1 | #include "muscle.h" |
---|
2 | #include "tree.h" |
---|
3 | #include <math.h> |
---|
4 | |
---|
5 | #define TRACE 0 |
---|
6 | |
---|
7 | /*** |
---|
8 | Node has 0 to 3 neighbors: |
---|
9 | 0 neighbors: singleton root |
---|
10 | 1 neighbor: leaf, neighbor is parent |
---|
11 | 2 neigbors: non-singleton root |
---|
12 | 3 neighbors: internal node (other than root) |
---|
13 | |
---|
14 | Minimal rooted tree is single node. |
---|
15 | Minimal unrooted tree is single edge. |
---|
16 | Leaf node always has nulls in neighbors 2 and 3, neighbor 1 is parent. |
---|
17 | When tree is rooted, neighbor 1=parent, 2=left, 3=right. |
---|
18 | ***/ |
---|
19 | |
---|
20 | void Tree::AssertAreNeighbors(unsigned uNodeIndex1, unsigned uNodeIndex2) const |
---|
21 | { |
---|
22 | if (uNodeIndex1 >= m_uNodeCount || uNodeIndex2 >= m_uNodeCount) |
---|
23 | Quit("AssertAreNeighbors(%u,%u), are %u nodes", |
---|
24 | uNodeIndex1, uNodeIndex2, m_uNodeCount); |
---|
25 | |
---|
26 | if (m_uNeighbor1[uNodeIndex1] != uNodeIndex2 && |
---|
27 | m_uNeighbor2[uNodeIndex1] != uNodeIndex2 && |
---|
28 | m_uNeighbor3[uNodeIndex1] != uNodeIndex2) |
---|
29 | { |
---|
30 | LogMe(); |
---|
31 | Quit("AssertAreNeighbors(%u,%u) failed", uNodeIndex1, uNodeIndex2); |
---|
32 | } |
---|
33 | |
---|
34 | if (m_uNeighbor1[uNodeIndex2] != uNodeIndex1 && |
---|
35 | m_uNeighbor2[uNodeIndex2] != uNodeIndex1 && |
---|
36 | m_uNeighbor3[uNodeIndex2] != uNodeIndex1) |
---|
37 | { |
---|
38 | LogMe(); |
---|
39 | Quit("AssertAreNeighbors(%u,%u) failed", uNodeIndex1, uNodeIndex2); |
---|
40 | } |
---|
41 | |
---|
42 | bool Has12 = HasEdgeLength(uNodeIndex1, uNodeIndex2); |
---|
43 | bool Has21 = HasEdgeLength(uNodeIndex2, uNodeIndex1); |
---|
44 | if (Has12 != Has21) |
---|
45 | { |
---|
46 | HasEdgeLength(uNodeIndex1, uNodeIndex2); |
---|
47 | HasEdgeLength(uNodeIndex2, uNodeIndex1); |
---|
48 | LogMe(); |
---|
49 | Log("HasEdgeLength(%u, %u)=%c HasEdgeLength(%u, %u)=%c\n", |
---|
50 | uNodeIndex1, |
---|
51 | uNodeIndex2, |
---|
52 | Has12 ? 'T' : 'F', |
---|
53 | uNodeIndex2, |
---|
54 | uNodeIndex1, |
---|
55 | Has21 ? 'T' : 'F'); |
---|
56 | |
---|
57 | Quit("Tree::AssertAreNeighbors, HasEdgeLength not symmetric"); |
---|
58 | } |
---|
59 | |
---|
60 | if (Has12) |
---|
61 | { |
---|
62 | double d12 = GetEdgeLength(uNodeIndex1, uNodeIndex2); |
---|
63 | double d21 = GetEdgeLength(uNodeIndex2, uNodeIndex1); |
---|
64 | if (d12 != d21) |
---|
65 | { |
---|
66 | LogMe(); |
---|
67 | Quit("Tree::AssertAreNeighbors, Edge length disagrees %u-%u=%.3g, %u-%u=%.3g", |
---|
68 | uNodeIndex1, uNodeIndex2, d12, |
---|
69 | uNodeIndex2, uNodeIndex1, d21); |
---|
70 | } |
---|
71 | } |
---|
72 | } |
---|
73 | |
---|
74 | void Tree::ValidateNode(unsigned uNodeIndex) const |
---|
75 | { |
---|
76 | if (uNodeIndex >= m_uNodeCount) |
---|
77 | Quit("ValidateNode(%u), %u nodes", uNodeIndex, m_uNodeCount); |
---|
78 | |
---|
79 | const unsigned uNeighborCount = GetNeighborCount(uNodeIndex); |
---|
80 | |
---|
81 | if (2 == uNeighborCount) |
---|
82 | { |
---|
83 | if (!m_bRooted) |
---|
84 | { |
---|
85 | LogMe(); |
---|
86 | Quit("Tree::ValidateNode: Node %u has two neighbors, tree is not rooted", |
---|
87 | uNodeIndex); |
---|
88 | } |
---|
89 | if (uNodeIndex != m_uRootNodeIndex) |
---|
90 | { |
---|
91 | LogMe(); |
---|
92 | Quit("Tree::ValidateNode: Node %u has two neighbors, but not root node=%u", |
---|
93 | uNodeIndex, m_uRootNodeIndex); |
---|
94 | } |
---|
95 | } |
---|
96 | |
---|
97 | const unsigned n1 = m_uNeighbor1[uNodeIndex]; |
---|
98 | const unsigned n2 = m_uNeighbor2[uNodeIndex]; |
---|
99 | const unsigned n3 = m_uNeighbor3[uNodeIndex]; |
---|
100 | |
---|
101 | if (NULL_NEIGHBOR == n2 && NULL_NEIGHBOR != n3) |
---|
102 | { |
---|
103 | LogMe(); |
---|
104 | Quit("Tree::ValidateNode, n2=null, n3!=null", uNodeIndex); |
---|
105 | } |
---|
106 | if (NULL_NEIGHBOR == n3 && NULL_NEIGHBOR != n2) |
---|
107 | { |
---|
108 | LogMe(); |
---|
109 | Quit("Tree::ValidateNode, n3=null, n2!=null", uNodeIndex); |
---|
110 | } |
---|
111 | |
---|
112 | if (n1 != NULL_NEIGHBOR) |
---|
113 | AssertAreNeighbors(uNodeIndex, n1); |
---|
114 | if (n2 != NULL_NEIGHBOR) |
---|
115 | AssertAreNeighbors(uNodeIndex, n2); |
---|
116 | if (n3 != NULL_NEIGHBOR) |
---|
117 | AssertAreNeighbors(uNodeIndex, n3); |
---|
118 | |
---|
119 | if (n1 != NULL_NEIGHBOR && (n1 == n2 || n1 == n3)) |
---|
120 | { |
---|
121 | LogMe(); |
---|
122 | Quit("Tree::ValidateNode, duplicate neighbors in node %u", uNodeIndex); |
---|
123 | } |
---|
124 | if (n2 != NULL_NEIGHBOR && (n2 == n1 || n2 == n3)) |
---|
125 | { |
---|
126 | LogMe(); |
---|
127 | Quit("Tree::ValidateNode, duplicate neighbors in node %u", uNodeIndex); |
---|
128 | } |
---|
129 | if (n3 != NULL_NEIGHBOR && (n3 == n1 || n3 == n2)) |
---|
130 | { |
---|
131 | LogMe(); |
---|
132 | Quit("Tree::ValidateNode, duplicate neighbors in node %u", uNodeIndex); |
---|
133 | } |
---|
134 | |
---|
135 | if (IsRooted()) |
---|
136 | { |
---|
137 | if (NULL_NEIGHBOR == GetParent(uNodeIndex)) |
---|
138 | { |
---|
139 | if (uNodeIndex != m_uRootNodeIndex) |
---|
140 | { |
---|
141 | LogMe(); |
---|
142 | Quit("Tree::ValiateNode(%u), no parent", uNodeIndex); |
---|
143 | } |
---|
144 | } |
---|
145 | else if (GetLeft(GetParent(uNodeIndex)) != uNodeIndex && |
---|
