| 1 | /* Phyle of filogenetic tree calculating functions for CLUSTAL W */ |
|---|
| 2 | /* DES was here FEB. 1994 */ |
|---|
| 3 | |
|---|
| 4 | #include <stdio.h> |
|---|
| 5 | #include <string.h> |
|---|
| 6 | #include <stdlib.h> |
|---|
| 7 | #include <math.h> |
|---|
| 8 | #include "clustalw.h" |
|---|
| 9 | #include "dayhoff.h" /* set correction for amino acid distances >= 75% */ |
|---|
| 10 | |
|---|
| 11 | |
|---|
| 12 | /* |
|---|
| 13 | * Prototypes |
|---|
| 14 | */ |
|---|
| 15 | Boolean transition(sint base1, sint base2); |
|---|
| 16 | void tree_gap_delete(void); |
|---|
| 17 | void distance_matrix_output(FILE *ofile); |
|---|
| 18 | void nj_tree(char **tree_description, FILE *tree); |
|---|
| 19 | void compare_tree(char **tree1, char **tree2, sint *hits, sint n); |
|---|
| 20 | void print_phylip_tree(char **tree_description, FILE *tree, sint bootstrap); |
|---|
| 21 | void print_nexus_tree(char **tree_description, FILE *tree, sint bootstrap); |
|---|
| 22 | sint two_way_split(char **tree_description, FILE *tree, sint start_row, sint flag, sint bootstrap); |
|---|
| 23 | sint two_way_split_nexus(char **tree_description, FILE *tree, sint start_row, sint flag, sint bootstrap); |
|---|
| 24 | void print_tree(char **tree_description, FILE *tree, sint *totals); |
|---|
| 25 | static Boolean is_ambiguity(char c); |
|---|
| 26 | static void overspill_message(sint overspill,sint total_dists); |
|---|
| 27 | |
|---|
| 28 | |
|---|
| 29 | /* |
|---|
| 30 | * Global variables |
|---|
| 31 | */ |
|---|
| 32 | |
|---|
| 33 | extern sint max_names; |
|---|
| 34 | |
|---|
| 35 | extern double **tmat; /* general nxn array of reals; allocated from main */ |
|---|
| 36 | /* this is used as a distance matrix */ |
|---|
| 37 | extern Boolean dnaflag; /* TRUE for DNA seqs; FALSE for proteins */ |
|---|
| 38 | extern Boolean tossgaps; /* Ignore places in align. where ANY seq. has a gap*/ |
|---|
| 39 | extern Boolean kimura; /* Use correction for multiple substitutions */ |
|---|
| 40 | extern Boolean output_tree_clustal; /* clustal text output for trees */ |
|---|
| 41 | extern Boolean output_tree_phylip; /* phylip nested parentheses format */ |
|---|
| 42 | extern Boolean output_tree_distances; /* phylip distance matrix */ |
|---|
| 43 | extern Boolean output_tree_nexus; /* nexus format tree */ |
|---|
| 44 | extern Boolean output_pim; /* perc identity matrix output Ramu */ |
|---|
| 45 | |
|---|
| 46 | extern sint bootstrap_format; /* bootstrap file format */ |
|---|
| 47 | extern Boolean empty; /* any sequences in memory? */ |
|---|
| 48 | extern Boolean usemenu; /* interactive (TRUE) or command line (FALSE) */ |
|---|
| 49 | extern sint nseqs; |
|---|
| 50 | extern sint max_aln_length; |
|---|
| 51 | extern sint *seqlen_array; /* the lengths of the sequences */ |
|---|
| 52 | extern char **seq_array; /* the sequences */ |
|---|
| 53 | extern char **names; /* the seq. names */ |
|---|
| 54 | extern char seqname[]; /* name of input file */ |
|---|
| 55 | extern sint gap_pos1,gap_pos2; |
|---|
| 56 | extern Boolean use_ambiguities; |
|---|
| 57 | extern char *amino_acid_codes; |
|---|
| 58 | |
|---|
| 59 | static double *av; |
|---|
| 60 | static double *left_branch, *right_branch; |
|---|
| 61 | static double *save_left_branch, *save_right_branch; |
|---|
| 62 | static sint *boot_totals; |
|---|
| 63 | static sint *tkill; |
|---|
| 64 | /* |
|---|
| 65 | The next line is a fossil from the days of using the cc ran() |
|---|
| 66 | static int ran_factor; |
|---|
| 67 | */ |
|---|
| 68 | static sint *boot_positions; |
|---|
| 69 | static FILE *phylip_phy_tree_file; |
|---|
| 70 | static FILE *clustal_phy_tree_file; |
|---|
| 71 | static FILE *distances_phy_tree_file; |
|---|
| 72 | static FILE *nexus_phy_tree_file; |
|---|
| 73 | static FILE *pim_file; /* Ramu */ |
|---|
| 74 | static Boolean verbose; |
|---|
| 75 | static char *tree_gaps; |
|---|
| 76 | static sint first_seq, last_seq; |
|---|
| 77 | /* array of weights; 1 for use this posn.; 0 don't */ |
|---|
| 78 | |
|---|
| 79 | extern sint boot_ntrials; /* number of bootstrap trials */ |
|---|
| 80 | extern unsigned sint boot_ran_seed; /* random number generator seed */ |
|---|
| 81 | |
|---|
| 82 | void phylogenetic_tree(char *phylip_name, char *clustal_name, char *dist_name, char *nexus_name, char *pim_name) |
|---|
| 83 | /* |
|---|
| 84 | Calculate a tree using the distances in the nseqs*nseqs array tmat. |
|---|
| 85 | This is the routine for getting the REAL trees after alignment. |
|---|
| 86 | */ |
|---|
| 87 | { char path[FILENAMELEN+1]; |
|---|
| 88 | sint i, j; |
|---|
| 89 | sint overspill = 0; |
|---|
| 90 | sint total_dists; |
|---|
| 91 | static char **standard_tree; |
|---|
| 92 | static char **save_tree; |
|---|
| 93 | |
|---|
| 94 | if(empty) { |
|---|
| 95 | error("You must load an alignment first"); |
|---|
| 96 | return; |
|---|
| 97 | } |
|---|
| 98 | |
|---|
| 99 | if(nseqs<2) { |
|---|
| 100 | error("Alignment has only %d sequences",nseqs); |
|---|
| 101 | return; |
|---|
| 102 | } |
|---|
| 103 | first_seq=1; |
|---|
| 104 | last_seq=nseqs; |
|---|
| 105 | |
|---|
| 106 | get_path(seqname,path); |
|---|
| 107 | |
|---|
| 108 | if(output_tree_clustal) { |
|---|
| 109 | if (clustal_name[0]!=EOS) { |
|---|
| 110 | if((clustal_phy_tree_file = open_explicit_file( |
|---|
| 111 | clustal_name))==NULL) return; |
|---|
| 112 | } |
|---|
| 113 | else { |
|---|
| 114 | if((clustal_phy_tree_file = open_output_file( |
|---|
| 115 | "\nEnter name for CLUSTAL tree output file ",path, |
|---|
| 116 | clustal_name,"nj")) == NULL) return; |
|---|
| 117 | } |
|---|
| 118 | } |
|---|
| 119 | |
|---|
| 120 | if(output_tree_phylip) { |
|---|
| 121 | if (phylip_name[0]!=EOS) { |
|---|
| 122 | if((phylip_phy_tree_file = open_explicit_file( |
|---|
| 123 | phylip_name))==NULL) return; |
|---|
| 124 | } |
|---|
| 125 | else { |
|---|
| 126 | if((phylip_phy_tree_file = open_output_file( |
|---|
| 127 | "\nEnter name for PHYLIP tree output file ",path, |
|---|
| 128 | phylip_name,"ph")) == NULL) return; |
|---|
| 129 | } |
|---|
| 130 | } |
|---|
| 131 | |
|---|
| 132 | if(output_tree_distances) |
|---|
| 133 | { |
|---|
| 134 | if (dist_name[0]!=EOS) { |
|---|
| 135 | if((distances_phy_tree_file = open_explicit_file( |
|---|
| 136 | dist_name))==NULL) return; |
|---|
| 137 | } |
|---|
| 138 | else { |
|---|
| 139 | if((distances_phy_tree_file = open_output_file( |
|---|
| 140 | "\nEnter name for distance matrix output file ",path, |
|---|
| 141 | dist_name,"dst")) == NULL) return; |
|---|
| 142 | } |
|---|
| 143 | } |
|---|
| 144 | |
|---|
| 145 | if(output_tree_nexus) |
|---|
| 146 | { |
|---|
| 147 | if (nexus_name[0]!=EOS) { |
|---|
| 148 | if((nexus_phy_tree_file = open_explicit_file( |
|---|
| 149 | nexus_name))==NULL) return; |
|---|
| 150 | } |
|---|
| 151 | else { |
|---|
| 152 | if((nexus_phy_tree_file = open_output_file( |
|---|
| 153 | "\nEnter name for NEXUS tree output file ",path, |
|---|
| 154 | nexus_name,"tre")) == NULL) return; |
|---|
| 155 | } |
|---|
| 156 | } |
|---|
| 157 | |
|---|
| 158 | if(output_pim) |
|---|
| 159 | { |
|---|
| 160 | if (pim_name[0]!=EOS) { |
|---|
| 161 | if((pim_file = open_explicit_file( |
|---|
| 162 | pim_name))==NULL) return; |
|---|
| 163 | } |
|---|
| 164 | else { |
|---|
| 165 | if((pim_file = open_output_file( |
|---|
| 166 | "\nEnter name for % Identity matrix output file ",path, |
|---|
| 167 | pim_name,"pim")) == NULL) return; |
|---|
| 168 | } |
|---|
| 169 | } |
|---|
| 170 | |
|---|
| 171 | boot_positions = (sint *)ckalloc( (seqlen_array[first_seq]+2) * sizeof (sint) ); |
|---|
| 172 | |
|---|
| 173 | for(j=1; j<=seqlen_array[first_seq]; ++j) |
|---|
| 174 | boot_positions[j] = j; |
|---|
| 175 | |
|---|
| 176 | if(output_tree_clustal) { |
|---|
| 177 | verbose = TRUE; /* Turn on file output */ |
|---|
| 178 | if(dnaflag) |
|---|
| 179 | overspill = dna_distance_matrix(clustal_phy_tree_file); |
|---|
| 180 | else |
|---|
| 181 | overspill = prot_distance_matrix(clustal_phy_tree_file); |
|---|
| 182 | } |
|---|
| 183 | |
|---|
| 184 | if(output_tree_phylip) { |
|---|
| 185 | verbose = FALSE; /* Turn off file output */ |
|---|
| 186 | if(dnaflag) |
|---|
| 187 | overspill = dna_distance_matrix(phylip_phy_tree_file); |
|---|
| 188 | else |
|---|
| 189 | overspill = prot_distance_matrix(phylip_phy_tree_file); |
|---|
| 190 | } |
|---|
| 191 | |
|---|
| 192 | if(output_tree_nexus) { |
|---|
| 193 | verbose = FALSE; /* Turn off file output */ |
|---|
| 194 | if(dnaflag) |
|---|
| 195 | overspill = dna_distance_matrix(nexus_phy_tree_file); |
|---|
| 196 | else |
|---|
| 197 | overspill = prot_distance_matrix(nexus_phy_tree_file); |
|---|
| 198 | } |
|---|
| 199 | |
|---|
| 200 | if(output_pim) { /* Ramu */ |
|---|
| 201 | verbose = FALSE; /* Turn off file output */ |
|---|
| 202 | if(dnaflag) |
|---|
| 203 | calc_percidentity(pim_file); |
|---|
| 204 | else |
|---|
| 205 | calc_percidentity(pim_file); |
|---|
| 206 | } |
|---|
| 207 | |
|---|
| 208 | |
|---|
| 209 | if(output_tree_distances) { |
|---|
| 210 | verbose = FALSE; /* Turn off file output */ |
|---|
| 211 | if(dnaflag) |
|---|
| 212 | overspill = dna_distance_matrix(distances_phy_tree_file); |
|---|
| 213 | else |
|---|
| 214 | overspill = prot_distance_matrix(distances_phy_tree_file); |
|---|
| 215 | distance_matrix_output(distances_phy_tree_file); |
|---|
| 216 | } |
|---|
| 217 | |
|---|
| 218 | /* check if any distances overflowed the distance corrections */ |
|---|
| 219 | if ( overspill > 0 ) { |
|---|
| 220 | total_dists = (nseqs*(nseqs-1))/2; |
|---|
| 221 | overspill_message(overspill,total_dists); |
|---|
| 222 | } |
|---|
| 223 | |
|---|
| 224 | if(output_tree_clustal) verbose = TRUE; /* Turn on file output */ |
|---|
| 225 | |
|---|
| 226 | standard_tree = (char **) ckalloc( (nseqs+1) * sizeof (char *) ); |
|---|
| 227 | for(i=0; i<nseqs+1; i++) |
|---|
| 228 | standard_tree[i] = (char *) ckalloc( (nseqs+1) * sizeof(char) ); |
|---|
| 229 | save_tree = (char **) ckalloc( (nseqs+1) * sizeof (char *) ); |
|---|
| 230 | for(i=0; i<nseqs+1; i++) |
|---|
| 231 | save_tree[i] = (char *) ckalloc( (nseqs+1) * sizeof(char) ); |
|---|
| 232 | |
|---|
| 233 | if(output_tree_clustal || output_tree_phylip || output_tree_nexus) |
|---|
| 234 | nj_tree(standard_tree,clustal_phy_tree_file); |
|---|
| 235 | |
|---|
| 236 | for(i=1; i<nseqs+1; i++) |
|---|
| 237 | for(j=1; j<nseqs+1; j++) |
|---|
| 238 | save_tree[i][j] = standard_tree[i][j]; |
|---|
| 239 | |
|---|
| 240 | if(output_tree_phylip) |
|---|
| 241 | print_phylip_tree(standard_tree,phylip_phy_tree_file,0); |
|---|
| 242 | |
|---|
| 243 | for(i=1; i<nseqs+1; i++) |
|---|
| 244 | for(j=1; j<nseqs+1; j++) |
|---|
| 245 | standard_tree[i][j] = save_tree[i][j]; |
|---|
| 246 | |
|---|
| 247 | if(output_tree_nexus) |
|---|
| 248 | print_nexus_tree(standard_tree,nexus_phy_tree_file,0); |
|---|
| 249 | |
|---|
| 250 | /* |
|---|
| 251 | print_tree(standard_tree,phy_tree_file); |
|---|
| 252 | */ |
|---|
| 253 | tree_gaps=ckfree((void *)tree_gaps); |
|---|
| 254 | boot_positions=ckfree((void *)boot_positions); |
|---|
| 255 | if (left_branch != NULL) left_branch=ckfree((void *)left_branch); |
|---|
| 256 | if (right_branch != NULL) right_branch=ckfree((void *)right_branch); |
|---|
| 257 | if (tkill != NULL) tkill=ckfree((void *)tkill); |
|---|
| 258 | if (av != NULL) av=ckfree((void *)av); |
|---|
