1 | ///////////////////////////////////////////////////////////////// |
---|
2 | // Main.cc |
---|
3 | // |
---|
4 | // Main routines for MXSCARNA program. |
---|
5 | ///////////////////////////////////////////////////////////////// |
---|
6 | |
---|
7 | #include "scarna.hpp" |
---|
8 | #include "SafeVector.h" |
---|
9 | #include "MultiSequence.h" |
---|
10 | #include "Defaults.h" |
---|
11 | #include "ScoreType.h" |
---|
12 | #include "ProbabilisticModel.h" |
---|
13 | #include "EvolutionaryTree.h" |
---|
14 | #include "SparseMatrix.h" |
---|
15 | #include "BPPMatrix.hpp" |
---|
16 | #include "StemCandidate.hpp" |
---|
17 | #include "Globaldp.hpp" |
---|
18 | #include "nrutil.h" |
---|
19 | #include "AlifoldMEA.h" |
---|
20 | #include <string> |
---|
21 | #include <sstream> |
---|
22 | #include <iomanip> |
---|
23 | #include <iostream> |
---|
24 | #include <list> |
---|
25 | #include <set> |
---|
26 | #include <algorithm> |
---|
27 | #include <cstdio> |
---|
28 | #include <cstdlib> |
---|
29 | #include <cerrno> |
---|
30 | #include <iomanip> |
---|
31 | #include <fstream> |
---|
32 | |
---|
33 | //#include "RfoldWrapper.hpp" |
---|
34 | //static RFOLD::Rfold folder; |
---|
35 | |
---|
36 | using namespace::MXSCARNA; |
---|
37 | |
---|
38 | string parametersInputFilename = ""; |
---|
39 | string parametersOutputFilename = "no training"; |
---|
40 | string annotationFilename = ""; |
---|
41 | string weboutputFileName = ""; |
---|
42 | |
---|
43 | ofstream *outputFile; |
---|
44 | |
---|
45 | bool enableTraining = false; |
---|
46 | bool enableVerbose = false; |
---|
47 | bool enableAllPairs = false; |
---|
48 | bool enableAnnotation = false; |
---|
49 | bool enableViterbi = false; |
---|
50 | bool enableClustalWOutput = false; |
---|
51 | bool enableTrainEmissions = false; |
---|
52 | bool enableAlignOrder = false; |
---|
53 | bool enableWebOutput = false; |
---|
54 | bool enableStockholmOutput = false; |
---|
55 | bool enableMXSCARNAOutput = false; |
---|
56 | bool enableMcCaskillMEAMode = false; |
---|
57 | char bppmode = 's'; // by katoh |
---|
58 | int numConsistencyReps = 2; |
---|
59 | int numPreTrainingReps = 0; |
---|
60 | int numIterativeRefinementReps = 100; |
---|
61 | int scsLength = SCSLENGTH; |
---|
62 | float cutoff = 0; |
---|
63 | float gapOpenPenalty = 0; |
---|
64 | float gapContinuePenalty = 0; |
---|
65 | float threshhold = 1.0; |
---|
66 | float BaseProbThreshold = BASEPROBTHRESHOLD; |
---|
67 | float BasePairConst = BASEPAIRCONST; |
---|
68 | int BandWidth = BANDWIDTH; |
---|
69 | |
---|
70 | SafeVector<string> sequenceNames; |
---|
71 | |
---|
72 | VF initDistrib (NumMatrixTypes); |
---|
73 | VF gapOpen (2*NumInsertStates); |
---|
74 | VF gapExtend (2*NumInsertStates); |
---|
75 | VVF emitPairs (256, VF (256, 1e-10)); |
---|
76 | VF emitSingle (256, 1e-5); |
---|
77 | |
---|
78 | string alphabet = alphabetDefault; |
---|
79 | |
---|
80 | string *ssCons = NULL; |
---|
81 | |
---|
82 | const int MIN_PRETRAINING_REPS = 0; |
---|
83 | const int MAX_PRETRAINING_REPS = 20; |
---|
84 | const int MIN_CONSISTENCY_REPS = 0; |
---|
85 | const int MAX_CONSISTENCY_REPS = 5; |
---|
86 | const int MIN_ITERATIVE_REFINEMENT_REPS = 0; |
---|
87 | const int MAX_ITERATIVE_REFINEMENT_REPS = 1000; |
---|
88 | |
---|
89 | ///////////////////////////////////////////////////////////////// |
---|
90 | // Function prototypes |
---|
91 | ///////////////////////////////////////////////////////////////// |
---|
92 | |
---|
93 | void PrintHeading(); |
---|
94 | void PrintParameters (const char *message, const VF &initDistrib, const VF &gapOpen, |
---|
95 | const VF &gapExtend, const VVF &emitPairs, const VF &emitSingle, const char *filename); |
---|
96 | MultiSequence *DoAlign (MultiSequence *sequence, const ProbabilisticModel &model, VF &initDistrib, VF &gapOpen, VF &gapExtend, VVF &emitPairs, VF &emitSingle); |
---|
97 | SafeVector<string> ParseParams (int argc, char **argv); |
---|
98 | void ReadParameters (); |
---|
99 | MultiSequence *ComputeFinalAlignment (const TreeNode *tree, MultiSequence *sequences, |
---|
100 | const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices, |
---|
101 | const ProbabilisticModel &model, |
---|
102 | SafeVector<BPPMatrix*> &BPPMatrices); |
---|
103 | MultiSequence *AlignAlignments (MultiSequence *align1, MultiSequence *align2, |
---|
104 | const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices, |
---|
105 | const ProbabilisticModel &model, SafeVector<BPPMatrix*> &BPPMatrices, float identity); |
---|
106 | SafeVector<SafeVector<SparseMatrix *> > DoRelaxation (MultiSequence *sequences, |
---|
107 | SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices); |
---|
108 | void Relax (SparseMatrix *matXZ, SparseMatrix *matZY, VF &posterior); |
---|
109 | void Relax1 (SparseMatrix *matXZ, SparseMatrix *matZY, VF &posterior); |
---|
110 | void DoBasePairProbabilityRelaxation (MultiSequence *sequences, |
---|
111 | SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices, |
---|
112 | SafeVector<BPPMatrix*> &BPPMatrices); |
---|
113 | set<int> GetSubtree (const TreeNode *tree); |
---|
114 | void TreeBasedBiPartitioning (const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices, |
---|
115 | const ProbabilisticModel &model, MultiSequence* &alignment, |
---|
116 | const TreeNode *tree, SafeVector<BPPMatrix*> &BPPMatrices); |
---|
117 | void DoIterativeRefinement (const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices, |
---|
118 | const ProbabilisticModel &model, MultiSequence* &alignment); |
---|
119 | void WriteAnnotation (MultiSequence *alignment, |
---|
120 | const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices); |
---|
121 | int ComputeScore (const SafeVector<pair<int, int> > &active, |
---|
122 | const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices); |
---|
123 | std::vector<StemCandidate>* seq2scs(MultiSequence *Sequences, SafeVector<BPPMatrix*> &BPPMatrices, int BandWidth); |
---|
124 | void removeConflicts(std::vector<StemCandidate> *pscs1, std::vector<StemCandidate> *pscs2, std::vector<int> *matchPSCS1, std::vector<int> *matchPSCS2); |
---|
125 | |
---|
126 | struct prob { |
---|
127 | int i; |
---|
128 | int j; |
---|
129 | float p; |
---|
130 | }; |
---|
131 | |
---|
132 | ///////////////////////////////////////////////////////////////// |
---|
133 | // main() |
---|
134 | // |
---|
135 | // Calls all initialization routines and runs the MXSCARNA |
---|
136 | // aligner. |
---|
137 | ///////////////////////////////////////////////////////////////// |
---|
138 | |
---|
139 | |
---|
140 | int main (int argc, char **argv){ |
---|
141 | |
---|
142 | // print MXSCARNA heading |
---|
143 | PrintHeading(); |
---|
144 | |
---|
145 | // parse program parameters |
---|
146 | sequenceNames = ParseParams (argc, argv); |
---|
147 | ReadParameters(); |
---|
148 | PrintParameters ("Using parameter set:", initDistrib, gapOpen, gapExtend, emitPairs, emitSingle, NULL); |
---|
149 | |
---|
150 | // now, we'll process all the files given as input. If we are given |
---|
151 | // several filenames as input, then we'll load all of those sequences |
---|
152 | // simultaneously, as long as we're not training. On the other hand, |
---|
153 | // if we are training, then we'll treat each file as a separate |
---|
154 | // training instance |
---|
155 | |
---|
156 | if (enableMcCaskillMEAMode) { |
---|
157 | MultiSequence *sequences = new MultiSequence(); assert (sequences); |
---|
158 | for (int i = 0; i < (int) sequenceNames.size(); i++){ |
---|
159 | cerr << "Loading sequence file: " << sequenceNames[i] << endl; |
---|
160 | sequences->LoadMFA (sequenceNames[i], true); |
---|
161 | } |
---|
162 | |
---|
163 | const int numSeqs = sequences->GetNumSequences(); |
---|
164 | SafeVector<BPPMatrix*> BPPMatrices; |
---|
165 | |
---|
166 | // compute the base pairing matrices for each sequences |
---|
167 | for(int i = 0; i < numSeqs; i++) { |
---|
168 | Sequence *tmpSeq = sequences->GetSequence(i); |
---|
169 | string seq = tmpSeq->GetString(); |
---|
170 | int n_seq = tmpSeq->GetLength(); |
---|
171 | BPPMatrix *bppmat = new BPPMatrix(bppmode, seq, n_seq); // modified by katoh |
---|
172 | BPPMatrices.push_back(bppmat); |
---|
173 | } |
---|
174 | if (bppmode=='w') exit( 0 ); |
---|
175 | |
---|
176 | AlifoldMEA alifold(sequences, BPPMatrices, BasePairConst); |
---|
177 | alifold.Run(); |
---|
178 | ssCons = alifold.getSScons(); |
---|
179 | |
---|
180 | if (enableStockholmOutput) { |
---|
181 | sequences->WriteSTOCKHOLM (cout, ssCons); |
---|
182 | } |
---|
183 | else if (enableMXSCARNAOutput){ |
---|
184 | sequences->WriteMXSCARNA (cout, ssCons); |
---|
185 | } |
---|
186 | else { |
---|
187 | sequences->WriteMFA (cout, ssCons); |
---|
188 | } |
---|
189 | |
---|
190 | delete sequences; |
---|
191 | } |
---|
192 | // if we are training |
---|
193 | else if (enableTraining){ |
---|
194 | |
---|
195 | // build new model for aligning |
---|
196 | ProbabilisticModel model (initDistrib, gapOpen, gapExtend, emitPairs, emitSingle); |
---|
197 | |
---|
198 | // prepare to average parameters |
---|
199 | for (int i = 0; i < (int) initDistrib.size(); i++) initDistrib[i] = 0; |
---|
200 | for (int i = 0; i < (int) gapOpen.size(); i++) gapOpen[i] = 0; |
---|
201 | for (int i = 0; i < (int) gapExtend.size(); i++) gapExtend[i] = 0; |
---|
202 | if (enableTrainEmissions){ |
---|
203 | for (int i = 0; i < (int) emitPairs.size(); i++) |
---|
204 | for (int j = 0; j < (int) emitPairs[i].size(); j++) emitPairs[i][j] = 0; |
---|
205 | for (int i = 0; i < (int) emitSingle.size(); i++) emitSingle[i] = 0; |
---|
206 | } |
---|
207 | |
---|
208 | // align each file individually |
---|
209 | for (int i = 0; i < (int) sequenceNames.size(); i++){ |
---|
210 | |
---|
211 | VF thisInitDistrib (NumMatrixTypes); |
---|
212 | VF thisGapOpen (2*NumInsertStates); |
---|
213 | VF thisGapExtend (2*NumInsertStates); |
---|
214 | VVF thisEmitPairs (256, VF (256, 1e-10)); |
---|
215 | VF thisEmitSingle (256, 1e-5); |
---|
216 | |
---|
217 | // load sequence file |
---|
218 | MultiSequence *sequences = new MultiSequence(); assert (sequences); |
---|
219 | cerr << "Loading sequence file: " << sequenceNames[i] << endl; |
---|
220 | sequences->LoadMFA (sequenceNames[i], true); |
---|
221 | |
---|
222 | // align sequences |
---|
223 | DoAlign (sequences, model, thisInitDistrib, thisGapOpen, thisGapExtend, thisEmitPairs, thisEmitSingle); |
---|
224 | |
---|
225 | // add in contribution of the derived parameters |