146 | GetRight(GetParent(uNodeIndex)) != uNodeIndex) |
---|
147 | { |
---|
148 | LogMe(); |
---|
149 | Quit("Tree::ValidateNode(%u), parent / child mismatch", uNodeIndex); |
---|
150 | } |
---|
151 | } |
---|
152 | } |
---|
153 | |
---|
154 | void Tree::Validate() const |
---|
155 | { |
---|
156 | for (unsigned uNodeIndex = 0; uNodeIndex < m_uNodeCount; ++uNodeIndex) |
---|
157 | ValidateNode(uNodeIndex); |
---|
158 | } |
---|
159 | |
---|
160 | bool Tree::IsEdge(unsigned uNodeIndex1, unsigned uNodeIndex2) const |
---|
161 | { |
---|
162 | assert(uNodeIndex1 < m_uNodeCount && uNodeIndex2 < m_uNodeCount); |
---|
163 | |
---|
164 | return m_uNeighbor1[uNodeIndex1] == uNodeIndex2 || |
---|
165 | m_uNeighbor2[uNodeIndex1] == uNodeIndex2 || |
---|
166 | m_uNeighbor3[uNodeIndex1] == uNodeIndex2; |
---|
167 | } |
---|
168 | |
---|
169 | double Tree::GetEdgeLength(unsigned uNodeIndex1, unsigned uNodeIndex2) const |
---|
170 | { |
---|
171 | assert(uNodeIndex1 < m_uNodeCount && uNodeIndex2 < m_uNodeCount); |
---|
172 | if (!HasEdgeLength(uNodeIndex1, uNodeIndex2)) |
---|
173 | { |
---|
174 | LogMe(); |
---|
175 | Quit("Missing edge length in tree %u-%u", uNodeIndex1, uNodeIndex2); |
---|
176 | } |
---|
177 | |
---|
178 | if (m_uNeighbor1[uNodeIndex1] == uNodeIndex2) |
---|
179 | return m_dEdgeLength1[uNodeIndex1]; |
---|
180 | else if (m_uNeighbor2[uNodeIndex1] == uNodeIndex2) |
---|
181 | return m_dEdgeLength2[uNodeIndex1]; |
---|
182 | assert(m_uNeighbor3[uNodeIndex1] == uNodeIndex2); |
---|
183 | return m_dEdgeLength3[uNodeIndex1]; |
---|
184 | } |
---|
185 | |
---|
186 | void Tree::ExpandCache() |
---|
187 | { |
---|
188 | const unsigned uNodeCount = 100; |
---|
189 | unsigned uNewCacheCount = m_uCacheCount + uNodeCount; |
---|
190 | unsigned *uNewNeighbor1 = new unsigned[uNewCacheCount]; |
---|
191 | unsigned *uNewNeighbor2 = new unsigned[uNewCacheCount]; |
---|
192 | unsigned *uNewNeighbor3 = new unsigned[uNewCacheCount]; |
---|
193 | |
---|
194 | unsigned *uNewIds = new unsigned[uNewCacheCount]; |
---|
195 | memset(uNewIds, 0xff, uNewCacheCount*sizeof(unsigned)); |
---|
196 | |
---|
197 | double *dNewEdgeLength1 = new double[uNewCacheCount]; |
---|
198 | double *dNewEdgeLength2 = new double[uNewCacheCount]; |
---|
199 | double *dNewEdgeLength3 = new double[uNewCacheCount]; |
---|
200 | double *dNewHeight = new double[uNewCacheCount]; |
---|
201 | |
---|
202 | bool *bNewHasEdgeLength1 = new bool[uNewCacheCount]; |
---|
203 | bool *bNewHasEdgeLength2 = new bool[uNewCacheCount]; |
---|
204 | bool *bNewHasEdgeLength3 = new bool[uNewCacheCount]; |
---|
205 | bool *bNewHasHeight = new bool[uNewCacheCount]; |
---|
206 | |
---|
207 | char **ptrNewName = new char *[uNewCacheCount]; |
---|
208 | memset(ptrNewName, 0, uNewCacheCount*sizeof(char *)); |
---|
209 | |
---|
210 | if (m_uCacheCount > 0) |
---|
211 | { |
---|
212 | const unsigned uUnsignedBytes = m_uCacheCount*sizeof(unsigned); |
---|
213 | memcpy(uNewNeighbor1, m_uNeighbor1, uUnsignedBytes); |
---|
214 | memcpy(uNewNeighbor2, m_uNeighbor2, uUnsignedBytes); |
---|
215 | memcpy(uNewNeighbor3, m_uNeighbor3, uUnsignedBytes); |
---|
216 | |
---|
217 | memcpy(uNewIds, m_Ids, uUnsignedBytes); |
---|
218 | |
---|
219 | const unsigned uEdgeBytes = m_uCacheCount*sizeof(double); |
---|
220 | memcpy(dNewEdgeLength1, m_dEdgeLength1, uEdgeBytes); |
---|
221 | memcpy(dNewEdgeLength2, m_dEdgeLength2, uEdgeBytes); |
---|
222 | memcpy(dNewEdgeLength3, m_dEdgeLength3, uEdgeBytes); |
---|
223 | memcpy(dNewHeight, m_dHeight, uEdgeBytes); |
---|
224 | |
---|
225 | const unsigned uBoolBytes = m_uCacheCount*sizeof(bool); |
---|
226 | memcpy(bNewHasEdgeLength1, m_bHasEdgeLength1, uBoolBytes); |
---|
227 | memcpy(bNewHasEdgeLength2, m_bHasEdgeLength2, uBoolBytes); |
---|
228 | memcpy(bNewHasEdgeLength3, m_bHasEdgeLength3, uBoolBytes); |
---|
229 | memcpy(bNewHasHeight, m_bHasHeight, uBoolBytes); |
---|
230 | |
---|
231 | const unsigned uNameBytes = m_uCacheCount*sizeof(char *); |
---|
232 | memcpy(ptrNewName, m_ptrName, uNameBytes); |
---|
233 | |
---|
234 | delete[] m_uNeighbor1; |
---|
235 | delete[] m_uNeighbor2; |
---|
236 | delete[] m_uNeighbor3; |
---|
237 | |
---|
238 | delete[] m_Ids; |
---|
239 | |
---|
240 | delete[] m_dEdgeLength1; |
---|
241 | delete[] m_dEdgeLength2; |
---|
242 | delete[] m_dEdgeLength3; |
---|
243 | |
---|
244 | delete[] m_bHasEdgeLength1; |
---|
245 | delete[] m_bHasEdgeLength2; |
---|
246 | delete[] m_bHasEdgeLength3; |
---|
247 | delete[] m_bHasHeight; |
---|
248 | |
---|
249 | delete[] m_ptrName; |
---|
250 | } |
---|
251 | m_uCacheCount = uNewCacheCount; |
---|
252 | m_uNeighbor1 = uNewNeighbor1; |
---|
253 | m_uNeighbor2 = uNewNeighbor2; |
---|
254 | m_uNeighbor3 = uNewNeighbor3; |
---|
255 | m_Ids = uNewIds; |
---|
256 | m_dEdgeLength1 = dNewEdgeLength1; |
---|
257 | m_dEdgeLength2 = dNewEdgeLength2; |
---|
258 | m_dEdgeLength3 = dNewEdgeLength3; |
---|
259 | m_dHeight = dNewHeight; |
---|
260 | m_bHasEdgeLength1 = bNewHasEdgeLength1; |
---|
261 | m_bHasEdgeLength2 = bNewHasEdgeLength2; |
---|
262 | m_bHasEdgeLength3 = bNewHasEdgeLength3; |
---|
263 | m_bHasHeight = bNewHasHeight; |
---|
264 | m_ptrName = ptrNewName; |
---|
265 | } |
---|
266 | |
---|
267 | // Creates tree with single node, no edges. |
---|
268 | // Root node always has index 0. |
---|
269 | void Tree::CreateRooted() |
---|
270 | { |
---|
271 | Clear(); |
