| 1 | ///////////////////////////////////////////////////////////////// |
|---|
| 2 | // EvolutionaryTree.hpp |
|---|
| 3 | // |
|---|
| 4 | // Utilities for reading/writing multiple sequence data. |
|---|
| 5 | ///////////////////////////////////////////////////////////////// |
|---|
| 6 | |
|---|
| 7 | #ifndef __EVOLUTIONARYTREE_HPP__ |
|---|
| 8 | #define __EVOLUTIONARYTREE_HPP__ |
|---|
| 9 | |
|---|
| 10 | #include <string> |
|---|
| 11 | #include <list> |
|---|
| 12 | #include <stdio.h> |
|---|
| 13 | #include "SafeVector.h" |
|---|
| 14 | #include "MultiSequence.h" |
|---|
| 15 | #include "Sequence.h" |
|---|
| 16 | #include "Util.hpp" |
|---|
| 17 | |
|---|
| 18 | using namespace std; |
|---|
| 19 | |
|---|
| 20 | |
|---|
| 21 | ///////////////////////////////////////////////////////////////// |
|---|
| 22 | // TreeNode |
|---|
| 23 | // |
|---|
| 24 | // The fundamental unit for representing an alignment tree. The |
|---|
| 25 | // guide tree is represented as a binary tree. |
|---|
| 26 | ///////////////////////////////////////////////////////////////// |
|---|
| 27 | namespace MXSCARNA { |
|---|
| 28 | class TreeNode { |
|---|
| 29 | int sequenceLabel; // sequence label |
|---|
| 30 | float sequenceIdentity; // sequence identity |
|---|
| 31 | TreeNode *left, *right, *parent; // pointers to left, right children |
|---|
| 32 | float leftLength, rightLength; // the length of left and right edge |
|---|
| 33 | ///////////////////////////////////////////////////////////////// |
|---|
| 34 | // TreeNode::PrintNode() |
|---|
| 35 | // |
|---|
| 36 | // Internal routine used to print out the sequence comments |
|---|
| 37 | // associated with the evolutionary tree, using a hierarchical |
|---|
| 38 | // parenthesized format. |
|---|
| 39 | ///////////////////////////////////////////////////////////////// |
|---|
| 40 | |
|---|
| 41 | void PrintNode (ostream &outfile, const MultiSequence *sequences) const { |
|---|
| 42 | |
|---|
| 43 | // if this is a leaf node, print out the associated sequence comment |
|---|
| 44 | if (sequenceLabel >= 0) |
|---|
| 45 | //outfile << sequences->GetSequence (sequenceLabel)->GetHeader(); |
|---|
| 46 | outfile << sequences->GetSequence (sequenceLabel)->GetLabel(); |
|---|
| 47 | |
|---|
| 48 | // otherwise, it must have two children; print out their subtrees recursively |
|---|
| 49 | else { |
|---|
| 50 | assert (left); |
|---|
| 51 | assert (right); |
|---|
| 52 | |
|---|
| 53 | outfile << "("; |
|---|
| 54 | left->PrintNode (outfile, sequences); |
|---|
| 55 | outfile << ","; |
|---|
| 56 | right->PrintNode (outfile, sequences); |
|---|
| 57 | outfile << ")"; |
|---|
| 58 | } |
|---|
| 59 | } |
|---|
| 60 | |
|---|
| 61 | public: |
|---|
| 62 | |
|---|
| 63 | ///////////////////////////////////////////////////////////////// |
|---|
| 64 | // TreeNode::TreeNode() |
|---|
| 65 | // |
|---|
| 66 | // Constructor for a tree node. Note that sequenceLabel = -1 |
|---|
| 67 | // implies that the current node is not a leaf in the tree. |
|---|
| 68 | ///////////////////////////////////////////////////////////////// |
|---|
| 69 | |
|---|
| 70 | TreeNode (int sequenceLabel) : sequenceLabel (sequenceLabel), |
|---|
| 71 | left (NULL), right (NULL), parent (NULL) { |
|---|
| 72 | assert (sequenceLabel >= -1); |