| 259 | for (i=0;i<nseqs+1;i++) |
|---|
| 260 | standard_tree[i]=ckfree((void *)standard_tree[i]); |
|---|
| 261 | standard_tree=ckfree((void *)standard_tree); |
|---|
| 262 | |
|---|
| 263 | for (i=0;i<nseqs+1;i++) |
|---|
| 264 | save_tree[i]=ckfree((void *)save_tree[i]); |
|---|
| 265 | save_tree=ckfree((void *)save_tree); |
|---|
| 266 | |
|---|
| 267 | if(output_tree_clustal) { |
|---|
| 268 | fclose(clustal_phy_tree_file); |
|---|
| 269 | info("Phylogenetic tree file created: [%s]",clustal_name); |
|---|
| 270 | } |
|---|
| 271 | |
|---|
| 272 | if(output_tree_phylip) { |
|---|
| 273 | fclose(phylip_phy_tree_file); |
|---|
| 274 | info("Phylogenetic tree file created: [%s]",phylip_name); |
|---|
| 275 | } |
|---|
| 276 | |
|---|
| 277 | if(output_tree_distances) { |
|---|
| 278 | fclose(distances_phy_tree_file); |
|---|
| 279 | info("Distance matrix file created: [%s]",dist_name); |
|---|
| 280 | } |
|---|
| 281 | |
|---|
| 282 | if(output_tree_nexus) { |
|---|
| 283 | fclose(nexus_phy_tree_file); |
|---|
| 284 | info("Nexus tree file created: [%s]",nexus_name); |
|---|
| 285 | } |
|---|
| 286 | |
|---|
| 287 | if(output_pim) { |
|---|
| 288 | fclose(pim_file); |
|---|
| 289 | info(" perc identity matrix file created: [%s]",pim_name); |
|---|
| 290 | } |
|---|
| 291 | |
|---|
| 292 | } |
|---|
| 293 | |
|---|
| 294 | static void overspill_message(sint overspill,sint total_dists) |
|---|
| 295 | { |
|---|
| 296 | char err_mess[1024]=""; |
|---|
| 297 | |
|---|
| 298 | sprintf(err_mess,"%d of the distances out of a total of %d", |
|---|
| 299 | (pint)overspill,(pint)total_dists); |
|---|
| 300 | strcat(err_mess,"\n were out of range for the distance correction."); |
|---|
| 301 | strcat(err_mess,"\n"); |
|---|
| 302 | strcat(err_mess,"\n SUGGESTIONS: 1) remove the most distant sequences"); |
|---|
| 303 | strcat(err_mess,"\n or 2) use the PHYLIP package"); |
|---|
| 304 | strcat(err_mess,"\n or 3) turn off the correction."); |
|---|
| 305 | strcat(err_mess,"\n Note: Use option 3 with caution! With this degree"); |
|---|
| 306 | strcat(err_mess,"\n of divergence you will have great difficulty"); |
|---|
| 307 | strcat(err_mess,"\n getting robust and reliable trees."); |
|---|
| 308 | strcat(err_mess,"\n\n"); |
|---|
| 309 | warning(err_mess); |
|---|
| 310 | } |
|---|
| 311 | |
|---|
| 312 | |
|---|
| 313 | |
|---|
| 314 | Boolean transition(sint base1, sint base2) /* TRUE if transition; else FALSE */ |
|---|
| 315 | /* |
|---|
| 316 | |
|---|
| 317 | assumes that the bases of DNA sequences have been translated as |
|---|
| 318 | a,A = 0; c,C = 1; g,G = 2; t,T,u,U = 3; N = 4; |
|---|
| 319 | a,A = 0; c,C = 2; g,G = 6; t,T,u,U =17; |
|---|
| 320 | |
|---|
| 321 | A <--> G and T <--> C are transitions; all others are transversions. |
|---|
| 322 | |
|---|
| 323 | */ |
|---|
| 324 | { |
|---|
| 325 | if( ((base1 == 0) && (base2 == 6)) || ((base1 == 6) && (base2 == 0)) ) |
|---|
| 326 | return TRUE; /* A <--> G */ |
|---|
| 327 | if( ((base1 ==17) && (base2 == 2)) || ((base1 == 2) && (base2 ==17)) ) |
|---|
| 328 | return TRUE; /* T <--> C */ |
|---|
| 329 | return FALSE; |
|---|
| 330 | } |
|---|
| 331 | |
|---|
| 332 | |
|---|
| 333 | void tree_gap_delete(void) /* flag all positions in alignment that have a gap */ |
|---|
| 334 | { /* in ANY sequence */ |
|---|
| 335 | sint seqn; |
|---|
| 336 | sint posn; |
|---|
| 337 | |
|---|
| 338 | tree_gaps = (char *)ckalloc( (max_aln_length+1) * sizeof (char) ); |
|---|
| 339 | |
|---|
| 340 | for(posn=1; posn<=seqlen_array[first_seq]; ++posn) { |
|---|
| 341 | tree_gaps[posn] = 0; |
|---|
| 342 | for(seqn=1; seqn<=last_seq-first_seq+1; ++seqn) { |
|---|
| 343 | if((seq_array[seqn+first_seq-1][posn] == gap_pos1) || |
|---|
| 344 | (seq_array[seqn+first_seq-1][posn] == gap_pos2)) { |
|---|
| 345 | tree_gaps[posn] = 1; |
|---|
| 346 | break; |
|---|
| 347 | } |
|---|
| 348 | } |
|---|
| 349 | } |
|---|
| 350 | |
|---|
| 351 | } |
|---|
| 352 | |
|---|
| 353 | void distance_matrix_output(FILE *ofile) |
|---|
| 354 | { |
|---|
| 355 | sint i,j; |
|---|
| 356 | |
|---|
| 357 | fprintf(ofile,"%6d",(pint)last_seq-first_seq+1); |
|---|
| 358 | for(i=1;i<=last_seq-first_seq+1;i++) { |
|---|
| 359 | fprintf(ofile,"\n%-*s ",max_names,names[i]); |
|---|
| 360 | for(j=1;j<=last_seq-first_seq+1;j++) { |
|---|
| 361 | fprintf(ofile,"%6.3f ",tmat[i][j]); |
|---|
| 362 | if(j % 8 == 0) { |
|---|
| 363 | if(j!=last_seq-first_seq+1) fprintf(ofile,"\n"); |
|---|
| 364 | if(j != last_seq-first_seq+1 ) fprintf(ofile," "); |
|---|
| 365 | } |
|---|
| 366 | } |
|---|
| 367 | } |
|---|
| 368 | } |
|---|
| 369 | |
|---|
| 370 | |
|---|
| 371 | |
|---|
| 372 | #ifdef ORIGINAL_NJ_TREE |
|---|
| 373 | void nj_tree(char **tree_description, FILE *tree) |
|---|
| 374 | { |
|---|
| 375 | register int i; |
|---|
| 376 | sint l[4],nude,k; |
|---|
| 377 | sint nc,mini,minj,j,ii,jj; |
|---|
| 378 | double fnseqs,fnseqs2=0,sumd; |
|---|
| 379 | double diq,djq,dij,d2r,dr,dio,djo,da; |
|---|
| 380 | double tmin,total,dmin; |
|---|
| 381 | double bi,bj,b1,b2,b3,branch[4]; |
|---|
| 382 | sint typei,typej; /* 0 = node; 1 = OTU */ |
|---|
| 383 | |
|---|
| 384 | fnseqs = (double)last_seq-first_seq+1; |
|---|
| 385 | |
|---|
| 386 | /*********************** First initialisation ***************************/ |
|---|
| 387 | |
|---|
| 388 | if(verbose) { |
|---|
| 389 | fprintf(tree,"\n\n\t\t\tNeighbor-joining Method\n"); |
|---|
| 390 | fprintf(tree,"\n Saitou, N. and Nei, M. (1987)"); |
|---|
| 391 | fprintf(tree," The Neighbor-joining Method:"); |
|---|
| 392 | fprintf(tree,"\n A New Method for Reconstructing Phylogenetic Trees."); |
|---|
| 393 | fprintf(tree,"\n Mol. Biol. Evol., 4(4), 406-425\n"); |
|---|
| 394 | fprintf(tree,"\n\n This is an UNROOTED tree\n"); |
|---|
| 395 | fprintf(tree,"\n Numbers in parentheses are branch lengths\n\n"); |
|---|
| 396 | } |
|---|
| 397 | |
|---|
| 398 | if (fnseqs == 2) { |
|---|
| 399 | if (verbose) fprintf(tree,"Cycle 1 = SEQ: 1 (%9.5f) joins SEQ: 2 (%9.5f)",tmat[first_seq][first_seq+1],tmat[first_seq][first_seq+1]); |
|---|
| 400 | return; |
|---|
| 401 | } |
|---|
| 402 | |
|---|
| 403 | mini = minj = 0; |
|---|
| 404 | |
|---|
| 405 | left_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 406 | right_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 407 | tkill = (sint *) ckalloc( (nseqs+1) * sizeof (sint) ); |
|---|
| 408 | av = (double *) ckalloc( (nseqs+1) * sizeof (double) ); |
|---|
| 409 | |
|---|
| 410 | for(i=1;i<=last_seq-first_seq+1;++i) |
|---|
| 411 | { |
|---|
| 412 | tmat[i][i] = av[i] = 0.0; |
|---|
| 413 | tkill[i] = 0; |
|---|
| 414 | } |
|---|
| 415 | |
|---|
| 416 | /*********************** Enter The Main Cycle ***************************/ |
|---|
| 417 | |
|---|
| 418 | /* for(nc=1; nc<=(last_seq-first_seq+1-3); ++nc) { */ /**start main cycle**/ |
|---|
| 419 | for(nc=1; nc<=(last_seq-first_seq+1-3); ++nc) { |
|---|
| 420 | sumd = 0.0; |
|---|
| 421 | for(j=2; j<=last_seq-first_seq+1; ++j) |
|---|
| 422 | for(i=1; i<j; ++i) { |
|---|
| 423 | tmat[j][i] = tmat[i][j]; |
|---|
| 424 | sumd = sumd + tmat[i][j]; |
|---|
| 425 | } |
|---|
| 426 | |
|---|
| 427 | tmin = 99999.0; |
|---|
| 428 | |
|---|
| 429 | /*.................compute SMATij values and find the smallest one ........*/ |
|---|
| 430 | |
|---|
| 431 | for(jj=2; jj<=last_seq-first_seq+1; ++jj) |
|---|
| 432 | if(tkill[jj] != 1) |
|---|
| 433 | for(ii=1; ii<jj; ++ii) |
|---|
| 434 | if(tkill[ii] != 1) { |
|---|
| 435 | diq = djq = 0.0; |
|---|
| 436 | |
|---|
| 437 | for(i=1; i<=last_seq-first_seq+1; ++i) { |
|---|
| 438 | diq = diq + tmat[i][ii]; |
|---|
| 439 | djq = djq + tmat[i][jj]; |
|---|
| 440 | } |
|---|
| 441 | |
|---|
| 442 | dij = tmat[ii][jj]; |
|---|
| 443 | d2r = diq + djq - (2.0*dij); |
|---|
| 444 | dr = sumd - dij -d2r; |
|---|
| 445 | fnseqs2 = fnseqs - 2.0; |
|---|
| 446 | total= d2r+ fnseqs2*dij +dr*2.0; |
|---|
| 447 | total= total / (2.0*fnseqs2); |
|---|
| 448 | |
|---|
| 449 | if(total < tmin) { |
|---|
| 450 | tmin = total; |
|---|
| 451 | mini = ii; |
|---|
| 452 | minj = jj; |
|---|
| 453 | } |
|---|
| 454 | } |
|---|
| 455 | |
|---|
| 456 | |
|---|
| 457 | /*.................compute branch lengths and print the results ........*/ |
|---|
| 458 | |
|---|
| 459 | |
|---|
| 460 | dio = djo = 0.0; |
|---|
| 461 | for(i=1; i<=last_seq-first_seq+1; ++i) { |
|---|
| 462 | dio = dio + tmat[i][mini]; |
|---|
| 463 | djo = djo + tmat[i][minj]; |
|---|
| 464 | } |
|---|
| 465 | |
|---|
| 466 | dmin = tmat[mini][minj]; |
|---|
| 467 | dio = (dio - dmin) / fnseqs2; |
|---|
| 468 | djo = (djo - dmin) / fnseqs2; |
|---|
| 469 | bi = (dmin + dio - djo) * 0.5; |
|---|
| 470 | bj = dmin - bi; |
|---|
| 471 | bi = bi - av[mini]; |
|---|
| 472 | bj = bj - av[minj]; |
|---|
| 473 | |
|---|
| 474 | if( av[mini] > 0.0 ) |
|---|
| 475 | typei = 0; |
|---|
| 476 | else |
|---|
| 477 | typei = 1; |
|---|
| 478 | if( av[minj] > 0.0 ) |
|---|
| 479 | typej = 0; |
|---|
| 480 | else |
|---|
| 481 | typej = 1; |
|---|
| 482 | |
|---|
| 483 | if(verbose) |
|---|
| 484 | fprintf(tree,"\n Cycle%4d = ",(pint)nc); |
|---|
| 485 | |
|---|
| 486 | /* |
|---|
| 487 | set negative branch lengths to zero. Also set any tiny positive |
|---|
| 488 | branch lengths to zero. |
|---|
| 489 | */ if( fabs(bi) < 0.0001) bi = 0.0; |
|---|
| 490 | if( fabs(bj) < 0.0001) bj = 0.0; |
|---|
| 491 | |
|---|
| 492 | if(verbose) { |
|---|
| 493 | if(typei == 0) |
|---|
| 494 | fprintf(tree,"Node:%4d (%9.5f) joins ",(pint)mini,bi); |
|---|
| 495 | else |
|---|
| 496 | fprintf(tree," SEQ:%4d (%9.5f) joins ",(pint)mini,bi); |
|---|
| 497 | |
|---|
| 498 | if(typej == 0) |
|---|
| 499 | fprintf(tree,"Node:%4d (%9.5f)",(pint)minj,bj); |
|---|
| 500 | else |
|---|
| 501 | fprintf(tree," SEQ:%4d (%9.5f)",(pint)minj,bj); |
|---|
| 502 | |
|---|
| 503 | fprintf(tree,"\n"); |
|---|
| 504 | } |
|---|
| 505 | |
|---|
| 506 | |
|---|
| 507 | left_branch[nc] = bi; |
|---|
| 508 | right_branch[nc] = bj; |
|---|
| 509 | |
|---|
| 510 | for(i=1; i<=last_seq-first_seq+1; i++) |
|---|
| 511 | tree_description[nc][i] = 0; |
|---|
| 512 | |
|---|
| 513 | if(typei == 0) { |
|---|
| 514 | for(i=nc-1; i>=1; i--) |
|---|
| 515 | if(tree_description[i][mini] == 1) { |
|---|
| 516 | for(j=1; j<=last_seq-first_seq+1; j++) |
|---|
| 517 | if(tree_description[i][j] == 1) |
|---|
| 518 | tree_description[nc][j] = 1; |
|---|
| 519 | break; |
|---|
| 520 | } |
|---|
| 521 | } |
|---|
| 522 | else |
|---|
| 523 | tree_description[nc][mini] = 1; |
|---|
| 524 | |
|---|
| 525 | if(typej == 0) { |
|---|
| 526 | for(i=nc-1; i>=1; i--) |
|---|
| 527 | if(tree_description[i][minj] == 1) { |
|---|
| 528 | for(j=1; j<=last_seq-first_seq+1; j++) |
|---|
| 529 | if(tree_description[i][j] == 1) |
|---|
| 530 | tree_description[nc][j] = 1; |
|---|
| 531 | break; |
|---|
| 532 | } |
|---|
| 533 | } |
|---|
| 534 | else |
|---|
| 535 | tree_description[nc][minj] = 1; |
|---|
| 536 | |
|---|
| 537 | |
|---|
| 538 | /* |
|---|
| 539 | Here is where the -0.00005 branch lengths come from for 3 or more |
|---|
| 540 | identical seqs. |
|---|
| 541 | */ |
|---|
| 542 | /* if(dmin <= 0.0) dmin = 0.0001; */ |
|---|
| 543 | if(dmin <= 0.0) dmin = 0.000001; |
|---|
| 544 | av[mini] = dmin * 0.5; |
|---|
| 545 | |
|---|
| 546 | /*........................Re-initialisation................................*/ |
|---|
| 547 | |
|---|
| 548 | fnseqs = fnseqs - 1.0; |
|---|