---|
272 | ExpandCache(); |
---|
273 | m_uNodeCount = 1; |
---|
274 | |
---|
275 | m_uNeighbor1[0] = NULL_NEIGHBOR; |
---|
276 | m_uNeighbor2[0] = NULL_NEIGHBOR; |
---|
277 | m_uNeighbor3[0] = NULL_NEIGHBOR; |
---|
278 | |
---|
279 | m_bHasEdgeLength1[0] = false; |
---|
280 | m_bHasEdgeLength2[0] = false; |
---|
281 | m_bHasEdgeLength3[0] = false; |
---|
282 | m_bHasHeight[0] = false; |
---|
283 | |
---|
284 | m_uRootNodeIndex = 0; |
---|
285 | m_bRooted = true; |
---|
286 | |
---|
287 | #if DEBUG |
---|
288 | Validate(); |
---|
289 | #endif |
---|
290 | } |
---|
291 | |
---|
292 | // Creates unrooted tree with single edge. |
---|
293 | // Nodes for that edge are always 0 and 1. |
---|
294 | void Tree::CreateUnrooted(double dEdgeLength) |
---|
295 | { |
---|
296 | Clear(); |
---|
297 | ExpandCache(); |
---|
298 | |
---|
299 | m_uNeighbor1[0] = 1; |
---|
300 | m_uNeighbor2[0] = NULL_NEIGHBOR; |
---|
301 | m_uNeighbor3[0] = NULL_NEIGHBOR; |
---|
302 | |
---|
303 | m_uNeighbor1[1] = 0; |
---|
304 | m_uNeighbor2[1] = NULL_NEIGHBOR; |
---|
305 | m_uNeighbor3[1] = NULL_NEIGHBOR; |
---|
306 | |
---|
307 | m_dEdgeLength1[0] = dEdgeLength; |
---|
308 | m_dEdgeLength1[1] = dEdgeLength; |
---|
309 | |
---|
310 | m_bHasEdgeLength1[0] = true; |
---|
311 | m_bHasEdgeLength1[1] = true; |
---|
312 | |
---|
313 | m_bRooted = false; |
---|
314 | |
---|
315 | #if DEBUG |
---|
316 | Validate(); |
---|
317 | #endif |
---|
318 | } |
---|
319 | |
---|
320 | void Tree::SetLeafName(unsigned uNodeIndex, const char *ptrName) |
---|
321 | { |
---|
322 | assert(uNodeIndex < m_uNodeCount); |
---|
323 | assert(IsLeaf(uNodeIndex)); |
---|
324 | free(m_ptrName[uNodeIndex]); |
---|
325 | m_ptrName[uNodeIndex] = strsave(ptrName); |
---|
326 | } |
---|
327 | |
---|
328 | void Tree::SetLeafId(unsigned uNodeIndex, unsigned uId) |
---|
329 | { |
---|
330 | assert(uNodeIndex < m_uNodeCount); |
---|
331 | assert(IsLeaf(uNodeIndex)); |
---|
332 | m_Ids[uNodeIndex] = uId; |
---|
333 | } |
---|
334 | |
---|
335 | const char *Tree::GetLeafName(unsigned uNodeIndex) const |
---|
336 | { |
---|
337 | assert(uNodeIndex < m_uNodeCount); |
---|
338 | assert(IsLeaf(uNodeIndex)); |
---|
339 | return m_ptrName[uNodeIndex]; |
---|
340 | } |
---|
341 | |
---|
342 | unsigned Tree::GetLeafId(unsigned uNodeIndex) const |
---|
343 | { |
---|
344 | assert(uNodeIndex < m_uNodeCount); |
---|
345 | assert(IsLeaf(uNodeIndex)); |
---|
346 | return m_Ids[uNodeIndex]; |
---|
347 | } |
---|
348 | |
---|
349 | // Append a new branch. |
---|
350 | // This adds two new nodes and joins them to an existing leaf node. |
---|
351 | // Return value is k, new nodes have indexes k and k+1 respectively. |
---|
352 | unsigned Tree::AppendBranch(unsigned uExistingLeafIndex) |
---|
353 | { |
---|
354 | if (0 == m_uNodeCount) |
---|
355 | Quit("Tree::AppendBranch: tree has not been created"); |
---|
356 | |
---|
357 | #if DEBUG |
---|
358 | assert(uExistingLeafIndex < m_uNodeCount); |
---|
359 | if (!IsLeaf(uExistingLeafIndex)) |
---|
360 | { |
---|
361 | LogMe(); |
---|
362 | Quit("AppendBranch(%u): not leaf", uExistingLeafIndex); |
---|
363 | } |
---|
364 | #endif |
---|
365 | |
---|
366 | if (m_uNodeCount >= m_uCacheCount - 2) |
---|
367 | ExpandCache(); |
---|
368 | |
---|
369 | const unsigned uNewLeaf1 = m_uNodeCount; |
---|
370 | const unsigned uNewLeaf2 = m_uNodeCount + 1; |
---|
371 | |
---|
372 | m_uNodeCount += 2; |
---|
373 | |
---|
374 | assert(m_uNeighbor2[uExistingLeafIndex] == NULL_NEIGHBOR); |
---|
375 | assert(m_uNeighbor3[uExistingLeafIndex] == NULL_NEIGHBOR); |
---|
376 | |
---|
377 | m_uNeighbor2[uExistingLeafIndex] = uNewLeaf1; |
---|
378 | m_uNeighbor3[uExistingLeafIndex] = uNewLeaf2; |
---|
379 | |
---|
380 | m_uNeighbor1[uNewLeaf1] = uExistingLeafIndex; |
---|
381 | m_uNeighbor1[uNewLeaf2] = uExistingLeafIndex; |
---|
382 | |
---|
383 | m_uNeighbor2[uNewLeaf1] = NULL_NEIGHBOR; |
---|
384 | m_uNeighbor2[uNewLeaf2] = NULL_NEIGHBOR; |
---|
385 | |
---|
386 | m_uNeighbor3[uNewLeaf1] = NULL_NEIGHBOR; |
---|
387 | m_uNeighbor3[uNewLeaf2] = NULL_NEIGHBOR; |
---|
388 | |
---|
389 | m_dEdgeLength2[uExistingLeafIndex] = 0; |
---|
390 | m_dEdgeLength3[uExistingLeafIndex] = 0; |
---|
391 | |
---|
392 | m_dEdgeLength1[uNewLeaf1] = 0; |
---|
393 | m_dEdgeLength2[uNewLeaf1] = 0; |
---|
394 | m_dEdgeLength3[uNewLeaf1] = 0; |
---|
395 | |
---|
396 | m_dEdgeLength1[uNewLeaf2] = 0; |
---|
397 | m_dEdgeLength2[uNewLeaf2] = 0; |
---|
398 | m_dEdgeLength3[uNewLeaf2] = 0; |
---|
399 | |
---|
400 | m_bHasEdgeLength1[uNewLeaf1] = false; |
---|
401 | m_bHasEdgeLength2[uNewLeaf1] = false; |
---|
402 | m_bHasEdgeLength3[uNewLeaf1] = false; |
---|
403 | |
---|
404 | m_bHasEdgeLength1[uNewLeaf2] = false; |
---|
405 | m_bHasEdgeLength2[uNewLeaf2] = false; |
---|
406 | m_bHasEdgeLength3[uNewLeaf2] = false; |
---|
407 | |
---|
408 | m_bHasHeight[uNewLeaf1] = false; |
---|
409 | m_bHasHeight[uNewLeaf2] = false; |
---|
410 | |
---|
411 | m_Ids[uNewLeaf1] = uInsane; |
---|
412 | m_Ids[uNewLeaf2] = uInsane; |
---|
413 | return uNewLeaf1; |
---|
414 | } |
---|
415 | |
---|
416 | void Tree::LogMe() const |
---|
417 | { |
---|
418 | Log("Tree::LogMe %u nodes, ", m_uNodeCount); |
---|
419 | |
---|
420 | if (IsRooted()) |
---|
421 | { |
---|
422 | Log("rooted.\n"); |
---|
423 | Log("\n"); |
---|
424 | Log("Index Parnt LengthP Left LengthL Right LengthR Id Name\n"); |