---|
226 | for (int i = 0; i < (int) initDistrib.size(); i++) initDistrib[i] += thisInitDistrib[i]; |
---|
227 | for (int i = 0; i < (int) gapOpen.size(); i++) gapOpen[i] += thisGapOpen[i]; |
---|
228 | for (int i = 0; i < (int) gapExtend.size(); i++) gapExtend[i] += thisGapExtend[i]; |
---|
229 | if (enableTrainEmissions){ |
---|
230 | for (int i = 0; i < (int) emitPairs.size(); i++) |
---|
231 | for (int j = 0; j < (int) emitPairs[i].size(); j++) emitPairs[i][j] += thisEmitPairs[i][j]; |
---|
232 | for (int i = 0; i < (int) emitSingle.size(); i++) emitSingle[i] += thisEmitSingle[i]; |
---|
233 | } |
---|
234 | |
---|
235 | delete sequences; |
---|
236 | } |
---|
237 | |
---|
238 | // compute new parameters and print them out |
---|
239 | for (int i = 0; i < (int) initDistrib.size(); i++) initDistrib[i] /= (int) sequenceNames.size(); |
---|
240 | for (int i = 0; i < (int) gapOpen.size(); i++) gapOpen[i] /= (int) sequenceNames.size(); |
---|
241 | for (int i = 0; i < (int) gapExtend.size(); i++) gapExtend[i] /= (int) sequenceNames.size(); |
---|
242 | if (enableTrainEmissions){ |
---|
243 | for (int i = 0; i < (int) emitPairs.size(); i++) |
---|
244 | for (int j = 0; j < (int) emitPairs[i].size(); j++) emitPairs[i][j] /= (int) sequenceNames.size(); |
---|
245 | for (int i = 0; i < (int) emitSingle.size(); i++) emitSingle[i] /= sequenceNames.size(); |
---|
246 | } |
---|
247 | |
---|
248 | PrintParameters ("Trained parameter set:", |
---|
249 | initDistrib, gapOpen, gapExtend, emitPairs, emitSingle, |
---|
250 | parametersOutputFilename.c_str()); |
---|
251 | } |
---|
252 | // pass |
---|
253 | // if we are not training, we must simply want to align some sequences |
---|
254 | else { |
---|
255 | // load all files together |
---|
256 | MultiSequence *sequences = new MultiSequence(); assert (sequences); |
---|
257 | for (int i = 0; i < (int) sequenceNames.size(); i++){ |
---|
258 | cerr << "Loading sequence file: " << sequenceNames[i] << endl; |
---|
259 | |
---|
260 | sequences->LoadMFA (sequenceNames[i], true); |
---|
261 | } |
---|
262 | |
---|
263 | // do all "pre-training" repetitions first |
---|
264 | // NOT execute |
---|
265 | for (int ct = 0; ct < numPreTrainingReps; ct++){ |
---|
266 | enableTraining = true; |
---|
267 | |
---|
268 | // build new model for aligning |
---|
269 | ProbabilisticModel model (initDistrib, gapOpen, gapExtend, |
---|
270 | emitPairs, emitSingle); |
---|
271 | |
---|
272 | // do initial alignments |
---|
273 | DoAlign (sequences, model, initDistrib, gapOpen, gapExtend, emitPairs, emitSingle); |
---|
274 | |
---|
275 | // print new parameters |
---|
276 | PrintParameters ("Recomputed parameter set:", initDistrib, gapOpen, gapExtend, emitPairs, emitSingle, NULL); |
---|
277 | |
---|
278 | enableTraining = false; |
---|
279 | } |
---|
280 | |
---|
281 | // now, we can perform the alignments and write them out |
---|
282 | if (enableWebOutput) { |
---|
283 | outputFile = new ofstream(weboutputFileName.c_str()); |
---|
284 | if (!outputFile) { |
---|
285 | cerr << "cannot open output file." << weboutputFileName << endl; |
---|
286 | exit(1); |
---|
287 | } |
---|
288 | *outputFile << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>" << endl; |
---|
289 | *outputFile << "<result>" << endl; |
---|
290 | } |
---|
291 | MultiSequence *alignment = DoAlign (sequences, |
---|
292 | ProbabilisticModel (initDistrib, gapOpen, gapExtend, emitPairs, emitSingle), |
---|
293 | initDistrib, gapOpen, gapExtend, emitPairs, emitSingle); |
---|
294 | |
---|
295 | |
---|
296 | if (!enableAllPairs){ |
---|
297 | if (enableClustalWOutput) { |
---|
298 | alignment->WriteALN (cout); |
---|
299 | } |
---|
300 | else if (enableWebOutput) { |
---|
301 | alignment->WriteWEB (*outputFile, ssCons); |
---|
302 | // computeStructureWithAlifold (); |
---|
303 | } |
---|
304 | else if (enableStockholmOutput) { |
---|
305 | alignment->WriteSTOCKHOLM (cout, ssCons); |
---|
306 | } |
---|
307 | else if (enableMXSCARNAOutput) { |
---|
308 | alignment->WriteMXSCARNA (cout, ssCons); |
---|
309 | } |
---|
310 | else { |
---|
311 | alignment->WriteMFA (cout, ssCons); |
---|
312 | } |
---|
313 | } |
---|
314 | |
---|
315 | if (enableWebOutput) { |
---|
316 | *outputFile << "</result>" << endl; |
---|
317 | delete outputFile; |
---|
318 | } |
---|
319 | |
---|
320 | delete ssCons; |
---|
321 | delete alignment; |
---|
322 | delete sequences; |
---|
323 | |
---|
324 | } |
---|
325 | } |
---|
326 | |
---|
327 | ///////////////////////////////////////////////////////////////// |
---|
328 | // PrintHeading() |
---|
329 | // |
---|
330 | // Prints heading for PROBCONS program. |
---|
331 | ///////////////////////////////////////////////////////////////// |
---|
332 | |
---|
333 | void PrintHeading (){ |
---|
334 | cerr << endl |
---|
335 | << "Multiplex SCARNA"<< endl |
---|
336 | << "version " << VERSION << " - align multiple RNA sequences and print to standard output" << endl |
---|
337 | << "Written by Yasuo Tabei" << endl |
---|
338 | << endl; |
---|
339 | } |
---|
340 | |
---|
341 | ///////////////////////////////////////////////////////////////// |
---|
342 | // PrintParameters() |
---|
343 | // |
---|
344 | // Prints PROBCONS parameters to STDERR. If a filename is |
---|
345 | // specified, then the parameters are also written to the file. |
---|
346 | ///////////////////////////////////////////////////////////////// |
---|
347 | |
---|
348 | void PrintParameters (const char *message, const VF &initDistrib, const VF &gapOpen, |
---|
349 | const VF &gapExtend, const VVF &emitPairs, const VF &emitSingle, const char *filename){ |
---|
350 | |
---|
351 | // print parameters to the screen |
---|
352 | cerr << message << endl |
---|
353 | << " initDistrib[] = { "; |
---|
354 | for (int i = 0; i < NumMatrixTypes; i++) cerr << setprecision (10) << initDistrib[i] << " "; |
---|
355 | cerr << "}" << endl |
---|
356 | << " gapOpen[] = { "; |
---|
357 | for (int i = 0; i < NumInsertStates*2; i++) cerr << setprecision (10) << gapOpen[i] << " "; |
---|
358 | cerr << "}" << endl |
---|
359 | << " gapExtend[] = { "; |
---|
360 | for (int i = 0; i < NumInsertStates*2; i++) cerr << setprecision (10) << gapExtend[i] << " "; |
---|
361 | cerr << "}" << endl |
---|
362 | << endl; |
---|
363 | |
---|
364 | /* |
---|
365 | for (int i = 0; i < 5; i++){ |
---|
366 | for (int j = 0; j <= i; j++){ |
---|
367 | cerr << emitPairs[(unsigned char) alphabet[i]][(unsigned char) alphabet[j]] << " "; |
---|
368 | } |
---|
369 | cerr << endl; |
---|
370 | }*/ |
---|
371 | |
---|
372 | // if a file name is specified |
---|
373 | if (filename){ |
---|
374 | |
---|
375 | // attempt to open the file for writing |
---|
376 | FILE *file = fopen (filename, "w"); |
---|
377 | if (!file){ |
---|
378 | cerr << "ERROR: Unable to write parameter file: " << filename << endl; |
---|
379 | exit (1); |
---|
380 | } |
---|
381 | |
---|
382 | // if successful, then write the parameters to the file |
---|
383 | for (int i = 0; i < NumMatrixTypes; i++) fprintf (file, "%.10f ", initDistrib[i]); fprintf (file, "\n"); |
---|
384 | for (int i = 0; i < 2*NumInsertStates; i++) fprintf (file, "%.10f ", gapOpen[i]); fprintf (file, "\n"); |
---|
385 | for (int i = 0; i < 2*NumInsertStates; i++) fprintf (file, "%.10f ", gapExtend[i]); fprintf (file, "\n"); |
---|
386 | fprintf (file, "%s\n", alphabet.c_str()); |
---|
387 | for (int i = 0; i < (int) alphabet.size(); i++){ |
---|
388 | for (int j = 0; j <= i; j++) |
---|
389 | fprintf (file, "%.10f ", emitPairs[(unsigned char) alphabet[i]][(unsigned char) alphabet[j]]); |
---|
390 | fprintf (file, "\n"); |
---|
391 | } |
---|
392 | for (int i = 0; i < (int) alphabet.size(); i++) |
---|
393 | fprintf (file, "%.10f ", emitSingle[(unsigned char) alphabet[i]]); |
---|
394 | fprintf (file, "\n"); |
---|
395 | fclose (file); |
---|
396 | } |
---|
397 | } |
---|
398 | |
---|
399 | ///////////////////////////////////////////////////////////////// |
---|
400 | // DoAlign() |
---|
401 | // |
---|
402 | // First computes all pairwise posterior probability matrices. |
---|
403 | // Then, computes new parameters if training, or a final |
---|
404 | // alignment, otherwise. |
---|
405 | ///////////////////////////////////////////////////////////////// |
---|
406 | MultiSequence *DoAlign (MultiSequence *sequences, const ProbabilisticModel &model, VF &initDistrib, VF &gapOpen, VF &gapExtend, VVF &emitPairs, VF &emitSingle){ |
---|
407 | |
---|
408 | |
---|
409 | assert (sequences); |
---|
410 | |
---|
411 | const int numSeqs = sequences->GetNumSequences(); |
---|
412 | VVF distances (numSeqs, VF (numSeqs, 0)); |
---|
413 | VVF identities (numSeqs, VF (numSeqs, 0)); |
---|
414 | SafeVector<SafeVector<SparseMatrix *> > sparseMatrices (numSeqs, SafeVector<SparseMatrix *>(numSeqs, NULL)); |
---|
415 | |
---|
416 | SafeVector<BPPMatrix*> BPPMatrices; |
---|
417 | |
---|
418 | for(int i = 0; i < numSeqs; i++) { |
---|
419 | Sequence *tmpSeq = sequences->GetSequence(i); |
---|
420 | string seq = tmpSeq->GetString(); |
---|
421 | int n_seq = tmpSeq->GetLength(); |
---|
422 | BPPMatrix *bppmat = new BPPMatrix(bppmode, seq, n_seq, BASEPROBTHRESHOLD); // modified by katoh |
---|
423 | BPPMatrices.push_back(bppmat); |
---|
424 | } |
---|
425 | |
---|
426 | if (enableTraining){ |
---|
427 | // prepare to average parameters |
---|
428 | for (int i = 0; i < (int) initDistrib.size(); i++) initDistrib[i] = 0; |
---|
429 | for (int i = 0; i < (int) gapOpen.size(); i++) gapOpen[i] = 0; |
---|
430 | for (int i = 0; i < (int) gapExtend.size(); i++) gapExtend[i] = 0; |
---|
431 | if (enableTrainEmissions){ |
---|
432 | for (int i = 0; i < (int) emitPairs.size(); i++) |
---|
433 | for (int j = 0; j < (int) emitPairs[i].size(); j++) emitPairs[i][j] = 0; |
---|
434 | for (int i = 0; i < (int) emitSingle.size(); i++) emitSingle[i] = 0; |
---|
435 | } |
---|
436 | } |
---|
437 | |
---|
438 | // skip posterior calculations if we just want to do Viterbi alignments |
---|
439 | if (!enableViterbi){ |
---|
440 | |
---|
441 | // do all pairwise alignments for posterior probability matrices |
---|
442 | for (int a = 0; a < numSeqs-1; a++){ |
---|
443 | for (int b = a+1; b < numSeqs; b++){ |
---|
444 | Sequence *seq1 = sequences->GetSequence (a); |
---|
445 | Sequence *seq2 = sequences->GetSequence (b); |
---|
446 | |
---|
447 | // verbose output |
---|
448 | if (enableVerbose) |
---|
449 | cerr << "Computing posterior matrix: (" << a+1 << ") " << seq1->GetHeader() << " vs. " |
