1 | #include "muscle.h" |
---|
2 | #include "tree.h" |
---|
3 | #include <stdio.h> |
---|
4 | |
---|
5 | #define TRACE 0 |
---|
6 | |
---|
7 | void ClusterByHeight(const Tree &tree, double dMaxHeight, unsigned Subtrees[], |
---|
8 | unsigned *ptruSubtreeCount) |
---|
9 | { |
---|
10 | if (!tree.IsRooted()) |
---|
11 | Quit("ClusterByHeight: requires rooted tree"); |
---|
12 | |
---|
13 | #if TRACE |
---|
14 | Log("ClusterByHeight, max height=%g\n", dMaxHeight); |
---|
15 | #endif |
---|
16 | |
---|
17 | unsigned uSubtreeCount = 0; |
---|
18 | const unsigned uNodeCount = tree.GetNodeCount(); |
---|
19 | for (unsigned uNodeIndex = 0; uNodeIndex < uNodeCount; ++uNodeIndex) |
---|
20 | { |
---|
21 | if (tree.IsRoot(uNodeIndex)) |
---|
22 | continue; |
---|
23 | unsigned uParent = tree.GetParent(uNodeIndex); |
---|
24 | double dHeight = tree.GetNodeHeight(uNodeIndex); |
---|
25 | double dParentHeight = tree.GetNodeHeight(uParent); |
---|
26 | |
---|
27 | #if TRACE |
---|
28 | Log("Node %3u Height %5.2f ParentHeight %5.2f\n", |
---|
29 | uNodeIndex, dHeight, dParentHeight); |
---|
30 | #endif |
---|
31 | if (dParentHeight > dMaxHeight && dHeight <= dMaxHeight) |
---|
32 | { |
---|
33 | Subtrees[uSubtreeCount] = uNodeIndex; |
---|
34 | #if TRACE |
---|
35 | Log("Subtree[%u]=%u\n", uSubtreeCount, uNodeIndex); |
---|
36 | #endif |
---|
37 | ++uSubtreeCount; |
---|
38 | } |
---|
39 | } |
---|
40 | *ptruSubtreeCount = uSubtreeCount; |
---|
41 | } |
---|
42 | |
---|
43 | static void ClusterBySubfamCount_Iteration(const Tree &tree, unsigned Subfams[], |
---|
44 | unsigned uCount) |
---|
45 | { |
---|
46 | // Find highest child node of current set of subfamilies. |
---|
47 | double dHighestHeight = -1e20; |
---|
48 | int iParentSubscript = -1; |
---|
49 | |
---|
50 | for (int n = 0; n < (int) uCount; ++n) |
---|
51 | { |
---|
52 | const unsigned uNodeIndex = Subfams[n]; |
---|
53 | if (tree.IsLeaf(uNodeIndex)) |
---|
54 | continue; |
---|
55 | |
---|
56 | const unsigned uLeft = tree.GetLeft(uNodeIndex); |
---|
57 | const double dHeightLeft = tree.GetNodeHeight(uLeft); |
---|
58 | if (dHeightLeft > dHighestHeight) |
---|
59 | { |
---|
60 | dHighestHeight = dHeightLeft; |
---|
61 | iParentSubscript = n; |
---|
62 | } |
---|
63 | |
---|
64 | const unsigned uRight = tree.GetRight(uNodeIndex); |
---|
65 | const double dHeightRight = tree.GetNodeHeight(uRight); |
---|
66 | if (dHeightRight > dHighestHeight) |
---|
67 | { |
---|
68 | dHighestHeight = dHeightRight; |
---|
69 | iParentSubscript = n; |
---|
70 | } |
---|
71 | } |
---|
72 | |
---|
73 | if (-1 == iParentSubscript) |
---|
74 | Quit("CBSFCIter: failed to find highest child"); |
---|
75 | |
---|
76 | const unsigned uNodeIndex = Subfams[iParentSubscript]; |
---|
77 | const unsigned uLeft = tree.GetLeft(uNodeIndex); |
---|
78 | const unsigned uRight = tree.GetRight(uNodeIndex); |
---|
79 | |
---|
80 | // Delete parent by replacing with left child |
