1 | /* |
---|
2 | * MrBayes 3 |
---|
3 | * |
---|
4 | * (c) 2002-2010 |
---|
5 | * |
---|
6 | * John P. Huelsenbeck |
---|
7 | * Dept. Integrative Biology |
---|
8 | * University of California, Berkeley |
---|
9 | * Berkeley, CA 94720-3140 |
---|
10 | * johnh@berkeley.edu |
---|
11 | * |
---|
12 | * Fredrik Ronquist |
---|
13 | * Swedish Museum of Natural History |
---|
14 | * Box 50007 |
---|
15 | * SE-10405 Stockholm, SWEDEN |
---|
16 | * fredrik.ronquist@nrm.se |
---|
17 | * |
---|
18 | * With important contributions by |
---|
19 | * |
---|
20 | * Paul van der Mark (paulvdm@sc.fsu.edu) |
---|
21 | * Maxim Teslenko (maxim.teslenko@nrm.se) |
---|
22 | * |
---|
23 | * and by many users (run 'acknowledgements' to see more info) |
---|
24 | * |
---|
25 | * This program is free software; you can redistribute it and/or |
---|
26 | * modify it under the terms of the GNU General Public License |
---|
27 | * as published by the Free Software Foundation; either version 2 |
---|
28 | * of the License, or (at your option) any later version. |
---|
29 | * |
---|
30 | * This program is distributed in the hope that it will be useful, |
---|
31 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
32 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
33 | * GNU General Public License for more details (www.gnu.org). |
---|
34 | * |
---|
35 | */ |
---|
36 | |
---|
37 | #include <stdio.h> |
---|
38 | #include <stdlib.h> |
---|
39 | #include <time.h> |
---|
40 | #include <math.h> |
---|
41 | #include <float.h> |
---|
42 | #include <string.h> |
---|
43 | #include <stdarg.h> |
---|
44 | #include "mb.h" |
---|
45 | #include "globals.h" |
---|
46 | #include "mbmath.h" |
---|
47 | #include "bayes.h" |
---|
48 | #include "model.h" |
---|
49 | #include "utils.h" |
---|
50 | |
---|
51 | const char* const svnRevisionMbmathC="$Rev: 445 $"; /* Revision keyword which is expended/updated by svn on each commit/update*/ |
---|
52 | |
---|
53 | #define MAX_GAMMA_CATS 20 |
---|
54 | #define PI 3.14159265358979324 |
---|
55 | #define PIOVER2 1.57079632679489662 |
---|
56 | #define POINTGAMMA(prob,alpha,beta) PointChi2(prob,2.0*(alpha))/(2.0*(beta)) |
---|
57 | #define PAI2 6.283185307 |
---|
58 | #define TINY 1.0e-20 |
---|
59 | #define EVALUATE_COMPLEX_NUMBERS 2 |
---|
60 | #if !defined(MAX) |
---|
61 | #define MAX(a,b) (((a) > (b)) ? (a) : (b)) |
---|
62 | #endif |
---|
63 | #if !defined(MIN) |
---|
64 | #define MIN(a,b) (((a) < (b)) ? (a) : (b)) |
---|
65 | #endif |
---|
66 | #define SQUARE(a) ((a)*(a)) |
---|
67 | |
---|
68 | /* prototypes */ |
---|
69 | void AddTwoMatrices (int dim, MrBFlt **a, MrBFlt **b, MrBFlt **result); |
---|
70 | void BackSubstitutionRow (int dim, MrBFlt **u, MrBFlt *b); |
---|
71 | void Balanc (int dim, MrBFlt **a, int *low, int *high, MrBFlt *scale); |
---|
72 | void BalBak (int dim, int low, int high, MrBFlt *scale, int m, MrBFlt **z); |
---|
73 | MrBFlt BetaCf (MrBFlt a, MrBFlt b, MrBFlt x); |
---|
74 | MrBFlt BetaQuantile (MrBFlt alpha, MrBFlt beta, MrBFlt x); |
---|
75 | MrBFlt CdfBinormal (MrBFlt h1, MrBFlt h2, MrBFlt r); |
---|
76 | MrBFlt CdfNormal (MrBFlt x); |
---|
77 | complex Complex (MrBFlt a, MrBFlt b); |
---|
78 | MrBFlt ComplexAbsoluteValue (complex a); |
---|
79 | complex ComplexAddition (complex a, complex b); |
---|
80 | complex ComplexConjugate (complex a); |
---|
81 | complex ComplexDivision (complex a, complex b); |
---|
82 | void ComplexDivision2 (MrBFlt ar, MrBFlt ai, MrBFlt br, MrBFlt bi, MrBFlt *cr, MrBFlt *ci); |
---|