---|
450 | << "(" << b+1 << ") " << seq2->GetHeader() << " -- "; |
---|
451 | |
---|
452 | // compute forward and backward probabilities |
---|
453 | VF *forward = model.ComputeForwardMatrix (seq1, seq2); assert (forward); |
---|
454 | VF *backward = model.ComputeBackwardMatrix (seq1, seq2); assert (backward); |
---|
455 | |
---|
456 | // if we are training, then we'll simply want to compute the |
---|
457 | // expected counts for each region within the matrix separately; |
---|
458 | // otherwise, we'll need to put all of the regions together and |
---|
459 | // assemble a posterior probability match matrix |
---|
460 | |
---|
461 | // so, if we're training |
---|
462 | if (enableTraining){ |
---|
463 | |
---|
464 | // compute new parameters |
---|
465 | VF thisInitDistrib (NumMatrixTypes); |
---|
466 | VF thisGapOpen (2*NumInsertStates); |
---|
467 | VF thisGapExtend (2*NumInsertStates); |
---|
468 | VVF thisEmitPairs (256, VF (256, 1e-10)); |
---|
469 | VF thisEmitSingle (256, 1e-5); |
---|
470 | |
---|
471 | model.ComputeNewParameters (seq1, seq2, *forward, *backward, thisInitDistrib, thisGapOpen, thisGapExtend, thisEmitPairs, thisEmitSingle, enableTrainEmissions); |
---|
472 | |
---|
473 | // add in contribution of the derived parameters |
---|
474 | for (int i = 0; i < (int) initDistrib.size(); i++) initDistrib[i] += thisInitDistrib[i]; |
---|
475 | for (int i = 0; i < (int) gapOpen.size(); i++) gapOpen[i] += thisGapOpen[i]; |
---|
476 | for (int i = 0; i < (int) gapExtend.size(); i++) gapExtend[i] += thisGapExtend[i]; |
---|
477 | if (enableTrainEmissions){ |
---|
478 | for (int i = 0; i < (int) emitPairs.size(); i++) |
---|
479 | for (int j = 0; j < (int) emitPairs[i].size(); j++) emitPairs[i][j] += thisEmitPairs[i][j]; |
---|
480 | for (int i = 0; i < (int) emitSingle.size(); i++) emitSingle[i] += thisEmitSingle[i]; |
---|
481 | } |
---|
482 | |
---|
483 | // let us know that we're done. |
---|
484 | if (enableVerbose) cerr << "done." << endl; |
---|
485 | } |
---|
486 | // pass |
---|
487 | else { |
---|
488 | |
---|
489 | // compute posterior probability matrix |
---|
490 | VF *posterior = model.ComputePosteriorMatrix (seq1, seq2, *forward, *backward); assert (posterior); |
---|
491 | |
---|
492 | // compute sparse representations |
---|
493 | sparseMatrices[a][b] = new SparseMatrix (seq1->GetLength(), seq2->GetLength(), *posterior); |
---|
494 | sparseMatrices[b][a] = NULL; |
---|
495 | |
---|
496 | if (!enableAllPairs){ |
---|
497 | // perform the pairwise sequence alignment |
---|
498 | pair<SafeVector<char> *, float> alignment = model.ComputeAlignment (seq1->GetLength(), |
---|
499 | seq2->GetLength(), |
---|
500 | *posterior); |
---|
501 | |
---|
502 | Sequence *tmpSeq1 = seq1->AddGaps (alignment.first, 'X'); |
---|
503 | Sequence *tmpSeq2 = seq2->AddGaps (alignment.first, 'Y'); |
---|
504 | |
---|
505 | // compute sequence identity for each pair of sequenceses |
---|
506 | int length = tmpSeq1->GetLength(); |
---|
507 | int matchCount = 0; |
---|
508 | int misMatchCount = 0; |
---|
509 | for (int k = 1; k <= length; k++) { |
---|
510 | int ch1 = tmpSeq1->GetPosition(k); |
---|
511 | int ch2 = tmpSeq2->GetPosition(k); |
---|
512 | if (ch1 == ch2 && ch1 != '-' && ch2 != '-') { ++matchCount; } |
---|
513 | else if (ch1 != ch2 && ch1 != '-' && ch2 != '-') { ++misMatchCount; } |
---|
514 | } |
---|
515 | |
---|
516 | identities[a][b] = identities[b][a] = (float)matchCount/(float)(matchCount + misMatchCount); |
---|
517 | |
---|
518 | // compute "expected accuracy" distance for evolutionary tree computation |
---|
519 | float distance = alignment.second / min (seq1->GetLength(), seq2->GetLength()); |
---|
520 | distances[a][b] = distances[b][a] = distance; |
---|
521 | |
---|
522 | if (enableVerbose) |
---|
523 | cerr << setprecision (10) << distance << endl; |
---|
524 | |
---|
525 | delete alignment.first; |
---|
526 | } |
---|
527 | else { |
---|
528 | // let us know that we're done. |
---|
529 | if (enableVerbose) cerr << "done." << endl; |
---|
530 | } |
---|
531 | |
---|
532 | delete posterior; |
---|
533 | } |
---|
534 | |
---|
535 | delete forward; |
---|
536 | delete backward; |
---|
537 | } |
---|
538 | } |
---|
539 | } |
---|
540 | |
---|
541 | |
---|
542 | // now average out parameters derived |
---|
543 | if (enableTraining){ |
---|
544 | // compute new parameters |
---|
545 | for (int i = 0; i < (int) initDistrib.size(); i++) initDistrib[i] /= numSeqs * (numSeqs - 1) / 2; |
---|
546 | for (int i = 0; i < (int) gapOpen.size(); i++) gapOpen[i] /= numSeqs * (numSeqs - 1) / 2; |
---|
547 | for (int i = 0; i < (int) gapExtend.size(); i++) gapExtend[i] /= numSeqs * (numSeqs - 1) / 2; |
---|
548 | |
---|
549 | if (enableTrainEmissions){ |
---|
550 | for (int i = 0; i < (int) emitPairs.size(); i++) |
---|
551 | for (int j = 0; j < (int) emitPairs[i].size(); j++) emitPairs[i][j] /= numSeqs * (numSeqs - 1) / 2; |
---|
552 | for (int i = 0; i < (int) emitSingle.size(); i++) emitSingle[i] /= numSeqs * (numSeqs - 1) / 2; |
---|
553 | } |
---|
554 | } |
---|
555 | |
---|
556 | // see if we still want to do some alignments |
---|
557 | else { |
---|
558 | // pass |
---|
559 | if (!enableViterbi){ |
---|
560 | |
---|
561 | // perform the consistency transformation the desired number of times |
---|
562 | for (int r = 0; r < numConsistencyReps; r++){ |
---|
563 | SafeVector<SafeVector<SparseMatrix *> > newSparseMatrices = DoRelaxation (sequences, sparseMatrices); |
---|
564 | |
---|
565 | // now replace the old posterior matrices |
---|
566 | for (int i = 0; i < numSeqs; i++){ |
---|
567 | for (int j = 0; j < numSeqs; j++){ |
---|
568 | delete sparseMatrices[i][j]; |
---|
569 | sparseMatrices[i][j] = newSparseMatrices[i][j]; |
---|
570 | } |
---|
571 | } |
---|
572 | } |
---|
573 | //if (numSeqs > 8) { |
---|
574 | // for (int r = 0; r < 1; r++) |
---|
575 | // DoBasePairProbabilityRelaxation(sequences, sparseMatrices, BPPMatrices); |
---|
576 | //} |
---|
577 | } |
---|
578 | |
---|
579 | MultiSequence *finalAlignment = NULL; |
---|
580 | |
---|
581 | if (enableAllPairs){ |
---|
582 | for (int a = 0; a < numSeqs-1; a++){ |
---|
583 | for (int b = a+1; b < numSeqs; b++){ |
---|
584 | Sequence *seq1 = sequences->GetSequence (a); |
---|
585 | Sequence *seq2 = sequences->GetSequence (b); |
---|
586 | |
---|
587 | if (enableVerbose) |
---|
588 | cerr << "Performing pairwise alignment: (" << a+1 << ") " << seq1->GetHeader() << " vs. " |
---|
589 | << "(" << b+1 << ") " << seq2->GetHeader() << " -- "; |
---|
590 | |
---|
591 | |
---|
592 | // perform the pairwise sequence alignment |
---|
593 | pair<SafeVector<char> *, float> alignment; |
---|
594 | if (enableViterbi) |
---|
595 | alignment = model.ComputeViterbiAlignment (seq1, seq2); |
---|
596 | else { |
---|
597 | |
---|
598 | // build posterior matrix |
---|
599 | VF *posterior = sparseMatrices[a][b]->GetPosterior(); assert (posterior); |
---|
600 | int length = (seq1->GetLength() + 1) * (seq2->GetLength() + 1); |
---|
601 | for (int i = 0; i < length; i++) (*posterior)[i] -= cutoff; |
---|
602 | |
---|
603 | alignment = model.ComputeAlignment (seq1->GetLength(), seq2->GetLength(), *posterior); |
---|
604 | delete posterior; |
---|
605 | } |
---|
606 | |
---|
607 | |
---|
608 | // write pairwise alignments |
---|
609 | string name = seq1->GetHeader() + "-" + seq2->GetHeader() + (enableClustalWOutput ? ".aln" : ".fasta"); |
---|
610 | ofstream outfile (name.c_str()); |
---|
611 | |
---|
612 | MultiSequence *result = new MultiSequence(); |
---|
613 | result->AddSequence (seq1->AddGaps(alignment.first, 'X')); |
---|
614 | result->AddSequence (seq2->AddGaps(alignment.first, 'Y')); |
---|
615 | result->WriteMFAseq (outfile); // by katoh |
---|
616 | |
---|
617 | outfile.close(); |
---|
618 | |
---|
619 | delete alignment.first; |
---|
620 | } |
---|
621 | } |
---|
622 | exit( 0 ); |
---|
623 | } |
---|
624 | |
---|
625 | // now if we still need to do a final multiple alignment |
---|
626 | else { |
---|
627 | |
---|
628 | if (enableVerbose) |
---|
629 | cerr << endl; |
---|
630 | |
---|
631 | // compute the evolutionary tree |
---|
632 | TreeNode *tree = TreeNode::ComputeTree (distances, identities); |
---|
633 | |
---|
634 | if (enableWebOutput) { |
---|
635 | *outputFile << "<tree>" << endl; |
---|
636 | tree->Print (*outputFile, sequences); |
---|
637 | *outputFile << "</tree>" << endl; |
---|
638 | } |
---|
639 | else { |
---|
640 | tree->Print (cerr, sequences); |
---|
641 | cerr << endl; |
---|
642 | } |
---|
643 | // make the final alignment |
---|
644 | finalAlignment = ComputeFinalAlignment (tree, sequences, sparseMatrices, model, BPPMatrices); |
---|
645 | |
---|
646 | // build annotation |
---|
647 | if (enableAnnotation){ |
---|
648 | WriteAnnotation (finalAlignment, sparseMatrices); |
---|
649 | } |
---|
650 | |
---|
651 | delete tree; |
---|
652 | } |
---|
653 | |
---|
654 | if (!enableViterbi){ |
---|
655 | // delete sparse matrices |
---|
656 | for (int a = 0; a < numSeqs-1; a++){ |
---|
657 | for (int b = a+1; b < numSeqs; b++){ |
---|
658 | delete sparseMatrices[a][b]; |
---|
659 | delete sparseMatrices[b][a]; |
---|
660 | } |
---|
661 | } |
---|
662 | } |
---|
663 | |
---|
664 | //AlifoldMEA alifold(finalAlignment, BPPMatrices, BasePairConst); |
---|
665 | //alifold.Run(); |
---|
666 | //ssCons = alifold.getSScons(); |
---|
667 | |
---|
668 | return finalAlignment; |
---|
669 | |
---|
670 | } |
---|
671 | |
---|
672 | return NULL; |
---|
673 | } |
---|
674 | |
---|
675 | ///////////////////////////////////////////////////////////////// |
---|
676 | // GetInteger() |
---|
677 | // |
---|
678 | // Attempts to parse an integer from the character string given. |
---|
679 | // Returns true only if no parsing error occurs. |
---|
680 | ///////////////////////////////////////////////////////////////// |
---|
681 | |
---|
682 | bool GetInteger (char *data, int *val){ |
---|
683 | char *endPtr; |
---|
684 | long int retVal; |
---|
685 | |
---|
686 | assert (val); |
---|
687 | |
---|
688 | errno = 0; |
---|
689 | retVal = strtol (data, &endPtr, 0); |
---|
690 | if (retVal == 0 && (errno != 0 || data == endPtr)) return false; |
---|
691 | if (errno != 0 && (retVal == LONG_MAX || retVal == LONG_MIN)) return false; |
---|
692 | if (retVal < (long) INT_MIN || retVal > (long) INT_MAX) return false; |
---|
693 | *val = (int) retVal; |
---|
694 | return true; |
---|
695 | } |
---|
696 | |
---|