---|
425 | Log("----- ----- ------- ---- ------- ----- ------- ----- ----\n"); |
---|
426 | } |
---|
427 | else |
---|
428 | { |
---|
429 | Log("unrooted.\n"); |
---|
430 | Log("\n"); |
---|
431 | Log("Index Nbr_1 Length1 Nbr_2 Length2 Nbr_3 Length3 Id Name\n"); |
---|
432 | Log("----- ----- ------- ----- ------- ----- ------- ----- ----\n"); |
---|
433 | } |
---|
434 | |
---|
435 | for (unsigned uNodeIndex = 0; uNodeIndex < m_uNodeCount; ++uNodeIndex) |
---|
436 | { |
---|
437 | Log("%5u ", uNodeIndex); |
---|
438 | const unsigned n1 = m_uNeighbor1[uNodeIndex]; |
---|
439 | const unsigned n2 = m_uNeighbor2[uNodeIndex]; |
---|
440 | const unsigned n3 = m_uNeighbor3[uNodeIndex]; |
---|
441 | if (NULL_NEIGHBOR != n1) |
---|
442 | { |
---|
443 | Log("%5u ", n1); |
---|
444 | if (m_bHasEdgeLength1[uNodeIndex]) |
---|
445 | Log("%7.4f ", m_dEdgeLength1[uNodeIndex]); |
---|
446 | else |
---|
447 | Log(" * "); |
---|
448 | } |
---|
449 | else |
---|
450 | Log(" "); |
---|
451 | |
---|
452 | if (NULL_NEIGHBOR != n2) |
---|
453 | { |
---|
454 | Log("%5u ", n2); |
---|
455 | if (m_bHasEdgeLength2[uNodeIndex]) |
---|
456 | Log("%7.4f ", m_dEdgeLength2[uNodeIndex]); |
---|
457 | else |
---|
458 | Log(" * "); |
---|
459 | } |
---|
460 | else |
---|
461 | Log(" "); |
---|
462 | |
---|
463 | if (NULL_NEIGHBOR != n3) |
---|
464 | { |
---|
465 | Log("%5u ", n3); |
---|
466 | if (m_bHasEdgeLength3[uNodeIndex]) |
---|
467 | Log("%7.4f ", m_dEdgeLength3[uNodeIndex]); |
---|
468 | else |
---|
469 | Log(" * "); |
---|
470 | } |
---|
471 | else |
---|
472 | Log(" "); |
---|
473 | |
---|
474 | if (m_Ids != 0 && IsLeaf(uNodeIndex)) |
---|
475 | { |
---|
476 | unsigned uId = m_Ids[uNodeIndex]; |
---|
477 | if (uId == uInsane) |
---|
478 | Log(" *"); |
---|
479 | else |
---|
480 | Log("%5u", uId); |
---|
481 | } |
---|
482 | else |
---|
483 | Log(" "); |
---|
484 | |
---|
485 | if (m_bRooted && uNodeIndex == m_uRootNodeIndex) |
---|
486 | Log(" [ROOT] "); |
---|
487 | const char *ptrName = m_ptrName[uNodeIndex]; |
---|
488 | if (ptrName != 0) |
---|
489 | Log(" %s", ptrName); |
---|
490 | Log("\n"); |
---|
491 | } |
---|
492 | } |
---|
493 | |
---|
494 | void Tree::SetEdgeLength(unsigned uNodeIndex1, unsigned uNodeIndex2, |
---|
495 | double dLength) |
---|
496 | { |
---|
497 | assert(uNodeIndex1 < m_uNodeCount && uNodeIndex2 < m_uNodeCount); |
---|
498 | assert(IsEdge(uNodeIndex1, uNodeIndex2)); |
---|
499 | |
---|
500 | if (m_uNeighbor1[uNodeIndex1] == uNodeIndex2) |
---|
501 | { |
---|
502 | m_dEdgeLength1[uNodeIndex1] = dLength; |
---|
503 | m_bHasEdgeLength1[uNodeIndex1] = true; |
---|
504 | } |
---|
505 | else if (m_uNeighbor2[uNodeIndex1] == uNodeIndex2) |
---|
506 | { |
---|
507 | m_dEdgeLength2[uNodeIndex1] = dLength; |
---|
508 | m_bHasEdgeLength2[uNodeIndex1] = true; |
---|
509 | |
---|
510 | } |
---|
511 | else |
---|
512 | { |
---|
513 | assert(m_uNeighbor3[uNodeIndex1] == uNodeIndex2); |
---|
514 | m_dEdgeLength3[uNodeIndex1] = dLength; |
---|
515 | m_bHasEdgeLength3[uNodeIndex1] = true; |
---|
516 | } |
---|
517 | |
---|
518 | if (m_uNeighbor1[uNodeIndex2] == uNodeIndex1) |
---|
519 | { |
---|
520 | m_dEdgeLength1[uNodeIndex2] = dLength; |
---|
521 | m_bHasEdgeLength1[uNodeIndex2] = true; |
---|
522 | } |
---|
523 | else if (m_uNeighbor2[uNodeIndex2] == uNodeIndex1) |
---|
524 | { |
---|
525 | m_dEdgeLength2[uNodeIndex2] = dLength; |
---|
526 | m_bHasEdgeLength2[uNodeIndex2] = true; |
---|
527 | } |
---|
528 | else |
---|
529 | { |
---|
530 | assert(m_uNeighbor3[uNodeIndex2] == uNodeIndex1); |
---|
531 | m_dEdgeLength3[uNodeIndex2] = dLength; |
---|
532 | m_bHasEdgeLength3[uNodeIndex2] = true; |
---|
533 | } |
---|
534 | } |
---|
535 | |
---|
536 | unsigned Tree::UnrootFromFile() |
---|
537 | { |
---|
538 | #if TRACE |
---|
539 | Log("Before unroot:\n"); |
---|
540 | LogMe(); |
---|
541 | #endif |
---|
542 | |
---|
543 | if (!m_bRooted) |
---|
544 | Quit("Tree::Unroot, not rooted"); |
---|
545 | |
---|
546 | // Convention: root node is always node zero |
---|
547 | assert(IsRoot(0)); |
---|
548 | assert(NULL_NEIGHBOR == m_uNeighbor1[0]); |
---|
549 | |
---|
550 | const unsigned uThirdNode = m_uNodeCount++; |
---|
551 | |
---|
552 | m_uNeighbor1[0] = uThirdNode; |
---|
553 | m_uNeighbor1[uThirdNode] = 0; |
---|
554 | |
---|
555 | m_uNeighbor2[uThirdNode] = NULL_NEIGHBOR; |
---|
556 | m_uNeighbor3[uThirdNode] = NULL_NEIGHBOR; |
---|
557 | |
---|
558 | m_dEdgeLength1[0] = 0; |
---|
559 | m_dEdgeLength1[uThirdNode] = 0; |
---|
560 | m_bHasEdgeLength1[uThirdNode] = true; |
---|
561 | |
---|
562 | m_bRooted = false; |
---|
563 | |
---|
564 | #if TRACE |
---|
565 | Log("After unroot:\n"); |
---|
566 | LogMe(); |
---|
567 | #endif |
---|
568 | |
---|
569 | return uThirdNode; |
---|
570 | } |
---|
571 | |
---|
572 | // In an unrooted tree, equivalent of GetLeft/Right is |
---|
573 | // GetFirst/SecondNeighbor. |
---|
574 | // uNeighborIndex must be a known neighbor of uNodeIndex. |
---|
575 | // This is the way to find the other two neighbor nodes of |
---|
576 | // an internal node. |
---|
577 | // The labeling as "First" and "Second" neighbor is arbitrary. |
---|
578 | // Calling these functions on a leaf returns NULL_NEIGHBOR, as |
---|
579 | // for GetLeft/Right. |
---|
580 | unsigned Tree::GetFirstNeighbor(unsigned uNodeIndex, unsigned uNeighborIndex) const |
---|