83 | complex ComplexExponentiation (complex a); |
---|
84 | int ComplexInvertMatrix (int dim, complex **a, MrBFlt *dwork, int *indx, complex **aInverse, complex *col); |
---|
85 | complex ComplexLog (complex a); |
---|
86 | void ComplexLUBackSubstitution (int dim, complex **a, int *indx, complex *b); |
---|
87 | int ComplexLUDecompose (int dim, complex **a, MrBFlt *vv, int *indx, MrBFlt *pd); |
---|
88 | complex ComplexMultiplication (complex a, complex b); |
---|
89 | complex ComplexSquareRoot (complex a); |
---|
90 | complex ComplexSubtraction (complex a, complex b); |
---|
91 | int ComputeEigenSystem (int dim, MrBFlt **a, MrBFlt *v, MrBFlt *vi, MrBFlt **u, int *iwork, MrBFlt *dwork); |
---|
92 | void ComputeLandU (int dim, MrBFlt **aMat, MrBFlt **lMat, MrBFlt **uMat); |
---|
93 | void ComputeMatrixExponential (int dim, MrBFlt **a, int qValue, MrBFlt **f); |
---|
94 | void DivideByTwos (int dim, MrBFlt **a, int power); |
---|
95 | MrBFlt D_sign (MrBFlt a, MrBFlt b); |
---|
96 | int EigensForRealMatrix (int dim, MrBFlt **a, MrBFlt *wr, MrBFlt *wi, MrBFlt **z, int *iv1, MrBFlt *fv1); |
---|
97 | void ElmHes (int dim, int low, int high, MrBFlt **a, int *interchanged); |
---|
98 | void ElTran (int dim, int low, int high, MrBFlt **a, int *interchanged, MrBFlt **z); |
---|
99 | void Exchange (int j, int k, int l, int m, int n, MrBFlt **a, MrBFlt *scale); |
---|
100 | MrBFlt Factorial (int x); |
---|
101 | void ForwardSubstitutionRow (int dim, MrBFlt **L, MrBFlt *b); |
---|
102 | MrBFlt GammaRandomVariable (MrBFlt a, MrBFlt b, SafeLong *seed); |
---|
103 | void GaussianElimination (int dim, MrBFlt **a, MrBFlt **bMat, MrBFlt **xMat); |
---|
104 | int Hqr2 (int dim, int low, int high, MrBFlt **h, MrBFlt *wr, MrBFlt *wi, MrBFlt **z); |
---|
105 | MrBFlt IncompleteBetaFunction (MrBFlt alpha, MrBFlt beta, MrBFlt x); |
---|
106 | MrBFlt IncompleteGamma (MrBFlt x, MrBFlt alpha, MrBFlt LnGamma_alpha); |
---|
107 | int InvertMatrix (int dim, MrBFlt **a, MrBFlt *col, int *indx, MrBFlt **aInv); |
---|
108 | MrBFlt LBinormal (MrBFlt h1, MrBFlt h2, MrBFlt r); |
---|
109 | int LogBase2Plus1 (MrBFlt x); |
---|
110 | void LUBackSubstitution (int dim, MrBFlt **a, int *indx, MrBFlt *b); |
---|
111 | int LUDecompose (int dim, MrBFlt **a, MrBFlt *vv, int *indx, MrBFlt *pd); |
---|
112 | void MultiplyMatrixByScalar (int dim, MrBFlt **a, MrBFlt scalar, MrBFlt **result); |
---|
113 | MrBFlt PointChi2 (MrBFlt prob, MrBFlt v); |
---|
114 | void PrintComplexVector (int dim, complex *vec); |
---|
115 | void PrintSquareComplexMatrix (int dim, complex **m); |
---|
116 | void PrintSquareDoubleMatrix (int dim, MrBFlt **matrix); |
---|
117 | void PrintSquareIntegerMatrix (int dim, int **matrix); |
---|
118 | complex ProductOfRealAndComplex (MrBFlt a, complex b); |
---|
119 | MrBFlt RndGamma (MrBFlt s, SafeLong *seed); |
---|
120 | MrBFlt RndGamma1 (MrBFlt s, SafeLong *seed); |
---|
121 | MrBFlt RndGamma2 (MrBFlt s, SafeLong *seed); |
---|
122 | int SetQvalue (MrBFlt tol); |
---|
123 | void SetToIdentity (int dim, MrBFlt **matrix); |
---|
124 | MrBFlt Tha (MrBFlt h1, MrBFlt h2, MrBFlt a1, MrBFlt a2); |
---|
125 | void TiProbsUsingEigens (int dim, MrBFlt *cijk, MrBFlt *eigenVals, MrBFlt v, MrBFlt r, MrBFlt **tMat, MrBFlt **fMat, MrBFlt **sMat); |
---|
126 | void TiProbsUsingPadeApprox (int dim, MrBFlt **qMat, MrBFlt v, MrBFlt r, MrBFlt **tMat, MrBFlt **fMat, MrBFlt **sMat); |
---|
127 | |
---|
128 | |
---|
129 | |
---|
130 | |
---|
131 | |
---|
132 | /*--------------------------------------------------------------------------------- |