| 549 | tkill[minj] = 1; |
|---|
| 550 | |
|---|
| 551 | for(j=1; j<=last_seq-first_seq+1; ++j) |
|---|
| 552 | if( tkill[j] != 1 ) { |
|---|
| 553 | da = ( tmat[mini][j] + tmat[minj][j] ) * 0.5; |
|---|
| 554 | if( (mini - j) < 0 ) |
|---|
| 555 | tmat[mini][j] = da; |
|---|
| 556 | if( (mini - j) > 0) |
|---|
| 557 | tmat[j][mini] = da; |
|---|
| 558 | } |
|---|
| 559 | |
|---|
| 560 | for(j=1; j<=last_seq-first_seq+1; ++j) |
|---|
| 561 | tmat[minj][j] = tmat[j][minj] = 0.0; |
|---|
| 562 | |
|---|
| 563 | |
|---|
| 564 | /****/ } /**end main cycle**/ |
|---|
| 565 | |
|---|
| 566 | /******************************Last Cycle (3 Seqs. left)********************/ |
|---|
| 567 | |
|---|
| 568 | nude = 1; |
|---|
| 569 | |
|---|
| 570 | for(i=1; i<=last_seq-first_seq+1; ++i) |
|---|
| 571 | if( tkill[i] != 1 ) { |
|---|
| 572 | l[nude] = i; |
|---|
| 573 | nude = nude + 1; |
|---|
| 574 | } |
|---|
| 575 | |
|---|
| 576 | b1 = (tmat[l[1]][l[2]] + tmat[l[1]][l[3]] - tmat[l[2]][l[3]]) * 0.5; |
|---|
| 577 | b2 = tmat[l[1]][l[2]] - b1; |
|---|
| 578 | b3 = tmat[l[1]][l[3]] - b1; |
|---|
| 579 | |
|---|
| 580 | branch[1] = b1 - av[l[1]]; |
|---|
| 581 | branch[2] = b2 - av[l[2]]; |
|---|
| 582 | branch[3] = b3 - av[l[3]]; |
|---|
| 583 | |
|---|
| 584 | /* Reset tiny negative and positive branch lengths to zero */ |
|---|
| 585 | if( fabs(branch[1]) < 0.0001) branch[1] = 0.0; |
|---|
| 586 | if( fabs(branch[2]) < 0.0001) branch[2] = 0.0; |
|---|
| 587 | if( fabs(branch[3]) < 0.0001) branch[3] = 0.0; |
|---|
| 588 | |
|---|
| 589 | left_branch[last_seq-first_seq+1-2] = branch[1]; |
|---|
| 590 | left_branch[last_seq-first_seq+1-1] = branch[2]; |
|---|
| 591 | left_branch[last_seq-first_seq+1] = branch[3]; |
|---|
| 592 | |
|---|
| 593 | for(i=1; i<=last_seq-first_seq+1; i++) |
|---|
| 594 | tree_description[last_seq-first_seq+1-2][i] = 0; |
|---|
| 595 | |
|---|
| 596 | if(verbose) |
|---|
| 597 | fprintf(tree,"\n Cycle%4d (Last cycle, trichotomy):\n",(pint)nc); |
|---|
| 598 | |
|---|
| 599 | for(i=1; i<=3; ++i) { |
|---|
| 600 | if( av[l[i]] > 0.0) { |
|---|
| 601 | if(verbose) |
|---|
| 602 | fprintf(tree,"\n\t\t Node:%4d (%9.5f) ",(pint)l[i],branch[i]); |
|---|
| 603 | for(k=last_seq-first_seq+1-3; k>=1; k--) |
|---|
| 604 | if(tree_description[k][l[i]] == 1) { |
|---|
| 605 | for(j=1; j<=last_seq-first_seq+1; j++) |
|---|
| 606 | if(tree_description[k][j] == 1) |
|---|
| 607 | tree_description[last_seq-first_seq+1-2][j] = i; |
|---|
| 608 | break; |
|---|
| 609 | } |
|---|
| 610 | } |
|---|
| 611 | else { |
|---|
| 612 | if(verbose) |
|---|
| 613 | fprintf(tree,"\n\t\t SEQ:%4d (%9.5f) ",(pint)l[i],branch[i]); |
|---|
| 614 | tree_description[last_seq-first_seq+1-2][l[i]] = i; |
|---|
| 615 | } |
|---|
| 616 | if(i < 3) { |
|---|
| 617 | if(verbose) |
|---|
| 618 | fprintf(tree,"joins"); |
|---|
| 619 | } |
|---|
| 620 | } |
|---|
| 621 | |
|---|
| 622 | if(verbose) |
|---|
| 623 | fprintf(tree,"\n"); |
|---|
| 624 | |
|---|
| 625 | } |
|---|
| 626 | |
|---|
| 627 | #else /* ORIGINAL_NJ_TREE */ |
|---|
| 628 | |
|---|
| 629 | void nj_tree(char **tree_description, FILE *tree) { |
|---|
| 630 | void fast_nj_tree(); |
|---|
| 631 | |
|---|
| 632 | /*fprintf(stderr, "****** call fast_nj_tree() !!!! ******\n");*/ |
|---|
| 633 | fast_nj_tree(tree_description, tree); |
|---|
| 634 | } |
|---|
| 635 | |
|---|
| 636 | |
|---|
| 637 | /**************************************************************************** |
|---|
| 638 | * [ Improvement ideas in fast_nj_tree() ] by DDBJ & FUJITSU Limited. |
|---|
| 639 | * written by Tadashi Koike |
|---|
| 640 | * (takoike@genes.nig.ac.jp) |
|---|
| 641 | ******************* |
|---|
| 642 | * <IMPROVEMENT 1> : Store the value of sum of the score to temporary array, |
|---|
| 643 | * and use again and again. |
|---|
| 644 | * |
|---|
| 645 | * In the main cycle, these are calculated again and again : |
|---|
| 646 | * diq = sum of tmat[n][ii] (n:1 to last_seq-first_seq+1), |
|---|
| 647 | * djq = sum of tmat[n][jj] (n:1 to last_seq-first_seq+1), |
|---|
| 648 | * dio = sum of tmat[n][mini] (n:1 to last_seq-first_seq+1), |
|---|
| 649 | * djq = sum of tmat[n][minj] (n:1 to last_seq-first_seq+1) |
|---|
| 650 | * // 'last_seq' and 'first_seq' are both constant values // |
|---|
| 651 | * and the result of above calculations is always same until |
|---|
| 652 | * a best pair of neighbour nodes is joined. |
|---|
| 653 | * |
|---|
| 654 | * So, we change the logic to calculate the sum[i] (=sum of tmat[n][i] |
|---|
| 655 | * (n:1 to last_seq-first_seq+1)) and store it to array, before |
|---|
| 656 | * beginning to find a best pair of neighbour nodes, and after that |
|---|
| 657 | * we use them again and again. |
|---|
| 658 | * |
|---|
| 659 | * tmat[i][j] |
|---|
| 660 | * 1 2 3 4 5 |
|---|
| 661 | * +---+---+---+---+---+ |
|---|
| 662 | * 1 | | | | | | |
|---|
| 663 | * +---+---+---+---+---+ |
|---|
| 664 | * 2 | | | | | | 1) calculate sum of tmat[n][i] |
|---|
| 665 | * +---+---+---+---+---+ (n: 1 to last_seq-first_seq+1) |
|---|
| 666 | * 3 | | | | | | 2) store that sum value to sum[i] |
|---|
| 667 | * +---+---+---+---+---+ |
|---|
| 668 | * 4 | | | | | | 3) use sum[i] during finding a best |
|---|
| 669 | * +---+---+---+---+---+ pair of neibour nodes. |
|---|
| 670 | * 5 | | | | | | |
|---|
| 671 | * +---+---+---+---+---+ |
|---|
| 672 | * | | | | | |
|---|
| 673 | * V V V V V Calculate sum , and store it to sum[i] |
|---|
| 674 | * +---+---+---+---+---+ |
|---|
| 675 | * sum[i] | | | | | | |
|---|
| 676 | * +---+---+---+---+---+ |
|---|
| 677 | * |
|---|
| 678 | * At this time, we thought that we use upper triangle of the matrix |
|---|
| 679 | * because tmat[i][j] is equal to tmat[j][i] and tmat[i][i] is equal |
|---|
| 680 | * to zero. Therefore, we prepared sum_rows[i] and sum_cols[i] instead |
|---|
| 681 | * of sum[i] for storing the sum value. |
|---|
| 682 | * |
|---|
| 683 | * tmat[i][j] |
|---|
| 684 | * 1 2 3 4 5 sum_cols[i] |
|---|
| 685 | * +---+---+---+---+---+ +---+ |
|---|
| 686 | * 1 | # | # | # | # | --> | | ... sum of tmat[1][2..5] |
|---|
| 687 | * + - +---+---+---+---+ +---+ |
|---|
| 688 | * 2 | # | # | # | --> | | ... sum of tmat[2][3..5] |
|---|
| 689 | * + - + - +---+---+---+ +---+ |
|---|
| 690 | * 3 | # | # | --> | | ... sum of tmat[3][4..5] |
|---|
| 691 | * + - + - + - +---+---+ +---+ |
|---|
| 692 | * 4 | # | --> | | ... sum of tmat[4][5] |
|---|
| 693 | * + - + - + - + - +---+ +---+ |
|---|
| 694 | * 5 | --> | | ... zero |
|---|
| 695 | * + - + - + - + - + - + +---+ |
|---|
| 696 | * | | | | | |
|---|
| 697 | * V V V V V Calculate sum , sotre to sum[i] |
|---|
| 698 | * +---+---+---+---+---+ |
|---|
| 699 | * sum_rows[i] | | | | | | |
|---|
| 700 | * +---+---+---+---+---+ |
|---|
| 701 | * | | | | | |
|---|
| 702 | * | | | | +----- sum of tmat[1..4][5] |
|---|
| 703 | * | | | +--------- sum of tmat[1..3][4] |
|---|
| 704 | * | | +------------- sum of tmat[1..2][3] |
|---|
| 705 | * | +----------------- sum of tmat[1][2] |
|---|
| 706 | * +--------------------- zero |
|---|
| 707 | * |
|---|
| 708 | * And we use (sum_rows[i] + sum_cols[i]) instead of sum[i]. |
|---|
| 709 | * |
|---|
| 710 | ******************* |
|---|
| 711 | * <IMPROVEMENT 2> : We manage valid nodes with chain list, instead of |
|---|
| 712 | * tkill[i] flag array. |
|---|
| 713 | * |
|---|
| 714 | * In original logic, invalid(killed?) nodes after nodes-joining |
|---|
| 715 | * are managed with tkill[i] flag array (set to 1 when killed). |
|---|
| 716 | * By this method, it is conspicuous to try next node but skip it |
|---|
| 717 | * at the latter of finding a best pair of neighbor nodes. |
|---|
| 718 | * |
|---|
| 719 | * So, we thought that we managed valid nodes by using a chain list |
|---|
| 720 | * as below: |
|---|
| 721 | * |
|---|
| 722 | * 1) declare the list structure. |
|---|
| 723 | * struct { |
|---|
| 724 | * sint n; // entry number of node. |
|---|
| 725 | * void *prev; // pointer to previous entry. |
|---|
| 726 | * void *next; // pointer to next entry. |
|---|
| 727 | * } |
|---|
| 728 | * 2) construct a valid node list. |
|---|
| 729 | * |
|---|
| 730 | * +-----+ +-----+ +-----+ +-----+ +-----+ |
|---|
| 731 | * NULL<-|prev |<---|prev |<---|prev |<---|prev |<- - - -|prev | |
|---|
| 732 | * | 0 | | 1 | | 2 | | 3 | | n | |
|---|
| 733 | * | next|--->| next|--->| next|--->| next|- - - ->| next|->NULL |
|---|
| 734 | * +-----+ +-----+ +-----+ +-----+ +-----+ |
|---|
| 735 | * |
|---|
| 736 | * 3) when finding a best pair of neighbor nodes, we use |
|---|
| 737 | * this chain list as loop counter. |
|---|
| 738 | * |
|---|
| 739 | * 4) If an entry was killed by node-joining, this chain list is |
|---|
| 740 | * modified to remove that entry. |
|---|
| 741 | * |
|---|
| 742 | * EX) remove the entry No 2. |
|---|
| 743 | * +-----+ +-----+ +-----+ +-----+ |
|---|
| 744 | * NULL<-|prev |<---|prev |<--------------|prev |<- - - -|prev | |
|---|
| 745 | * | 0 | | 1 | | 3 | | n | |
|---|
| 746 | * | next|--->| next|-------------->| next|- - - ->| next|->NULL |
|---|
| 747 | * +-----+ +-----+ +-----+ +-----+ |
|---|
| 748 | * +-----+ |
|---|
| 749 | * NULL<-|prev | |
|---|
| 750 | * | 2 | |
|---|
| 751 | * | next|->NULL |
|---|
| 752 | * +-----+ |
|---|
| 753 | * |
|---|
| 754 | * By this method, speed is up at the latter of finding a best pair of |
|---|
| 755 | * neighbor nodes. |
|---|
| 756 | * |
|---|
| 757 | ******************* |
|---|
| 758 | * <IMPROVEMENT 3> : Cut the frequency of division. |
|---|
| 759 | * |
|---|
| 760 | * At comparison between 'total' and 'tmin' in the main cycle, total is |
|---|
| 761 | * divided by (2.0*fnseqs2) before comparison. If N nodes are available, |
|---|
| 762 | * that division happen (N*(N-1))/2 order. |
|---|
| 763 | * |
|---|
| 764 | * We thought that the comparison relation between tmin and total/(2.0*fnseqs2) |
|---|
| 765 | * is equal to the comparison relation between (tmin*2.0*fnseqs2) and total. |
|---|
| 766 | * Calculation of (tmin*2.0*fnseqs2) is only one time. so we stop dividing |
|---|
| 767 | * a total value and multiply tmin and (tmin*2.0*fnseqs2) instead. |
|---|
| 768 | * |
|---|
| 769 | ******************* |
|---|
| 770 | * <IMPROVEMENT 4> : some transformation of the equation (to cut operations). |
|---|
| 771 | * |
|---|
| 772 | * We transform an equation of calculating 'total' in the main cycle. |
|---|
| 773 | * |
|---|
| 774 | */ |
|---|
| 775 | |
|---|
| 776 | |
|---|
| 777 | void fast_nj_tree(char **tree_description, FILE *tree) |
|---|
| 778 | { |
|---|
| 779 | register int i; |
|---|
| 780 | sint l[4],nude,k; |
|---|
| 781 | sint nc,mini,minj,j,ii,jj; |
|---|
| 782 | double fnseqs,fnseqs2=0,sumd; |
|---|
| 783 | double diq,djq,dij,dio,djo,da; |
|---|
| 784 | double tmin,total,dmin; |
|---|
| 785 | double bi,bj,b1,b2,b3,branch[4]; |
|---|
| 786 | sint typei,typej; /* 0 = node; 1 = OTU */ |
|---|
| 787 | |
|---|
| 788 | /* IMPROVEMENT 1, STEP 0 : declare variables */ |
|---|
| 789 | double *sum_cols, *sum_rows, *join; |
|---|
| 790 | |
|---|
| 791 | /* IMPROVEMENT 2, STEP 0 : declare variables */ |
|---|
| 792 | sint loop_limit; |
|---|
| 793 | typedef struct _ValidNodeID { |
|---|
| 794 | sint n; |
|---|
| 795 | struct _ValidNodeID *prev; |
|---|
| 796 | struct _ValidNodeID *next; |
|---|
| 797 | } ValidNodeID; |
|---|
| 798 | ValidNodeID *tvalid, *lpi, *lpj, *lpii, *lpjj, *lp_prev, *lp_next; |
|---|
| 799 | |
|---|
