
---|
820 | if(last_print<0) |
---|
821 | last_print = displ[print_ptr-1] -= k; |
---|
822 | else |
---|
823 | last_print = displ[print_ptr++] = -(k); |
---|
824 | } |
---|
825 | |
---|
826 | static void padd(sint k) |
---|
827 | { |
---|
828 | |
---|
829 | if(last_print<0) { |
---|
830 | displ[print_ptr-1] = k; |
---|
831 | displ[print_ptr++] = last_print; |
---|
832 | } |
---|
833 | else |
---|
834 | last_print = displ[print_ptr++] = k; |
---|
835 | } |
---|
836 | |
---|
837 | static void palign(void) |
---|
838 | { |
---|
839 | displ[print_ptr++] = last_print = 0; |
---|
840 | } |
---|
841 | |
---|
842 | |
---|
843 | static lint pdiff(sint A,sint B,sint M,sint N,sint go1, sint go2) |
---|
844 | { |
---|
845 | sint midi,midj,type; |
---|
846 | lint midh; |
---|
847 | |
---|
848 | static lint t, tl, g, h; |
---|
849 | |
---|
850 | { static sint i,j; |
---|
851 | static lint hh, f, e, s; |
---|
852 | |
---|
853 | /* Boundary cases: M <= 1 or N == 0 */ |
---|
854 | if (debug>2) fprintf(stdout,"A %d B %d M %d N %d midi %d go1 %d go2 %d\n", |
---|
855 | (pint)A,(pint)B,(pint)M,(pint)N,(pint)M/2,(pint)go1,(pint)go2); |
---|
856 | |
---|
857 | /* if sequence B is empty.... */ |
---|
858 | |
---|
859 | if(N<=0) { |
---|
860 | |
---|
861 | /* if sequence A is not empty.... */ |
---|
862 | |
---|
863 | if(M>0) { |
---|
864 | |
---|
865 | /* delete residues A[1] to A[M] */ |
---|
866 | |
---|
867 | pdel(M); |
---|
868 | } |
---|
869 | return(-gap_penalty1(A,B,M)); |
---|
870 | } |
---|
871 | |
---|
872 | /* if sequence A is empty.... */ |
---|
873 | |
---|
874 | if(M<=1) { |
---|
875 | if(M<=0) { |
---|
876 | |
---|
877 | /* insert residues B[1] to B[N] */ |
---|
878 | |
---|
879 | padd(N); |
---|
880 | return(-gap_penalty2(A,B,N)); |
---|
881 | } |
---|
882 | |
---|
883 | /* if sequence A has just one residue.... */ |
---|
884 | |
---|
885 | if (go1 == 0) |
---|
886 | midh = -gap_penalty1(A+1,B+1,N); |
---|
887 | else |
---|
888 | midh = -gap_penalty2(A+1,B,1)-gap_penalty1(A+1,B+1,N); |
---|
889 | midj = 0; |
---|
890 | for(j=1;j<=N;j++) { |
---|
891 | hh = -gap_penalty1(A,B+1,j-1) + prfscore(A+1,B+j) |
---|
892 | -gap_penalty1(A+1,B+j+1,N-j); |
---|
893 | if(hh>midh) { |
---|
894 | midh = hh; |
---|
895 | midj = j; |
---|
896 | } |
---|
897 | } |
---|
898 | |
---|
899 | if(midj==0) { |
---|
900 | padd(N); |
---|
901 | pdel(1); |
---|
902 | } |
---|
903 | else { |
---|
904 | if(midj>1) padd(midj-1); |
---|
905 | palign(); |
---|
906 | if(midj<N) padd(N-midj); |
---|
907 | } |
---|
908 | return midh; |
---|
909 | } |
---|
910 | |
---|
911 | |
---|
912 | /* Divide sequence A in half: midi */ |
---|
913 | |
---|
914 | midi = M / 2; |
---|
915 | |
---|
916 | /* In a forward phase, calculate all HH[j] and HH[j] */ |
---|
917 | |
---|
918 | HH[0] = 0.0; |
---|
919 | t = -open_penalty1(A,B+1); |
---|
920 | tl = -ext_penalty1(A,B+1); |
---|
921 | for(j=1;j<=N;j++) { |
---|
922 | HH[j] = t = t+tl; |
---|
923 | DD[j] = t-open_penalty2(A+1,B+j); |
---|
924 | } |
---|
925 | |
---|
926 | if (go1 == 0) t = 0; |
---|
927 | else t = -open_penalty2(A+1,B); |
---|
928 | tl = -ext_penalty2(A+1,B); |
---|
929 | for(i=1;i<=midi;i++) { |
---|
930 | s = HH[0]; |
---|
931 | HH[0] = hh = t = t+tl; |
---|
932 | f = t-open_penalty1(A+i,B+1); |
