1 | ///////////////////////////////////////////////////////////////// |
---|
2 | // EvolutionaryTree.hpp |
---|
3 | // |
---|
4 | // Utilities for reading/writing multiple sequence data. |
---|
5 | ///////////////////////////////////////////////////////////////// |
---|
6 | |
---|
7 | #ifndef __EVOLUTIONARYTREE_HPP__ |
---|
8 | #define __EVOLUTIONARYTREE_HPP__ |
---|
9 | |
---|
10 | #include <string> |
---|
11 | #include <list> |
---|
12 | #include <stdio.h> |
---|
13 | #include "SafeVector.h" |
---|
14 | #include "MultiSequence.h" |
---|
15 | #include "Sequence.h" |
---|
16 | #include "Util.hpp" |
---|
17 | |
---|
18 | using namespace std; |
---|
19 | |
---|
20 | |
---|
21 | ///////////////////////////////////////////////////////////////// |
---|
22 | // TreeNode |
---|
23 | // |
---|
24 | // The fundamental unit for representing an alignment tree. The |
---|
25 | // guide tree is represented as a binary tree. |
---|
26 | ///////////////////////////////////////////////////////////////// |
---|
27 | namespace MXSCARNA { |
---|
28 | class TreeNode { |
---|
29 | int sequenceLabel; // sequence label |
---|
30 | float sequenceIdentity; // sequence identity |
---|
31 | TreeNode *left, *right, *parent; // pointers to left, right children |
---|
32 | float leftLength, rightLength; // the length of left and right edge |
---|
33 | ///////////////////////////////////////////////////////////////// |
---|
34 | // TreeNode::PrintNode() |
---|
35 | // |
---|
36 | // Internal routine used to print out the sequence comments |
---|
37 | // associated with the evolutionary tree, using a hierarchical |
---|
38 | // parenthesized format. |
---|
39 | ///////////////////////////////////////////////////////////////// |
---|
40 | |
---|
41 | void PrintNode (ostream &outfile, const MultiSequence *sequences) const { |
---|
42 | |
---|
43 | // if this is a leaf node, print out the associated sequence comment |
---|
44 | if (sequenceLabel >= 0) |
---|
45 | //outfile << sequences->GetSequence (sequenceLabel)->GetHeader(); |
---|
46 | outfile << sequences->GetSequence (sequenceLabel)->GetLabel(); |
---|
47 | |
---|
48 | // otherwise, it must have two children; print out their subtrees recursively |
---|
49 | else { |
---|
50 | assert (left); |
---|
51 | assert (right); |
---|
52 | |
---|
53 | outfile << "("; |
---|
54 | left->PrintNode (outfile, sequences); |
---|
55 | outfile << ","; |
---|
56 | right->PrintNode (outfile, sequences); |
---|
57 | outfile << ")"; |
---|
58 | } |
---|
59 | } |
---|
60 | |
---|
61 | public: |
---|
62 | |
---|
63 | ///////////////////////////////////////////////////////////////// |
---|
64 | // TreeNode::TreeNode() |
---|
65 | // |
---|
66 | // Constructor for a tree node. Note that sequenceLabel = -1 |
---|
67 | // implies that the current node is not a leaf in the tree. |
---|
68 | ///////////////////////////////////////////////////////////////// |
---|
69 | |
---|
70 | TreeNode (int sequenceLabel) : sequenceLabel (sequenceLabel), |
---|
71 | left (NULL), right (NULL), parent (NULL) { |
---|
72 | assert (sequenceLabel >= -1); |
---|
73 | } |
---|
74 | |
---|
75 | ///////////////////////////////////////////////////////////////// |
---|
76 | // TreeNode::~TreeNode() |
---|
77 | // |
---|
78 | // Destructor for a tree node. Recursively deletes all children. |
---|
79 | ///////////////////////////////////////////////////////////////// |
---|
80 | |
---|
81 | ~TreeNode (){ |
---|
82 | if (left){ delete left; left = NULL; } |
---|
83 | if (right){ delete right; right = NULL; } |
---|
84 | parent = NULL; |
---|
85 | } |
---|
86 | |
---|
87 | |
---|
88 | // getters |
---|
89 | int GetSequenceLabel () const { return sequenceLabel; } |
---|
90 | TreeNode *GetLeftChild () const { return left; } |
---|
91 | TreeNode *GetRightChild () const { return right; } |
---|
92 | TreeNode *GetParent () const { return parent; } |
---|
93 | float GetIdentity () const { return sequenceIdentity; } |
---|
94 | float GetLeftLength () const { return leftLength; } |
---|
95 | float GetRightLength () const { return rightLength; } |
---|
96 | // setters |
---|
97 | void SetSequenceLabel (int sequenceLabel){ this->sequenceLabel = sequenceLabel; assert (sequenceLabel >= -1); } |
---|
98 | void SetLeftChild (TreeNode *left){ this->left = left; } |
---|
99 | void SetRightChild (TreeNode *right){ this->right = right; } |
---|
100 | void SetParent (TreeNode *parent){ this->parent = parent; } |
---|
101 | void SetIdentity (float identity) { this->sequenceIdentity = identity; } |
---|
102 | void SetLeftLength (float identity) { this->leftLength = identity; } |
---|