---|
133 | | |
---|
134 | | AddTwoMatrices |
---|
135 | | |
---|
136 | | Takes the sum of two matrices, "a" and "b", and puts the results in a matrix |
---|
137 | | called "result". |
---|
138 | | |
---|
139 | ---------------------------------------------------------------------------------*/ |
---|
140 | void AddTwoMatrices (int dim, MrBFlt **a, MrBFlt **b, MrBFlt **result) |
---|
141 | |
---|
142 | { |
---|
143 | |
---|
144 | int row, col; |
---|
145 | |
---|
146 | for (row=0; row<dim; row++) |
---|
147 | { |
---|
148 | for (col=0; col<dim; col++) |
---|
149 | { |
---|
150 | result[row][col] = a[row][col] + b[row][col]; |
---|
151 | } |
---|
152 | } |
---|
153 | |
---|
154 | } |
---|
155 | |
---|
156 | |
---|
157 | |
---|
158 | |
---|
159 | |
---|
160 | /*--------------------------------------------------------------------------------- |
---|
161 | | |
---|
162 | | AllocateSquareComplexMatrix |
---|
163 | | |
---|
164 | | Allocate memory for a square (dim X dim) complex matrix. |
---|
165 | | |
---|
166 | ---------------------------------------------------------------------------------*/ |
---|
167 | complex **AllocateSquareComplexMatrix (int dim) |
---|
168 | |
---|
169 | { |
---|
170 | |
---|
171 | int i; |
---|
172 | complex **m; |
---|
173 | |
---|
174 | m = (complex **) SafeMalloc((size_t)((dim)*sizeof(complex*))); |
---|
175 | if (!m) |
---|
176 | { |
---|
177 | MrBayesPrint ("%s Error: Problem allocating a square complex matrix.\n", spacer); |
---|
178 | exit (0); |
---|
179 | } |
---|
180 | m[0]=(complex *) SafeMalloc((size_t)((dim*dim)*sizeof(complex))); |
---|
181 | if (!m[0]) |
---|
182 | { |
---|
183 | MrBayesPrint ("%s Error: Problem allocating a square complex matrix.\n", spacer); |
---|
184 | exit (0); |
---|
185 | } |
---|
186 | for(i=1;i<dim;i++) |
---|
187 | { |
---|
188 | m[i] = m[i-1] + dim; |
---|
189 | } |
---|
190 | |
---|
191 | return (m); |
---|
192 | |
---|
193 | } |
---|
194 | |
---|
195 | |
---|
196 | |
---|
197 | |
---|
198 | |
---|
199 | |
---|
200 | /*--------------------------------------------------------------------------------- |
---|
201 | | |
---|
202 | | AllocateSquareDoubleMatrix |
---|
203 | | |
---|
204 | | Allocate memory for a square (dim X dim) matrix of doubles. |
---|
205 | | |
---|
206 | ---------------------------------------------------------------------------------*/ |
---|
207 | MrBFlt **AllocateSquareDoubleMatrix (int dim) |
---|
208 | |
---|
209 | { |
---|
210 | |
---|
211 | int i; |
---|
212 | MrBFlt **m; |
---|
213 | |
---|
214 | m = (MrBFlt **)SafeMalloc((size_t)((dim)*sizeof(MrBFlt*))); |
---|
215 | if (!m) |
---|
216 | { |
---|
217 | MrBayesPrint ("%s Error: Problem allocating a square matrix of doubles.\n", spacer); |
---|
218 | exit(1); |
---|
219 | } |
---|
220 | m[0] = (MrBFlt *)SafeMalloc((size_t)((dim*dim)*sizeof(MrBFlt))); |
---|
221 | if (!m[0]) |
---|
222 | { |
---|
223 | MrBayesPrint ("%s Error: Problem allocating a square matrix of doubles.\n", spacer); |
---|
224 | exit(1); |
---|
225 | } |
---|
226 | for(i=1; i<dim; i++) |
---|
227 | { |
---|
228 | m[i] = m[i-1] + dim; |
---|
229 | } |
---|
230 | |
---|
231 | return (m); |
---|
232 | |
---|
233 | } |
---|
234 | |
---|
235 | |
---|
236 | |
---|
237 | |
---|
238 | |
---|
239 | /*--------------------------------------------------------------------------------- |
---|
240 | | |
---|
241 | | AllocateSquareIntegerMatrix |
---|
242 | | |
---|
243 | | Allocate memory for a square (dim X dim) matrix of integers. |
---|
244 | | |