697 | ///////////////////////////////////////////////////////////////// |
---|
698 | // GetFloat() |
---|
699 | // |
---|
700 | // Attempts to parse a float from the character string given. |
---|
701 | // Returns true only if no parsing error occurs. |
---|
702 | ///////////////////////////////////////////////////////////////// |
---|
703 | |
---|
704 | bool GetFloat (char *data, float *val){ |
---|
705 | char *endPtr; |
---|
706 | double retVal; |
---|
707 | |
---|
708 | assert (val); |
---|
709 | |
---|
710 | errno = 0; |
---|
711 | retVal = strtod (data, &endPtr); |
---|
712 | if (retVal == 0 && (errno != 0 || data == endPtr)) return false; |
---|
713 | if (errno != 0 && (retVal >= 1000000.0 || retVal <= -1000000.0)) return false; |
---|
714 | *val = (float) retVal; |
---|
715 | return true; |
---|
716 | } |
---|
717 | |
---|
718 | ///////////////////////////////////////////////////////////////// |
---|
719 | // ParseParams() |
---|
720 | // |
---|
721 | // Parse all command-line options. |
---|
722 | ///////////////////////////////////////////////////////////////// |
---|
723 | |
---|
724 | SafeVector<string> ParseParams (int argc, char **argv){ |
---|
725 | |
---|
726 | if (argc < 2){ |
---|
727 | |
---|
728 | cerr << "MXSCARNA comes with ABSOLUTELY NO WARRANTY. This is free software, and" << endl |
---|
729 | << "you are welcome to redistribute it under certain conditions. See the" << endl |
---|
730 | << "file COPYING.txt for details." << endl |
---|
731 | << endl |
---|
732 | << "Usage:" << endl |
---|
733 | << " mxscarna [OPTION]... [MFAFILE]..." << endl |
---|
734 | << endl |
---|
735 | << "Description:" << endl |
---|
736 | << " Align sequences in MFAFILE(s) and print result to standard output" << endl |
---|
737 | << endl |
---|
738 | << " -clustalw" << endl |
---|
739 | << " use CLUSTALW output format instead of MFA" << endl |
---|
740 | << endl |
---|
741 | << " -stockholm" << endl |
---|
742 | << " use STOCKHOLM output format instead of MFA" << endl |
---|
743 | << endl |
---|
744 | << " -mxscarna" << endl |
---|
745 | << " use MXSCARNA output format instead of MFA" << endl |
---|
746 | << endl |
---|
747 | << " -weboutput /<output_path>/<outputfilename>" << endl |
---|
748 | << " use web output format" << endl |
---|
749 | << endl |
---|
750 | << " -c, --consistency REPS" << endl |
---|
751 | << " use " << MIN_CONSISTENCY_REPS << " <= REPS <= " << MAX_CONSISTENCY_REPS |
---|
752 | << " (default: " << numConsistencyReps << ") passes of consistency transformation" << endl |
---|
753 | << endl |
---|
754 | << " -ir, --iterative-refinement REPS" << endl |
---|
755 | << " use " << MIN_ITERATIVE_REFINEMENT_REPS << " <= REPS <= " << MAX_ITERATIVE_REFINEMENT_REPS |
---|
756 | << " (default: " << numIterativeRefinementReps << ") passes of iterative-refinement" << endl |
---|
757 | << endl |
---|
758 | << " -pre, --pre-training REPS" << endl |
---|
759 | << " use " << MIN_PRETRAINING_REPS << " <= REPS <= " << MAX_PRETRAINING_REPS |
---|
760 | << " (default: " << numPreTrainingReps << ") rounds of pretraining" << endl |
---|
761 | << endl |
---|
762 | << " -pairs" << endl |
---|
763 | << " generate all-pairs pairwise alignments" << endl |
---|
764 | << endl |
---|
765 | << " -viterbi" << endl |
---|
766 | << " use Viterbi algorithm to generate all pairs (automatically enables -pairs)" << endl |
---|
767 | << endl |
---|
768 | << " -v, --verbose" << endl |
---|
769 | << " report progress while aligning (default: " << (enableVerbose ? "on" : "off") << ")" << endl |
---|
770 | << endl |
---|
771 | << " -annot FILENAME" << endl |
---|
772 | << " write annotation for multiple alignment to FILENAME" << endl |
---|
773 | << endl |
---|
774 | << " -t, --train FILENAME" << endl |
---|
775 | << " compute EM transition probabilities, store in FILENAME (default: " |
---|
776 | << parametersOutputFilename << ")" << endl |
---|
777 | << endl |
---|
778 | << " -e, --emissions" << endl |
---|
779 | << " also reestimate emission probabilities (default: " |
---|
780 | << (enableTrainEmissions ? "on" : "off") << ")" << endl |
---|
781 | << endl |
---|
782 | << " -p, --paramfile FILENAME" << endl |
---|
783 | << " read parameters from FILENAME (default: " |
---|
784 | << parametersInputFilename << ")" << endl |
---|
785 | << endl |
---|
786 | << " -a, --alignment-order" << endl |
---|
787 | << " print sequences in alignment order rather than input order (default: " |
---|
788 | << (enableAlignOrder ? "on" : "off") << ")" << endl |
---|
789 | << endl |
---|
790 | << " -s THRESHOLD" << endl |
---|
791 | << " the threshold of SCS alignment" << endl |
---|
792 | << endl |
---|
793 | << " In default, for less than " << threshhold << ", the SCS aligment is applied. " << endl |
---|
794 | << " -l SCSLENGTH" << endl |
---|
795 | << " the length of stem candidates " << SCSLENGTH << endl |
---|
796 | << endl |
---|
797 | << " -b BASEPROBTRHESHHOLD" << endl |
---|
798 | << " the threshold of base pairing probability " << BASEPROBTHRESHOLD << endl |
---|
799 | << endl |
---|
800 | << " -m, --mccaskillmea" << endl |
---|
801 | << " McCaskill MEA MODE: input the clustalw format file and output the secondary structure predicted by McCaskill MEA" << endl |
---|
802 | << endl |
---|
803 | << " -g BASEPAIRSCORECONST" << endl |
---|
804 | << " the control parameter of the prediction of base pairs, default:" << BasePairConst << endl |
---|
805 | << endl |
---|
806 | << " -w BANDWIDTH" << endl |
---|
807 | << " the control parameter of the distance of stem candidates, default:" << BANDWIDTH << endl |
---|
808 | << endl; |
---|
809 | |
---|
810 | |
---|
811 | // << " -go, --gap-open VALUE" << endl |
---|
812 | // << " gap opening penalty of VALUE <= 0 (default: " << gapOpenPenalty << ")" << endl |
---|
813 | // << endl |
---|
814 | // << " -ge, --gap-extension VALUE" << endl |
---|
815 | // << " gap extension penalty of VALUE <= 0 (default: " << gapContinuePenalty << ")" << endl |
---|
816 | // << endl |
---|
817 | // << " -co, --cutoff CUTOFF" << endl |
---|
818 | // << " subtract 0 <= CUTOFF <= 1 (default: " << cutoff << ") from all posterior values before final alignment" << endl |
---|
819 | // << endl |
---|
820 | |
---|
821 | exit (1); |
---|
822 | } |
---|
823 | |
---|
824 | SafeVector<string> sequenceNames; |
---|
825 | int tempInt; |
---|
826 | float tempFloat; |
---|
827 | |
---|
828 | for (int i = 1; i < argc; i++){ |
---|
829 | if (argv[i][0] == '-'){ |
---|
830 | |
---|
831 | // training |
---|
832 | if (!strcmp (argv[i], "-t") || !strcmp (argv[i], "--train")){ |
---|
833 | enableTraining = true; |
---|
834 | if (i < argc - 1) |
---|
835 | parametersOutputFilename = string (argv[++i]); |
---|
836 | else { |
---|
837 | cerr << "ERROR: Filename expected for option " << argv[i] << endl; |
---|
838 | exit (1); |
---|
839 | } |
---|
840 | } |
---|
841 | |
---|
842 | // emission training |
---|
843 | else if (!strcmp (argv[i], "-e") || !strcmp (argv[i], "--emissions")){ |
---|
844 | enableTrainEmissions = true; |
---|
845 | } |
---|
846 | |
---|
847 | // parameter file |
---|
848 | else if (!strcmp (argv[i], "-p") || !strcmp (argv[i], "--paramfile")){ |
---|
849 | if (i < argc - 1) |
---|
850 | parametersInputFilename = string (argv[++i]); |
---|
851 | else { |
---|
852 | cerr << "ERROR: Filename expected for option " << argv[i] << endl; |
---|
853 | exit (1); |
---|
854 | } |
---|
855 | } |
---|
856 | else if (! strcmp (argv[i], "-s")) { |
---|
857 | if (i < argc - 1){ |
---|
858 | if (!GetFloat (argv[++i], &tempFloat)){ |
---|
859 | cerr << "ERROR: Invalid floating-point value following option " << argv[i-1] << ": " << argv[i] << endl; |
---|
860 | exit (1); |
---|
861 | } |
---|
862 | else { |
---|
863 | if (tempFloat < 0){ |
---|
864 | cerr << "ERROR: For option " << argv[i-1] << ", floating-point value must not be nagative." << endl; |
---|
865 | exit (1); |
---|
866 | } |
---|
867 | else |
---|
868 | threshhold = tempFloat; |
---|
869 | } |
---|
870 | } |
---|
871 | else { |
---|
872 | cerr << "ERROR: Floating-point value expected for option " << argv[i] << endl; |
---|
873 | exit (1); |
---|
874 | } |
---|
875 | } |
---|
876 | |
---|
877 | else if (! strcmp (argv[i], "-l")) { |
---|
878 | if (i < argc - 1) { |
---|
879 | if (!GetInteger (argv[++i], &tempInt)){ |
---|
880 | cerr << "ERROR: Invalid integer following option " << argv[i-1] << ": " << argv[i] << endl; |
---|
881 | exit (1); |
---|
882 | } |
---|
883 | else { |
---|
884 | if (tempInt <= 0 || 6 <= tempInt) { |
---|
885 | cerr << "ERROR: For option " << argv[i-1] << ", integer must be between " |
---|
886 | << "1 and 6" << "." << endl; |
---|
887 | exit (1); |
---|
888 | } |
---|
889 | else |
---|
890 | scsLength = tempInt; |
---|
891 | } |
---|
892 | } |
---|
893 | } |
---|
894 | else if (! strcmp (argv[i], "-b")) { |
---|
895 | if (i < argc - 1) { |
---|
896 | if (!GetFloat (argv[++i], &tempFloat)){ |
---|
897 | cerr << "ERROR: Invalid floating-point value following option " << argv[i-1] << ": " << argv[i] << endl; |
---|
898 | exit (1); |
---|
899 | } |
---|
900 | else { |
---|
901 | if (tempFloat < 0 && 1 < tempFloat) { |
---|
902 | cerr << "ERROR: For option " << argv[i-1] << ", floating-point value must not be nagative." << endl; |
---|
903 | exit (1); |
---|
904 | } |
---|
905 | else |
---|
906 | BaseProbThreshold = tempFloat; |
---|
907 | } |
---|
908 | } |
---|
909 | } |
---|
910 | else if (! strcmp (argv[i], "-g")) { |
---|
911 | if (i < argc - 1) { |
---|
912 | if (!GetFloat (argv[++i], &tempFloat)){ |
---|
913 | cerr << "ERROR: Invalid floating-point value following option " << argv[i-1] << ": " << argv[i] << endl; |
---|
914 | exit (1); |
---|
915 | } |
---|
916 | else { |
---|
917 | if (tempFloat < 0 && 1 < tempFloat) { |
---|
918 | cerr << "ERROR: For option " << argv[i-1] << ", floating-point value must not be nagative." << endl; |
---|
919 | exit (1); |
---|
920 | } |
---|
921 | else |
---|
922 | BasePairConst = tempFloat; |
---|
923 | } |
---|
924 | } |
---|
925 | } |
---|
926 | |
---|
927 | // number of consistency transformations |
---|
928 | else if (!strcmp (argv[i], "-c") || !strcmp (argv[i], "--consistency")){ |
---|
929 | if (i < argc - 1){ |
---|
930 | if (!GetInteger (argv[++i], &tempInt)){ |
---|
931 | cerr << "ERROR: Invalid integer following option " << argv[i-1] << ": " << argv[i] << endl; |
---|
932 | exit (1); |
---|
933 | } |
---|
934 | else { |
---|
935 | if (tempInt < MIN_CONSISTENCY_REPS || tempInt > MAX_CONSISTENCY_REPS){ |
---|