---|
933 | |
---|
934 | for(j=1;j<=N;j++) { |
---|
935 | g = open_penalty1(A+i,B+j); |
---|
936 | h = ext_penalty1(A+i,B+j); |
---|
937 | if ((hh=hh-g-h) > (f=f-h)) f=hh; |
---|
938 | g = open_penalty2(A+i,B+j); |
---|
939 | h = ext_penalty2(A+i,B+j); |
---|
940 | if ((hh=HH[j]-g-h) > (e=DD[j]-h)) e=hh; |
---|
941 | hh = s + prfscore(A+i, B+j); |
---|
942 | if (f>hh) hh = f; |
---|
943 | if (e>hh) hh = e; |
---|
944 | |
---|
945 | s = HH[j]; |
---|
946 | HH[j] = hh; |
---|
947 | DD[j] = e; |
---|
948 | |
---|
949 | } |
---|
950 | } |
---|
951 | |
---|
952 | DD[0]=HH[0]; |
---|
953 | |
---|
954 | /* In a reverse phase, calculate all RR[j] and SS[j] */ |
---|
955 | |
---|
956 | RR[N]=0.0; |
---|
957 | tl = 0.0; |
---|
958 | for(j=N-1;j>=0;j--) { |
---|
959 | g = -open_penalty1(A+M,B+j+1); |
---|
960 | tl -= ext_penalty1(A+M,B+j+1); |
---|
961 | RR[j] = g+tl; |
---|
962 | SS[j] = RR[j]-open_penalty2(A+M,B+j); |
---|
963 | gS[j] = open_penalty2(A+M,B+j); |
---|
964 | } |
---|
965 | |
---|
966 | tl = 0.0; |
---|
967 | for(i=M-1;i>=midi;i--) { |
---|
968 | s = RR[N]; |
---|
969 | if (go2 == 0) g = 0; |
---|
970 | else g = -open_penalty2(A+i+1,B+N); |
---|
971 | tl -= ext_penalty2(A+i+1,B+N); |
---|
972 | RR[N] = hh = g+tl; |
---|
973 | t = open_penalty1(A+i,B+N); |
---|
974 | f = RR[N]-t; |
---|
975 | |
---|
976 | for(j=N-1;j>=0;j--) { |
---|
977 | g = open_penalty1(A+i,B+j+1); |
---|
978 | h = ext_penalty1(A+i,B+j+1); |
---|
979 | if ((hh=hh-g-h) > (f=f-h-g+t)) f=hh; |
---|
980 | t = g; |
---|
981 | g = open_penalty2(A+i+1,B+j); |
---|
982 | h = ext_penalty2(A+i+1,B+j); |
---|
983 | hh=RR[j]-g-h; |
---|
984 | if (i==(M-1)) { |
---|
985 | e=SS[j]-h; |
---|
986 | } |
---|
987 | else { |
---|
988 | e=SS[j]-h-g+open_penalty2(A+i+2,B+j); |
---|
989 | gS[j] = g; |
---|
990 | } |
---|
991 | if (hh > e) e=hh; |
---|
992 | hh = s + prfscore(A+i+1, B+j+1); |
---|
993 | if (f>hh) hh = f; |
---|
994 | if (e>hh) hh = e; |
---|
995 | |
---|
996 | s = RR[j]; |
---|
997 | RR[j] = hh; |
---|
998 | SS[j] = e; |
---|
999 | |
---|
1000 | } |
---|
1001 | } |
---|
1002 | SS[N]=RR[N]; |
---|
1003 | gS[N] = open_penalty2(A+midi+1,B+N); |
---|
1004 | |
---|
1005 | /* find midj, such that HH[j]+RR[j] or DD[j]+SS[j]+gap is the maximum */ |
---|
1006 | |
---|
1007 | midh=HH[0]+RR[0]; |
---|
1008 | midj=0; |
---|
1009 | type=1; |
---|
1010 | for(j=0;j<=N;j++) { |
---|
1011 | hh = HH[j] + RR[j]; |
---|
1012 | if(hh>=midh) |
---|
1013 | if(hh>midh || (HH[j]!=DD[j] && RR[j]==SS[j])) { |
---|
1014 | midh=hh; |
---|
1015 | midj=j; |
---|
1016 | } |
---|
1017 | } |
---|
1018 | |
---|
1019 | for(j=N;j>=0;j--) { |
---|
1020 | hh = DD[j] + SS[j] + gS[j]; |
---|
1021 | if(hh>midh) { |
---|
1022 | midh=hh; |
---|
1023 | midj=j; |
---|
1024 | type=2; |
---|
1025 | } |
---|
1026 | } |
---|
1027 | } |
---|
1028 | |
---|
1029 | /* Conquer recursively around midpoint */ |
---|
1030 | |
---|
1031 | |
---|
1032 | if(type==1) { /* Type 1 gaps */ |
---|
1033 | if (debug>2) fprintf(stdout,"Type 1,1: midj %d\n",(pint)midj); |
---|
1034 | pdiff(A,B,midi,midj,go1,1); |
---|
1035 | if (debug>2) fprintf(stdout,"Type 1,2: midj %d\n",(pint)midj); |
---|
1036 | pdiff(A+midi,B+midj,M-midi,N-midj,1,go2); |
---|
1037 | } |
---|
1038 | else { |
---|