---|
245 | ---------------------------------------------------------------------------------*/ |
---|
246 | int **AllocateSquareIntegerMatrix (int dim) |
---|
247 | |
---|
248 | { |
---|
249 | |
---|
250 | int i, **m; |
---|
251 | |
---|
252 | m = (int **)SafeMalloc((size_t)((dim)*sizeof(int*))); |
---|
253 | if (!m) |
---|
254 | { |
---|
255 | MrBayesPrint ("%s Error: Problem allocating a square matrix of integers.\n", spacer); |
---|
256 | exit(1); |
---|
257 | } |
---|
258 | m[0] = (int *)SafeMalloc((size_t)((dim*dim)*sizeof(int))); |
---|
259 | if (!m[0]) |
---|
260 | { |
---|
261 | MrBayesPrint ("%s Error: Problem allocating a square matrix of integers.\n", spacer); |
---|
262 | exit(1); |
---|
263 | } |
---|
264 | for(i=1; i<dim; i++) |
---|
265 | { |
---|
266 | m[i] = m[i-1] + dim; |
---|
267 | } |
---|
268 | |
---|
269 | return (m); |
---|
270 | |
---|
271 | } |
---|
272 | |
---|
273 | |
---|
274 | |
---|
275 | |
---|
276 | |
---|
277 | /*--------------------------------------------------------------------------------- |
---|
278 | | |
---|
279 | | AutodGamma |
---|
280 | | |
---|
281 | | Auto-discrete-gamma distribution of rates over sites, K equal-probable |
---|
282 | | categories, with the mean for each category used. |
---|
283 | | This routine calculates M[], using rho and K (numGammaCats) |
---|
284 | | |
---|
285 | ---------------------------------------------------------------------------------*/ |
---|
286 | int AutodGamma (MrBFlt *M, MrBFlt rho, int K) |
---|
287 | |
---|
288 | { |
---|
289 | |
---|
290 | int i, j, i1, i2; |
---|
291 | MrBFlt point[MAX_GAMMA_CATS], x, y, large = 20.0, sum; |
---|
292 | |
---|
293 | for (i=0; i<K-1; i++) |
---|
294 | point[i] = PointNormal ((i + 1.0) / K); |
---|
295 | for (i=0; i<K; i++) |
---|
296 | { |
---|
297 | for (j=0; j<K; j++) |
---|
298 | { |
---|
299 | x = (i < K-1 ? point[i]:large); |
---|
300 | y = (j < K-1 ? point[j]:large); |
---|
301 | M[i * K + j] = CdfBinormal (x, y, rho); |
---|
302 | } |
---|
303 | } |
---|
304 | for (i1=0; i1<2*K-1; i1++) |
---|
305 | { |
---|
306 | for (i2=0; i2<K*K; i2++) |
---|
307 | { |
---|
308 | i = i2 / K; |
---|
309 | j = i2 % K; |
---|
310 | if (AreDoublesEqual(i+j, 2*(K-1.0)-i1, ETA)==NO) |
---|
311 | continue; |
---|
312 | y = 0; |
---|
313 | if (i > 0) |
---|
314 | y -= M[(i-1)*K+j]; |
---|
315 | if (j > 0) |
---|
316 | y -= M[i*K+(j-1)]; |
---|
317 | if (i > 0 && j > 0) |
---|
318 | y += M[(i-1)*K+(j-1)]; |
---|
319 | M[i*K+j] = (M[i*K+j] + y) * K; |
---|
320 | } |
---|
321 | } |
---|
322 | for (i=0; i<K; i++) |
---|
323 | { |
---|
324 | sum = 0.0; |
---|
325 | for (j=0; j<K; j++) |
---|
326 | { |
---|
327 | if (M[i*K+j] < 0.0) |
---|
328 | M[i*K+j] = 0.0; |
---|
329 | sum += M[i*K+j]; |
---|
330 | } |
---|
331 | for (j=0; j<K; j++) |
---|
332 | M[i*K+j] /= sum; |
---|
333 | } |
---|
334 | |
---|
335 | # if 0 |
---|
336 | MrBayesPrint ("rho = %lf\n", rho); |
---|
337 | for (i=0; i<K; i++) |
---|
338 | { |
---|
339 | for (j=0; j<K; j++) |
---|
340 | MrBayesPrint ("%lf ", M[i*K + j]); |
---|
341 | MrBayesPrint ("\n"); |
---|
342 | } |
---|
343 | # endif |
---|
344 | |
---|
345 | return (NO_ERROR); |
---|
346 | |
---|
347 | } |
---|
348 | |
---|
349 | |
---|
350 | |
---|
351 | |
---|
352 | |
---|
353 | /*--------------------------------------------------------------------------------- |
---|
354 | | |
---|
355 | | BackSubstitutionRow |
---|
356 | | |
---|
357 | ---------------------------------------------------------------------------------*/ |
---|