| 800 | /* |
|---|
| 801 | * correspondence of the loop counter variables. |
|---|
| 802 | * i .. lpi->n, ii .. lpii->n |
|---|
| 803 | * j .. lpj->n, jj .. lpjj->n |
|---|
| 804 | */ |
|---|
| 805 | |
|---|
| 806 | fnseqs = (double)last_seq-first_seq+1; |
|---|
| 807 | |
|---|
| 808 | /*********************** First initialisation ***************************/ |
|---|
| 809 | |
|---|
| 810 | if(verbose) { |
|---|
| 811 | fprintf(tree,"\n\n\t\t\tNeighbor-joining Method\n"); |
|---|
| 812 | fprintf(tree,"\n Saitou, N. and Nei, M. (1987)"); |
|---|
| 813 | fprintf(tree," The Neighbor-joining Method:"); |
|---|
| 814 | fprintf(tree,"\n A New Method for Reconstructing Phylogenetic Trees."); |
|---|
| 815 | fprintf(tree,"\n Mol. Biol. Evol., 4(4), 406-425\n"); |
|---|
| 816 | fprintf(tree,"\n\n This is an UNROOTED tree\n"); |
|---|
| 817 | fprintf(tree,"\n Numbers in parentheses are branch lengths\n\n"); |
|---|
| 818 | } |
|---|
| 819 | |
|---|
| 820 | if (fnseqs == 2) { |
|---|
| 821 | if (verbose) fprintf(tree,"Cycle 1 = SEQ: 1 (%9.5f) joins SEQ: 2 (%9.5f)",tmat[first_seq][first_seq+1],tmat[first_seq][first_seq+1]); |
|---|
| 822 | return; |
|---|
| 823 | } |
|---|
| 824 | |
|---|
| 825 | mini = minj = 0; |
|---|
| 826 | |
|---|
| 827 | left_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 828 | right_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 829 | tkill = (sint *) ckalloc( (nseqs+1) * sizeof (sint) ); |
|---|
| 830 | av = (double *) ckalloc( (nseqs+1) * sizeof (double) ); |
|---|
| 831 | |
|---|
| 832 | /* IMPROVEMENT 1, STEP 1 : Allocate memory */ |
|---|
| 833 | sum_cols = (double *) ckalloc( (nseqs+1) * sizeof (double) ); |
|---|
| 834 | sum_rows = (double *) ckalloc( (nseqs+1) * sizeof (double) ); |
|---|
| 835 | join = (double *) ckalloc( (nseqs+1) * sizeof (double) ); |
|---|
| 836 | |
|---|
| 837 | /* IMPROVEMENT 2, STEP 1 : Allocate memory */ |
|---|
| 838 | tvalid = (ValidNodeID *) ckalloc( (nseqs+1) * sizeof (ValidNodeID) ); |
|---|
| 839 | /* tvalid[0] is special entry in array. it points a header of valid entry list */ |
|---|
| 840 | tvalid[0].n = 0; |
|---|
| 841 | tvalid[0].prev = NULL; |
|---|
| 842 | tvalid[0].next = &tvalid[1]; |
|---|
| 843 | |
|---|
| 844 | /* IMPROVEMENT 2, STEP 2 : Construct and initialize the entry chain list */ |
|---|
| 845 | for(i=1, loop_limit = last_seq-first_seq+1, |
|---|
| 846 | lpi=&tvalid[1], lp_prev=&tvalid[0], lp_next=&tvalid[2] ; |
|---|
| 847 | i<=loop_limit ; |
|---|
| 848 | ++i, ++lpi, ++lp_prev, ++lp_next) |
|---|
| 849 | { |
|---|
| 850 | tmat[i][i] = av[i] = 0.0; |
|---|
| 851 | tkill[i] = 0; |
|---|
| 852 | lpi->n = i; |
|---|
| 853 | lpi->prev = lp_prev; |
|---|
| 854 | lpi->next = lp_next; |
|---|
| 855 | |
|---|
| 856 | /* IMPROVEMENT 1, STEP 2 : Initialize arrays */ |
|---|
| 857 | sum_cols[i] = sum_rows[i] = join[i] = 0.0; |
|---|
| 858 | } |
|---|
| 859 | tvalid[loop_limit].next = NULL; |
|---|
| 860 | |
|---|
| 861 | /* |
|---|
| 862 | * IMPROVEMENT 1, STEP 3 : Calculate the sum of score value that |
|---|
| 863 | * is sequence[i] to others. |
|---|
| 864 | */ |
|---|
| 865 | sumd = 0.0; |
|---|
| 866 | for (lpj=tvalid[0].next ; lpj!=NULL ; lpj = lpj->next) { |
|---|
| 867 | double tmp_sum = 0.0; |
|---|
| 868 | j = lpj->n; |
|---|
| 869 | /* calculate sum_rows[j] */ |
|---|
| 870 | for (lpi=tvalid[0].next ; lpi->n < j ; lpi = lpi->next) { |
|---|
| 871 | i = lpi->n; |
|---|
| 872 | tmp_sum += tmat[i][j]; |
|---|
| 873 | /* tmat[j][i] = tmat[i][j]; */ |
|---|
| 874 | } |
|---|
| 875 | sum_rows[j] = tmp_sum; |
|---|
| 876 | |
|---|
| 877 | tmp_sum = 0.0; |
|---|
| 878 | /* Set lpi to that lpi->n is greater than j */ |
|---|
| 879 | if ((lpi != NULL) && (lpi->n == j)) { |
|---|
| 880 | lpi = lpi->next; |
|---|
| 881 | } |
|---|
| 882 | /* calculate sum_cols[j] */ |
|---|
| 883 | for( ; lpi!=NULL ; lpi = lpi->next) { |
|---|
| 884 | i = lpi->n; |
|---|
| 885 | tmp_sum += tmat[j][i]; |
|---|
| 886 | /* tmat[i][j] = tmat[j][i]; */ |
|---|
| 887 | } |
|---|
| 888 | sum_cols[j] = tmp_sum; |
|---|
| 889 | } |
|---|
| 890 | |
|---|
| 891 | /*********************** Enter The Main Cycle ***************************/ |
|---|
| 892 | |
|---|
| 893 | for(nc=1, loop_limit = (last_seq-first_seq+1-3); nc<=loop_limit; ++nc) { |
|---|
| 894 | |
|---|
| 895 | sumd = 0.0; |
|---|
| 896 | /* IMPROVEMENT 1, STEP 4 : use sum value */ |
|---|
| 897 | for(lpj=tvalid[0].next ; lpj!=NULL ; lpj = lpj->next) { |
|---|
| 898 | sumd += sum_cols[lpj->n]; |
|---|
| 899 | } |
|---|
| 900 | |
|---|
| 901 | /* IMPROVEMENT 3, STEP 0 : multiply tmin and 2*fnseqs2 */ |
|---|
| 902 | fnseqs2 = fnseqs - 2.0; /* Set fnseqs2 at this point. */ |
|---|
| 903 | tmin = 99999.0 * 2.0 * fnseqs2; |
|---|
| 904 | |
|---|
| 905 | |
|---|
| 906 | /*.................compute SMATij values and find the smallest one ........*/ |
|---|
| 907 | |
|---|
| 908 | mini = minj = 0; |
|---|
| 909 | |
|---|
| 910 | /* jj must starts at least 2 */ |
|---|
| 911 | if ((tvalid[0].next != NULL) && (tvalid[0].next->n == 1)) { |
|---|
| 912 | lpjj = tvalid[0].next->next; |
|---|
| 913 | } else { |
|---|
| 914 | lpjj = tvalid[0].next; |
|---|
| 915 | } |
|---|
| 916 | |
|---|
| 917 | for( ; lpjj != NULL; lpjj = lpjj->next) { |
|---|
| 918 | jj = lpjj->n; |
|---|
| 919 | for(lpii=tvalid[0].next ; lpii->n < jj ; lpii = lpii->next) { |
|---|
| 920 | ii = lpii->n; |
|---|
| 921 | diq = djq = 0.0; |
|---|
| 922 | |
|---|
| 923 | /* IMPROVEMENT 1, STEP 4 : use sum value */ |
|---|
| 924 | diq = sum_cols[ii] + sum_rows[ii]; |
|---|
| 925 | djq = sum_cols[jj] + sum_rows[jj]; |
|---|
| 926 | /* |
|---|
| 927 | * always ii < jj in this point. Use upper |
|---|
| 928 | * triangle of score matrix. |
|---|
| 929 | */ |
|---|
| 930 | dij = tmat[ii][jj]; |
|---|
| 931 | |
|---|
| 932 | /* |
|---|
| 933 | * IMPROVEMENT 3, STEP 1 : fnseqs2 is |
|---|
| 934 | * already calculated. |
|---|
| 935 | */ |
|---|
| 936 | /* fnseqs2 = fnseqs - 2.0 */ |
|---|
| 937 | |
|---|
| 938 | /* IMPROVEMENT 4 : transform the equation */ |
|---|
| 939 | /*-------------------------------------------------------------------* |
|---|
| 940 | * OPTIMIZE of expression 'total = d2r + fnseqs2*dij + dr*2.0' * |
|---|
| 941 | * total = d2r + fnseq2*dij + 2.0*dr * |
|---|
| 942 | * = d2r + fnseq2*dij + 2(sumd - dij - d2r) * |
|---|
| 943 | * = d2r + fnseq2*dij + 2*sumd - 2*dij - 2*d2r * |
|---|
| 944 | * = fnseq2*dij + 2*sumd - 2*dij - 2*d2r + d2r * |
|---|
| 945 | * = fnseq2*dij + 2*sumd - 2*dij - d2r * |
|---|
| 946 | * = fnseq2*dij + 2*sumd - 2*dij - (diq + djq - 2*dij) * |
|---|
| 947 | * = fnseq2*dij + 2*sumd - 2*dij - diq - djq + 2*dij * |
|---|
| 948 | * = fnseq2*dij + 2*sumd - 2*dij + 2*dij - diq - djq * |
|---|
| 949 | * = fnseq2*dij + 2*sumd - diq - djq * |
|---|
| 950 | *-------------------------------------------------------------------*/ |
|---|
| 951 | total = fnseqs2*dij + 2.0*sumd - diq - djq; |
|---|
| 952 | |
|---|
| 953 | /* |
|---|
| 954 | * IMPROVEMENT 3, STEP 2 : abbrevlate |
|---|
| 955 | * the division on comparison between |
|---|
| 956 | * total and tmin. |
|---|
| 957 | */ |
|---|
| 958 | /* total = total / (2.0*fnseqs2); */ |
|---|
| 959 | |
|---|
| 960 | if(total < tmin) { |
|---|
| 961 | tmin = total; |
|---|
| 962 | mini = ii; |
|---|
| 963 | minj = jj; |
|---|
| 964 | } |
|---|
| 965 | } |
|---|
| 966 | } |
|---|
| 967 | |
|---|
| 968 | /* MEMO: always ii < jj in avobe loop, so mini < minj */ |
|---|
| 969 | |
|---|
| 970 | /*.................compute branch lengths and print the results ........*/ |
|---|
| 971 | |
|---|
| 972 | |
|---|
| 973 | dio = djo = 0.0; |
|---|
| 974 | |
|---|
| 975 | /* IMPROVEMENT 1, STEP 4 : use sum value */ |
|---|
| 976 | dio = sum_cols[mini] + sum_rows[mini]; |
|---|
| 977 | djo = sum_cols[minj] + sum_rows[minj]; |
|---|
| 978 | |
|---|
| 979 | dmin = tmat[mini][minj]; |
|---|
| 980 | dio = (dio - dmin) / fnseqs2; |
|---|
| 981 | djo = (djo - dmin) / fnseqs2; |
|---|
| 982 | bi = (dmin + dio - djo) * 0.5; |
|---|
| 983 | bj = dmin - bi; |
|---|
| 984 | bi = bi - av[mini]; |
|---|
| 985 | bj = bj - av[minj]; |
|---|
| 986 | |
|---|
| 987 | if( av[mini] > 0.0 ) |
|---|
| 988 | typei = 0; |
|---|
| 989 | else |
|---|
| 990 | typei = 1; |
|---|
| 991 | if( av[minj] > 0.0 ) |
|---|
| 992 | typej = 0; |
|---|
| 993 | else |
|---|
| 994 | typej = 1; |
|---|
| 995 | |
|---|
| 996 | if(verbose) |
|---|
| 997 | fprintf(tree,"\n Cycle%4d = ",(pint)nc); |
|---|
| 998 | |
|---|
| 999 | /* |
|---|
| 1000 | set negative branch lengths to zero. Also set any tiny positive |
|---|
| 1001 | branch lengths to zero. |
|---|
| 1002 | */ if( fabs(bi) < 0.0001) bi = 0.0; |
|---|
| 1003 | if( fabs(bj) < 0.0001) bj = 0.0; |
|---|
| 1004 | |
|---|
| 1005 | if(verbose) { |
|---|
| 1006 | if(typei == 0) |
|---|
| 1007 | fprintf(tree,"Node:%4d (%9.5f) joins ",(pint)mini,bi); |
|---|
| 1008 | else |
|---|
| 1009 | fprintf(tree," SEQ:%4d (%9.5f) joins ",(pint)mini,bi); |
|---|
| 1010 | |
|---|
| 1011 | if(typej == 0) |
|---|
| 1012 | fprintf(tree,"Node:%4d (%9.5f)",(pint)minj,bj); |
|---|
| 1013 | else |
|---|
| 1014 | fprintf(tree," SEQ:%4d (%9.5f)",(pint)minj,bj); |
|---|
| 1015 | |
|---|
| 1016 | fprintf(tree,"\n"); |
|---|
| 1017 | } |
|---|
| 1018 | |
|---|
| 1019 | |
|---|
| 1020 | left_branch[nc] = bi; |
|---|
| 1021 | right_branch[nc] = bj; |
|---|
| 1022 | |
|---|
| 1023 | for(i=1; i<=last_seq-first_seq+1; i++) |
|---|
| 1024 | tree_description[nc][i] = 0; |
|---|
| 1025 | |
|---|
| 1026 | if(typei == 0) { |
|---|
| 1027 | for(i=nc-1; i>=1; i--) |
|---|
| 1028 | if(tree_description[i][mini] == 1) { |
|---|
| 1029 | for(j=1; j<=last_seq-first_seq+1; j++) |
|---|
| 1030 | if(tree_description[i][j] == 1) |
|---|
| 1031 | tree_description[nc][j] = 1; |
|---|
| 1032 | break; |
|---|
| 1033 | } |
|---|
| 1034 | } |
|---|
| 1035 | else |
|---|
| 1036 | tree_description[nc][mini] = 1; |
|---|
| 1037 | |
|---|
| 1038 | if(typej == 0) { |
|---|
| 1039 | for(i=nc-1; i>=1; i--) |
|---|
| 1040 | if(tree_description[i][minj] == 1) { |
|---|
| 1041 | for(j=1; j<=last_seq-first_seq+1; j++) |
|---|
| 1042 | if(tree_description[i][j] == 1) |
|---|
| 1043 | tree_description[nc][j] = 1; |
|---|
| 1044 | break; |
|---|
| 1045 | } |
|---|
| 1046 | } |
|---|
| 1047 | else |
|---|
| 1048 | tree_description[nc][minj] = 1; |
|---|
| 1049 | |
|---|
| 1050 | |
|---|
| 1051 | /* |
|---|
| 1052 | Here is where the -0.00005 branch lengths come from for 3 or more |
|---|
| 1053 | identical seqs. |
|---|
| 1054 | */ |
|---|
| 1055 | /* if(dmin <= 0.0) dmin = 0.0001; */ |
|---|
| 1056 | if(dmin <= 0.0) dmin = 0.000001; |
|---|
| 1057 | av[mini] = dmin * 0.5; |
|---|
| 1058 | |
|---|
| 1059 | /*........................Re-initialisation................................*/ |
|---|
| 1060 | |
|---|
| 1061 | fnseqs = fnseqs - 1.0; |
|---|
| 1062 | tkill[minj] = 1; |
|---|
| 1063 | |
|---|
| 1064 | /* IMPROVEMENT 2, STEP 3 : Remove tvalid[minj] from chain list. */ |
|---|
| 1065 | /* [ Before ] |
|---|
| 1066 | * +---------+ +---------+ +---------+ |
|---|
| 1067 | * |prev |<-------|prev |<-------|prev |<--- |
|---|
| 1068 | * | n | | n(=minj)| | n | |
|---|
| 1069 | * | next|------->| next|------->| next|---- |
|---|
| 1070 | * +---------+ +---------+ +---------+ |
|---|
| 1071 | * |
|---|
| 1072 | * [ After ] |
|---|
| 1073 | * +---------+ +---------+ |
|---|
| 1074 | * |prev |<--------------------------|prev |<--- |
|---|
| 1075 | * | n | | n | |
|---|