936 | cerr << "ERROR: For option " << argv[i-1] << ", integer must be between " |
---|
937 | << MIN_CONSISTENCY_REPS << " and " << MAX_CONSISTENCY_REPS << "." << endl; |
---|
938 | exit (1); |
---|
939 | } |
---|
940 | else |
---|
941 | numConsistencyReps = tempInt; |
---|
942 | } |
---|
943 | } |
---|
944 | else { |
---|
945 | cerr << "ERROR: Integer expected for option " << argv[i] << endl; |
---|
946 | exit (1); |
---|
947 | } |
---|
948 | } |
---|
949 | |
---|
950 | // number of randomized partitioning iterative refinement passes |
---|
951 | else if (!strcmp (argv[i], "-ir") || !strcmp (argv[i], "--iterative-refinement")){ |
---|
952 | if (i < argc - 1){ |
---|
953 | if (!GetInteger (argv[++i], &tempInt)){ |
---|
954 | cerr << "ERROR: Invalid integer following option " << argv[i-1] << ": " << argv[i] << endl; |
---|
955 | exit (1); |
---|
956 | } |
---|
957 | else { |
---|
958 | if (tempInt < MIN_ITERATIVE_REFINEMENT_REPS || tempInt > MAX_ITERATIVE_REFINEMENT_REPS){ |
---|
959 | cerr << "ERROR: For option " << argv[i-1] << ", integer must be between " |
---|
960 | << MIN_ITERATIVE_REFINEMENT_REPS << " and " << MAX_ITERATIVE_REFINEMENT_REPS << "." << endl; |
---|
961 | exit (1); |
---|
962 | } |
---|
963 | else |
---|
964 | numIterativeRefinementReps = tempInt; |
---|
965 | } |
---|
966 | } |
---|
967 | else { |
---|
968 | cerr << "ERROR: Integer expected for option " << argv[i] << endl; |
---|
969 | exit (1); |
---|
970 | } |
---|
971 | } |
---|
972 | // number of EM pre-training rounds |
---|
973 | else if (!strcmp (argv[i], "-pre") || !strcmp (argv[i], "--pre-training")){ |
---|
974 | if (i < argc - 1){ |
---|
975 | if (!GetInteger (argv[++i], &tempInt)){ |
---|
976 | cerr << "ERROR: Invalid integer following option " << argv[i-1] << ": " << argv[i] << endl; |
---|
977 | exit (1); |
---|
978 | } |
---|
979 | else { |
---|
980 | if (tempInt < MIN_PRETRAINING_REPS || tempInt > MAX_PRETRAINING_REPS){ |
---|
981 | cerr << "ERROR: For option " << argv[i-1] << ", integer must be between " |
---|
982 | << MIN_PRETRAINING_REPS << " and " << MAX_PRETRAINING_REPS << "." << endl; |
---|
983 | exit (1); |
---|
984 | } |
---|
985 | else |
---|
986 | numPreTrainingReps = tempInt; |
---|
987 | } |
---|
988 | } |
---|
989 | else { |
---|
990 | cerr << "ERROR: Integer expected for option " << argv[i] << endl; |
---|
991 | exit (1); |
---|
992 | } |
---|
993 | } |
---|
994 | |
---|
995 | // the distance of stem candidate |
---|
996 | else if (!strcmp (argv[i], "-w")){ |
---|
997 | if (i < argc - 1){ |
---|
998 | if (!GetInteger (argv[++i], &tempInt)){ |
---|
999 | cerr << "ERROR: Invalid integer following option " << argv[i-1] << ": " << argv[i] << endl; |
---|
1000 | exit (1); |
---|
1001 | } |
---|
1002 | else { |
---|
1003 | BandWidth = tempInt; |
---|
1004 | } |
---|
1005 | } |
---|
1006 | else { |
---|
1007 | cerr << "ERROR: Integer expected for option " << argv[i] << endl; |
---|
1008 | exit (1); |
---|
1009 | } |
---|
1010 | } |
---|
1011 | |
---|
1012 | // gap open penalty |
---|
1013 | else if (!strcmp (argv[i], "-go") || !strcmp (argv[i], "--gap-open")){ |
---|
1014 | if (i < argc - 1){ |
---|
1015 | if (!GetFloat (argv[++i], &tempFloat)){ |
---|
1016 | cerr << "ERROR: Invalid floating-point value following option " << argv[i-1] << ": " << argv[i] << endl; |
---|
1017 | exit (1); |
---|
1018 | } |
---|
1019 | else { |
---|
1020 | if (tempFloat > 0){ |
---|
1021 | cerr << "ERROR: For option " << argv[i-1] << ", floating-point value must not be positive." << endl; |
---|
1022 | exit (1); |
---|
1023 | } |
---|
1024 | else |
---|
1025 | gapOpenPenalty = tempFloat; |
---|
1026 | } |
---|
1027 | } |
---|
1028 | else { |
---|
1029 | cerr << "ERROR: Floating-point value expected for option " << argv[i] << endl; |
---|
1030 | exit (1); |
---|
1031 | } |
---|
1032 | } |
---|
1033 | |
---|
1034 | // gap extension penalty |
---|
1035 | else if (!strcmp (argv[i], "-ge") || !strcmp (argv[i], "--gap-extension")){ |
---|
1036 | if (i < argc - 1){ |
---|
1037 | if (!GetFloat (argv[++i], &tempFloat)){ |
---|
1038 | cerr << "ERROR: Invalid floating-point value following option " << argv[i-1] << ": " << argv[i] << endl; |
---|
1039 | exit (1); |
---|
1040 | } |
---|
1041 | else { |
---|
1042 | if (tempFloat > 0){ |
---|
1043 | cerr << "ERROR: For option " << argv[i-1] << ", floating-point value must not be positive." << endl; |
---|
1044 | exit (1); |
---|
1045 | } |
---|
1046 | else |
---|
1047 | gapContinuePenalty = tempFloat; |
---|
1048 | } |
---|
1049 | } |
---|
1050 | else { |
---|
1051 | cerr << "ERROR: Floating-point value expected for option " << argv[i] << endl; |
---|
1052 | exit (1); |
---|
1053 | } |
---|
1054 | } |
---|
1055 | |
---|
1056 | // all-pairs pairwise alignments |
---|
1057 | else if (!strcmp (argv[i], "-pairs")){ |
---|
1058 | enableAllPairs = true; |
---|
1059 | } |
---|
1060 | |
---|
1061 | // all-pairs pairwise Viterbi alignments |
---|
1062 | else if (!strcmp (argv[i], "-viterbi")){ |
---|
1063 | enableAllPairs = true; |
---|
1064 | enableViterbi = true; |
---|
1065 | } |
---|
1066 | |
---|
1067 | // read base-pairing probability from the '_bpp' file, by katoh |
---|
1068 | else if (!strcmp (argv[i], "-readbpp")){ |
---|
1069 | bppmode = 'r'; |
---|
1070 | } |
---|
1071 | |
---|
1072 | // write base-pairing probability to stdout, by katoh |
---|
1073 | else if (!strcmp (argv[i], "-writebpp")){ |
---|
1074 | bppmode = 'w'; |
---|
1075 | } |
---|
1076 | |
---|
1077 | // annotation files |
---|
1078 | else if (!strcmp (argv[i], "-annot")){ |
---|
1079 | enableAnnotation = true; |
---|
1080 | if (i < argc - 1) |
---|
1081 | annotationFilename = argv[++i]; |
---|
1082 | else { |
---|
1083 | cerr << "ERROR: FILENAME expected for option " << argv[i] << endl; |
---|
1084 | exit (1); |
---|
1085 | } |
---|
1086 | } |
---|
1087 | |
---|
1088 | // clustalw output format |
---|
1089 | else if (!strcmp (argv[i], "-clustalw")){ |
---|
1090 | enableClustalWOutput = true; |
---|
1091 | } |
---|
1092 | // mxscarna output format |
---|
1093 | else if (!strcmp (argv[i], "-mxscarna")) { |
---|
1094 | enableMXSCARNAOutput = true; |
---|
1095 | } |
---|
1096 | // stockholm output format |
---|
1097 | else if (!strcmp (argv[i], "-stockholm")) { |
---|
1098 | enableStockholmOutput = true; |
---|
1099 | } |
---|
1100 | // web output format |
---|
1101 | else if (!strcmp (argv[i], "-weboutput")) { |
---|
1102 | if (i < argc - 1) { |
---|
1103 | weboutputFileName = string(argv[++i]); |
---|
1104 | } |
---|
1105 | else { |
---|
1106 | cerr << "ERROR: Invalid following option " << argv[i-1] << ": " << argv[i] << endl; |
---|
1107 | exit (1); |
---|
1108 | } |
---|
1109 | |
---|
1110 | enableWebOutput = true; |
---|
1111 | } |
---|
1112 | |
---|
1113 | // cutoff |
---|
1114 | else if (!strcmp (argv[i], "-co") || !strcmp (argv[i], "--cutoff")){ |
---|
1115 | if (i < argc - 1){ |
---|
1116 | if (!GetFloat (argv[++i], &tempFloat)){ |
---|
1117 | cerr << "ERROR: Invalid floating-point value following option " << argv[i-1] << ": " << argv[i] << endl; |
---|
1118 | exit (1); |
---|
1119 | } |
---|
1120 | else { |
---|
1121 | if (tempFloat < 0 || tempFloat > 1){ |
---|
1122 | cerr << "ERROR: For option " << argv[i-1] << ", floating-point value must be between 0 and 1." << endl; |
---|
1123 | exit (1); |
---|
1124 | } |
---|
1125 | else |
---|
1126 | cutoff = tempFloat; |
---|
1127 | } |
---|
1128 | } |
---|
1129 | else { |
---|
1130 | cerr << "ERROR: Floating-point value expected for option " << argv[i] << endl; |
---|
1131 | exit (1); |
---|
1132 | } |
---|
1133 | } |
---|
1134 | |
---|
1135 | // verbose reporting |
---|
1136 | else if (!strcmp (argv[i], "-v") || !strcmp (argv[i], "--verbose")){ |
---|
1137 | enableVerbose = true; |
---|
1138 | } |
---|
1139 | |
---|
1140 | // alignment order |
---|
1141 | else if (!strcmp (argv[i], "-a") || !strcmp (argv[i], "--alignment-order")){ |
---|
1142 | enableAlignOrder = true; |
---|
1143 | } |
---|
1144 | // McCaskill MEA MODE |
---|
1145 | else if (!strcmp (argv[i], "-m") || !strcmp (argv[i], "--mccaskillmea")){ |
---|
1146 | enableMcCaskillMEAMode = true; |
---|
1147 | } |
---|
1148 | // bad arguments |
---|
1149 | else { |
---|
1150 | cerr << "ERROR: Unrecognized option: " << argv[i] << endl; |
---|
1151 | exit (1); |
---|
1152 | } |
---|
1153 | } |
---|
1154 | else { |
---|
1155 | sequenceNames.push_back (string (argv[i])); |
---|
1156 | } |
---|
1157 | } |
---|
1158 | |
---|
1159 | if (enableTrainEmissions && !enableTraining){ |
---|
1160 | cerr << "ERROR: Training emissions (-e) requires training (-t)" << endl; |
---|
1161 | exit (1); |
---|
1162 | } |
---|
1163 | |
---|
1164 | return sequenceNames; |
---|
1165 | } |
---|
1166 | |
---|
1167 | ///////////////////////////////////////////////////////////////// |
---|
1168 | // ReadParameters() |
---|
1169 | // |
---|
1170 | // Read initial distribution, transition, and emission |
---|
1171 | // parameters from a file. |
---|
1172 | ///////////////////////////////////////////////////////////////// |
---|
1173 | |
---|
1174 | void ReadParameters (){ |
---|
1175 | |
---|
1176 | ifstream data; |
---|
1177 | |
---|
1178 | emitPairs = VVF (256, VF (256, 1e-10)); |
---|
1179 | emitSingle = VF (256, 1e-5); |
---|
1180 | |
---|
1181 | // read initial state distribution and transition parameters |
---|
1182 | // pass |
---|
1183 | if (parametersInputFilename == string ("")){ |
---|
1184 | if (NumInsertStates == 1){ |
---|
1185 | for (int i = 0; i < NumMatrixTypes; i++) initDistrib[i] = initDistrib1Default[i]; |
---|
1186 | for (int i = 0; i < 2*NumInsertStates; i++) gapOpen[i] = gapOpen1Default[i]; |
---|
1187 | for (int i = 0; i < 2*NumInsertStates; i++) gapExtend[i] = gapExtend1Default[i]; |
---|
1188 | } |
---|
1189 | else if (NumInsertStates == 2){ |
---|
1190 | for (int i = 0; i < NumMatrixTypes; i++) initDistrib[i] = initDistrib2Default[i]; |
---|
1191 | for (int i = 0; i < 2*NumInsertStates; i++) gapOpen[i] = gapOpen2Default[i]; |
---|
1192 | for (int i = 0; i < 2*NumInsertStates; i++) gapExtend[i] = gapExtend2Default[i]; |
---|
1193 | } |
---|
1194 | else { |
---|
1195 | cerr << "ERROR: No default initial distribution/parameter settings exist" << endl |
---|
1196 | << " for " << NumInsertStates << " pairs of insert states. Use --paramfile." << endl; |
---|
1197 | exit (1); |
---|
1198 | } |
---|
1199 | |
---|
1200 | alphabet = alphabetDefault; |
---|
1201 | |
---|
1202 | for (int i = 0; i < (int) alphabet.length(); i++){ |
---|