358 | void BackSubstitutionRow (int dim, MrBFlt **u, MrBFlt *b) |
---|
359 | |
---|
360 | { |
---|
361 | |
---|
362 | int i, j; |
---|
363 | MrBFlt dotProduct; |
---|
364 | |
---|
365 | b[dim-1] /= u[dim-1][dim-1]; |
---|
366 | for (i=dim-2; i>=0; i--) |
---|
367 | { |
---|
368 | dotProduct = 0.0; |
---|
369 | for (j=i+1; j<dim; j++) |
---|
370 | dotProduct += u[i][j] * b[j]; |
---|
371 | b[i] = (b[i] - dotProduct) / u[i][i]; |
---|
372 | } |
---|
373 | |
---|
374 | } |
---|
375 | |
---|
376 | |
---|
377 | |
---|
378 | |
---|
379 | |
---|
380 | /*--------------------------------------------------------------------------------- |
---|
381 | | |
---|
382 | | Balanc |
---|
383 | | |
---|
384 | | This subroutine balances a real matrix and isolates |
---|
385 | | eigenvalues whenever possible. |
---|
386 | | |
---|
387 | | On input: |
---|
388 | | |
---|
389 | | * dim is the order of the matrix |
---|
390 | | |
---|
391 | | * a contains the input matrix to be balanced |
---|
392 | | |
---|
393 | | On output: |
---|
394 | | |
---|
395 | | * a contains the balanced matrix. |
---|
396 | | |
---|
397 | | * low and high are two integers such that a(i,j) |
---|
398 | | is equal to zero if |
---|
399 | | (1) i is greater than j and |
---|
400 | | (2) j=1,...,low-1 or i=igh+1,...,n. |
---|
401 | | |
---|
402 | | * scale contains information determining the |
---|
403 | | permutations and scaling factors used. |
---|
404 | | |
---|
405 | | Suppose that the principal submatrix in rows pLow through pHigh |
---|
406 | | has been balanced, that p(j) denotes the index interchanged |
---|
407 | | with j during the permutation step, and that the elements |
---|
408 | | of the diagonal matrix used are denoted by d(i,j). Then |
---|
409 | | scale(j) = p(j), for j = 1,...,pLow-1 |
---|
410 | | = d(j,j), j = pLow,...,pHigh |
---|
411 | | = p(j) j = pHigh+1,...,dim. |
---|
412 | | The order in which the interchanges are made is dim to pHigh+1, |
---|
413 | | then 1 to pLow-1. |
---|
414 | | |
---|
415 | | Note that 1 is returned for pHigh if pHigh is zero formally. |
---|
416 | | |
---|
417 | | The algol procedure exc contained in balance appears in |
---|
418 | | balanc in line. (Note that the algol roles of identifiers |
---|
419 | | k,l have been reversed.) |
---|
420 | | |
---|
421 | | This routine is a translation of the Algol procedure from |
---|
422 | | Handbook for Automatic Computation, vol. II, Linear Algebra, |
---|
423 | | by Wilkinson and Reinsch, Springer-Verlag. |
---|
424 | | |
---|
425 | | This function was converted from FORTRAN by D. L. Swofford. |
---|
426 | | |
---|
427 | ---------------------------------------------------------------------------------*/ |
---|
428 | void Balanc (int dim, MrBFlt **a, int *low, int *high, MrBFlt *scale) |
---|
429 | |
---|
430 | { |
---|
431 | |
---|
432 | int i, j, k, l, m, noconv; |
---|
433 | MrBFlt c, f, g, r, s, b2; |
---|
434 | |
---|
435 | b2 = FLT_RADIX * FLT_RADIX; |
---|
436 | k = 0; |
---|
437 | l = dim - 1; |
---|
438 | |
---|
439 | for (j=l; j>=0; j--) |
---|
440 | { |
---|
441 | for (i=0; i<=l; i++) |
---|
442 | { |
---|
443 | if (i != j) |
---|
444 | { |
---|
445 | if (AreDoublesEqual(a[j][i],0.0, ETA)==NO) |
---|
446 | goto next_j1; |
---|
447 | } |
---|
448 | } |
---|
449 | |
---|
450 | /* bug that DLS caught */ |
---|
451 | /*m = l; |
---|
452 | Exchange(j, k, l, m, dim, a, scale); |
---|
453 | if (l < 0) |
---|
454 | goto leave; |
---|
455 | else |
---|
456 | j = --l;*/ |
---|
457 | m = l; |
---|