| 1076 | * | next|-------------------------->| next|---- |
|---|
| 1077 | * +---------+ +---------+ |
|---|
| 1078 | * +---------+ |
|---|
| 1079 | * NULL---|prev | |
|---|
| 1080 | * | n(=minj)| |
|---|
| 1081 | * | next|---NULL |
|---|
| 1082 | * +---------+ |
|---|
| 1083 | */ |
|---|
| 1084 | (tvalid[minj].prev)->next = tvalid[minj].next; |
|---|
| 1085 | if (tvalid[minj].next != NULL) { |
|---|
| 1086 | (tvalid[minj].next)->prev = tvalid[minj].prev; |
|---|
| 1087 | } |
|---|
| 1088 | tvalid[minj].prev = tvalid[minj].next = NULL; |
|---|
| 1089 | |
|---|
| 1090 | /* IMPROVEMENT 1, STEP 5 : re-calculate sum values. */ |
|---|
| 1091 | for(lpj=tvalid[0].next ; lpj != NULL ; lpj = lpj->next) { |
|---|
| 1092 | double tmp_di = 0.0; |
|---|
| 1093 | double tmp_dj = 0.0; |
|---|
| 1094 | j = lpj->n; |
|---|
| 1095 | |
|---|
| 1096 | /* |
|---|
| 1097 | * subtrace a score value related with 'minj' from |
|---|
| 1098 | * sum arrays . |
|---|
| 1099 | */ |
|---|
| 1100 | if (j < minj) { |
|---|
| 1101 | tmp_dj = tmat[j][minj]; |
|---|
| 1102 | sum_cols[j] -= tmp_dj; |
|---|
| 1103 | } else if (j > minj) { |
|---|
| 1104 | tmp_dj = tmat[minj][j]; |
|---|
| 1105 | sum_rows[j] -= tmp_dj; |
|---|
| 1106 | } /* nothing to do when j is equal to minj. */ |
|---|
| 1107 | |
|---|
| 1108 | |
|---|
| 1109 | /* |
|---|
| 1110 | * subtrace a score value related with 'mini' from |
|---|
| 1111 | * sum arrays . |
|---|
| 1112 | */ |
|---|
| 1113 | if (j < mini) { |
|---|
| 1114 | tmp_di = tmat[j][mini]; |
|---|
| 1115 | sum_cols[j] -= tmp_di; |
|---|
| 1116 | } else if (j > mini) { |
|---|
| 1117 | tmp_di = tmat[mini][j]; |
|---|
| 1118 | sum_rows[j] -= tmp_di; |
|---|
| 1119 | } /* nothing to do when j is equal to mini. */ |
|---|
| 1120 | |
|---|
| 1121 | /* |
|---|
| 1122 | * calculate a score value of the new inner node. |
|---|
| 1123 | * then, store it temporary to join[] array. |
|---|
| 1124 | */ |
|---|
| 1125 | join[j] = (tmp_dj + tmp_di) * 0.5; |
|---|
| 1126 | } |
|---|
| 1127 | |
|---|
| 1128 | /* |
|---|
| 1129 | * 1) |
|---|
| 1130 | * Set the score values (stored in join[]) into the matrix, |
|---|
| 1131 | * row/column position is 'mini'. |
|---|
| 1132 | * 2) |
|---|
| 1133 | * Add a score value of the new inner node to sum arrays. |
|---|
| 1134 | */ |
|---|
| 1135 | for(lpj=tvalid[0].next ; lpj != NULL; lpj = lpj->next) { |
|---|
| 1136 | j = lpj->n; |
|---|
| 1137 | if (j < mini) { |
|---|
| 1138 | tmat[j][mini] = join[j]; |
|---|
| 1139 | sum_cols[j] += join[j]; |
|---|
| 1140 | } else if (j > mini) { |
|---|
| 1141 | tmat[mini][j] = join[j]; |
|---|
| 1142 | sum_rows[j] += join[j]; |
|---|
| 1143 | } /* nothing to do when j is equal to mini. */ |
|---|
| 1144 | } |
|---|
| 1145 | |
|---|
| 1146 | /* Re-calculate sum_rows[mini],sum_cols[mini]. */ |
|---|
| 1147 | sum_cols[mini] = sum_rows[mini] = 0.0; |
|---|
| 1148 | |
|---|
| 1149 | /* calculate sum_rows[mini] */ |
|---|
| 1150 | da = 0.0; |
|---|
| 1151 | for(lpj=tvalid[0].next ; lpj->n < mini ; lpj = lpj->next) { |
|---|
| 1152 | da += join[lpj->n]; |
|---|
| 1153 | } |
|---|
| 1154 | sum_rows[mini] = da; |
|---|
| 1155 | |
|---|
| 1156 | /* skip if 'lpj->n' is equal to 'mini' */ |
|---|
| 1157 | if ((lpj != NULL) && (lpj->n == mini)) { |
|---|
| 1158 | lpj = lpj->next; |
|---|
| 1159 | } |
|---|
| 1160 | |
|---|
| 1161 | /* calculate sum_cols[mini] */ |
|---|
| 1162 | da = 0.0; |
|---|
| 1163 | for( ; lpj != NULL; lpj = lpj->next) { |
|---|
| 1164 | da += join[lpj->n]; |
|---|
| 1165 | } |
|---|
| 1166 | sum_cols[mini] = da; |
|---|
| 1167 | |
|---|
| 1168 | /* |
|---|
| 1169 | * Clean up sum_rows[minj], sum_cols[minj] and score matrix |
|---|
| 1170 | * related with 'minj'. |
|---|
| 1171 | */ |
|---|
| 1172 | sum_cols[minj] = sum_rows[minj] = 0.0; |
|---|
| 1173 | for(j=1; j<=last_seq-first_seq+1; ++j) |
|---|
| 1174 | tmat[minj][j] = tmat[j][minj] = join[j] = 0.0; |
|---|
| 1175 | |
|---|
| 1176 | |
|---|
| 1177 | /****/ } /**end main cycle**/ |
|---|
| 1178 | |
|---|
| 1179 | /******************************Last Cycle (3 Seqs. left)********************/ |
|---|
| 1180 | |
|---|
| 1181 | nude = 1; |
|---|
| 1182 | |
|---|
| 1183 | for(lpi=tvalid[0].next; lpi != NULL; lpi = lpi->next) { |
|---|
| 1184 | l[nude] = lpi->n; |
|---|
| 1185 | ++nude; |
|---|
| 1186 | } |
|---|
| 1187 | |
|---|
| 1188 | b1 = (tmat[l[1]][l[2]] + tmat[l[1]][l[3]] - tmat[l[2]][l[3]]) * 0.5; |
|---|
| 1189 | b2 = tmat[l[1]][l[2]] - b1; |
|---|
| 1190 | b3 = tmat[l[1]][l[3]] - b1; |
|---|
| 1191 | |
|---|
| 1192 | branch[1] = b1 - av[l[1]]; |
|---|
| 1193 | branch[2] = b2 - av[l[2]]; |
|---|
| 1194 | branch[3] = b3 - av[l[3]]; |
|---|
| 1195 | |
|---|
| 1196 | /* Reset tiny negative and positive branch lengths to zero */ |
|---|
| 1197 | if( fabs(branch[1]) < 0.0001) branch[1] = 0.0; |
|---|
| 1198 | if( fabs(branch[2]) < 0.0001) branch[2] = 0.0; |
|---|
| 1199 | if( fabs(branch[3]) < 0.0001) branch[3] = 0.0; |
|---|
| 1200 | |
|---|
| 1201 | left_branch[last_seq-first_seq+1-2] = branch[1]; |
|---|
| 1202 | left_branch[last_seq-first_seq+1-1] = branch[2]; |
|---|
| 1203 | left_branch[last_seq-first_seq+1] = branch[3]; |
|---|
| 1204 | |
|---|
| 1205 | for(i=1; i<=last_seq-first_seq+1; i++) |
|---|
| 1206 | tree_description[last_seq-first_seq+1-2][i] = 0; |
|---|
| 1207 | |
|---|
| 1208 | if(verbose) |
|---|
| 1209 | fprintf(tree,"\n Cycle%4d (Last cycle, trichotomy):\n",(pint)nc); |
|---|
| 1210 | |
|---|
| 1211 | for(i=1; i<=3; ++i) { |
|---|
| 1212 | if( av[l[i]] > 0.0) { |
|---|
| 1213 | if(verbose) |
|---|
| 1214 | fprintf(tree,"\n\t\t Node:%4d (%9.5f) ",(pint)l[i],branch[i]); |
|---|
| 1215 | for(k=last_seq-first_seq+1-3; k>=1; k--) |
|---|
| 1216 | if(tree_description[k][l[i]] == 1) { |
|---|
| 1217 | for(j=1; j<=last_seq-first_seq+1; j++) |
|---|
| 1218 | if(tree_description[k][j] == 1) |
|---|
| 1219 | tree_description[last_seq-first_seq+1-2][j] = i; |
|---|
| 1220 | break; |
|---|
| 1221 | } |
|---|
| 1222 | } |
|---|
| 1223 | else { |
|---|
| 1224 | if(verbose) |
|---|
| 1225 | fprintf(tree,"\n\t\t SEQ:%4d (%9.5f) ",(pint)l[i],branch[i]); |
|---|
| 1226 | tree_description[last_seq-first_seq+1-2][l[i]] = i; |
|---|
| 1227 | } |
|---|
| 1228 | if(i < 3) { |
|---|
| 1229 | if(verbose) |
|---|
| 1230 | fprintf(tree,"joins"); |
|---|
| 1231 | } |
|---|
| 1232 | } |
|---|
| 1233 | |
|---|
| 1234 | if(verbose) |
|---|
| 1235 | fprintf(tree,"\n"); |
|---|
| 1236 | |
|---|
| 1237 | |
|---|
| 1238 | /* IMPROVEMENT 1, STEP 6 : release memory area */ |
|---|
| 1239 | ckfree(sum_cols); |
|---|
| 1240 | ckfree(sum_rows); |
|---|
| 1241 | ckfree(join); |
|---|
| 1242 | |
|---|
| 1243 | /* IMPROVEMENT 2, STEP 4 : release memory area */ |
|---|
| 1244 | ckfree(tvalid); |
|---|
| 1245 | |
|---|
| 1246 | } |
|---|
| 1247 | #endif /* ORIGINAL_NJ_TREE */ |
|---|
| 1248 | |
|---|
| 1249 | |
|---|
| 1250 | |
|---|
| 1251 | void bootstrap_tree(char *phylip_name,char *clustal_name, char *nexus_name) |
|---|
| 1252 | { |
|---|
| 1253 | sint i,j; |
|---|
| 1254 | int ranno; |
|---|
| 1255 | char path[MAXLINE+1]; |
|---|
| 1256 | char dummy[10]; |
|---|
| 1257 | static char **sample_tree; |
|---|
| 1258 | static char **standard_tree; |
|---|
| 1259 | static char **save_tree; |
|---|
| 1260 | sint total_dists, overspill = 0, total_overspill = 0; |
|---|
| 1261 | sint nfails = 0; |
|---|
| 1262 | |
|---|
| 1263 | if(empty) { |
|---|
| 1264 | error("You must load an alignment first"); |
|---|
| 1265 | return; |
|---|
| 1266 | } |
|---|
| 1267 | |
|---|
| 1268 | if(nseqs<4) { |
|---|
| 1269 | error("Alignment has only %d sequences",nseqs); |
|---|
| 1270 | return; |
|---|
| 1271 | } |
|---|
| 1272 | |
|---|
| 1273 | if(!output_tree_clustal && !output_tree_phylip && !output_tree_nexus) { |
|---|
| 1274 | error("You must select either clustal or phylip or nexus tree output format"); |
|---|
| 1275 | return; |
|---|
| 1276 | } |
|---|
| 1277 | get_path(seqname, path); |
|---|
| 1278 | |
|---|
| 1279 | if (output_tree_clustal) { |
|---|
| 1280 | if (clustal_name[0]!=EOS) { |
|---|
| 1281 | if((clustal_phy_tree_file = open_explicit_file( |
|---|
| 1282 | clustal_name))==NULL) return; |
|---|
| 1283 | } |
|---|
| 1284 | else { |
|---|
| 1285 | if((clustal_phy_tree_file = open_output_file( |
|---|
| 1286 | "\nEnter name for bootstrap output file ",path, |
|---|
| 1287 | clustal_name,"njb")) == NULL) return; |
|---|
| 1288 | } |
|---|
| 1289 | } |
|---|
| 1290 | |
|---|
| 1291 | first_seq=1; |
|---|
| 1292 | last_seq=nseqs; |
|---|
| 1293 | |
|---|
| 1294 | if (output_tree_phylip) { |
|---|
| 1295 | if (phylip_name[0]!=EOS) { |
|---|
| 1296 | if((phylip_phy_tree_file = open_explicit_file( |
|---|
| 1297 | phylip_name))==NULL) return; |
|---|
| 1298 | } |
|---|
| 1299 | else { |
|---|
| 1300 | if((phylip_phy_tree_file = open_output_file( |
|---|
| 1301 | "\nEnter name for bootstrap output file ",path, |
|---|
| 1302 | phylip_name,"phb")) == NULL) return; |
|---|
| 1303 | } |
|---|
| 1304 | } |
|---|
| 1305 | |
|---|
| 1306 | if (output_tree_nexus) { |
|---|
| 1307 | if (nexus_name[0]!=EOS) { |
|---|
| 1308 | if((nexus_phy_tree_file = open_explicit_file( |
|---|
| 1309 | nexus_name))==NULL) return; |
|---|
| 1310 | } |
|---|
| 1311 | else { |
|---|
| 1312 | if((nexus_phy_tree_file = open_output_file( |
|---|
| 1313 | "\nEnter name for bootstrap output file ",path, |
|---|
| 1314 | nexus_name,"treb")) == NULL) return; |
|---|
| 1315 | } |
|---|
| 1316 | } |
|---|
| 1317 | |
|---|
| 1318 | boot_totals = (sint *)ckalloc( (nseqs+1) * sizeof (sint) ); |
|---|
| 1319 | for(i=0;i<nseqs+1;i++) |
|---|
| 1320 | boot_totals[i]=0; |
|---|
| 1321 | |
|---|
| 1322 | boot_positions = (sint *)ckalloc( (seqlen_array[first_seq]+2) * sizeof (sint) ); |
|---|
| 1323 | |
|---|
| 1324 | for(j=1; j<=seqlen_array[first_seq]; ++j) /* First select all positions for */ |
|---|
| 1325 | boot_positions[j] = j; /* the "standard" tree */ |
|---|
| 1326 | |
|---|
| 1327 | if(output_tree_clustal) { |
|---|
| 1328 | verbose = TRUE; /* Turn on file output */ |
|---|
| 1329 | if(dnaflag) |
|---|
| 1330 | overspill = dna_distance_matrix(clustal_phy_tree_file); |
|---|
| 1331 | else |
|---|
| 1332 | overspill = prot_distance_matrix(clustal_phy_tree_file); |
|---|
| 1333 | } |
|---|
| 1334 | |
|---|
| 1335 | if(output_tree_phylip) { |
|---|
| 1336 | verbose = FALSE; /* Turn off file output */ |
|---|
| 1337 | if(dnaflag) |
|---|
| 1338 | overspill = dna_distance_matrix(phylip_phy_tree_file); |
|---|
| 1339 | else |
|---|
| 1340 | overspill = prot_distance_matrix(phylip_phy_tree_file); |
|---|
| 1341 | } |
|---|
| 1342 | |
|---|
| 1343 | if(output_tree_nexus) { |
|---|
| 1344 | verbose = FALSE; /* Turn off file output */ |
|---|
| 1345 | if(dnaflag) |
|---|
| 1346 | overspill = dna_distance_matrix(nexus_phy_tree_file); |
|---|
| 1347 | else |
|---|
| 1348 | overspill = prot_distance_matrix(nexus_phy_tree_file); |
|---|
| 1349 | } |
|---|
| 1350 | |
|---|
| 1351 | /* check if any distances overflowed the distance corrections */ |
|---|
| 1352 | if ( overspill > 0 ) { |
|---|
| 1353 | total_dists = (nseqs*(nseqs-1))/2; |
|---|
| 1354 | overspill_message(overspill,total_dists); |
|---|
| 1355 | } |
|---|
| 1356 | |
|---|
| 1357 | tree_gaps=ckfree((void *)tree_gaps); |
|---|
| 1358 | |
|---|
| 1359 | if (output_tree_clustal) verbose = TRUE; /* Turn on screen output */ |
|---|
| 1360 | |
|---|
| 1361 | standard_tree = (char **) ckalloc( (nseqs+1) * sizeof (char *) ); |