581 | { |
---|
582 | assert(uNodeIndex < m_uNodeCount); |
---|
583 | assert(uNeighborIndex < m_uNodeCount); |
---|
584 | assert(IsEdge(uNodeIndex, uNeighborIndex)); |
---|
585 | |
---|
586 | for (unsigned n = 0; n < 3; ++n) |
---|
587 | { |
---|
588 | unsigned uNeighbor = GetNeighbor(uNodeIndex, n); |
---|
589 | if (NULL_NEIGHBOR != uNeighbor && uNeighborIndex != uNeighbor) |
---|
590 | return uNeighbor; |
---|
591 | } |
---|
592 | return NULL_NEIGHBOR; |
---|
593 | } |
---|
594 | |
---|
595 | unsigned Tree::GetSecondNeighbor(unsigned uNodeIndex, unsigned uNeighborIndex) const |
---|
596 | { |
---|
597 | assert(uNodeIndex < m_uNodeCount); |
---|
598 | assert(uNeighborIndex < m_uNodeCount); |
---|
599 | assert(IsEdge(uNodeIndex, uNeighborIndex)); |
---|
600 | |
---|
601 | bool bFoundOne = false; |
---|
602 | for (unsigned n = 0; n < 3; ++n) |
---|
603 | { |
---|
604 | unsigned uNeighbor = GetNeighbor(uNodeIndex, n); |
---|
605 | if (NULL_NEIGHBOR != uNeighbor && uNeighborIndex != uNeighbor) |
---|
606 | { |
---|
607 | if (bFoundOne) |
---|
608 | return uNeighbor; |
---|
609 | else |
---|
610 | bFoundOne = true; |
---|
611 | } |
---|
612 | } |
---|
613 | return NULL_NEIGHBOR; |
---|
614 | } |
---|
615 | |
---|
616 | // Compute the number of leaves in the sub-tree defined by an edge |
---|
617 | // in an unrooted tree. Conceptually, the tree is cut at this edge, |
---|
618 | // and uNodeIndex2 considered the root of the sub-tree. |
---|
619 | unsigned Tree::GetLeafCountUnrooted(unsigned uNodeIndex1, unsigned uNodeIndex2, |
---|
620 | double *ptrdTotalDistance) const |
---|
621 | { |
---|
622 | assert(!IsRooted()); |
---|
623 | |
---|
624 | if (IsLeaf(uNodeIndex2)) |
---|
625 | { |
---|
626 | *ptrdTotalDistance = GetEdgeLength(uNodeIndex1, uNodeIndex2); |
---|
627 | return 1; |
---|
628 | } |
---|
629 | |
---|
630 | // Recurse down the rooted sub-tree defined by cutting the edge |
---|
631 | // and considering uNodeIndex2 as the root. |
---|
632 | const unsigned uLeft = GetFirstNeighbor(uNodeIndex2, uNodeIndex1); |
---|
633 | const unsigned uRight = GetSecondNeighbor(uNodeIndex2, uNodeIndex1); |
---|
634 | |
---|
635 | double dLeftDistance; |
---|
636 | double dRightDistance; |
---|
637 | |
---|
638 | const unsigned uLeftCount = GetLeafCountUnrooted(uNodeIndex2, uLeft, |
---|
639 | &dLeftDistance); |
---|
640 | const unsigned uRightCount = GetLeafCountUnrooted(uNodeIndex2, uRight, |
---|
641 | &dRightDistance); |
---|
642 | |
---|
643 | *ptrdTotalDistance = dLeftDistance + dRightDistance; |
---|
644 | return uLeftCount + uRightCount; |
---|
645 | } |
---|
646 | |
---|
647 | void Tree::RootUnrootedTree(ROOT Method) |
---|
648 | { |
---|
649 | assert(!IsRooted()); |
---|
650 | #if TRACE |
---|
651 | Log("Tree::RootUnrootedTree, before:"); |
---|
652 | LogMe(); |
---|
653 | #endif |
---|
654 | |
---|
655 | unsigned uNode1; |
---|
656 | unsigned uNode2; |
---|
657 | double dLength1; |
---|
658 | double dLength2; |
---|
659 | FindRoot(*this, &uNode1, &uNode2, &dLength1, &dLength2, Method); |
---|
660 | |
---|
661 | if (m_uNodeCount == m_uCacheCount) |
---|
662 | ExpandCache(); |
---|
663 | m_uRootNodeIndex = m_uNodeCount++; |
---|
664 | |
---|
665 | double dEdgeLength = GetEdgeLength(uNode1, uNode2); |
---|
666 | |
---|
667 | m_uNeighbor1[m_uRootNodeIndex] = NULL_NEIGHBOR; |
---|
668 | m_uNeighbor2[m_uRootNodeIndex] = uNode1; |
---|
669 | m_uNeighbor3[m_uRootNodeIndex] = uNode2; |
---|
670 | |
---|
671 | if (m_uNeighbor1[uNode1] == uNode2) |
---|
672 | m_uNeighbor1[uNode1] = m_uRootNodeIndex; |
---|
673 | else if (m_uNeighbor2[uNode1] == uNode2) |
---|
674 | m_uNeighbor2[uNode1] = m_uRootNodeIndex; |
---|
675 | else |
---|
676 | { |
---|
677 | assert(m_uNeighbor3[uNode1] == uNode2); |
---|
678 | m_uNeighbor3[uNode1] = m_uRootNodeIndex; |
---|
679 | } |
---|
680 | |
---|
681 | if (m_uNeighbor1[uNode2] == uNode1) |
---|
682 | m_uNeighbor1[uNode2] = m_uRootNodeIndex; |
---|
683 | else if (m_uNeighbor2[uNode2] == uNode1) |
---|
684 | m_uNeighbor2[uNode2] = m_uRootNodeIndex; |
---|
685 | else |
---|
686 | { |
---|
687 | assert(m_uNeighbor3[uNode2] == uNode1); |
---|
688 | m_uNeighbor3[uNode2] = m_uRootNodeIndex; |
---|
689 | } |
---|
690 | |
---|
691 | OrientParent(uNode1, m_uRootNodeIndex); |
---|
692 | OrientParent(uNode2, m_uRootNodeIndex); |
---|
693 | |
---|
694 | SetEdgeLength(m_uRootNodeIndex, uNode1, dLength1); |
---|
695 | SetEdgeLength(m_uRootNodeIndex, uNode2, dLength2); |
---|
696 | |
---|
697 | m_bHasHeight[m_uRootNodeIndex] = false; |
---|
698 | |
---|
699 | m_ptrName[m_uRootNodeIndex] = 0; |
---|
700 | |
---|
701 | m_bRooted = true; |
---|
702 | |
---|
703 | #if TRACE |
---|
704 | Log("\nPhy::RootUnrootedTree, after:"); |
---|
705 | LogMe(); |
---|
706 | #endif |
---|
707 | |
---|
708 | Validate(); |
---|
709 | } |
---|
710 | |
---|
711 | bool Tree::HasEdgeLength(unsigned uNodeIndex1, unsigned uNodeIndex2) const |
---|
712 | { |
---|
713 | assert(uNodeIndex1 < m_uNodeCount); |
---|
714 | assert(uNodeIndex2 < m_uNodeCount); |
---|
715 | assert(IsEdge(uNodeIndex1, uNodeIndex2)); |
---|
716 | |
---|
717 | if (m_uNeighbor1[uNodeIndex1] == uNodeIndex2) |
---|
718 | return m_bHasEdgeLength1[uNodeIndex1]; |
---|
719 | else if (m_uNeighbor2[uNodeIndex1] == uNodeIndex2) |
---|
720 | return m_bHasEdgeLength2[uNodeIndex1]; |
---|
721 | assert(m_uNeighbor3[uNodeIndex1] == uNodeIndex2); |