1203 | emitSingle[(unsigned char) tolower(alphabet[i])] = emitSingleDefault[i]; |
---|
1204 | emitSingle[(unsigned char) toupper(alphabet[i])] = emitSingleDefault[i]; |
---|
1205 | for (int j = 0; j <= i; j++){ |
---|
1206 | emitPairs[(unsigned char) tolower(alphabet[i])][(unsigned char) tolower(alphabet[j])] = emitPairsDefault[i][j]; |
---|
1207 | emitPairs[(unsigned char) tolower(alphabet[i])][(unsigned char) toupper(alphabet[j])] = emitPairsDefault[i][j]; |
---|
1208 | emitPairs[(unsigned char) toupper(alphabet[i])][(unsigned char) tolower(alphabet[j])] = emitPairsDefault[i][j]; |
---|
1209 | emitPairs[(unsigned char) toupper(alphabet[i])][(unsigned char) toupper(alphabet[j])] = emitPairsDefault[i][j]; |
---|
1210 | emitPairs[(unsigned char) tolower(alphabet[j])][(unsigned char) tolower(alphabet[i])] = emitPairsDefault[i][j]; |
---|
1211 | emitPairs[(unsigned char) tolower(alphabet[j])][(unsigned char) toupper(alphabet[i])] = emitPairsDefault[i][j]; |
---|
1212 | emitPairs[(unsigned char) toupper(alphabet[j])][(unsigned char) tolower(alphabet[i])] = emitPairsDefault[i][j]; |
---|
1213 | emitPairs[(unsigned char) toupper(alphabet[j])][(unsigned char) toupper(alphabet[i])] = emitPairsDefault[i][j]; |
---|
1214 | } |
---|
1215 | } |
---|
1216 | } |
---|
1217 | else { |
---|
1218 | data.open (parametersInputFilename.c_str()); |
---|
1219 | if (data.fail()){ |
---|
1220 | cerr << "ERROR: Unable to read parameter file: " << parametersInputFilename << endl; |
---|
1221 | exit (1); |
---|
1222 | } |
---|
1223 | |
---|
1224 | string line[3]; |
---|
1225 | for (int i = 0; i < 3; i++){ |
---|
1226 | if (!getline (data, line[i])){ |
---|
1227 | cerr << "ERROR: Unable to read transition parameters from parameter file: " << parametersInputFilename << endl; |
---|
1228 | exit (1); |
---|
1229 | } |
---|
1230 | } |
---|
1231 | istringstream data2; |
---|
1232 | data2.clear(); data2.str (line[0]); for (int i = 0; i < NumMatrixTypes; i++) data2 >> initDistrib[i]; |
---|
1233 | data2.clear(); data2.str (line[1]); for (int i = 0; i < 2*NumInsertStates; i++) data2 >> gapOpen[i]; |
---|
1234 | data2.clear(); data2.str (line[2]); for (int i = 0; i < 2*NumInsertStates; i++) data2 >> gapExtend[i]; |
---|
1235 | |
---|
1236 | if (!getline (data, line[0])){ |
---|
1237 | cerr << "ERROR: Unable to read alphabet from scoring matrix file: " << parametersInputFilename << endl; |
---|
1238 | exit (1); |
---|
1239 | } |
---|
1240 | |
---|
1241 | // read alphabet as concatenation of all characters on alphabet line |
---|
1242 | alphabet = ""; |
---|
1243 | string token; |
---|
1244 | data2.clear(); data2.str (line[0]); while (data2 >> token) alphabet += token; |
---|
1245 | |
---|
1246 | for (int i = 0; i < (int) alphabet.size(); i++){ |
---|
1247 | for (int j = 0; j <= i; j++){ |
---|
1248 | float val; |
---|
1249 | data >> val; |
---|
1250 | emitPairs[(unsigned char) tolower(alphabet[i])][(unsigned char) tolower(alphabet[j])] = val; |
---|
1251 | emitPairs[(unsigned char) tolower(alphabet[i])][(unsigned char) toupper(alphabet[j])] = val; |
---|
1252 | emitPairs[(unsigned char) toupper(alphabet[i])][(unsigned char) tolower(alphabet[j])] = val; |
---|
1253 | emitPairs[(unsigned char) toupper(alphabet[i])][(unsigned char) toupper(alphabet[j])] = val; |
---|
1254 | emitPairs[(unsigned char) tolower(alphabet[j])][(unsigned char) tolower(alphabet[i])] = val; |
---|
1255 | emitPairs[(unsigned char) tolower(alphabet[j])][(unsigned char) toupper(alphabet[i])] = val; |
---|
1256 | emitPairs[(unsigned char) toupper(alphabet[j])][(unsigned char) tolower(alphabet[i])] = val; |
---|
1257 | emitPairs[(unsigned char) toupper(alphabet[j])][(unsigned char) toupper(alphabet[i])] = val; |
---|
1258 | } |
---|
1259 | } |
---|
1260 | |
---|
1261 | for (int i = 0; i < (int) alphabet.size(); i++){ |
---|
1262 | float val; |
---|
1263 | data >> val; |
---|
1264 | emitSingle[(unsigned char) tolower(alphabet[i])] = val; |
---|
1265 | emitSingle[(unsigned char) toupper(alphabet[i])] = val; |
---|
1266 | } |
---|
1267 | data.close(); |
---|
1268 | } |
---|
1269 | } |
---|
1270 | |
---|
1271 | ///////////////////////////////////////////////////////////////// |
---|
1272 | // ProcessTree() |
---|
1273 | // |
---|
1274 | // Process the tree recursively. Returns the aligned sequences |
---|
1275 | // corresponding to a node or leaf of the tree. |
---|
1276 | ///////////////////////////////////////////////////////////////// |
---|
1277 | float ide; |
---|
1278 | MultiSequence *ProcessTree (const TreeNode *tree, MultiSequence *sequences, |
---|
1279 | const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices, |
---|
1280 | const ProbabilisticModel &model, SafeVector<BPPMatrix*> &BPPMatrices) { |
---|
1281 | MultiSequence *result; |
---|
1282 | |
---|
1283 | // check if this is a node of the alignment tree |
---|
1284 | if (tree->GetSequenceLabel() == -1){ |
---|
1285 | MultiSequence *alignLeft = ProcessTree (tree->GetLeftChild(), sequences, sparseMatrices, model, BPPMatrices); |
---|
1286 | MultiSequence *alignRight = ProcessTree (tree->GetRightChild(), sequences, sparseMatrices, model, BPPMatrices); |
---|
1287 | |
---|
1288 | assert (alignLeft); |
---|
1289 | assert (alignRight); |
---|
1290 | |
---|
1291 | result = AlignAlignments (alignLeft, alignRight, sparseMatrices, model, BPPMatrices, tree->GetIdentity()); |
---|
1292 | assert (result); |
---|
1293 | |
---|
1294 | delete alignLeft; |
---|
1295 | delete alignRight; |
---|
1296 | } |
---|
1297 | |
---|
1298 | // otherwise, this is a leaf of the alignment tree |
---|
1299 | else { |
---|
1300 | result = new MultiSequence(); assert (result); |
---|
1301 | result->AddSequence (sequences->GetSequence(tree->GetSequenceLabel())->Clone()); |
---|
1302 | } |
---|
1303 | |
---|
1304 | return result; |
---|
1305 | } |
---|
1306 | |
---|
1307 | ///////////////////////////////////////////////////////////////// |
---|
1308 | // ComputeFinalAlignment() |
---|
1309 | // |
---|
1310 | // Compute the final alignment by calling ProcessTree(), then |
---|
1311 | // performing iterative refinement as needed. |
---|
1312 | ///////////////////////////////////////////////////////////////// |
---|
1313 | |
---|
1314 | MultiSequence *ComputeFinalAlignment (const TreeNode *tree, MultiSequence *sequences, |
---|
1315 | const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices, |
---|
1316 | const ProbabilisticModel &model, |
---|
1317 | SafeVector<BPPMatrix*> &BPPMatrices) { |
---|
1318 | |
---|
1319 | MultiSequence *alignment = ProcessTree (tree, sequences, sparseMatrices, model, BPPMatrices); |
---|
1320 | |
---|
1321 | if (enableAlignOrder){ |
---|
1322 | alignment->SaveOrdering(); |
---|
1323 | enableAlignOrder = false; |
---|
1324 | } |
---|
1325 | |
---|
1326 | // tree-based refinement |
---|
1327 | // if you use the function, you can degrade the quality of the software. |
---|
1328 | // TreeBasedBiPartitioning (sparseMatrices, model, alignment, tree, BPPMatrices); |
---|
1329 | |
---|
1330 | // iterative refinement |
---|
1331 | /* |
---|
1332 | for (int i = 0; i < numIterativeRefinementReps; i++) |
---|
1333 | DoIterativeRefinement (sparseMatrices, model, alignment); |
---|
1334 | |
---|
1335 | cerr << endl; |
---|
1336 | */ |
---|
1337 | // return final alignment |
---|
1338 | return alignment; |
---|
1339 | } |
---|
1340 | |
---|
1341 | ///////////////////////////////////////////////////////////////// |
---|
1342 | // AlignAlignments() |
---|
1343 | // |
---|
1344 | // Returns the alignment of two MultiSequence objects. |
---|
1345 | ///////////////////////////////////////////////////////////////// |
---|
1346 | |
---|
1347 | MultiSequence *AlignAlignments (MultiSequence *align1, MultiSequence *align2, |
---|
1348 | const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices, |
---|
1349 | const ProbabilisticModel &model, |
---|
1350 | SafeVector<BPPMatrix*> &BPPMatrices, float identity){ |
---|
1351 | |
---|
1352 | // print some info about the alignment |
---|
1353 | if (enableVerbose){ |
---|
1354 | for (int i = 0; i < align1->GetNumSequences(); i++) |
---|
1355 | cerr << ((i==0) ? "[" : ",") << align1->GetSequence(i)->GetLabel(); |
---|
1356 | cerr << "] vs. "; |
---|
1357 | for (int i = 0; i < align2->GetNumSequences(); i++) |
---|
1358 | cerr << ((i==0) ? "[" : ",") << align2->GetSequence(i)->GetLabel(); |
---|
1359 | cerr << "]: "; |
---|
1360 | } |
---|
1361 | |
---|
1362 | VF *posterior = model.BuildPosterior (align1, align2, sparseMatrices, cutoff); |
---|
1363 | |
---|
1364 | pair<SafeVector<char> *, float> alignment; |
---|
1365 | // choose the alignment routine depending on the "cosmetic" gap penalties used |
---|
1366 | if (gapOpenPenalty == 0 && gapContinuePenalty == 0) { |
---|
1367 | |
---|
1368 | if(identity <= threshhold) { |
---|
1369 | std::vector<StemCandidate> *pscs1, *pscs2; |
---|
1370 | pscs1 = seq2scs(align1, BPPMatrices, BandWidth); |
---|
1371 | pscs2 = seq2scs(align2, BPPMatrices, BandWidth); |
---|
1372 | std::vector<int> *matchPSCS1 = new std::vector<int>; |
---|
1373 | std::vector<int> *matchPSCS2 = new std::vector<int>; |
---|
1374 | |
---|
1375 | Globaldp globaldp(pscs1, pscs2, align1, align2, matchPSCS1, matchPSCS2, posterior, BPPMatrices); |
---|
1376 | //float scsScore = globaldp.Run(); |
---|
1377 | |
---|
1378 | globaldp.Run(); |
---|
1379 | |
---|
1380 | removeConflicts(pscs1, pscs2, matchPSCS1, matchPSCS2); |
---|
1381 | |
---|
1382 | alignment = model.ComputeAlignment2 (align1->GetSequence(0)->GetLength(), align2->GetSequence(0)->GetLength(), *posterior, pscs1, pscs2, matchPSCS1, matchPSCS2); |
---|
1383 | delete matchPSCS1; |
---|
1384 | delete matchPSCS2; |
---|
1385 | } else { |
---|
1386 | alignment = model.ComputeAlignment (align1->GetSequence(0)->GetLength(), align2->GetSequence(0)->GetLength(), *posterior); |
---|
1387 | } |
---|
1388 | } |
---|
1389 | else { |
---|
1390 | alignment = model.ComputeAlignmentWithGapPenalties (align1, align2, |
---|
1391 | *posterior, align1->GetNumSequences(), align2->GetNumSequences(), |
---|
1392 | gapOpenPenalty, gapContinuePenalty); |
---|
1393 | } |
---|
1394 | |
---|
1395 | delete posterior; |
---|
1396 | |
---|
1397 | if (enableVerbose){ |
---|
1398 | |
---|
1399 | // compute total length of sequences |
---|
1400 | int totLength = 0; |
---|
1401 | for (int i = 0; i < align1->GetNumSequences(); i++) |
---|
1402 | for (int j = 0; j < align2->GetNumSequences(); j++) |
---|
1403 | totLength += min (align1->GetSequence(i)->GetLength(), align2->GetSequence(j)->GetLength()); |