|---|
| 1362 | for(i=0; i<nseqs+1; i++) |
|---|
| 1363 | standard_tree[i] = (char *) ckalloc( (nseqs+1) * sizeof(char) ); |
|---|
| 1364 | |
|---|
| 1365 | /* compute the standard tree */ |
|---|
| 1366 | |
|---|
| 1367 | if(output_tree_clustal || output_tree_phylip || output_tree_nexus) |
|---|
| 1368 | nj_tree(standard_tree,clustal_phy_tree_file); |
|---|
| 1369 | |
|---|
| 1370 | if (output_tree_clustal) |
|---|
| 1371 | fprintf(clustal_phy_tree_file,"\n\n\t\t\tBootstrap Confidence Limits\n\n"); |
|---|
| 1372 | |
|---|
| 1373 | /* save the left_branch and right_branch for phylip output */ |
|---|
| 1374 | save_left_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 1375 | save_right_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 1376 | for (i=1;i<=nseqs;i++) { |
|---|
| 1377 | save_left_branch[i] = left_branch[i]; |
|---|
| 1378 | save_right_branch[i] = right_branch[i]; |
|---|
| 1379 | } |
|---|
| 1380 | /* |
|---|
| 1381 | The next line is a fossil from the days of using the cc ran() |
|---|
| 1382 | ran_factor = RAND_MAX / seqlen_array[first_seq]; |
|---|
| 1383 | */ |
|---|
| 1384 | |
|---|
| 1385 | if(usemenu) |
|---|
| 1386 | boot_ran_seed = |
|---|
| 1387 | getint("\n\nEnter seed no. for random number generator ",1,1000,boot_ran_seed); |
|---|
| 1388 | |
|---|
| 1389 | /* do not use the native cc ran() |
|---|
| 1390 | srand(boot_ran_seed); |
|---|
| 1391 | */ |
|---|
| 1392 | addrandinit((unsigned long) boot_ran_seed); |
|---|
| 1393 | |
|---|
| 1394 | if (output_tree_clustal) |
|---|
| 1395 | fprintf(clustal_phy_tree_file,"\n Random number generator seed = %7u\n", |
|---|
| 1396 | boot_ran_seed); |
|---|
| 1397 | |
|---|
| 1398 | if(usemenu) |
|---|
| 1399 | boot_ntrials = |
|---|
| 1400 | getint("\n\nEnter number of bootstrap trials ",1,10000,boot_ntrials); |
|---|
| 1401 | |
|---|
| 1402 | if (output_tree_clustal) { |
|---|
| 1403 | fprintf(clustal_phy_tree_file,"\n Number of bootstrap trials = %7d\n", |
|---|
| 1404 | (pint)boot_ntrials); |
|---|
| 1405 | |
|---|
| 1406 | fprintf(clustal_phy_tree_file, |
|---|
| 1407 | "\n\n Diagrammatic representation of the above tree: \n"); |
|---|
| 1408 | fprintf(clustal_phy_tree_file,"\n Each row represents 1 tree cycle;"); |
|---|
| 1409 | fprintf(clustal_phy_tree_file," defining 2 groups.\n"); |
|---|
| 1410 | fprintf(clustal_phy_tree_file,"\n Each column is 1 sequence; "); |
|---|
| 1411 | fprintf(clustal_phy_tree_file,"the stars in each line show 1 group; "); |
|---|
| 1412 | fprintf(clustal_phy_tree_file,"\n the dots show the other\n"); |
|---|
| 1413 | fprintf(clustal_phy_tree_file,"\n Numbers show occurrences in bootstrap samples."); |
|---|
| 1414 | } |
|---|
| 1415 | /* |
|---|
| 1416 | print_tree(standard_tree, clustal_phy_tree_file, boot_totals); |
|---|
| 1417 | */ |
|---|
| 1418 | verbose = FALSE; /* Turn OFF screen output */ |
|---|
| 1419 | |
|---|
| 1420 | left_branch=ckfree((void *)left_branch); |
|---|
| 1421 | right_branch=ckfree((void *)right_branch); |
|---|
| 1422 | tkill=ckfree((void *)tkill); |
|---|
| 1423 | av=ckfree((void *)av); |
|---|
| 1424 | |
|---|
| 1425 | sample_tree = (char **) ckalloc( (nseqs+1) * sizeof (char *) ); |
|---|
| 1426 | for(i=0; i<nseqs+1; i++) |
|---|
| 1427 | sample_tree[i] = (char *) ckalloc( (nseqs+1) * sizeof(char) ); |
|---|
| 1428 | |
|---|
| 1429 | if (usemenu) |
|---|
| 1430 | fprintf(stdout,"\n\nEach dot represents 10 trials\n\n"); |
|---|
| 1431 | total_overspill = 0; |
|---|
| 1432 | nfails = 0; |
|---|
| 1433 | for(i=1; i<=boot_ntrials; ++i) { |
|---|
| 1434 | for(j=1; j<=seqlen_array[first_seq]; ++j) { /* select alignment */ |
|---|
| 1435 | /* positions for */ |
|---|
| 1436 | ranno = addrand( (unsigned long) seqlen_array[1]) + 1; |
|---|
| 1437 | boot_positions[j] = ranno; /* bootstrap sample */ |
|---|
| 1438 | } |
|---|
| 1439 | if(output_tree_clustal) { |
|---|
| 1440 | if(dnaflag) |
|---|
| 1441 | overspill = dna_distance_matrix(clustal_phy_tree_file); |
|---|
| 1442 | else |
|---|
| 1443 | overspill = prot_distance_matrix(clustal_phy_tree_file); |
|---|
| 1444 | } |
|---|
| 1445 | |
|---|
| 1446 | if(output_tree_phylip) { |
|---|
| 1447 | if(dnaflag) |
|---|
| 1448 | overspill = dna_distance_matrix(phylip_phy_tree_file); |
|---|
| 1449 | else |
|---|
| 1450 | overspill = prot_distance_matrix(phylip_phy_tree_file); |
|---|
| 1451 | } |
|---|
| 1452 | |
|---|
| 1453 | if(output_tree_nexus) { |
|---|
| 1454 | if(dnaflag) |
|---|
| 1455 | overspill = dna_distance_matrix(nexus_phy_tree_file); |
|---|
| 1456 | else |
|---|
| 1457 | overspill = prot_distance_matrix(nexus_phy_tree_file); |
|---|
| 1458 | } |
|---|
| 1459 | |
|---|
| 1460 | if( overspill > 0) { |
|---|
| 1461 | total_overspill = total_overspill + overspill; |
|---|
| 1462 | nfails++; |
|---|
| 1463 | } |
|---|
| 1464 | |
|---|
| 1465 | tree_gaps=ckfree((void *)tree_gaps); |
|---|
| 1466 | |
|---|
| 1467 | if(output_tree_clustal || output_tree_phylip || output_tree_nexus) |
|---|
| 1468 | nj_tree(sample_tree,clustal_phy_tree_file); |
|---|
| 1469 | |
|---|
| 1470 | left_branch=ckfree((void *)left_branch); |
|---|
| 1471 | right_branch=ckfree((void *)right_branch); |
|---|
| 1472 | tkill=ckfree((void *)tkill); |
|---|
| 1473 | av=ckfree((void *)av); |
|---|
| 1474 | |
|---|
| 1475 | compare_tree(standard_tree, sample_tree, boot_totals, last_seq-first_seq+1); |
|---|
| 1476 | if (usemenu) { |
|---|
| 1477 | if(i % 10 == 0) fprintf(stdout,"."); |
|---|
| 1478 | if(i % 100 == 0) fprintf(stdout,"\n"); |
|---|
| 1479 | } |
|---|
| 1480 | } |
|---|
| 1481 | |
|---|
| 1482 | /* check if any distances overflowed the distance corrections */ |
|---|
| 1483 | if ( nfails > 0 ) { |
|---|
| 1484 | total_dists = (nseqs*(nseqs-1))/2; |
|---|
| 1485 | fprintf(stdout,"\n"); |
|---|
| 1486 | fprintf(stdout,"\n WARNING: %ld of the distances out of a total of %ld times %ld", |
|---|
| 1487 | (long)total_overspill,(long)total_dists,(long)boot_ntrials); |
|---|
| 1488 | fprintf(stdout,"\n were out of range for the distance correction."); |
|---|
| 1489 | fprintf(stdout,"\n This affected %d out of %d bootstrap trials.", |
|---|
| 1490 | (pint)nfails,(pint)boot_ntrials); |
|---|
| 1491 | fprintf(stdout,"\n This may not be fatal but you have been warned!"); |
|---|
| 1492 | fprintf(stdout,"\n"); |
|---|
| 1493 | fprintf(stdout,"\n SUGGESTIONS: 1) turn off the correction"); |
|---|
| 1494 | fprintf(stdout,"\n or 2) remove the most distant sequences"); |
|---|
| 1495 | fprintf(stdout,"\n or 3) use the PHYLIP package."); |
|---|
| 1496 | fprintf(stdout,"\n\n"); |
|---|
| 1497 | if (usemenu) |
|---|
| 1498 | getstr("Press [RETURN] to continue",dummy, 10); |
|---|
| 1499 | } |
|---|
| 1500 | |
|---|
| 1501 | |
|---|
| 1502 | boot_positions=ckfree((void *)boot_positions); |
|---|
| 1503 | |
|---|
| 1504 | for (i=1;i<nseqs+1;i++) |
|---|
| 1505 | sample_tree[i]=ckfree((void *)sample_tree[i]); |
|---|
| 1506 | sample_tree=ckfree((void *)sample_tree); |
|---|
| 1507 | /* |
|---|
| 1508 | fprintf(clustal_phy_tree_file,"\n\n Bootstrap totals for each group\n"); |
|---|
| 1509 | */ |
|---|
| 1510 | if (output_tree_clustal) |
|---|
| 1511 | print_tree(standard_tree, clustal_phy_tree_file, boot_totals); |
|---|
| 1512 | |
|---|
| 1513 | save_tree = (char **) ckalloc( (nseqs+1) * sizeof (char *) ); |
|---|
| 1514 | for(i=0; i<nseqs+1; i++) |
|---|
| 1515 | save_tree[i] = (char *) ckalloc( (nseqs+1) * sizeof(char) ); |
|---|
| 1516 | |
|---|
| 1517 | for(i=1; i<nseqs+1; i++) |
|---|
| 1518 | for(j=1; j<nseqs+1; j++) |
|---|
| 1519 | save_tree[i][j] = standard_tree[i][j]; |
|---|
| 1520 | |
|---|
| 1521 | if(output_tree_phylip) { |
|---|
| 1522 | left_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 1523 | right_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 1524 | for (i=1;i<=nseqs;i++) { |
|---|
| 1525 | left_branch[i] = save_left_branch[i]; |
|---|
| 1526 | right_branch[i] = save_right_branch[i]; |
|---|
| 1527 | } |
|---|
| 1528 | print_phylip_tree(standard_tree,phylip_phy_tree_file, |
|---|
| 1529 | bootstrap_format); |
|---|
| 1530 | left_branch=ckfree((void *)left_branch); |
|---|
| 1531 | right_branch=ckfree((void *)right_branch); |
|---|
| 1532 | } |
|---|
| 1533 | |
|---|
| 1534 | for(i=1; i<nseqs+1; i++) |
|---|
| 1535 | for(j=1; j<nseqs+1; j++) |
|---|
| 1536 | standard_tree[i][j] = save_tree[i][j]; |
|---|
| 1537 | |
|---|
| 1538 | if(output_tree_nexus) { |
|---|
| 1539 | left_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 1540 | right_branch = (double *) ckalloc( (nseqs+2) * sizeof (double) ); |
|---|
| 1541 | for (i=1;i<=nseqs;i++) { |
|---|
| 1542 | left_branch[i] = save_left_branch[i]; |
|---|
| 1543 | right_branch[i] = save_right_branch[i]; |
|---|
| 1544 | } |
|---|
| 1545 | print_nexus_tree(standard_tree,nexus_phy_tree_file, |
|---|
| 1546 | bootstrap_format); |
|---|
| 1547 | left_branch=ckfree((void *)left_branch); |
|---|
| 1548 | right_branch=ckfree((void *)right_branch); |
|---|
| 1549 | } |
|---|
| 1550 | |
|---|
| 1551 | boot_totals=ckfree((void *)boot_totals); |
|---|
| 1552 | save_left_branch=ckfree((void *)save_left_branch); |
|---|
| 1553 | save_right_branch=ckfree((void *)save_right_branch); |
|---|
| 1554 | |
|---|
| 1555 | for (i=1;i<nseqs+1;i++) |
|---|
| 1556 | standard_tree[i]=ckfree((void *)standard_tree[i]); |
|---|
| 1557 | standard_tree=ckfree((void *)standard_tree); |
|---|
| 1558 | |
|---|
| 1559 | for (i=0;i<nseqs+1;i++) |
|---|
| 1560 | save_tree[i]=ckfree((void *)save_tree[i]); |
|---|
| 1561 | save_tree=ckfree((void *)save_tree); |
|---|
| 1562 | |
|---|
| 1563 | if (output_tree_clustal) |
|---|
| 1564 | fclose(clustal_phy_tree_file); |
|---|
| 1565 | |
|---|
| 1566 | if (output_tree_phylip) |
|---|
| 1567 | fclose(phylip_phy_tree_file); |
|---|
| 1568 | |
|---|
| 1569 | if (output_tree_nexus) |
|---|
| 1570 | fclose(nexus_phy_tree_file); |
|---|
| 1571 | |
|---|
| 1572 | if (output_tree_clustal) |
|---|
| 1573 | info("Bootstrap output file completed [%s]" |
|---|
| 1574 | ,clustal_name); |
|---|
| 1575 | if (output_tree_phylip) |
|---|
| 1576 | info("Bootstrap output file completed [%s]" |
|---|
| 1577 | ,phylip_name); |
|---|
| 1578 | if (output_tree_nexus) |
|---|
| 1579 | info("Bootstrap output file completed [%s]" |
|---|
| 1580 | ,nexus_name); |
|---|
| 1581 | } |
|---|
| 1582 | |
|---|
| 1583 | |
|---|
| 1584 | void compare_tree(char **tree1, char **tree2, sint *hits, sint n) |
|---|
| 1585 | { |
|---|
| 1586 | sint i,j,k; |
|---|
| 1587 | sint nhits1, nhits2; |
|---|
| 1588 | |
|---|
| 1589 | for(i=1; i<=n-3; i++) { |
|---|
| 1590 | for(j=1; j<=n-3; j++) { |
|---|
| 1591 | nhits1 = 0; |
|---|
| 1592 | nhits2 = 0; |
|---|
| 1593 | for(k=1; k<=n; k++) { |
|---|
| 1594 | if(tree1[i][k] == tree2[j][k]) nhits1++; |
|---|
| 1595 | if(tree1[i][k] != tree2[j][k]) nhits2++; |
|---|
| 1596 | } |
|---|
| 1597 | if((nhits1 == last_seq-first_seq+1) || (nhits2 == last_seq-first_seq+1)) hits[i]++; |
|---|
| 1598 | } |
|---|
| 1599 | } |
|---|
| 1600 | } |
|---|
| 1601 | |
|---|
| 1602 | |
|---|
| 1603 | void print_nexus_tree(char **tree_description, FILE *tree, sint bootstrap) |
|---|
| 1604 | { |
|---|
| 1605 | sint i; |
|---|
| 1606 | sint old_row; |
|---|
| 1607 | |
|---|
| 1608 | fprintf(tree,"#NEXUS\n\n"); |
|---|
| 1609 | |
|---|
| 1610 | fprintf(tree,"BEGIN TREES;\n\n"); |
|---|
| 1611 | fprintf(tree,"\tTRANSLATE\n"); |
|---|
| 1612 | for(i=1;i<nseqs;i++) { |
|---|
| 1613 | fprintf(tree,"\t\t%d %s,\n",(pint)i,names[i]); |