---|
81 | Subfams[iParentSubscript] = uLeft; |
---|
82 | |
---|
83 | // Append right child to list |
---|
84 | Subfams[uCount] = uRight; |
---|
85 | |
---|
86 | #if TRACE |
---|
87 | { |
---|
88 | Log("Iter %3u:", uCount); |
---|
89 | for (unsigned n = 0; n < uCount; ++n) |
---|
90 | Log(" %u", Subfams[n]); |
---|
91 | Log("\n"); |
---|
92 | } |
---|
93 | #endif |
---|
94 | } |
---|
95 | |
---|
96 | // Divide a tree containing N leaves into k families by |
---|
97 | // cutting the tree at a horizontal line at some height. |
---|
98 | // Each internal node defines a height for the cut, |
---|
99 | // considering all internal nodes enumerates all distinct |
---|
100 | // cuts. Visit internal nodes in decreasing order of height. |
---|
101 | // Visiting the node corresponds to moving the horizontal |
---|
102 | // line down to cut the tree at the height of that node. |
---|
103 | // We consider the cut to be "infinitestimally below" |
---|
104 | // the node, so the effect is to remove the current node |
---|
105 | // from the list of subfamilies and add its two children. |
---|
106 | // We must visit a parent before its children (so care may |
---|
107 | // be needed to handle zero edge lengths properly). |
---|
108 | // We assume that N is small, and write dumb O(N^2) code. |
---|
109 | // More efficient strategies are possible for large N |
---|
110 | // by maintaining a list of nodes sorted by height. |
---|
111 | void ClusterBySubfamCount(const Tree &tree, unsigned uSubfamCount, |
---|
112 | unsigned Subfams[], unsigned *ptruSubfamCount) |
---|
113 | { |
---|
114 | const unsigned uNodeCount = tree.GetNodeCount(); |
---|
115 | const unsigned uLeafCount = (uNodeCount + 1)/2; |
---|
116 | |
---|
117 | // Special case: empty tree |
---|
118 | if (0 == uNodeCount) |
---|
119 | { |
---|
120 | *ptruSubfamCount = 0; |
---|
121 | return; |
---|
122 | } |
---|
123 | |
---|
124 | // Special case: more subfamilies than leaves |
---|
125 | if (uSubfamCount >= uLeafCount) |
---|
126 | { |
---|
127 | for (unsigned n = 0; n < uLeafCount; ++n) |
---|
128 | Subfams[n] = n; |
---|
129 | *ptruSubfamCount = uLeafCount; |
---|
130 | return; |
---|
131 | } |
---|
132 | |
---|
133 | // Initialize list of subfamilies to be root |
---|
134 | Subfams[0] = tree.GetRootNodeIndex(); |
---|
135 | |
---|
136 | // Iterate |
---|
137 | for (unsigned i = 1; i < uSubfamCount; ++i) |
---|
138 | ClusterBySubfamCount_Iteration(tree, Subfams, i); |
---|
139 | |
---|
140 | *ptruSubfamCount = uSubfamCount; |
---|
141 | } |
---|
142 | |
---|
143 | static void GetLeavesRecurse(const Tree &tree, unsigned uNodeIndex, |
---|
144 | unsigned Leaves[], unsigned &uLeafCount /* in-out */) |
---|
145 | { |
---|
146 | if (tree.IsLeaf(uNodeIndex)) |
---|
147 | { |
---|
148 | Leaves[uLeafCount] = uNodeIndex; |
---|
149 | ++uLeafCount; |
---|
150 | return; |
---|
151 | } |
---|
152 | |
---|