---|
722 | return m_bHasEdgeLength3[uNodeIndex1]; |
---|
723 | } |
---|
724 | |
---|
725 | void Tree::OrientParent(unsigned uNodeIndex, unsigned uParentNodeIndex) |
---|
726 | { |
---|
727 | if (NULL_NEIGHBOR == uNodeIndex) |
---|
728 | return; |
---|
729 | |
---|
730 | if (m_uNeighbor1[uNodeIndex] == uParentNodeIndex) |
---|
731 | ; |
---|
732 | else if (m_uNeighbor2[uNodeIndex] == uParentNodeIndex) |
---|
733 | { |
---|
734 | double dEdgeLength2 = m_dEdgeLength2[uNodeIndex]; |
---|
735 | m_uNeighbor2[uNodeIndex] = m_uNeighbor1[uNodeIndex]; |
---|
736 | m_dEdgeLength2[uNodeIndex] = m_dEdgeLength1[uNodeIndex]; |
---|
737 | m_uNeighbor1[uNodeIndex] = uParentNodeIndex; |
---|
738 | m_dEdgeLength1[uNodeIndex] = dEdgeLength2; |
---|
739 | } |
---|
740 | else |
---|
741 | { |
---|
742 | assert(m_uNeighbor3[uNodeIndex] == uParentNodeIndex); |
---|
743 | double dEdgeLength3 = m_dEdgeLength3[uNodeIndex]; |
---|
744 | m_uNeighbor3[uNodeIndex] = m_uNeighbor1[uNodeIndex]; |
---|
745 | m_dEdgeLength3[uNodeIndex] = m_dEdgeLength1[uNodeIndex]; |
---|
746 | m_uNeighbor1[uNodeIndex] = uParentNodeIndex; |
---|
747 | m_dEdgeLength1[uNodeIndex] = dEdgeLength3; |
---|
748 | } |
---|
749 | |
---|
750 | OrientParent(m_uNeighbor2[uNodeIndex], uNodeIndex); |
---|
751 | OrientParent(m_uNeighbor3[uNodeIndex], uNodeIndex); |
---|
752 | } |
---|
753 | |
---|
754 | unsigned Tree::FirstDepthFirstNode() const |
---|
755 | { |
---|
756 | assert(IsRooted()); |
---|
757 | |
---|
758 | // Descend via left branches until we hit a leaf |
---|
759 | unsigned uNodeIndex = m_uRootNodeIndex; |
---|
760 | while (!IsLeaf(uNodeIndex)) |
---|
761 | uNodeIndex = GetLeft(uNodeIndex); |
---|
762 | return uNodeIndex; |
---|
763 | } |
---|
764 | |
---|
765 | unsigned Tree::FirstDepthFirstNodeR() const |
---|
766 | { |
---|
767 | assert(IsRooted()); |
---|
768 | |
---|
769 | // Descend via left branches until we hit a leaf |
---|
770 | unsigned uNodeIndex = m_uRootNodeIndex; |
---|
771 | while (!IsLeaf(uNodeIndex)) |
---|
772 | uNodeIndex = GetRight(uNodeIndex); |
---|
773 | return uNodeIndex; |
---|
774 | } |
---|
775 | |
---|
776 | unsigned Tree::NextDepthFirstNode(unsigned uNodeIndex) const |
---|
777 | { |
---|
778 | #if TRACE |
---|
779 | Log("NextDepthFirstNode(%3u) ", uNodeIndex); |
---|
780 | #endif |
---|
781 | |
---|
782 | assert(IsRooted()); |
---|
783 | assert(uNodeIndex < m_uNodeCount); |
---|
784 | |
---|
785 | if (IsRoot(uNodeIndex)) |
---|
786 | { |
---|
787 | #if TRACE |
---|
788 | Log(">> Node %u is root, end of traversal\n", uNodeIndex); |
---|
789 | #endif |
---|
790 | return NULL_NEIGHBOR; |
---|
791 | } |
---|
792 | |
---|
793 | unsigned uParent = GetParent(uNodeIndex); |
---|
794 | if (GetRight(uParent) == uNodeIndex) |
---|
795 | { |
---|
796 | #if TRACE |
---|
797 | Log(">> Is right branch, return parent=%u\n", uParent); |
---|
798 | #endif |
---|
799 | return uParent; |
---|
800 | } |
---|
801 | |
---|
802 | uNodeIndex = GetRight(uParent); |
---|
803 | #if TRACE |
---|
804 | Log(">> Descend left from right sibling=%u ... ", uNodeIndex); |
---|
805 | #endif |
---|
806 | while (!IsLeaf(uNodeIndex)) |
---|
807 | uNodeIndex = GetLeft(uNodeIndex); |
---|
808 | |
---|
809 | #if TRACE |
---|
810 | Log("bottom out at leaf=%u\n", uNodeIndex); |
---|
811 | #endif |
---|
812 | return uNodeIndex; |
---|
813 | } |
---|
814 | |
---|
815 | unsigned Tree::NextDepthFirstNodeR(unsigned uNodeIndex) const |
---|
816 | { |
---|
817 | #if TRACE |
---|
818 | Log("NextDepthFirstNode(%3u) ", uNodeIndex); |
---|
819 | #endif |
---|
820 | |
---|
821 | assert(IsRooted()); |
---|
822 | assert(uNodeIndex < m_uNodeCount); |
---|
823 | |
---|
824 | if (IsRoot(uNodeIndex)) |
---|
825 | { |
---|
826 | #if TRACE |
---|
827 | Log(">> Node %u is root, end of traversal\n", uNodeIndex); |
---|
828 | #endif |
---|
829 | return NULL_NEIGHBOR; |
---|
830 | } |
---|
831 | |
---|
832 | unsigned uParent = GetParent(uNodeIndex); |
---|
833 | if (GetLeft(uParent) == uNodeIndex) |
---|
834 | { |
---|
835 | #if TRACE |
---|
836 | Log(">> Is left branch, return parent=%u\n", uParent); |
---|
837 | #endif |
---|
838 | return uParent; |
---|
839 | } |
---|
840 | |
---|
841 | uNodeIndex = GetLeft(uParent); |
---|
842 | #if TRACE |
---|
843 | Log(">> Descend right from left sibling=%u ... ", uNodeIndex); |
---|
844 | #endif |
---|
845 | while (!IsLeaf(uNodeIndex)) |
---|
846 | uNodeIndex = GetRight(uNodeIndex); |
---|
847 | |
---|
848 | #if TRACE |
---|
849 | Log("bottom out at leaf=%u\n", uNodeIndex); |
---|
850 | #endif |
---|
851 | return uNodeIndex; |
---|
852 | } |
---|
853 | |
---|
854 | void Tree::UnrootByDeletingRoot() |
---|
855 | { |
---|
856 | assert(IsRooted()); |
---|
857 | assert(m_uNodeCount >= 3); |
---|
858 | |
---|
859 | const unsigned uLeft = GetLeft(m_uRootNodeIndex); |
---|
860 | const unsigned uRight = GetRight(m_uRootNodeIndex); |
---|
861 | |
---|
862 | m_uNeighbor1[uLeft] = uRight; |
---|
863 | m_uNeighbor1[uRight] = uLeft; |
---|
864 | |
---|
865 | bool bHasEdgeLength = HasEdgeLength(m_uRootNodeIndex, uLeft) && |
---|
866 | HasEdgeLength(m_uRootNodeIndex, uRight); |
---|
867 | if (bHasEdgeLength) |
---|
868 | { |
---|
869 | double dEdgeLength = GetEdgeLength(m_uRootNodeIndex, uLeft) + |
---|
870 | GetEdgeLength(m_uRootNodeIndex, uRight); |
---|
871 | m_dEdgeLength1[uLeft] = dEdgeLength; |
---|