|---|
| 1614 | } |
|---|
| 1615 | fprintf(tree,"\t\t%d %s\n",(pint)nseqs,names[nseqs]); |
|---|
| 1616 | fprintf(tree,"\t\t;\n"); |
|---|
| 1617 | |
|---|
| 1618 | fprintf(tree,"\tUTREE PAUP_1= "); |
|---|
| 1619 | |
|---|
| 1620 | if(last_seq-first_seq+1==2) { |
|---|
| 1621 | fprintf(tree,"(%d:%7.5f,%d:%7.5f);",first_seq,tmat[first_seq][first_seq+1],first_seq+1,tmat[first_seq][first_seq+1]); |
|---|
| 1622 | } |
|---|
| 1623 | else { |
|---|
| 1624 | |
|---|
| 1625 | fprintf(tree,"("); |
|---|
| 1626 | |
|---|
| 1627 | old_row=two_way_split_nexus(tree_description, tree, last_seq-first_seq+1-2,1,bootstrap); |
|---|
| 1628 | fprintf(tree,":%7.5f",left_branch[last_seq-first_seq+1-2]); |
|---|
| 1629 | if ((bootstrap==BS_BRANCH_LABELS) && (old_row>0) && (boot_totals[old_row]>0)) |
|---|
| 1630 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 1631 | fprintf(tree,","); |
|---|
| 1632 | |
|---|
| 1633 | old_row=two_way_split_nexus(tree_description, tree, last_seq-first_seq+1-2,2,bootstrap); |
|---|
| 1634 | fprintf(tree,":%7.5f",left_branch[last_seq-first_seq+1-1]); |
|---|
| 1635 | if ((bootstrap==BS_BRANCH_LABELS) && (old_row>0) && (boot_totals[old_row]>0)) |
|---|
| 1636 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 1637 | fprintf(tree,","); |
|---|
| 1638 | |
|---|
| 1639 | old_row=two_way_split_nexus(tree_description, tree, last_seq-first_seq+1-2,3,bootstrap); |
|---|
| 1640 | fprintf(tree,":%7.5f",left_branch[last_seq-first_seq+1]); |
|---|
| 1641 | if ((bootstrap==BS_BRANCH_LABELS) && (old_row>0) && (boot_totals[old_row]>0)) |
|---|
| 1642 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 1643 | fprintf(tree,")"); |
|---|
| 1644 | if (bootstrap==BS_NODE_LABELS) fprintf(tree,"TRICHOTOMY"); |
|---|
| 1645 | fprintf(tree,";"); |
|---|
| 1646 | } |
|---|
| 1647 | fprintf(tree,"\nENDBLOCK;\n"); |
|---|
| 1648 | } |
|---|
| 1649 | |
|---|
| 1650 | |
|---|
| 1651 | sint two_way_split_nexus |
|---|
| 1652 | (char **tree_description, FILE *tree, sint start_row, sint flag, sint bootstrap) |
|---|
| 1653 | { |
|---|
| 1654 | sint row, new_row = 0, old_row, col, test_col = 0; |
|---|
| 1655 | Boolean single_seq; |
|---|
| 1656 | |
|---|
| 1657 | if(start_row != last_seq-first_seq+1-2) fprintf(tree,"("); |
|---|
| 1658 | |
|---|
| 1659 | for(col=1; col<=last_seq-first_seq+1; col++) { |
|---|
| 1660 | if(tree_description[start_row][col] == flag) { |
|---|
| 1661 | test_col = col; |
|---|
| 1662 | break; |
|---|
| 1663 | } |
|---|
| 1664 | } |
|---|
| 1665 | |
|---|
| 1666 | single_seq = TRUE; |
|---|
| 1667 | for(row=start_row-1; row>=1; row--) |
|---|
| 1668 | if(tree_description[row][test_col] == 1) { |
|---|
| 1669 | single_seq = FALSE; |
|---|
| 1670 | new_row = row; |
|---|
| 1671 | break; |
|---|
| 1672 | } |
|---|
| 1673 | |
|---|
| 1674 | if(single_seq) { |
|---|
| 1675 | tree_description[start_row][test_col] = 0; |
|---|
| 1676 | fprintf(tree,"%d",test_col+first_seq-1); |
|---|
| 1677 | if(start_row == last_seq-first_seq+1-2) { |
|---|
| 1678 | return(0); |
|---|
| 1679 | } |
|---|
| 1680 | |
|---|
| 1681 | fprintf(tree,":%7.5f,",left_branch[start_row]); |
|---|
| 1682 | } |
|---|
| 1683 | else { |
|---|
| 1684 | for(col=1; col<=last_seq-first_seq+1; col++) { |
|---|
| 1685 | if((tree_description[start_row][col]==1)&& |
|---|
| 1686 | (tree_description[new_row][col]==1)) |
|---|
| 1687 | tree_description[start_row][col] = 0; |
|---|
| 1688 | } |
|---|
| 1689 | old_row=two_way_split_nexus(tree_description, tree, new_row, (sint)1, bootstrap); |
|---|
| 1690 | if(start_row == last_seq-first_seq+1-2) { |
|---|
| 1691 | return(new_row); |
|---|
| 1692 | } |
|---|
| 1693 | |
|---|
| 1694 | fprintf(tree,":%7.5f",left_branch[start_row]); |
|---|
| 1695 | if ((bootstrap==BS_BRANCH_LABELS) && (boot_totals[old_row]>0)) |
|---|
| 1696 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 1697 | |
|---|
| 1698 | fprintf(tree,","); |
|---|
| 1699 | } |
|---|
| 1700 | |
|---|
| 1701 | |
|---|
| 1702 | for(col=1; col<=last_seq-first_seq+1; col++) |
|---|
| 1703 | if(tree_description[start_row][col] == flag) { |
|---|
| 1704 | test_col = col; |
|---|
| 1705 | break; |
|---|
| 1706 | } |
|---|
| 1707 | |
|---|
| 1708 | single_seq = TRUE; |
|---|
| 1709 | new_row = 0; |
|---|
| 1710 | for(row=start_row-1; row>=1; row--) |
|---|
| 1711 | if(tree_description[row][test_col] == 1) { |
|---|
| 1712 | single_seq = FALSE; |
|---|
| 1713 | new_row = row; |
|---|
| 1714 | break; |
|---|
| 1715 | } |
|---|
| 1716 | |
|---|
| 1717 | if(single_seq) { |
|---|
| 1718 | tree_description[start_row][test_col] = 0; |
|---|
| 1719 | fprintf(tree,"%d",test_col+first_seq-1); |
|---|
| 1720 | fprintf(tree,":%7.5f)",right_branch[start_row]); |
|---|
| 1721 | } |
|---|
| 1722 | else { |
|---|
| 1723 | for(col=1; col<=last_seq-first_seq+1; col++) { |
|---|
| 1724 | if((tree_description[start_row][col]==1)&& |
|---|
| 1725 | (tree_description[new_row][col]==1)) |
|---|
| 1726 | tree_description[start_row][col] = 0; |
|---|
| 1727 | } |
|---|
| 1728 | old_row=two_way_split_nexus(tree_description, tree, new_row, (sint)1, bootstrap); |
|---|
| 1729 | fprintf(tree,":%7.5f",right_branch[start_row]); |
|---|
| 1730 | if ((bootstrap==BS_BRANCH_LABELS) && (boot_totals[old_row]>0)) |
|---|
| 1731 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 1732 | |
|---|
| 1733 | fprintf(tree,")"); |
|---|
| 1734 | } |
|---|
| 1735 | if ((bootstrap==BS_NODE_LABELS) && (boot_totals[start_row]>0)) |
|---|
| 1736 | fprintf(tree,"%d",(pint)boot_totals[start_row]); |
|---|
| 1737 | |
|---|
| 1738 | return(start_row); |
|---|
| 1739 | } |
|---|
| 1740 | |
|---|
| 1741 | |
|---|
| 1742 | void print_phylip_tree(char **tree_description, FILE *tree, sint bootstrap) |
|---|
| 1743 | { |
|---|
| 1744 | sint old_row; |
|---|
| 1745 | |
|---|
| 1746 | if(last_seq-first_seq+1==2) { |
|---|
| 1747 | fprintf(tree,"(%s:%7.5f,%s:%7.5f);",names[first_seq],tmat[first_seq][first_seq+1],names[first_seq+1],tmat[first_seq][first_seq+1]); |
|---|
| 1748 | return; |
|---|
| 1749 | } |
|---|
| 1750 | |
|---|
| 1751 | fprintf(tree,"(\n"); |
|---|
| 1752 | |
|---|
| 1753 | old_row=two_way_split(tree_description, tree, last_seq-first_seq+1-2,1,bootstrap); |
|---|
| 1754 | fprintf(tree,":%7.5f",left_branch[last_seq-first_seq+1-2]); |
|---|
| 1755 | if ((bootstrap==BS_BRANCH_LABELS) && (old_row>0) && (boot_totals[old_row]>0)) |
|---|
| 1756 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 1757 | fprintf(tree,",\n"); |
|---|
| 1758 | |
|---|
| 1759 | old_row=two_way_split(tree_description, tree, last_seq-first_seq+1-2,2,bootstrap); |
|---|
| 1760 | fprintf(tree,":%7.5f",left_branch[last_seq-first_seq+1-1]); |
|---|
| 1761 | if ((bootstrap==BS_BRANCH_LABELS) && (old_row>0) && (boot_totals[old_row]>0)) |
|---|
| 1762 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 1763 | fprintf(tree,",\n"); |
|---|
| 1764 | |
|---|
| 1765 | old_row=two_way_split(tree_description, tree, last_seq-first_seq+1-2,3,bootstrap); |
|---|
| 1766 | fprintf(tree,":%7.5f",left_branch[last_seq-first_seq+1]); |
|---|
| 1767 | if ((bootstrap==BS_BRANCH_LABELS) && (old_row>0) && (boot_totals[old_row]>0)) |
|---|
| 1768 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 1769 | fprintf(tree,")"); |
|---|
| 1770 | if (bootstrap==BS_NODE_LABELS) fprintf(tree,"TRICHOTOMY"); |
|---|
| 1771 | fprintf(tree,";\n"); |
|---|
| 1772 | } |
|---|
| 1773 | |
|---|
| 1774 | |
|---|
| 1775 | sint two_way_split |
|---|
| 1776 | (char **tree_description, FILE *tree, sint start_row, sint flag, sint bootstrap) |
|---|
| 1777 | { |
|---|
| 1778 | sint row, new_row = 0, old_row, col, test_col = 0; |
|---|
| 1779 | Boolean single_seq; |
|---|
| 1780 | |
|---|
| 1781 | if(start_row != last_seq-first_seq+1-2) fprintf(tree,"(\n"); |
|---|
| 1782 | |
|---|
| 1783 | for(col=1; col<=last_seq-first_seq+1; col++) { |
|---|
| 1784 | if(tree_description[start_row][col] == flag) { |
|---|
| 1785 | test_col = col; |
|---|
| 1786 | break; |
|---|
| 1787 | } |
|---|
| 1788 | } |
|---|
| 1789 | |
|---|
| 1790 | single_seq = TRUE; |
|---|
| 1791 | for(row=start_row-1; row>=1; row--) |
|---|
| 1792 | if(tree_description[row][test_col] == 1) { |
|---|
| 1793 | single_seq = FALSE; |
|---|
| 1794 | new_row = row; |
|---|
| 1795 | break; |
|---|
| 1796 | } |
|---|
| 1797 | |
|---|
| 1798 | if(single_seq) { |
|---|
| 1799 | tree_description[start_row][test_col] = 0; |
|---|
| 1800 | fprintf(tree,"%.*s",max_names,names[test_col+first_seq-1]); |
|---|
| 1801 | if(start_row == last_seq-first_seq+1-2) { |
|---|
| 1802 | return(0); |
|---|
| 1803 | } |
|---|
| 1804 | |
|---|
| 1805 | fprintf(tree,":%7.5f,\n",left_branch[start_row]); |
|---|
| 1806 | } |
|---|
| 1807 | else { |
|---|
| 1808 | for(col=1; col<=last_seq-first_seq+1; col++) { |
|---|
| 1809 | if((tree_description[start_row][col]==1)&& |
|---|
| 1810 | (tree_description[new_row][col]==1)) |
|---|
| 1811 | tree_description[start_row][col] = 0; |
|---|
| 1812 | } |
|---|
| 1813 | old_row=two_way_split(tree_description, tree, new_row, (sint)1, bootstrap); |
|---|
| 1814 | if(start_row == last_seq-first_seq+1-2) { |
|---|
| 1815 | return(new_row); |
|---|
| 1816 | } |
|---|
| 1817 | |
|---|
| 1818 | fprintf(tree,":%7.5f",left_branch[start_row]); |
|---|
| 1819 | if ((bootstrap==BS_BRANCH_LABELS) && (boot_totals[old_row]>0)) |
|---|
| 1820 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 1821 | |
|---|
| 1822 | fprintf(tree,",\n"); |
|---|
| 1823 | } |
|---|
| 1824 | |
|---|
| 1825 | |
|---|
| 1826 | for(col=1; col<=last_seq-first_seq+1; col++) |
|---|
| 1827 | if(tree_description[start_row][col] == flag) { |
|---|
| 1828 | test_col = col; |
|---|
| 1829 | break; |
|---|
| 1830 | } |
|---|
| 1831 | |
|---|
| 1832 | single_seq = TRUE; |
|---|
| 1833 | new_row = 0; |
|---|
| 1834 | for(row=start_row-1; row>=1; row--) |
|---|
| 1835 | if(tree_description[row][test_col] == 1) { |
|---|
| 1836 | single_seq = FALSE; |
|---|
| 1837 | new_row = row; |
|---|
| 1838 | break; |
|---|
| 1839 | } |
|---|
| 1840 | |
|---|
| 1841 | if(single_seq) { |
|---|
| 1842 | tree_description[start_row][test_col] = 0; |
|---|
| 1843 | fprintf(tree,"%.*s",max_names,names[test_col+first_seq-1]); |
|---|
| 1844 | fprintf(tree,":%7.5f)\n",right_branch[start_row]); |
|---|
| 1845 | } |
|---|
| 1846 | else { |
|---|
| 1847 | for(col=1; col<=last_seq-first_seq+1; col++) { |
|---|
| 1848 | if((tree_description[start_row][col]==1)&& |
|---|
| 1849 | (tree_description[new_row][col]==1)) |
|---|
| 1850 | tree_description[start_row][col] = 0; |
|---|
| 1851 | } |
|---|
| 1852 | old_row=two_way_split(tree_description, tree, new_row, (sint)1, bootstrap); |
|---|
| 1853 | fprintf(tree,":%7.5f",right_branch[start_row]); |
|---|
| 1854 | if ((bootstrap==BS_BRANCH_LABELS) && (boot_totals[old_row]>0)) |
|---|
| 1855 | fprintf(tree,"[%d]",(pint)boot_totals[old_row]); |
|---|
| 1856 | |
|---|
| 1857 | fprintf(tree,")\n"); |
|---|
| 1858 | } |
|---|
| 1859 | if ((bootstrap==BS_NODE_LABELS) && (boot_totals[start_row]>0)) |
|---|
| 1860 | fprintf(tree,"%d",(pint)boot_totals[start_row]); |
|---|
| 1861 | |
|---|
| 1862 | return(start_row); |
|---|
| 1863 | } |
|---|
| 1864 | |
|---|
| 1865 | |
|---|
| 1866 | |
|---|
| 1867 | void print_tree(char **tree_description, FILE *tree, sint *totals) |
|---|
| 1868 | { |
|---|
| 1869 | sint row,col; |
|---|
| 1870 | |
|---|
| 1871 | fprintf(tree,"\n"); |
|---|
| 1872 | |
|---|