153 | const unsigned uLeft = tree.GetLeft(uNodeIndex); |
---|
154 | const unsigned uRight = tree.GetRight(uNodeIndex); |
---|
155 | |
---|
156 | GetLeavesRecurse(tree, uLeft, Leaves, uLeafCount); |
---|
157 | GetLeavesRecurse(tree, uRight, Leaves, uLeafCount); |
---|
158 | } |
---|
159 | |
---|
160 | void GetLeaves(const Tree &tree, unsigned uNodeIndex, unsigned Leaves[], |
---|
161 | unsigned *ptruLeafCount) |
---|
162 | { |
---|
163 | unsigned uLeafCount = 0; |
---|
164 | GetLeavesRecurse(tree, uNodeIndex, Leaves, uLeafCount); |
---|
165 | *ptruLeafCount = uLeafCount; |
---|
166 | } |
---|
167 | |
---|
168 | void Tree::PruneTree(const Tree &tree, unsigned Subfams[], |
---|
169 | unsigned uSubfamCount) |
---|
170 | { |
---|
171 | if (!tree.IsRooted()) |
---|
172 | Quit("Tree::PruneTree: requires rooted tree"); |
---|
173 | |
---|
174 | Clear(); |
---|
175 | |
---|
176 | m_uNodeCount = 2*uSubfamCount - 1; |
---|
177 | InitCache(m_uNodeCount); |
---|
178 | |
---|
179 | const unsigned uUnprunedNodeCount = tree.GetNodeCount(); |
---|
180 | |
---|
181 | unsigned *uUnprunedToPrunedIndex = new unsigned[uUnprunedNodeCount]; |
---|
182 | unsigned *uPrunedToUnprunedIndex = new unsigned[m_uNodeCount]; |
---|
183 | |
---|
184 | for (unsigned n = 0; n < uUnprunedNodeCount; ++n) |
---|
185 | uUnprunedToPrunedIndex[n] = NULL_NEIGHBOR; |
---|
186 | |
---|
187 | for (unsigned n = 0; n < m_uNodeCount; ++n) |
---|
188 | uPrunedToUnprunedIndex[n] = NULL_NEIGHBOR; |
---|
189 | |
---|
190 | // Create mapping between unpruned and pruned node indexes |
---|
191 | unsigned uInternalNodeIndex = uSubfamCount; |
---|
192 | for (unsigned uSubfamIndex = 0; uSubfamIndex < uSubfamCount; ++uSubfamIndex) |
---|
193 | { |
---|
194 | unsigned uUnprunedNodeIndex = Subfams[uSubfamIndex]; |
---|
195 | uUnprunedToPrunedIndex[uUnprunedNodeIndex] = uSubfamIndex; |
---|
196 | uPrunedToUnprunedIndex[uSubfamIndex] = uUnprunedNodeIndex; |
---|
197 | for (;;) |
---|
198 | { |
---|
199 | uUnprunedNodeIndex = tree.GetParent(uUnprunedNodeIndex); |
---|
200 | if (tree.IsRoot(uUnprunedNodeIndex)) |
---|
201 | break; |
---|
202 | |
---|
203 | // Already visited this node? |
---|
204 | if (NULL_NEIGHBOR != uUnprunedToPrunedIndex[uUnprunedNodeIndex]) |
---|
205 | break; |
---|
206 | |
---|
207 | uUnprunedToPrunedIndex[uUnprunedNodeIndex] = uInternalNodeIndex; |
---|
208 | uPrunedToUnprunedIndex[uInternalNodeIndex] = uUnprunedNodeIndex; |
---|
209 | |
---|
210 | ++uInternalNodeIndex; |
---|
211 | } |
---|
212 | } |
---|
213 | |
---|
214 | const unsigned uUnprunedRootIndex = tree.GetRootNodeIndex(); |
---|
215 | uUnprunedToPrunedIndex[uUnprunedRootIndex] = uInternalNodeIndex; |
---|
216 | uPrunedToUnprunedIndex[uInternalNodeIndex] = uUnprunedRootIndex; |
---|
217 | |
---|
218 | #if TRACE |
---|
219 | { |
---|
220 | Log("Pruned to unpruned:\n"); |
---|
221 | for (unsigned i = 0; i < m_uNodeCount; ++i) |
---|
222 | Log(" [%u]=%u", i, uPrunedToUnprunedIndex[i]); |