458 | Exchange(j, k, l, m, dim, a, scale); |
---|
459 | if (--l < 0) |
---|
460 | goto leave; |
---|
461 | next_j1: |
---|
462 | ; |
---|
463 | } |
---|
464 | |
---|
465 | for (j=k; j<=l; j++) |
---|
466 | { |
---|
467 | for (i=k; i<=l; i++) |
---|
468 | { |
---|
469 | if (i != j) |
---|
470 | { |
---|
471 | if (AreDoublesEqual(a[i][j], 0.0, ETA)==NO) |
---|
472 | goto next_j; |
---|
473 | } |
---|
474 | } |
---|
475 | m = k; |
---|
476 | Exchange(j, k, l, m, dim, a, scale); |
---|
477 | k++; |
---|
478 | next_j: |
---|
479 | ; |
---|
480 | } |
---|
481 | |
---|
482 | for (i=k; i<=l; i++) |
---|
483 | scale[i] = 1.0; |
---|
484 | |
---|
485 | do { |
---|
486 | noconv = FALSE; |
---|
487 | for (i=k; i<=l; i++) |
---|
488 | { |
---|
489 | c = 0.0; |
---|
490 | r = 0.0; |
---|
491 | for (j=k; j<=l; j++) |
---|
492 | { |
---|
493 | if (j != i) |
---|
494 | { |
---|
495 | c += fabs(a[j][i]); |
---|
496 | r += fabs(a[i][j]); |
---|
497 | } |
---|
498 | } |
---|
499 | if (AreDoublesEqual(c,0.0,ETA)==NO && AreDoublesEqual(r,0.0,ETA)==NO) |
---|
500 | { |
---|
501 | g = r / FLT_RADIX; |
---|
502 | f = 1.0; |
---|
503 | s = c + r; |
---|
504 | while (c < g) |
---|
505 | { |
---|
506 | f *= FLT_RADIX; |
---|
507 | c *= b2; |
---|
508 | } |
---|
509 | g = r * FLT_RADIX; |
---|
510 | while (c >= g) |
---|
511 | { |
---|
512 | f /= FLT_RADIX; |
---|
513 | c /= b2; |
---|
514 | } |
---|
515 | if ((c + r) / f < s * .95) |
---|
516 | { |
---|
517 | g = 1.0 / f; |
---|
518 | scale[i] *= f; |
---|
519 | noconv = TRUE; |
---|
520 | for (j=k; j<dim; j++) |
---|
521 | a[i][j] *= g; |
---|
522 | for (j=0; j<=l; j++) |
---|
523 | a[j][i] *= f; |
---|
524 | } |
---|
525 | } |
---|
526 | } |
---|
527 | } |
---|
528 | while (noconv); |
---|
529 | leave: |
---|
530 | *low = k; |
---|
531 | *high = l; |
---|
532 | |
---|
533 | # if 0 |
---|
534 | /* begin f2c version of code: |
---|
535 | balanc.f -- translated by f2c (version 19971204) */ |
---|
536 | int balanc (int *nm, int *n, MrBFlt *a, int *low, int *igh, MrBFlt *scale) |
---|
537 | |
---|
538 | { |
---|
539 | |
---|
540 | /* System generated locals */ |
---|
541 | int a_dim1, a_offset, i__1, i__2; |
---|
542 | MrBFlt d__1; |
---|
543 | |
---|
544 | /* Local variables */ |
---|
545 | static MrBFlt iexc; |
---|
546 | static MrBFlt c__, f, g; |
---|
547 | static MrBFlt i__, j, k, l, m; |
---|
548 | static MrBFlt r__, s, radix, b2; |
---|
549 | static MrBFlt jj; |
---|
550 | static logical noconv; |
---|
551 | |
---|
552 | /* parameter adjustments */ |
---|
553 | --scale; |
---|
554 | a_dim1 = *nm; |
---|
555 | a_offset = a_dim1 + 1; |
---|
556 | a -= a_offset; |
---|
557 | |
---|
558 | /* function Body */ |
---|
559 | radix = 16.0; |
---|
560 | |
---|
561 | b2 = radix * radix; |
---|
562 | k = 1; |
---|
563 | l = *n; |
---|
564 | goto L100; |
---|
565 | |
---|
566 | /* .......... in-line procedure for row and column exchange .......... */ |
---|
567 | L20: |
---|
568 | scale[m] = (MrBFlt) j; |
---|
569 | if (j == m) |
---|
570 | goto L50; |
---|
571 | |
---|
572 | i__1 = l; |
---|
573 | for (i__ = 1; i__ <= i__1; ++i__) |
---|
574 | { |
---|
575 | f = a[i__ + j * a_dim1]; |
---|
576 | a[i__ + j * a_dim1] = a[i__ + m * a_dim1]; |
---|
577 | a[i__ + m * a_dim1] = f; |
---|
578 | /* L30: */ |
---|
579 | } |
---|
580 | |
---|
581 | i__1 = *n; |
---|
582 | for (i__ = k; i__ <= i__1; ++i__) |
---|
583 | { |
---|
584 | f = a[j + i__ * a_dim1]; |
---|
585 | a[j + i__ * a_dim1] = a[m + i__ * a_dim1]; |
---|
586 | a[m + i__ * a_dim1] = f; |
---|
587 | /* L40: */ |