|---|
| 73 | } |
|---|
| 74 | |
|---|
| 75 | ///////////////////////////////////////////////////////////////// |
|---|
| 76 | // TreeNode::~TreeNode() |
|---|
| 77 | // |
|---|
| 78 | // Destructor for a tree node. Recursively deletes all children. |
|---|
| 79 | ///////////////////////////////////////////////////////////////// |
|---|
| 80 | |
|---|
| 81 | ~TreeNode (){ |
|---|
| 82 | if (left){ delete left; left = NULL; } |
|---|
| 83 | if (right){ delete right; right = NULL; } |
|---|
| 84 | parent = NULL; |
|---|
| 85 | } |
|---|
| 86 | |
|---|
| 87 | |
|---|
| 88 | // getters |
|---|
| 89 | int GetSequenceLabel () const { return sequenceLabel; } |
|---|
| 90 | TreeNode *GetLeftChild () const { return left; } |
|---|
| 91 | TreeNode *GetRightChild () const { return right; } |
|---|
| 92 | TreeNode *GetParent () const { return parent; } |
|---|
| 93 | float GetIdentity () const { return sequenceIdentity; } |
|---|
| 94 | float GetLeftLength () const { return leftLength; } |
|---|
| 95 | float GetRightLength () const { return rightLength; } |
|---|
| 96 | // setters |
|---|
| 97 | void SetSequenceLabel (int sequenceLabel){ this->sequenceLabel = sequenceLabel; assert (sequenceLabel >= -1); } |
|---|
| 98 | void SetLeftChild (TreeNode *left){ this->left = left; } |
|---|
| 99 | void SetRightChild (TreeNode *right){ this->right = right; } |
|---|
| 100 | void SetParent (TreeNode *parent){ this->parent = parent; } |
|---|
| 101 | void SetIdentity (float identity) { this->sequenceIdentity = identity; } |
|---|
| 102 | void SetLeftLength (float identity) { this->leftLength = identity; } |
|---|
| 103 | void SetRightLength (float identity) {this->rightLength = identity; } |
|---|
| 104 | ///////////////////////////////////////////////////////////////// |
|---|
| 105 | // TreeNode::ComputeTree() |
|---|
| 106 | // |
|---|
| 107 | // Routine used to compute an evolutionary tree based on the |
|---|
| 108 | // given distance matrix. We assume the distance matrix has the |
|---|
| 109 | // form, distMatrix[i][j] = expected accuracy of aligning i with j. |
|---|
| 110 | ///////////////////////////////////////////////////////////////// |
|---|
| 111 | |
|---|
| 112 | static TreeNode *ComputeTree (const VVF &distMatrix, const VVF &identityMatrix){ |
|---|
| 113 | |
|---|
| 114 | int numSeqs = distMatrix.size(); // number of sequences in distance matrix |
|---|
| 115 | VVF distances (numSeqs, VF (numSeqs)); // a copy of the distance matrix |
|---|
| 116 | SafeVector<TreeNode *> nodes (numSeqs, NULL); // list of nodes for each sequence |
|---|
| 117 | SafeVector<int> valid (numSeqs, 1); // valid[i] tells whether or not the ith |
|---|
| 118 | // nodes in the distances and nodes array |
|---|
| 119 | // are valid |
|---|
| 120 | VVF identities (numSeqs, VF (numSeqs)); |
|---|
| 121 | SafeVector<int> countCluster (numSeqs, 1); |
|---|
| 122 | |
|---|
| 123 | // initialization: make a copy of the distance matrix |
|---|
| 124 | for (int i = 0; i < numSeqs; i++) { |
|---|
| 125 | for (int j = 0; j < numSeqs; j++) { |
|---|
| 126 | distances[i][j] = distMatrix[i][j]; |
|---|
| 127 | identities[i][j] = identityMatrix[i][j]; |
|---|
| 128 | } |
|---|
| 129 | } |
|---|
| 130 | |
|---|
| 131 | // initialization: create all the leaf nodes |
|---|