---|
223 | Log("\n"); |
---|
224 | Log("Unpruned to pruned:\n"); |
---|
225 | for (unsigned i = 0; i < uUnprunedNodeCount; ++i) |
---|
226 | { |
---|
227 | unsigned n = uUnprunedToPrunedIndex[i]; |
---|
228 | if (n != NULL_NEIGHBOR) |
---|
229 | Log(" [%u]=%u", i, n); |
---|
230 | } |
---|
231 | Log("\n"); |
---|
232 | } |
---|
233 | #endif |
---|
234 | |
---|
235 | if (uInternalNodeIndex != m_uNodeCount - 1) |
---|
236 | Quit("Tree::PruneTree, Internal error"); |
---|
237 | |
---|
238 | // Nodes 0, 1 ... are the leaves |
---|
239 | for (unsigned uSubfamIndex = 0; uSubfamIndex < uSubfamCount; ++uSubfamIndex) |
---|
240 | { |
---|
241 | char szName[32]; |
---|
242 | sprintf(szName, "Subfam_%u", uSubfamIndex + 1); |
---|
243 | m_ptrName[uSubfamIndex] = strsave(szName); |
---|
244 | } |
---|
245 | |
---|
246 | for (unsigned uPrunedNodeIndex = uSubfamCount; uPrunedNodeIndex < m_uNodeCount; |
---|
247 | ++uPrunedNodeIndex) |
---|
248 | { |
---|
249 | unsigned uUnprunedNodeIndex = uPrunedToUnprunedIndex[uPrunedNodeIndex]; |
---|
250 | |
---|
251 | const unsigned uUnprunedLeft = tree.GetLeft(uUnprunedNodeIndex); |
---|
252 | const unsigned uUnprunedRight = tree.GetRight(uUnprunedNodeIndex); |
---|
253 | |
---|
254 | const unsigned uPrunedLeft = uUnprunedToPrunedIndex[uUnprunedLeft]; |
---|
255 | const unsigned uPrunedRight = uUnprunedToPrunedIndex[uUnprunedRight]; |
---|
256 | |
---|
257 | const double dLeftLength = |
---|
258 | tree.GetEdgeLength(uUnprunedNodeIndex, uUnprunedLeft); |
---|
259 | const double dRightLength = |
---|
260 | tree.GetEdgeLength(uUnprunedNodeIndex, uUnprunedRight); |
---|
261 | |
---|
262 | m_uNeighbor2[uPrunedNodeIndex] = uPrunedLeft; |
---|
263 | m_uNeighbor3[uPrunedNodeIndex] = uPrunedRight; |
---|
264 | |
---|
265 | m_dEdgeLength1[uPrunedLeft] = dLeftLength; |
---|
266 | m_dEdgeLength1[uPrunedRight] = dRightLength; |
---|
267 | |
---|
268 | m_uNeighbor1[uPrunedLeft] = uPrunedNodeIndex; |
---|
269 | m_uNeighbor1[uPrunedRight] = uPrunedNodeIndex; |
---|
270 | |
---|
271 | m_bHasEdgeLength1[uPrunedLeft] = true; |
---|
272 | m_bHasEdgeLength1[uPrunedRight] = true; |
---|
273 | |
---|
274 | m_dEdgeLength2[uPrunedNodeIndex] = dLeftLength; |
---|
275 | m_dEdgeLength3[uPrunedNodeIndex] = dRightLength; |
---|
276 | |
---|
277 | m_bHasEdgeLength2[uPrunedNodeIndex] = true; |
---|
278 | m_bHasEdgeLength3[uPrunedNodeIndex] = true; |
---|
279 | } |
---|
280 | |
---|
281 | m_uRootNodeIndex = uUnprunedToPrunedIndex[uUnprunedRootIndex]; |
---|
282 | |
---|
283 | m_bRooted = true; |
---|
284 | |
---|
285 | Validate(); |
---|
286 | |
---|
287 | delete[] uUnprunedToPrunedIndex; |
---|
288 | } |
---|
289 | |
---|
290 | void LeafIndexesToIds(const Tree &tree, const unsigned Leaves[], unsigned uCount, |
---|
291 | unsigned Ids[]) |
---|
292 | { |
---|
293 | for (unsigned n = 0; n < uCount; ++n) |
---|
294 | Ids[n] = tree.GetLeafId(Leaves[n]); |
---|
295 | } |
---|