103 | void SetRightLength (float identity) {this->rightLength = identity; } |
---|
104 | ///////////////////////////////////////////////////////////////// |
---|
105 | // TreeNode::ComputeTree() |
---|
106 | // |
---|
107 | // Routine used to compute an evolutionary tree based on the |
---|
108 | // given distance matrix. We assume the distance matrix has the |
---|
109 | // form, distMatrix[i][j] = expected accuracy of aligning i with j. |
---|
110 | ///////////////////////////////////////////////////////////////// |
---|
111 | |
---|
112 | static TreeNode *ComputeTree (const VVF &distMatrix, const VVF &identityMatrix){ |
---|
113 | |
---|
114 | int numSeqs = distMatrix.size(); // number of sequences in distance matrix |
---|
115 | VVF distances (numSeqs, VF (numSeqs)); // a copy of the distance matrix |
---|
116 | SafeVector<TreeNode *> nodes (numSeqs, NULL); // list of nodes for each sequence |
---|
117 | SafeVector<int> valid (numSeqs, 1); // valid[i] tells whether or not the ith |
---|
118 | // nodes in the distances and nodes array |
---|
119 | // are valid |
---|
120 | VVF identities (numSeqs, VF (numSeqs)); |
---|
121 | SafeVector<int> countCluster (numSeqs, 1); |
---|
122 | |
---|
123 | // initialization: make a copy of the distance matrix |
---|
124 | for (int i = 0; i < numSeqs; i++) { |
---|
125 | for (int j = 0; j < numSeqs; j++) { |
---|
126 | distances[i][j] = distMatrix[i][j]; |
---|
127 | identities[i][j] = identityMatrix[i][j]; |
---|
128 | } |
---|
129 | } |
---|
130 | |
---|
131 | // initialization: create all the leaf nodes |
---|
132 | for (int i = 0; i < numSeqs; i++){ |
---|
133 | nodes[i] = new TreeNode (i); |
---|
134 | assert (nodes[i]); |
---|
135 | } |
---|
136 | |
---|
137 | // repeat until only a single node left |
---|
138 | for (int numNodesLeft = numSeqs; numNodesLeft > 1; numNodesLeft--){ |
---|
139 | float bestProb = -1; |
---|
140 | pair<int,int> bestPair; |
---|
141 | |
---|
142 | // find the closest pair |
---|
143 | for (int i = 0; i < numSeqs; i++) if (valid[i]){ |
---|
144 | for (int j = i+1; j < numSeqs; j++) if (valid[j]){ |
---|
145 | if (distances[i][j] > bestProb){ |
---|
146 | bestProb = distances[i][j]; |
---|
147 | bestPair = make_pair(i, j); |
---|
148 | } |
---|
149 | } |
---|
150 | } |
---|
151 | |
---|
152 | // merge the closest pair |
---|
153 | TreeNode *newParent = new TreeNode (-1); |
---|
154 | newParent->SetLeftChild (nodes[bestPair.first]); |
---|
155 | newParent->SetRightChild (nodes[bestPair.second]); |
---|
156 | nodes[bestPair.first]->SetParent (newParent); |
---|
157 | nodes[bestPair.second]->SetParent (newParent); |
---|
158 | nodes[bestPair.first] = newParent; |
---|
159 | nodes[bestPair.second] = NULL; |
---|
160 | newParent->SetIdentity(identities[bestPair.first][bestPair.second]); |
---|
161 | |
---|
162 | |
---|
163 | // now update the distance matrix |
---|
164 | for (int i = 0; i < numSeqs; i++) if (valid[i]){ |
---|
165 | distances[bestPair.first][i] = distances[i][bestPair.first] |
---|
166 | = (distances[i][bestPair.first]*countCluster[bestPair.first] |
---|
167 | + distances[i][bestPair.second]*countCluster[bestPair.second]) |
---|
168 | / (countCluster[bestPair.first] + countCluster[bestPair.second]); |
---|
169 | // distances[bestPair.first][i] = distances[i][bestPair.first] |
---|
170 | // = (distances[i][bestPair.first] + distances[i][bestPair.second]) * bestProb / 2; |
---|
171 | identities[bestPair.first][i] = identities[i][bestPair.first] |
---|
172 | = (identities[i][bestPair.first]*countCluster[bestPair.first] |
---|
173 | + identities[i][bestPair.second]*countCluster[bestPair.second]) |
---|
174 | / (countCluster[bestPair.first] + countCluster[bestPair.second]); |
---|
175 | } |
---|
176 | |
---|
177 | // finally, mark the second node entry as no longer valid |
---|
178 | countCluster[bestPair.first] += countCluster[bestPair.second]; |
---|
179 | valid[bestPair.second] = 0; |
---|
180 | } |
---|
181 | |
---|
182 | assert (nodes[0]); |
---|
183 | return nodes[0]; |
---|
184 | } |
---|
185 | |
---|
186 | ///////////////////////////////////////////////////////////////// |
---|
187 | // TreeNode::Print() |
---|
188 | // |
---|
189 | // Print out the subtree associated with this node in a |
---|
190 | // parenthesized representation. |
---|
191 | ///////////////////////////////////////////////////////////////// |
---|
192 | |
---|
193 | void Print (ostream &outfile, const MultiSequence *sequences) const { |
---|
194 | // outfile << "Alignment tree: "; |
---|
195 | PrintNode (outfile, sequences); |
---|
196 | outfile << endl; |
---|
197 | } |
---|
198 | }; |
---|
199 | } |
---|
200 | #endif //__EVOLUTIONARYTREE_HPP__ |
---|