| 1873 | for(row=1; row<=last_seq-first_seq+1-3; row++) { |
|---|
| 1874 | fprintf(tree," \n"); |
|---|
| 1875 | for(col=1; col<=last_seq-first_seq+1; col++) { |
|---|
| 1876 | if(tree_description[row][col] == 0) |
|---|
| 1877 | fprintf(tree,"*"); |
|---|
| 1878 | else |
|---|
| 1879 | fprintf(tree,"."); |
|---|
| 1880 | } |
|---|
| 1881 | if(totals[row] > 0) |
|---|
| 1882 | fprintf(tree,"%7d",(pint)totals[row]); |
|---|
| 1883 | } |
|---|
| 1884 | fprintf(tree," \n"); |
|---|
| 1885 | for(col=1; col<=last_seq-first_seq+1; col++) |
|---|
| 1886 | fprintf(tree,"%1d",(pint)tree_description[last_seq-first_seq+1-2][col]); |
|---|
| 1887 | fprintf(tree,"\n"); |
|---|
| 1888 | } |
|---|
| 1889 | |
|---|
| 1890 | |
|---|
| 1891 | |
|---|
| 1892 | sint dna_distance_matrix(FILE *tree) |
|---|
| 1893 | { |
|---|
| 1894 | sint m,n; |
|---|
| 1895 | sint j,i; |
|---|
| 1896 | sint res1, res2; |
|---|
| 1897 | sint overspill = 0; |
|---|
| 1898 | double p,q,e,a,b,k; |
|---|
| 1899 | |
|---|
| 1900 | tree_gap_delete(); /* flag positions with gaps (tree_gaps[i] = 1 ) */ |
|---|
| 1901 | |
|---|
| 1902 | if(verbose) { |
|---|
| 1903 | fprintf(tree,"\n"); |
|---|
| 1904 | fprintf(tree,"\n DIST = percentage divergence (/100)"); |
|---|
| 1905 | fprintf(tree,"\n p = rate of transition (A <-> G; C <-> T)"); |
|---|
| 1906 | fprintf(tree,"\n q = rate of transversion"); |
|---|
| 1907 | fprintf(tree,"\n Length = number of sites used in comparison"); |
|---|
| 1908 | fprintf(tree,"\n"); |
|---|
| 1909 | if(tossgaps) { |
|---|
| 1910 | fprintf(tree,"\n All sites with gaps (in any sequence) deleted!"); |
|---|
| 1911 | fprintf(tree,"\n"); |
|---|
| 1912 | } |
|---|
| 1913 | if(kimura) { |
|---|
| 1914 | fprintf(tree,"\n Distances corrected by Kimura's 2 parameter model:"); |
|---|
| 1915 | fprintf(tree,"\n\n Kimura, M. (1980)"); |
|---|
| 1916 | fprintf(tree," A simple method for estimating evolutionary "); |
|---|
| 1917 | fprintf(tree,"rates of base"); |
|---|
| 1918 | fprintf(tree,"\n substitutions through comparative studies of "); |
|---|
| 1919 | fprintf(tree,"nucleotide sequences."); |
|---|
| 1920 | fprintf(tree,"\n J. Mol. Evol., 16, 111-120."); |
|---|
| 1921 | fprintf(tree,"\n\n"); |
|---|
| 1922 | } |
|---|
| 1923 | } |
|---|
| 1924 | |
|---|
| 1925 | for(m=1; m<last_seq-first_seq+1; ++m) /* for every pair of sequence */ |
|---|
| 1926 | for(n=m+1; n<=last_seq-first_seq+1; ++n) { |
|---|
| 1927 | p = q = e = 0.0; |
|---|
| 1928 | tmat[m][n] = tmat[n][m] = 0.0; |
|---|
| 1929 | for(i=1; i<=seqlen_array[first_seq]; ++i) { |
|---|
| 1930 | j = boot_positions[i]; |
|---|
| 1931 | if(tossgaps && (tree_gaps[j] > 0) ) |
|---|
| 1932 | goto skip; /* gap position */ |
|---|
| 1933 | res1 = seq_array[m+first_seq-1][j]; |
|---|
| 1934 | res2 = seq_array[n+first_seq-1][j]; |
|---|
| 1935 | if( (res1 == gap_pos1) || (res1 == gap_pos2) || |
|---|
| 1936 | (res2 == gap_pos1) || (res2 == gap_pos2)) |
|---|
| 1937 | goto skip; /* gap in a seq*/ |
|---|
| 1938 | if(!use_ambiguities) |
|---|
| 1939 | if( is_ambiguity(res1) || is_ambiguity(res2)) |
|---|
| 1940 | goto skip; /* ambiguity code in a seq*/ |
|---|
| 1941 | e = e + 1.0; |
|---|
| 1942 | if(res1 != res2) { |
|---|
| 1943 | if(transition(res1,res2)) |
|---|
| 1944 | p = p + 1.0; |
|---|
| 1945 | else |
|---|
| 1946 | q = q + 1.0; |
|---|
| 1947 | } |
|---|
| 1948 | skip:; |
|---|
| 1949 | } |
|---|
| 1950 | |
|---|
| 1951 | |
|---|
| 1952 | /* Kimura's 2 parameter correction for multiple substitutions */ |
|---|
| 1953 | |
|---|
| 1954 | if(!kimura) { |
|---|
| 1955 | if (e == 0) { |
|---|
| 1956 | fprintf(stdout,"\n WARNING: sequences %d and %d are non-overlapping\n",m,n); |
|---|
| 1957 | k = 0.0; |
|---|
| 1958 | p = 0.0; |
|---|
| 1959 | q = 0.0; |
|---|
| 1960 | } |
|---|
| 1961 | else { |
|---|
| 1962 | k = (p+q)/e; |
|---|
| 1963 | if(p > 0.0) |
|---|
| 1964 | p = p/e; |
|---|
| 1965 | else |
|---|
| 1966 | p = 0.0; |
|---|
| 1967 | if(q > 0.0) |
|---|
| 1968 | q = q/e; |
|---|
| 1969 | else |
|---|
| 1970 | q = 0.0; |
|---|
| 1971 | } |
|---|
| 1972 | tmat[m][n] = tmat[n][m] = k; |
|---|
| 1973 | if(verbose) /* if screen output */ |
|---|
| 1974 | fprintf(tree, |
|---|
| 1975 | "%4d vs.%4d: DIST = %7.4f; p = %6.4f; q = %6.4f; length = %6.0f\n" |
|---|
| 1976 | ,(pint)m,(pint)n,k,p,q,e); |
|---|
| 1977 | } |
|---|
| 1978 | else { |
|---|
| 1979 | if (e == 0) { |
|---|
| 1980 | fprintf(stdout,"\n WARNING: sequences %d and %d are non-overlapping\n",m,n); |
|---|
| 1981 | p = 0.0; |
|---|
| 1982 | q = 0.0; |
|---|
| 1983 | } |
|---|
| 1984 | else { |
|---|
| 1985 | if(p > 0.0) |
|---|
| 1986 | p = p/e; |
|---|
| 1987 | else |
|---|
| 1988 | p = 0.0; |
|---|
| 1989 | if(q > 0.0) |
|---|
| 1990 | q = q/e; |
|---|
| 1991 | else |
|---|
| 1992 | q = 0.0; |
|---|
| 1993 | } |
|---|
| 1994 | |
|---|
| 1995 | if( ((2.0*p)+q) == 1.0 ) |
|---|
| 1996 | a = 0.0; |
|---|
| 1997 | else |
|---|
| 1998 | a = 1.0/(1.0-(2.0*p)-q); |
|---|
| 1999 | |
|---|
| 2000 | if( q == 0.5 ) |
|---|
| 2001 | b = 0.0; |
|---|
| 2002 | else |
|---|
| 2003 | b = 1.0/(1.0-(2.0*q)); |
|---|
| 2004 | |
|---|
| 2005 | /* watch for values going off the scale for the correction. */ |
|---|
| 2006 | if( (a<=0.0) || (b<=0.0) ) { |
|---|
| 2007 | overspill++; |
|---|
| 2008 | k = 3.5; /* arbitrary high score */ |
|---|
| 2009 | } |
|---|
| 2010 | else |
|---|
| 2011 | k = 0.5*log(a) + 0.25*log(b); |
|---|
| 2012 | tmat[m][n] = tmat[n][m] = k; |
|---|
| 2013 | if(verbose) /* if screen output */ |
|---|
| 2014 | fprintf(tree, |
|---|
| 2015 | "%4d vs.%4d: DIST = %7.4f; p = %6.4f; q = %6.4f; length = %6.0f\n" |
|---|
| 2016 | ,(pint)m,(pint)n,k,p,q,e); |
|---|
| 2017 | |
|---|
| 2018 | } |
|---|
| 2019 | } |
|---|
| 2020 | return overspill; /* return the number of off-scale values */ |
|---|
| 2021 | } |
|---|
| 2022 | |
|---|
| 2023 | |
|---|
| 2024 | sint prot_distance_matrix(FILE *tree) |
|---|
| 2025 | { |
|---|
| 2026 | sint m,n; |
|---|
| 2027 | sint j,i; |
|---|
| 2028 | sint res1, res2; |
|---|
| 2029 | sint overspill = 0; |
|---|
| 2030 | double p,e,k, table_entry; |
|---|
| 2031 | |
|---|
| 2032 | |
|---|
| 2033 | tree_gap_delete(); /* flag positions with gaps (tree_gaps[i] = 1 ) */ |
|---|
| 2034 | |
|---|
| 2035 | if(verbose) { |
|---|
| 2036 | fprintf(tree,"\n"); |
|---|
| 2037 | fprintf(tree,"\n DIST = percentage divergence (/100)"); |
|---|
| 2038 | fprintf(tree,"\n Length = number of sites used in comparison"); |
|---|
| 2039 | fprintf(tree,"\n\n"); |
|---|
| 2040 | if(tossgaps) { |
|---|
| 2041 | fprintf(tree,"\n All sites with gaps (in any sequence) deleted"); |
|---|
| 2042 | fprintf(tree,"\n"); |
|---|
| 2043 | } |
|---|
| 2044 | if(kimura) { |
|---|
| 2045 | fprintf(tree,"\n Distances up tp 0.75 corrected by Kimura's empirical method:"); |
|---|
| 2046 | fprintf(tree,"\n\n Kimura, M. (1983)"); |
|---|
| 2047 | fprintf(tree," The Neutral Theory of Molecular Evolution."); |
|---|
| 2048 | fprintf(tree,"\n Page 75. Cambridge University Press, Cambridge, England."); |
|---|
| 2049 | fprintf(tree,"\n\n"); |
|---|
| 2050 | } |
|---|
| 2051 | } |
|---|
| 2052 | |
|---|
| 2053 | for(m=1; m<nseqs; ++m) /* for every pair of sequence */ |
|---|
| 2054 | for(n=m+1; n<=nseqs; ++n) { |
|---|
| 2055 | p = e = 0.0; |
|---|
| 2056 | tmat[m][n] = tmat[n][m] = 0.0; |
|---|
| 2057 | for(i=1; i<=seqlen_array[1]; ++i) { |
|---|
| 2058 | j = boot_positions[i]; |
|---|
| 2059 | if(tossgaps && (tree_gaps[j] > 0) ) goto skip; /* gap position */ |
|---|
| 2060 | res1 = seq_array[m][j]; |
|---|
| 2061 | res2 = seq_array[n][j]; |
|---|
| 2062 | if( (res1 == gap_pos1) || (res1 == gap_pos2) || |
|---|
| 2063 | (res2 == gap_pos1) || (res2 == gap_pos2)) |
|---|
| 2064 | goto skip; /* gap in a seq*/ |
|---|
| 2065 | e = e + 1.0; |
|---|
| 2066 | if(res1 != res2) p = p + 1.0; |
|---|
| 2067 | skip:; |
|---|
| 2068 | } |
|---|
| 2069 | |
|---|
| 2070 | if(p <= 0.0) |
|---|
| 2071 | k = 0.0; |
|---|
| 2072 | else |
|---|
| 2073 | k = p/e; |
|---|
| 2074 | |
|---|
| 2075 | /* DES debug */ |
|---|
| 2076 | /* fprintf(stdout,"Seq1=%4d Seq2=%4d k =%7.4f \n",(pint)m,(pint)n,k); */ |
|---|
| 2077 | /* DES debug */ |
|---|
| 2078 | |
|---|
| 2079 | if(kimura) { |
|---|
| 2080 | if(k < 0.75) { /* use Kimura's formula */ |
|---|
| 2081 | if(k > 0.0) k = - log(1.0 - k - (k * k/5.0) ); |
|---|
| 2082 | } |
|---|
| 2083 | else { |
|---|
| 2084 | if(k > 0.930) { |
|---|
| 2085 | overspill++; |
|---|
| 2086 | k = 10.0; /* arbitrarily set to 1000% */ |
|---|
| 2087 | } |
|---|
| 2088 | else { |
|---|
| 2089 | table_entry = (k*1000.0) - 750.0; |
|---|
| 2090 | k = (double)dayhoff_pams[(int)table_entry]; |
|---|
| 2091 | k = k/100.0; |
|---|
| 2092 | } |
|---|
| 2093 | } |
|---|
| 2094 | } |
|---|
| 2095 | |
|---|
| 2096 | tmat[m][n] = tmat[n][m] = k; |
|---|
| 2097 | if(verbose) /* if screen output */ |
|---|
| 2098 | fprintf(tree, |
|---|
| 2099 | "%4d vs.%4d DIST = %6.4f; length = %6.0f\n", |
|---|
| 2100 | (pint)m,(pint)n,k,e); |
|---|
| 2101 | } |
|---|
| 2102 | return overspill; |
|---|
| 2103 | } |
|---|
| 2104 | |
|---|
| 2105 | |
|---|
| 2106 | void guide_tree(FILE *tree,sint firstseq,sint numseqs) |
|---|
| 2107 | /* |
|---|
| 2108 | Routine for producing unrooted NJ trees from seperately aligned |
|---|
| 2109 | pairwise distances. This produces the GUIDE DENDROGRAMS in |
|---|
| 2110 | PHYLIP format. |
|---|
| 2111 | */ |
|---|
| 2112 | { |
|---|
| 2113 | static char **standard_tree; |
|---|
| 2114 | sint i; |
|---|
| 2115 | float dist; |
|---|
| 2116 | |
|---|
| 2117 | phylip_phy_tree_file=tree; |
|---|
| 2118 | verbose = FALSE; |
|---|
| 2119 | first_seq=firstseq; |
|---|
| 2120 | last_seq=first_seq+numseqs-1; |
|---|
| 2121 | |
|---|
| 2122 | if(numseqs==2) { |
|---|
| 2123 | dist=tmat[firstseq][firstseq+1]/2.0; |
|---|
| 2124 | fprintf(tree,"(%s:%0.5f,%s:%0.5f);\n", |
|---|
| 2125 | names[firstseq],dist,names[firstseq+1],dist); |
|---|
| 2126 | } |
|---|
| 2127 | else { |
|---|
| 2128 | standard_tree = (char **) ckalloc( (last_seq-first_seq+2) * sizeof (char *) ); |
|---|
| 2129 | for(i=0; i<last_seq-first_seq+2; i++) |
|---|
| 2130 | standard_tree[i] = (char *) ckalloc( (last_seq-first_seq+2) * sizeof(char)); |
|---|
| 2131 | |
|---|
| 2132 | nj_tree(standard_tree,clustal_phy_tree_file); |
|---|
| 2133 | |
|---|
| 2134 | print_phylip_tree(standard_tree,phylip_phy_tree_file,0); |
|---|
| 2135 | |
|---|
| 2136 | if(left_branch != NULL) left_branch=ckfree((void *)left_branch); |
|---|
| 2137 | if(right_branch != NULL) right_branch=ckfree((void *)right_branch); |
|---|
| 2138 | if(tkill != NULL) tkill=ckfree((void *)tkill); |
|---|
| 2139 | if(av != NULL) av=ckfree((void *)av); |
|---|
| 2140 | for (i=1;i<last_seq-first_seq+2;i++) |
|---|
| 2141 | standard_tree[i]=ckfree((void *)standard_tree[i]); |
|---|
| 2142 | standard_tree=ckfree((void *)standard_tree); |
|---|
| 2143 | } |
|---|
| 2144 | fclose(phylip_phy_tree_file); |
|---|
| 2145 | |
|---|
| 2146 | } |
|---|
| 2147 | |
|---|
| 2148 | static Boolean is_ambiguity(char c) |
|---|
| 2149 | { |
|---|
| 2150 | int i; |
|---|
| 2151 | char codes[]="ACGTU"; |
|---|
| 2152 | |
|---|
| 2153 | if(use_ambiguities==TRUE) |
|---|
| 2154 | { |
|---|
| 2155 | return FALSE; |
|---|
| 2156 | } |
|---|
| 2157 | |
|---|
| 2158 | for(i=0;i<5;i++) |
|---|
| 2159 | if(amino_acid_codes[c]==codes[i]) |
|---|
| 2160 | return FALSE; |
|---|
| 2161 | |
|---|
| 2162 | return TRUE; |
|---|
| 2163 | } |
|---|
| 2164 | |
|---|