---|
588 | } |
---|
589 | |
---|
590 | L50: |
---|
591 | switch (iexc) |
---|
592 | { |
---|
593 | case 1: |
---|
594 | goto L80; |
---|
595 | case 2: |
---|
596 | goto L130; |
---|
597 | } |
---|
598 | |
---|
599 | /* .......... search for rows isolating an eigenvalue and push them down .......... */ |
---|
600 | L80: |
---|
601 | if (l == 1) |
---|
602 | goto L280; |
---|
603 | --l; |
---|
604 | |
---|
605 | /* .......... for j=l step -1 until 1 do -- .......... */ |
---|
606 | L100: |
---|
607 | i__1 = l; |
---|
608 | for (jj = 1; jj <= i__1; ++jj) |
---|
609 | { |
---|
610 | j = l + 1 - jj; |
---|
611 | i__2 = l; |
---|
612 | for (i__ = 1; i__ <= i__2; ++i__) |
---|
613 | { |
---|
614 | if (i__ == j) |
---|
615 | goto L110; |
---|
616 | if (a[j + i__ * a_dim1] != 0.) |
---|
617 | goto L120; |
---|
618 | L110: |
---|
619 | ; |
---|
620 | } |
---|
621 | m = l; |
---|
622 | iexc = 1; |
---|
623 | goto L20; |
---|
624 | L120: |
---|
625 | ; |
---|
626 | } |
---|
627 | |
---|
628 | goto L140; |
---|
629 | /* .......... search for columns isolating an eigenvalue and push them left .......... */ |
---|
630 | L130: |
---|
631 | ++k; |
---|
632 | |
---|
633 | L140: |
---|
634 | i__1 = l; |
---|
635 | for (j = k; j <= i__1; ++j) |
---|
636 | { |
---|
637 | i__2 = l; |
---|
638 | for (i__ = k; i__ <= i__2; ++i__) |
---|
639 | { |
---|
640 | if (i__ == j) |
---|
641 | goto L150; |
---|
642 | if (a[i__ + j * a_dim1] != 0.) |
---|
643 | goto L170; |
---|
644 | L150: |
---|
645 | ; |
---|
646 | } |
---|
647 | m = k; |
---|
648 | iexc = 2; |
---|
649 | goto L20; |
---|
650 | L170: |
---|
651 | ; |
---|
652 | } |
---|
653 | |
---|
654 | /* .......... now balance the submatrix in rows k to l .......... */ |
---|
655 | i__1 = l; |
---|
656 | for (i__ = k; i__ <= i__1; ++i__) |
---|
657 | { |
---|
658 | /* L180: */ |
---|
659 | scale[i__] = 1.0; |
---|
660 | } |
---|
661 | /* .......... iterative loop for norm reduction .......... */ |
---|
662 | L190: |
---|
663 | noconv = FALSE; |
---|
664 | |
---|
665 | i__1 = l; |
---|
666 | for (i__ = k; i__ <= i__1; ++i__) |
---|
667 | { |
---|
668 | c__ = 0.0; |
---|
669 | r__ = 0.0; |
---|
670 | i__2 = l; |
---|
671 | for (j = k; j <= i__2; ++j) |
---|
672 | { |
---|
673 | if (j == i__) |
---|
674 | goto L200; |
---|
675 | c__ += (d__1 = a[j + i__ * a_dim1], abs(d__1)); |
---|
676 | r__ += (d__1 = a[i__ + j * a_dim1], abs(d__1)); |
---|
677 | L200: |
---|
678 | ; |
---|
679 | } |
---|
680 | |
---|
681 | /* .......... guard against zero c or r due to underflow .......... */ |
---|
682 | if (c__ == 0. || r__ == 0.) |
---|
683 | goto L270; |
---|
684 | g = r__ / radix; |
---|
685 | f = 1.0; |
---|
686 | s = c__ + r__; |
---|
687 | L210: |
---|
688 | if (c__ >= g) |
---|
689 | goto L220; |
---|
690 | f *= radix; |
---|
691 | c__ *= b2; |
---|
692 | goto L210; |
---|
693 | L220: |
---|
694 | g = r__ * radix; |
---|
695 | L230: |
---|
696 | if (c__ < g) |
---|
697 | goto L240; |
---|
698 | f /= radix; |
---|
699 | c__ /= b2; |
---|
700 | goto L230; |
---|
701 | |
---|
702 | /* .......... now balance .......... */ |
---|
703 | L240: |
---|
704 | if ((c__ + r__) / f >= s * .95) |
---|
705 | goto L270; |
---|
706 | g = 1.0 / f; |
---|
707 | scale[i__] *= f; |
---|
708 | noconv = TRUE; |
---|
709 | |
---|
710 | i__2 = *n; |
---|
711 | for (j = k; j <= i__2; ++j) |
---|
712 | { |
---|
713 | /* L250: */ |
---|
714 | a[i__ + j * a_dim1] *= g; |
---|
715 | } |
---|
716 | |
---|
717 | i__2 = l; |
---|
718 | for (j = 1; j <= i__2; ++j) |
---|