---|
1404 | |
---|
1405 | // give an "accuracy" measure for the alignment |
---|
1406 | cerr << alignment.second / totLength << endl; |
---|
1407 | } |
---|
1408 | |
---|
1409 | // now build final alignment |
---|
1410 | MultiSequence *result = new MultiSequence(); |
---|
1411 | for (int i = 0; i < align1->GetNumSequences(); i++) |
---|
1412 | result->AddSequence (align1->GetSequence(i)->AddGaps(alignment.first, 'X')); |
---|
1413 | for (int i = 0; i < align2->GetNumSequences(); i++) |
---|
1414 | result->AddSequence (align2->GetSequence(i)->AddGaps(alignment.first, 'Y')); |
---|
1415 | if (!enableAlignOrder) |
---|
1416 | result->SortByLabel(); |
---|
1417 | |
---|
1418 | // free temporary alignment |
---|
1419 | delete alignment.first; |
---|
1420 | |
---|
1421 | return result; |
---|
1422 | } |
---|
1423 | |
---|
1424 | ///////////////////////////////////////////////////////////////// |
---|
1425 | // DoRelaxation() |
---|
1426 | // |
---|
1427 | // Performs one round of the consistency transformation. The |
---|
1428 | // formula used is: |
---|
1429 | // 1 |
---|
1430 | // P'(x[i]-y[j]) = --- sum sum P(x[i]-z[k]) P(z[k]-y[j]) |
---|
1431 | // |S| z in S k |
---|
1432 | // |
---|
1433 | // where S = {x, y, all other sequences...} |
---|
1434 | // |
---|
1435 | ///////////////////////////////////////////////////////////////// |
---|
1436 | |
---|
1437 | SafeVector<SafeVector<SparseMatrix *> > DoRelaxation (MultiSequence *sequences, |
---|
1438 | SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices){ |
---|
1439 | const int numSeqs = sequences->GetNumSequences(); |
---|
1440 | |
---|
1441 | SafeVector<SafeVector<SparseMatrix *> > newSparseMatrices (numSeqs, SafeVector<SparseMatrix *>(numSeqs, NULL)); |
---|
1442 | |
---|
1443 | // for every pair of sequences |
---|
1444 | for (int i = 0; i < numSeqs; i++){ |
---|
1445 | for (int j = i+1; j < numSeqs; j++){ |
---|
1446 | Sequence *seq1 = sequences->GetSequence (i); |
---|
1447 | Sequence *seq2 = sequences->GetSequence (j); |
---|
1448 | |
---|
1449 | if (enableVerbose) |
---|
1450 | cerr << "Relaxing (" << i+1 << ") " << seq1->GetHeader() << " vs. " |
---|
1451 | << "(" << j+1 << ") " << seq2->GetHeader() << ": "; |
---|
1452 | |
---|
1453 | // get the original posterior matrix |
---|
1454 | VF *posteriorPtr = sparseMatrices[i][j]->GetPosterior(); assert (posteriorPtr); |
---|
1455 | VF &posterior = *posteriorPtr; |
---|
1456 | |
---|
1457 | const int seq1Length = seq1->GetLength(); |
---|
1458 | const int seq2Length = seq2->GetLength(); |
---|
1459 | |
---|
1460 | // contribution from the summation where z = x and z = y |
---|
1461 | for (int k = 0; k < (seq1Length+1) * (seq2Length+1); k++) posterior[k] += posterior[k]; |
---|
1462 | |
---|
1463 | if (enableVerbose) |
---|
1464 | cerr << sparseMatrices[i][j]->GetNumCells() << " --> "; |
---|
1465 | |
---|
1466 | // contribution from all other sequences |
---|
1467 | for (int k = 0; k < numSeqs; k++) if (k != i && k != j){ |
---|
1468 | if (k < i) |
---|
1469 | Relax1 (sparseMatrices[k][i], sparseMatrices[k][j], posterior); |
---|
1470 | else if (k > i && k < j) |
---|
1471 | Relax (sparseMatrices[i][k], sparseMatrices[k][j], posterior); |
---|
1472 | else { |
---|
1473 | SparseMatrix *temp = sparseMatrices[j][k]->ComputeTranspose(); |
---|
1474 | Relax (sparseMatrices[i][k], temp, posterior); |
---|
1475 | delete temp; |
---|
1476 | } |
---|
1477 | } |
---|
1478 | |
---|
1479 | // now renormalization |
---|
1480 | for (int k = 0; k < (seq1Length+1) * (seq2Length+1); k++) posterior[k] /= numSeqs; |
---|
1481 | |
---|
1482 | // mask out positions not originally in the posterior matrix |
---|
1483 | SparseMatrix *matXY = sparseMatrices[i][j]; |
---|
1484 | for (int y = 0; y <= seq2Length; y++) posterior[y] = 0; |
---|
1485 | for (int x = 1; x <= seq1Length; x++){ |
---|
1486 | SafeVector<PIF>::iterator XYptr = matXY->GetRowPtr(x); |
---|
1487 | SafeVector<PIF>::iterator XYend = XYptr + matXY->GetRowSize(x); |
---|
1488 | VF::iterator base = posterior.begin() + x * (seq2Length + 1); |
---|
1489 | int curr = 0; |
---|
1490 | while (XYptr != XYend){ |
---|
1491 | |
---|
1492 | // zero out all cells until the first filled column |
---|
1493 | while (curr < XYptr->first){ |
---|
1494 | base[curr] = 0; |
---|
1495 | curr++; |
---|
1496 | } |
---|
1497 | |
---|
1498 | // now, skip over this column |
---|
1499 | curr++; |
---|
1500 | ++XYptr; |
---|
1501 | } |
---|
1502 | |
---|
1503 | // zero out cells after last column |
---|
1504 | while (curr <= seq2Length){ |
---|
1505 | base[curr] = 0; |
---|
1506 | curr++; |
---|
1507 | } |
---|
1508 | } |
---|
1509 | |
---|
1510 | // save the new posterior matrix |
---|
1511 | newSparseMatrices[i][j] = new SparseMatrix (seq1->GetLength(), seq2->GetLength(), posterior); |
---|
1512 | newSparseMatrices[j][i] = NULL; |
---|
1513 | |
---|
1514 | if (enableVerbose) |
---|
1515 | cerr << newSparseMatrices[i][j]->GetNumCells() << " -- "; |
---|
1516 | |
---|
1517 | delete posteriorPtr; |
---|
1518 | |
---|
1519 | if (enableVerbose) |
---|
1520 | cerr << "done." << endl; |
---|
1521 | } |
---|
1522 | } |
---|
1523 | |
---|
1524 | return newSparseMatrices; |
---|
1525 | } |
---|
1526 | |
---|
1527 | ///////////////////////////////////////////////////////////////// |
---|
1528 | // Relax() |
---|
1529 | // |
---|
1530 | // Computes the consistency transformation for a single sequence |
---|
1531 | // z, and adds the transformed matrix to "posterior". |
---|
1532 | ///////////////////////////////////////////////////////////////// |
---|
1533 | |
---|
1534 | void Relax (SparseMatrix *matXZ, SparseMatrix *matZY, VF &posterior){ |
---|
1535 | |
---|
1536 | assert (matXZ); |
---|
1537 | assert (matZY); |
---|
1538 | |
---|
1539 | int lengthX = matXZ->GetSeq1Length(); |
---|
1540 | int lengthY = matZY->GetSeq2Length(); |
---|
1541 | assert (matXZ->GetSeq2Length() == matZY->GetSeq1Length()); |
---|
1542 | |
---|
1543 | // for every x[i] |
---|
1544 | for (int i = 1; i <= lengthX; i++){ |
---|
1545 | SafeVector<PIF>::iterator XZptr = matXZ->GetRowPtr(i); |
---|
1546 | SafeVector<PIF>::iterator XZend = XZptr + matXZ->GetRowSize(i); |
---|
1547 | |
---|
1548 | VF::iterator base = posterior.begin() + i * (lengthY + 1); |
---|
1549 | |
---|
1550 | // iterate through all x[i]-z[k] |
---|
1551 | while (XZptr != XZend){ |
---|
1552 | SafeVector<PIF>::iterator ZYptr = matZY->GetRowPtr(XZptr->first); |
---|
1553 | SafeVector<PIF>::iterator ZYend = ZYptr + matZY->GetRowSize(XZptr->first); |
---|
1554 | const float XZval = XZptr->second; |
---|
1555 | |
---|
1556 | // iterate through all z[k]-y[j] |
---|
1557 | while (ZYptr != ZYend){ |
---|
1558 | base[ZYptr->first] += XZval * ZYptr->second; |
---|
1559 | ZYptr++; |
---|
1560 | } |
---|
1561 | XZptr++; |
---|
1562 | } |
---|
1563 | } |
---|
1564 | } |
---|
1565 | |
---|
1566 | ///////////////////////////////////////////////////////////////// |
---|
1567 | // Relax1() |
---|
1568 | // |
---|
1569 | // Computes the consistency transformation for a single sequence |
---|
1570 | // z, and adds the transformed matrix to "posterior". |
---|
1571 | ///////////////////////////////////////////////////////////////// |
---|
1572 | |
---|
1573 | void Relax1 (SparseMatrix *matZX, SparseMatrix *matZY, VF &posterior){ |
---|
1574 | |
---|
1575 | assert (matZX); |
---|
1576 | assert (matZY); |
---|
1577 | |
---|
1578 | int lengthZ = matZX->GetSeq1Length(); |
---|
1579 | int lengthY = matZY->GetSeq2Length(); |
---|
1580 | |
---|
1581 | // for every z[k] |
---|
1582 | for (int k = 1; k <= lengthZ; k++){ |
---|
1583 | SafeVector<PIF>::iterator ZXptr = matZX->GetRowPtr(k); |
---|
1584 | SafeVector<PIF>::iterator ZXend = ZXptr + matZX->GetRowSize(k); |
---|
1585 | |
---|
1586 | // iterate through all z[k]-x[i] |
---|
1587 | while (ZXptr != ZXend){ |
---|
1588 | SafeVector<PIF>::iterator ZYptr = matZY->GetRowPtr(k); |
---|
1589 | SafeVector<PIF>::iterator ZYend = ZYptr + matZY->GetRowSize(k); |
---|
1590 | const float ZXval = ZXptr->second; |
---|
1591 | VF::iterator base = posterior.begin() + ZXptr->first * (lengthY + 1); |
---|
1592 | |
---|
1593 | // iterate through all z[k]-y[j] |
---|
1594 | while (ZYptr != ZYend){ |
---|
1595 | base[ZYptr->first] += ZXval * ZYptr->second; |
---|
1596 | ZYptr++; |
---|
1597 | } |
---|
1598 | ZXptr++; |
---|
1599 | } |
---|
1600 | } |
---|
1601 | } |
---|
1602 | |
---|
1603 | void DoBasePairProbabilityRelaxation (MultiSequence *sequences, |
---|
1604 | SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices, |
---|
1605 | SafeVector<BPPMatrix*> &BPPMatrices) { |
---|
1606 | const int numSeqs = sequences->GetNumSequences(); |
---|
1607 | |
---|
1608 | for (int i = 0; i < numSeqs; i++) { |
---|
1609 | Sequence *seq1 = sequences->GetSequence (i); |
---|
1610 | BPPMatrix *seq1BppMatrix = BPPMatrices[seq1->GetLabel()]; |
---|
1611 | Trimat<float> consBppMat(seq1->GetLength() + 1); |
---|
1612 | int seq1Length = seq1->GetLength(); |
---|
1613 | |
---|
1614 | for (int k = 1; k <= seq1Length; k++) { |
---|
1615 | for (int l = k; l <= seq1Length; l++) { |
---|
1616 | consBppMat.ref(k, l) = seq1BppMatrix->GetProb(k, l); |
---|
1617 | } |
---|
1618 | } |
---|
1619 | |
---|
1620 | for (int j = i + 1; j < numSeqs; j++) { |
---|
1621 | |
---|
1622 | // VF *posteriorPtr = sparseMatrices[i][j]->GetPosterior() |
---|
1623 | Sequence *seq2 = sequences->GetSequence (j); |
---|
1624 | BPPMatrix *seq2BppMatrix = BPPMatrices[seq2->GetLabel()]; |
---|
1625 | // int seq2Length = seq2->GetLength(); |
---|
1626 | SparseMatrix *matchProb = sparseMatrices[i][j]; |
---|
1627 | |
---|
1628 | // vector<PIF2> &probs1 = seq1BppMatrix->bppMat.data2; |
---|
1629 | for(int k = 1; k <= seq1Length; k++) { |
---|
1630 | for(int m = k, n = k; n <= k + 200 && m >= 1 && n <= seq1Length; m--, n++) { |
---|
1631 | |
---|
1632 | // for (int k = 0; k < (int)probs1.size(); k++) { |
---|
1633 | // float tmpProb1 = probs1[k].prob; |
---|
1634 | // int tmp1I = probs1[k].i; |
---|
1635 | // int tmp1J = probs1[k].j; |
---|
1636 | |
---|
1637 | float sumProb = 0; |
---|
1638 | vector<PIF2> &probs2 = seq2BppMatrix->bppMat.data2; |
---|
1639 | for(int l = 0; l < (int)probs2.size(); l++) { |
---|
1640 | float tmpProb2 = probs2[l].prob; |
---|
1641 | int tmp2I = probs2[l].i; |
---|
1642 | int tmp2J = probs2[l].j; |
---|
1643 | sumProb += matchProb->GetValue(m, tmp2I)*matchProb->GetValue(n, tmp2J)*tmpProb2; |
---|
1644 | } |
---|
1645 | |
---|
1646 | consBppMat.ref(m, n) += sumProb; |