872 | m_dEdgeLength1[uRight] = dEdgeLength; |
---|
873 | } |
---|
874 | |
---|
875 | // Remove root node entry from arrays |
---|
876 | const unsigned uMoveCount = m_uNodeCount - m_uRootNodeIndex; |
---|
877 | const unsigned uUnsBytes = uMoveCount*sizeof(unsigned); |
---|
878 | memmove(m_uNeighbor1 + m_uRootNodeIndex, m_uNeighbor1 + m_uRootNodeIndex + 1, |
---|
879 | uUnsBytes); |
---|
880 | memmove(m_uNeighbor2 + m_uRootNodeIndex, m_uNeighbor2 + m_uRootNodeIndex + 1, |
---|
881 | uUnsBytes); |
---|
882 | memmove(m_uNeighbor3 + m_uRootNodeIndex, m_uNeighbor3 + m_uRootNodeIndex + 1, |
---|
883 | uUnsBytes); |
---|
884 | |
---|
885 | const unsigned uDoubleBytes = uMoveCount*sizeof(double); |
---|
886 | memmove(m_dEdgeLength1 + m_uRootNodeIndex, m_dEdgeLength1 + m_uRootNodeIndex + 1, |
---|
887 | uDoubleBytes); |
---|
888 | memmove(m_dEdgeLength2 + m_uRootNodeIndex, m_dEdgeLength2 + m_uRootNodeIndex + 1, |
---|
889 | uDoubleBytes); |
---|
890 | memmove(m_dEdgeLength3 + m_uRootNodeIndex, m_dEdgeLength3 + m_uRootNodeIndex + 1, |
---|
891 | uDoubleBytes); |
---|
892 | |
---|
893 | const unsigned uBoolBytes = uMoveCount*sizeof(bool); |
---|
894 | memmove(m_bHasEdgeLength1 + m_uRootNodeIndex, m_bHasEdgeLength1 + m_uRootNodeIndex + 1, |
---|
895 | uBoolBytes); |
---|
896 | memmove(m_bHasEdgeLength2 + m_uRootNodeIndex, m_bHasEdgeLength2 + m_uRootNodeIndex + 1, |
---|
897 | uBoolBytes); |
---|
898 | memmove(m_bHasEdgeLength3 + m_uRootNodeIndex, m_bHasEdgeLength3 + m_uRootNodeIndex + 1, |
---|
899 | uBoolBytes); |
---|
900 | |
---|
901 | const unsigned uPtrBytes = uMoveCount*sizeof(char *); |
---|
902 | memmove(m_ptrName + m_uRootNodeIndex, m_ptrName + m_uRootNodeIndex + 1, uPtrBytes); |
---|
903 | |
---|
904 | --m_uNodeCount; |
---|
905 | m_bRooted = false; |
---|
906 | |
---|
907 | // Fix up table entries |
---|
908 | for (unsigned uNodeIndex = 0; uNodeIndex < m_uNodeCount; ++uNodeIndex) |
---|
909 | { |
---|
910 | #define DEC(x) if (x != NULL_NEIGHBOR && x > m_uRootNodeIndex) --x; |
---|
911 | DEC(m_uNeighbor1[uNodeIndex]) |
---|
912 | DEC(m_uNeighbor2[uNodeIndex]) |
---|
913 | DEC(m_uNeighbor3[uNodeIndex]) |
---|
914 | #undef DEC |
---|
915 | } |
---|
916 | |
---|
917 | Validate(); |
---|
918 | } |
---|
919 | |
---|
920 | unsigned Tree::GetLeafParent(unsigned uNodeIndex) const |
---|
921 | { |
---|
922 | assert(IsLeaf(uNodeIndex)); |
---|
923 | |
---|
924 | if (IsRooted()) |
---|
925 | return GetParent(uNodeIndex); |
---|
926 | |
---|
927 | if (m_uNeighbor1[uNodeIndex] != NULL_NEIGHBOR) |
---|
928 | return m_uNeighbor1[uNodeIndex]; |
---|
929 | if (m_uNeighbor2[uNodeIndex] != NULL_NEIGHBOR) |
---|
930 | return m_uNeighbor2[uNodeIndex]; |
---|
931 | return m_uNeighbor3[uNodeIndex]; |
---|
932 | } |
---|
933 | |
---|
934 | // TODO: This is not efficient for large trees, should cache. |
---|
935 | double Tree::GetNodeHeight(unsigned uNodeIndex) const |
---|
936 | { |
---|
937 | if (!IsRooted()) |
---|
938 | Quit("Tree::GetNodeHeight: undefined unless rooted tree"); |
---|
939 | |
---|
940 | if (IsLeaf(uNodeIndex)) |
---|
941 | return 0.0; |
---|
942 | |
---|
943 | if (m_bHasHeight[uNodeIndex]) |
---|
944 | return m_dHeight[uNodeIndex]; |
---|
945 | |
---|
946 | const unsigned uLeft = GetLeft(uNodeIndex); |
---|
947 | const unsigned uRight = GetRight(uNodeIndex); |
---|
948 | double dLeftLength = GetEdgeLength(uNodeIndex, uLeft); |
---|
949 | double dRightLength = GetEdgeLength(uNodeIndex, uRight); |
---|
950 | |
---|
951 | if (dLeftLength < 0) |
---|
952 | dLeftLength = 0; |
---|
953 | if (dRightLength < 0) |
---|
954 | dRightLength = 0; |
---|
955 | |
---|
956 | const double dLeftHeight = dLeftLength + GetNodeHeight(uLeft); |
---|
957 | const double dRightHeight = dRightLength + GetNodeHeight(uRight); |
---|
958 | const double dHeight = (dLeftHeight + dRightHeight)/2; |
---|
959 | m_bHasHeight[uNodeIndex] = true; |
---|
960 | m_dHeight[uNodeIndex] = dHeight; |
---|
961 | return dHeight; |
---|
962 | } |
---|
963 | |
---|
964 | unsigned Tree::GetNeighborSubscript(unsigned uNodeIndex, unsigned uNeighborIndex) const |
---|
965 | { |
---|
966 | assert(uNodeIndex < m_uNodeCount); |
---|
967 | assert(uNeighborIndex < m_uNodeCount); |
---|
968 | if (uNeighborIndex == m_uNeighbor1[uNodeIndex]) |
---|
969 | return 0; |
---|
970 | if (uNeighborIndex == m_uNeighbor2[uNodeIndex]) |
---|
971 | return 1; |
---|
972 | if (uNeighborIndex == m_uNeighbor3[uNodeIndex]) |
---|
973 | return 2; |
---|
974 | return NULL_NEIGHBOR; |
---|
975 | } |
---|
976 | |
---|
977 | unsigned Tree::GetNeighbor(unsigned uNodeIndex, unsigned uNeighborSubscript) const |
---|
978 | { |
---|
979 | switch (uNeighborSubscript) |
---|
980 | { |
---|
981 | case 0: |
---|
982 | return m_uNeighbor1[uNodeIndex]; |
---|
983 | case 1: |
---|
984 | return m_uNeighbor2[uNodeIndex]; |
---|
985 | case 2: |
---|
986 | return m_uNeighbor3[uNodeIndex]; |
---|
987 | } |
---|
988 | Quit("Tree::GetNeighbor, sub=%u", uNeighborSubscript); |
---|
989 | return NULL_NEIGHBOR; |
---|
990 | } |
---|
991 | |
---|
992 | // TODO: check if this is a performance issue, could cache a lookup table |
---|
993 | unsigned Tree::LeafIndexToNodeIndex(unsigned uLeafIndex) const |
---|
994 | { |
---|
995 | const unsigned uNodeCount = GetNodeCount(); |
---|
996 | unsigned uLeafCount = 0; |
---|
997 | for (unsigned uNodeIndex = 0; uNodeIndex < uNodeCount; ++uNodeIndex) |