| 132 | for (int i = 0; i < numSeqs; i++){ |
|---|
| 133 | nodes[i] = new TreeNode (i); |
|---|
| 134 | assert (nodes[i]); |
|---|
| 135 | } |
|---|
| 136 | |
|---|
| 137 | // repeat until only a single node left |
|---|
| 138 | for (int numNodesLeft = numSeqs; numNodesLeft > 1; numNodesLeft--){ |
|---|
| 139 | float bestProb = -1; |
|---|
| 140 | pair<int,int> bestPair; |
|---|
| 141 | |
|---|
| 142 | // find the closest pair |
|---|
| 143 | for (int i = 0; i < numSeqs; i++) if (valid[i]){ |
|---|
| 144 | for (int j = i+1; j < numSeqs; j++) if (valid[j]){ |
|---|
| 145 | if (distances[i][j] > bestProb){ |
|---|
| 146 | bestProb = distances[i][j]; |
|---|
| 147 | bestPair = make_pair(i, j); |
|---|
| 148 | } |
|---|
| 149 | } |
|---|
| 150 | } |
|---|
| 151 | |
|---|
| 152 | // merge the closest pair |
|---|
| 153 | TreeNode *newParent = new TreeNode (-1); |
|---|
| 154 | newParent->SetLeftChild (nodes[bestPair.first]); |
|---|
| 155 | newParent->SetRightChild (nodes[bestPair.second]); |
|---|
| 156 | nodes[bestPair.first]->SetParent (newParent); |
|---|
| 157 | nodes[bestPair.second]->SetParent (newParent); |
|---|
| 158 | nodes[bestPair.first] = newParent; |
|---|
| 159 | nodes[bestPair.second] = NULL; |
|---|
| 160 | newParent->SetIdentity(identities[bestPair.first][bestPair.second]); |
|---|
| 161 | |
|---|
| 162 | |
|---|
| 163 | // now update the distance matrix |
|---|
| 164 | for (int i = 0; i < numSeqs; i++) if (valid[i]){ |
|---|
| 165 | distances[bestPair.first][i] = distances[i][bestPair.first] |
|---|
| 166 | = (distances[i][bestPair.first]*countCluster[bestPair.first] |
|---|
| 167 | + distances[i][bestPair.second]*countCluster[bestPair.second]) |
|---|
| 168 | / (countCluster[bestPair.first] + countCluster[bestPair.second]); |
|---|
| 169 | // distances[bestPair.first][i] = distances[i][bestPair.first] |
|---|
| 170 | // = (distances[i][bestPair.first] + distances[i][bestPair.second]) * bestProb / 2; |
|---|
| 171 | identities[bestPair.first][i] = identities[i][bestPair.first] |
|---|
| 172 | = (identities[i][bestPair.first]*countCluster[bestPair.first] |
|---|
| 173 | + identities[i][bestPair.second]*countCluster[bestPair.second]) |
|---|
| 174 | / (countCluster[bestPair.first] + countCluster[bestPair.second]); |
|---|
| 175 | } |
|---|
| 176 | |
|---|
| 177 | // finally, mark the second node entry as no longer valid |
|---|
| 178 | countCluster[bestPair.first] += countCluster[bestPair.second]; |
|---|
| 179 | valid[bestPair.second] = 0; |
|---|
| 180 | } |
|---|
| 181 | |
|---|
| 182 | assert (nodes[0]); |
|---|
| 183 | return nodes[0]; |
|---|
| 184 | } |
|---|
| 185 | |
|---|
| 186 | ///////////////////////////////////////////////////////////////// |
|---|
| 187 | // TreeNode::Print() |
|---|
| 188 | // |
|---|
| 189 | // Print out the subtree associated with this node in a |
|---|
| 190 | // parenthesized representation. |
|---|
| 191 | ///////////////////////////////////////////////////////////////// |
|---|
| 192 | |
|---|
| 193 | void Print (ostream &outfile, const MultiSequence *sequences) const { |
|---|
| 194 | // outfile << "Alignment tree: "; |
|---|
| 195 | PrintNode (outfile, sequences); |
|---|
| 196 | outfile << endl; |
|---|
| 197 | } |
|---|
| 198 | }; |
|---|
| 199 | } |
|---|
| 200 | #endif //__EVOLUTIONARYTREE_HPP__ |
|---|