---|
1647 | } |
---|
1648 | |
---|
1649 | for(int m = k, n = k + 1; n <= k + 200 && m >= 1 && n <= seq1Length; m--, n++) { |
---|
1650 | |
---|
1651 | // for (int k = 0; k < (int)probs1.size(); k++) { |
---|
1652 | // float tmpProb1 = probs1[k].prob; |
---|
1653 | // int tmp1I = probs1[k].i; |
---|
1654 | // int tmp1J = probs1[k].j; |
---|
1655 | |
---|
1656 | float sumProb = 0; |
---|
1657 | vector<PIF2> &probs2 = seq2BppMatrix->bppMat.data2; |
---|
1658 | for(int l = 0; l < (int)probs2.size(); l++) { |
---|
1659 | float tmpProb2 = probs2[l].prob; |
---|
1660 | int tmp2I = probs2[l].i; |
---|
1661 | int tmp2J = probs2[l].j; |
---|
1662 | sumProb += matchProb->GetValue(m, tmp2I)*matchProb->GetValue(n, tmp2J)*tmpProb2; |
---|
1663 | } |
---|
1664 | |
---|
1665 | consBppMat.ref(m, n) += sumProb; |
---|
1666 | } |
---|
1667 | } |
---|
1668 | } |
---|
1669 | |
---|
1670 | /* |
---|
1671 | for(int k = 1; k <= seq1Length; k++) { |
---|
1672 | for(int m = k, n = k; n <= k + 30 && m >= 1 && n <= seq1Length; m--, n++) { |
---|
1673 | float tmpProb = seq1BppMatrix->GetProb(m, n); |
---|
1674 | for(int l = 1; l <= seq2Length; l++) { |
---|
1675 | for(int s = l, t = l; t <= l + 30 && s >= 1 && t <= seq2Length; s--, t++) { |
---|
1676 | tmpProb += matchProb->GetValue(m,s)*matchProb->GetValue(n,t)*seq2BppMatrix->GetProb(s,t); |
---|
1677 | } |
---|
1678 | for(int s = l, t = l + 1; t <= l + 31 && s >= 1 && t <= seq2Length; s--, t++) { |
---|
1679 | tmpProb += matchProb->GetValue(m,s)*matchProb->GetValue(n,t)*seq2BppMatrix->GetProb(s,t); |
---|
1680 | } |
---|
1681 | } |
---|
1682 | consBppMat.ref(m, n) += tmpProb; |
---|
1683 | } |
---|
1684 | |
---|
1685 | for(int m = k, n = k + 1; n <= k + 31 && m >= 1 && n <= seq1Length; m--, n++) { |
---|
1686 | float tmpProb = seq1BppMatrix->GetProb(m, n); |
---|
1687 | for(int l = 1; l <= seq2Length; l++) { |
---|
1688 | for(int s = l, t = l; t <= l + 30 && s >= 1 && t <= seq2Length; s--, t++) { |
---|
1689 | tmpProb += matchProb->GetValue(m,s)*matchProb->GetValue(n,t)*seq2BppMatrix->GetProb(s,t); |
---|
1690 | } |
---|
1691 | for(int s = l, t = l + 1; t <= l + 31 && s >= 1 && t <= seq2Length; s--, t++) { |
---|
1692 | tmpProb += matchProb->GetValue(m,s)*matchProb->GetValue(n,t)*seq2BppMatrix->GetProb(s,t); |
---|
1693 | } |
---|
1694 | } |
---|
1695 | consBppMat.ref(m,n) += tmpProb; |
---|
1696 | } |
---|
1697 | } |
---|
1698 | } |
---|
1699 | */ |
---|
1700 | for (int m = 1; m <= seq1Length; m++) { |
---|
1701 | for (int n = m + 4; n <= seq1Length; n++) { |
---|
1702 | consBppMat.ref(m,n) = consBppMat.ref(m,n)/(float)numSeqs; |
---|
1703 | } |
---|
1704 | } |
---|
1705 | seq1BppMatrix->updateBPPMatrix(consBppMat); |
---|
1706 | } |
---|
1707 | } |
---|
1708 | |
---|
1709 | ///////////////////////////////////////////////////////////////// |
---|
1710 | // GetSubtree |
---|
1711 | // |
---|
1712 | // Returns set containing all leaf labels of the current subtree. |
---|
1713 | ///////////////////////////////////////////////////////////////// |
---|
1714 | |
---|
1715 | set<int> GetSubtree (const TreeNode *tree){ |
---|
1716 | set<int> s; |
---|
1717 | |
---|
1718 | if (tree->GetSequenceLabel() == -1){ |
---|
1719 | s = GetSubtree (tree->GetLeftChild()); |
---|
1720 | set<int> t = GetSubtree (tree->GetRightChild()); |
---|
1721 | |
---|
1722 | for (set<int>::iterator iter = t.begin(); iter != t.end(); ++iter) |
---|
1723 | s.insert (*iter); |
---|
1724 | } |
---|
1725 | else { |
---|
1726 | s.insert (tree->GetSequenceLabel()); |
---|
1727 | } |
---|
1728 | |
---|
1729 | return s; |
---|
1730 | } |
---|
1731 | |
---|
1732 | ///////////////////////////////////////////////////////////////// |
---|
1733 | // TreeBasedBiPartitioning |
---|
1734 | // |
---|
1735 | // Uses the iterative refinement scheme from MUSCLE. |
---|
1736 | ///////////////////////////////////////////////////////////////// |
---|
1737 | |
---|
1738 | void TreeBasedBiPartitioning (const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices, |
---|
1739 | const ProbabilisticModel &model, MultiSequence* &alignment, |
---|
1740 | const TreeNode *tree, SafeVector<BPPMatrix*> &BPPMatrices){ |
---|
1741 | // check if this is a node of the alignment tree |
---|
1742 | if (tree->GetSequenceLabel() == -1){ |
---|
1743 | TreeBasedBiPartitioning (sparseMatrices, model, alignment, tree->GetLeftChild(), BPPMatrices); |
---|
1744 | TreeBasedBiPartitioning (sparseMatrices, model, alignment, tree->GetRightChild(), BPPMatrices); |
---|
1745 | |
---|
1746 | set<int> leftSubtree = GetSubtree (tree->GetLeftChild()); |
---|
1747 | set<int> rightSubtree = GetSubtree (tree->GetRightChild()); |
---|
1748 | set<int> leftSubtreeComplement, rightSubtreeComplement; |
---|
1749 | |
---|
1750 | // calculate complement of each subtree |
---|
1751 | for (int i = 0; i < alignment->GetNumSequences(); i++){ |
---|
1752 | if (leftSubtree.find(i) == leftSubtree.end()) leftSubtreeComplement.insert (i); |
---|
1753 | if (rightSubtree.find(i) == rightSubtree.end()) rightSubtreeComplement.insert (i); |
---|
1754 | } |
---|
1755 | |
---|
1756 | // perform realignments for edge to left child |
---|
1757 | if (!leftSubtree.empty() && !leftSubtreeComplement.empty()){ |
---|
1758 | MultiSequence *groupOneSeqs = alignment->Project (leftSubtree); assert (groupOneSeqs); |
---|
1759 | MultiSequence *groupTwoSeqs = alignment->Project (leftSubtreeComplement); assert (groupTwoSeqs); |
---|
1760 | delete alignment; |
---|
1761 | alignment = AlignAlignments (groupOneSeqs, groupTwoSeqs, sparseMatrices, model, BPPMatrices, tree->GetLeftChild()->GetIdentity()); |
---|
1762 | } |
---|
1763 | |
---|
1764 | // perform realignments for edge to right child |
---|
1765 | if (!rightSubtree.empty() && !rightSubtreeComplement.empty()){ |
---|
1766 | MultiSequence *groupOneSeqs = alignment->Project (rightSubtree); assert (groupOneSeqs); |
---|
1767 | MultiSequence *groupTwoSeqs = alignment->Project (rightSubtreeComplement); assert (groupTwoSeqs); |
---|
1768 | delete alignment; |
---|
1769 | alignment = AlignAlignments (groupOneSeqs, groupTwoSeqs, sparseMatrices, model, BPPMatrices, tree->GetRightChild()->GetIdentity()); |
---|
1770 | } |
---|
1771 | } |
---|
1772 | } |
---|
1773 | |
---|
1774 | ///////////////////////////////////////////////////////////////// |
---|
1775 | // DoterativeRefinement() |
---|
1776 | // |
---|
1777 | // Performs a single round of randomized partionining iterative |
---|
1778 | // refinement. |
---|
1779 | ///////////////////////////////////////////////////////////////// |
---|
1780 | /* |
---|
1781 | void DoIterativeRefinement (const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices, |
---|
1782 | const ProbabilisticModel &model, MultiSequence* &alignment){ |
---|
1783 | set<int> groupOne, groupTwo; |
---|
1784 | |
---|
1785 | // create two separate groups |
---|
1786 | for (int i = 0; i < alignment->GetNumSequences(); i++){ |
---|
1787 | if (rand() % 2) |
---|
1788 | groupOne.insert (i); |
---|
1789 | else |
---|
1790 | groupTwo.insert (i); |
---|
1791 | } |
---|
1792 | |
---|
1793 | if (groupOne.empty() || groupTwo.empty()) return; |
---|
1794 | |
---|
1795 | // project into the two groups |
---|
1796 | MultiSequence *groupOneSeqs = alignment->Project (groupOne); assert (groupOneSeqs); |
---|
1797 | MultiSequence *groupTwoSeqs = alignment->Project (groupTwo); assert (groupTwoSeqs); |
---|
1798 | delete alignment; |
---|
1799 | |
---|
1800 | // realign |
---|
1801 | alignment = AlignAlignments (groupOneSeqs, groupTwoSeqs, sparseMatrices, model); |
---|
1802 | |
---|
1803 | delete groupOneSeqs; |
---|
1804 | delete groupTwoSeqs; |
---|
1805 | } |
---|
1806 | */ |
---|
1807 | |
---|
1808 | ///////////////////////////////////////////////////////////////// |
---|
1809 | // WriteAnnotation() |
---|
1810 | // |
---|
1811 | // Computes annotation for multiple alignment and write values |
---|
1812 | // to a file. |
---|
1813 | ///////////////////////////////////////////////////////////////// |
---|
1814 | |
---|
1815 | void WriteAnnotation (MultiSequence *alignment, |
---|
1816 | const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices){ |
---|
1817 | ofstream outfile (annotationFilename.c_str()); |
---|
1818 | |
---|
1819 | if (outfile.fail()){ |
---|
1820 | cerr << "ERROR: Unable to write annotation file." << endl; |
---|
1821 | exit (1); |
---|
1822 | } |
---|
1823 | |
---|
1824 | const int alignLength = alignment->GetSequence(0)->GetLength(); |
---|
1825 | const int numSeqs = alignment->GetNumSequences(); |
---|
1826 | |
---|
1827 | SafeVector<int> position (numSeqs, 0); |
---|
1828 | SafeVector<SafeVector<char>::iterator> seqs (numSeqs); |
---|
1829 | for (int i = 0; i < numSeqs; i++) seqs[i] = alignment->GetSequence(i)->GetDataPtr(); |
---|
1830 | SafeVector<pair<int,int> > active; |
---|
1831 | active.reserve (numSeqs); |
---|
1832 | |
---|
1833 | // for every column |
---|
1834 | for (int i = 1; i <= alignLength; i++){ |
---|
1835 | |
---|
1836 | // find all aligned residues in this particular column |
---|
1837 | active.clear(); |
---|
1838 | for (int j = 0; j < numSeqs; j++){ |
---|
1839 | if (seqs[j][i] != '-'){ |
---|
1840 | active.push_back (make_pair(j, ++position[j])); |
---|
1841 | } |
---|
1842 | } |
---|
1843 | |
---|
1844 | outfile << setw(4) << ComputeScore (active, sparseMatrices) << endl; |
---|
1845 | } |
---|
1846 | |
---|
1847 | outfile.close(); |
---|
1848 | } |
---|
1849 | |
---|
1850 | ///////////////////////////////////////////////////////////////// |
---|
1851 | // ComputeScore() |
---|
1852 | // |
---|
1853 | // Computes the annotation score for a particular column. |
---|
1854 | ///////////////////////////////////////////////////////////////// |
---|
1855 | |
---|
1856 | int ComputeScore (const SafeVector<pair<int, int> > &active, |
---|
1857 | const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices){ |
---|
1858 | |
---|
1859 | if (active.size() <= 1) return 0; |
---|
1860 | |
---|
1861 | // ALTERNATIVE #1: Compute the average alignment score. |
---|
1862 | |
---|
1863 | float val = 0; |
---|
1864 | for (int i = 0; i < (int) active.size(); i++){ |
---|
1865 | for (int j = i+1; j < (int) active.size(); j++){ |
---|
1866 | val += sparseMatrices[active[i].first][active[j].first]->GetValue(active[i].second, active[j].second); |
---|
1867 | } |
---|
1868 | } |
---|
1869 | |
---|
1870 | return (int) (200 * val / ((int) active.size() * ((int) active.size() - 1))); |
---|
1871 | |
---|
1872 | } |
---|