---|
998 | { |
---|
999 | if (IsLeaf(uNodeIndex)) |
---|
1000 | { |
---|
1001 | if (uLeafCount == uLeafIndex) |
---|
1002 | return uNodeIndex; |
---|
1003 | else |
---|
1004 | ++uLeafCount; |
---|
1005 | } |
---|
1006 | } |
---|
1007 | Quit("LeafIndexToNodeIndex: out of range"); |
---|
1008 | return 0; |
---|
1009 | } |
---|
1010 | |
---|
1011 | unsigned Tree::GetLeafNodeIndex(const char *ptrName) const |
---|
1012 | { |
---|
1013 | const unsigned uNodeCount = GetNodeCount(); |
---|
1014 | for (unsigned uNodeIndex = 0; uNodeIndex < uNodeCount; ++uNodeIndex) |
---|
1015 | { |
---|
1016 | if (!IsLeaf(uNodeIndex)) |
---|
1017 | continue; |
---|
1018 | const char *ptrLeafName = GetLeafName(uNodeIndex); |
---|
1019 | if (0 == strcmp(ptrName, ptrLeafName)) |
---|
1020 | return uNodeIndex; |
---|
1021 | } |
---|
1022 | Quit("Tree::GetLeafNodeIndex, name not found"); |
---|
1023 | return 0; |
---|
1024 | } |
---|
1025 | |
---|
1026 | void Tree::Copy(const Tree &tree) |
---|
1027 | { |
---|
1028 | const unsigned uNodeCount = tree.GetNodeCount(); |
---|
1029 | InitCache(uNodeCount); |
---|
1030 | |
---|
1031 | m_uNodeCount = uNodeCount; |
---|
1032 | |
---|
1033 | const size_t UnsignedBytes = uNodeCount*sizeof(unsigned); |
---|
1034 | const size_t DoubleBytes = uNodeCount*sizeof(double); |
---|
1035 | const size_t BoolBytes = uNodeCount*sizeof(bool); |
---|
1036 | |
---|
1037 | memcpy(m_uNeighbor1, tree.m_uNeighbor1, UnsignedBytes); |
---|
1038 | memcpy(m_uNeighbor2, tree.m_uNeighbor2, UnsignedBytes); |
---|
1039 | memcpy(m_uNeighbor3, tree.m_uNeighbor3, UnsignedBytes); |
---|
1040 | |
---|
1041 | memcpy(m_Ids, tree.m_Ids, UnsignedBytes); |
---|
1042 | |
---|
1043 | memcpy(m_dEdgeLength1, tree.m_dEdgeLength1, DoubleBytes); |
---|
1044 | memcpy(m_dEdgeLength2, tree.m_dEdgeLength2, DoubleBytes); |
---|
1045 | memcpy(m_dEdgeLength3, tree.m_dEdgeLength3, DoubleBytes); |
---|
1046 | |
---|
1047 | memcpy(m_dHeight, tree.m_dHeight, DoubleBytes); |
---|
1048 | |
---|
1049 | memcpy(m_bHasEdgeLength1, tree.m_bHasEdgeLength1, BoolBytes); |
---|
1050 | memcpy(m_bHasEdgeLength2, tree.m_bHasEdgeLength2, BoolBytes); |
---|
1051 | memcpy(m_bHasEdgeLength3, tree.m_bHasEdgeLength3, BoolBytes); |
---|
1052 | |
---|
1053 | memcpy(m_bHasHeight, tree.m_bHasHeight, BoolBytes); |
---|
1054 | |
---|
1055 | m_uRootNodeIndex = tree.m_uRootNodeIndex; |
---|
1056 | m_bRooted = tree.m_bRooted; |
---|
1057 | |
---|
1058 | for (unsigned uNodeIndex = 0; uNodeIndex < m_uNodeCount; ++uNodeIndex) |
---|
1059 | { |
---|
1060 | if (tree.IsLeaf(uNodeIndex)) |
---|
1061 | { |
---|
1062 | const char *ptrName = tree.GetLeafName(uNodeIndex); |
---|
1063 | m_ptrName[uNodeIndex] = strsave(ptrName); |
---|
1064 | } |
---|
1065 | else |
---|
1066 | m_ptrName[uNodeIndex] = 0; |
---|
1067 | } |
---|
1068 | |
---|
1069 | #if DEBUG |
---|
1070 | Validate(); |
---|
1071 | #endif |
---|
1072 | } |
---|
1073 | |
---|
1074 | // Create rooted tree from a vector description. |
---|
1075 | // Node indexes are 0..N-1 for leaves, N..2N-2 for |
---|
1076 | // internal nodes. |
---|
1077 | // Vector subscripts are i-N and have values for |
---|
1078 | // internal nodes only, but those values are node |
---|
1079 | // indexes 0..2N-2. So e.g. if N=6 and Left[2]=1, |
---|
1080 | // this means that the third internal node (node index 8) |
---|
1081 | // has the second leaf (node index 1) as its left child. |
---|
1082 | // uRoot gives the vector subscript of the root, so add N |
---|
1083 | // to get the node index. |
---|
1084 | void Tree::Create(unsigned uLeafCount, unsigned uRoot, const unsigned Left[], |
---|
1085 | const unsigned Right[], const float LeftLength[], const float RightLength[], |
---|
1086 | const unsigned LeafIds[], char **LeafNames) |
---|
1087 | { |
---|
1088 | Clear(); |
---|
1089 | |
---|
1090 | m_uNodeCount = 2*uLeafCount - 1; |
---|
1091 | InitCache(m_uNodeCount); |
---|
1092 | |
---|
1093 | for (unsigned uNodeIndex = 0; uNodeIndex < uLeafCount; ++uNodeIndex) |
---|
1094 | { |
---|
1095 | m_Ids[uNodeIndex] = LeafIds[uNodeIndex]; |
---|
1096 | m_ptrName[uNodeIndex] = strsave(LeafNames[uNodeIndex]); |
---|
1097 | } |
---|
1098 | |
---|
1099 | for (unsigned uNodeIndex = uLeafCount; uNodeIndex < m_uNodeCount; ++uNodeIndex) |
---|
1100 | { |
---|
1101 | unsigned v = uNodeIndex - uLeafCount; |
---|
1102 | unsigned uLeft = Left[v]; |
---|
1103 | unsigned uRight = Right[v]; |
---|
1104 | float fLeft = LeftLength[v]; |
---|
1105 | float fRight = RightLength[v]; |
---|
1106 | |
---|
1107 | m_uNeighbor2[uNodeIndex] = uLeft; |
---|
1108 | m_uNeighbor3[uNodeIndex] = uRight; |
---|
1109 | |
---|
1110 | m_bHasEdgeLength2[uNodeIndex] = true; |
---|
1111 | m_bHasEdgeLength3[uNodeIndex] = true; |
---|
1112 | |
---|
1113 | m_dEdgeLength2[uNodeIndex] = fLeft; |
---|
1114 | m_dEdgeLength3[uNodeIndex] = fRight; |
---|
1115 | |
---|
1116 | m_uNeighbor1[uLeft] = uNodeIndex; |
---|
1117 | m_uNeighbor1[uRight] = uNodeIndex; |
---|
1118 | |
---|
1119 | m_dEdgeLength1[uLeft] = fLeft; |
---|
1120 | m_dEdgeLength1[uRight] = fRight; |
---|
1121 | |
---|
1122 | m_bHasEdgeLength1[uLeft] = true; |
---|
1123 | m_bHasEdgeLength1[uRight] = true; |
---|
1124 | } |
---|
1125 | |
---|
1126 | m_bRooted = true; |
---|
1127 | m_uRootNodeIndex = uRoot + uLeafCount; |
---|
1128 | |
---|
1129 | Validate(); |
---|
1130 | } |
---|