1039 | if (debug>2) fprintf(stdout,"Type 2,1: midj %d\n",(pint)midj); |
---|
1040 | pdiff(A,B,midi-1,midj,go1, 0); |
---|
1041 | pdel(2); |
---|
1042 | if (debug>2) fprintf(stdout,"Type 2,2: midj %d\n",(pint)midj); |
---|
1043 | pdiff(A+midi+1,B+midj,M-midi-1,N-midj,0,go2); |
---|
1044 | } |
---|
1045 | |
---|
1046 | return midh; /* Return the score of the best alignment */ |
---|
1047 | } |
---|
1048 | |
---|
1049 | /* calculate the score for opening a gap at residues A[i] and B[j] */ |
---|
1050 | |
---|
1051 | static sint open_penalty1(sint i, sint j) |
---|
1052 | { |
---|
1053 | sint g; |
---|
1054 | |
---|
1055 | if (!endgappenalties &&(i==0 || i==prf_length1)) return(0); |
---|
1056 | |
---|
1057 | g = profile2[j][GAPCOL] + profile1[i][GAPCOL]; |
---|
1058 | return(g); |
---|
1059 | } |
---|
1060 | |
---|
1061 | /* calculate the score for extending an existing gap at A[i] and B[j] */ |
---|
1062 | |
---|
1063 | static sint ext_penalty1(sint i, sint j) |
---|
1064 | { |
---|
1065 | sint h; |
---|
1066 | |
---|
1067 | if (!endgappenalties &&(i==0 || i==prf_length1)) return(0); |
---|
1068 | |
---|
1069 | h = profile2[j][LENCOL]; |
---|
1070 | return(h); |
---|
1071 | } |
---|
1072 | |
---|
1073 | /* calculate the score for a gap of length k, at residues A[i] and B[j] */ |
---|
1074 | |
---|
1075 | static sint gap_penalty1(sint i, sint j, sint k) |
---|
1076 | { |
---|
1077 | sint ix; |
---|
1078 | sint gp; |
---|
1079 | sint g, h = 0; |
---|
1080 | |
---|
1081 | if (k <= 0) return(0); |
---|
1082 | if (!endgappenalties &&(i==0 || i==prf_length1)) return(0); |
---|
1083 | |
---|
1084 | g = profile2[j][GAPCOL] + profile1[i][GAPCOL]; |
---|
1085 | for (ix=0;ix<k && ix+j<prf_length2;ix++) |
---|
1086 | h += profile2[ix+j][LENCOL]; |
---|
1087 | |
---|
1088 | gp = g + h; |
---|
1089 | return(gp); |
---|
1090 | } |
---|
1091 | /* calculate the score for opening a gap at residues A[i] and B[j] */ |
---|
1092 | |
---|
1093 | static sint open_penalty2(sint i, sint j) |
---|
1094 | { |
---|
1095 | sint g; |
---|
1096 | |
---|
1097 | if (!endgappenalties &&(j==0 || j==prf_length2)) return(0); |
---|
1098 | |
---|
1099 | g = profile1[i][GAPCOL] + profile2[j][GAPCOL]; |
---|
1100 | return(g); |
---|
1101 | } |
---|
1102 | |
---|
1103 | /* calculate the score for extending an existing gap at A[i] and B[j] */ |
---|
1104 | |
---|
1105 | static sint ext_penalty2(sint i, sint j) |
---|
1106 | { |
---|
1107 | sint h; |
---|
1108 | |
---|
1109 | if (!endgappenalties &&(j==0 || j==prf_length2)) return(0); |
---|
1110 | |
---|
1111 | h = profile1[i][LENCOL]; |
---|
1112 | return(h); |
---|
1113 | } |
---|
1114 | |
---|
1115 | /* calculate the score for a gap of length k, at residues A[i] and B[j] */ |
---|
1116 | |
---|
1117 | static sint gap_penalty2(sint i, sint j, sint k) |
---|
1118 | { |
---|
1119 | sint ix; |
---|
1120 | sint gp; |
---|
1121 | sint g, h = 0; |
---|
1122 | |
---|
1123 | if (k <= 0) return(0); |
---|
1124 | if (!endgappenalties &&(j==0 || j==prf_length2)) return(0); |
---|
1125 | |
---|
1126 | g = profile1[i][GAPCOL] + profile2[j][GAPCOL]; |
---|
1127 | for (ix=0;ix<k && ix+i<prf_length1;ix++) |
---|
1128 | h += profile1[ix+i][LENCOL]; |
---|
1129 | |
---|
1130 | gp = g + h; |
---|
1131 | return(gp); |
---|
1132 | } |
---|