719 | { |
---|
720 | /* L260: */ |
---|
721 | a[j + i__ * a_dim1] *= f; |
---|
722 | } |
---|
723 | |
---|
724 | L270: |
---|
725 | ; |
---|
726 | } |
---|
727 | |
---|
728 | if (noconv) |
---|
729 | goto L190; |
---|
730 | |
---|
731 | L280: |
---|
732 | *low = k; |
---|
733 | *igh = l; |
---|
734 | return 0; |
---|
735 | |
---|
736 | } |
---|
737 | /* end f2c version of code */ |
---|
738 | # endif |
---|
739 | |
---|
740 | } |
---|
741 | |
---|
742 | |
---|
743 | |
---|
744 | |
---|
745 | |
---|
746 | /*--------------------------------------------------------------------------------- |
---|
747 | | |
---|
748 | | BalBak |
---|
749 | | |
---|
750 | | This subroutine forms the eigenvectors of a real general |
---|
751 | | matrix by back transforming those of the corresponding |
---|
752 | | balanced matrix determined by balance. |
---|
753 | | |
---|
754 | | On input: |
---|
755 | | |
---|
756 | | * dim is the order of the matrix |
---|
757 | | |
---|
758 | | * low and high are integers determined by balance |
---|
759 | | |
---|
760 | | * scale contains information determining the permutations |
---|
761 | | and scaling factors used by balance |
---|
762 | | |
---|
763 | | * m is the number of columns of z to be back transformed |
---|
764 | | |
---|
765 | | * z contains the real and imaginary parts of the eigen- |
---|
766 | | vectors to be back transformed in its first m columns |
---|
767 | | |
---|
768 | | On output: |
---|
769 | | |
---|
770 | | * z contains the real and imaginary parts of the |
---|
771 | | transformed eigenvectors in its first m columns |
---|
772 | | |
---|
773 | | This routine is a translation of the Algol procedure from |
---|
774 | | Handbook for Automatic Computation, vol. II, Linear Algebra, |
---|
775 | | by Wilkinson and Reinsch, Springer-Verlag. |
---|
776 | | |
---|
777 | ---------------------------------------------------------------------------------*/ |
---|
778 | void BalBak (int dim, int low, int high, MrBFlt *scale, int m, MrBFlt **z) |
---|
779 | |
---|
780 | { |
---|
781 | |
---|
782 | int i, j, k, ii; |
---|
783 | MrBFlt s; |
---|
784 | |
---|
785 | if (m != 0) /* change "==" to "!=" to eliminate a goto statement */ |
---|
786 | { |
---|
787 | if (high != low) /* change "==" to "!=" to eliminate a goto statement */ |
---|
788 | { |
---|
789 | for (i=low; i<=high; i++) |
---|
790 | { |
---|
791 | s = scale[i]; |
---|
792 | for (j=0; j<m; j++) |
---|
793 | z[i][j] *= s; |
---|
794 | } |
---|
795 | } |
---|
796 | for (ii=0; ii<dim; ii++) |
---|
797 | { |
---|
798 | i = ii; |
---|
799 | if ((i < low) || (i > high)) /* was (i >= lo) && (i<= hi) but this */ |
---|
800 | { /* eliminates a goto statement */ |
---|
801 | if (i < low) |
---|
802 | i = low - ii; |
---|
803 | k = (int)scale[i]; |
---|
804 | if (k != i) /* change "==" to "!=" to eliminate a goto statement */ |
---|
805 | { |
---|
806 | for (j = 0; j < m; j++) |
---|
807 | { |
---|
808 | s = z[i][j]; |
---|
809 | z[i][j] = z[k][j]; |
---|
810 | z[k][j] = s; |
---|
811 | } |
---|
812 | } |
---|
813 | } |
---|
814 | } |
---|
815 | } |
---|
816 | |
---|
817 | #if 0 |
---|
818 | /* begin f2c version of code: |
---|
819 | balbak.f -- translated by f2c (version 19971204) */ |
---|
820 | int balbak (int *nm, int *n, int *low, int *igh, MrBFlt *scale, int *m, MrBFlt *z__) |
---|
821 | |
---|
822 | { |
---|
823 | |
---|
824 | /* system generated locals */ |
---|
825 | int z_dim1, z_offset, i__1, i__2; |
---|
826 | |
---|
827 | /* Local variables */ |
---|
828 | static int i__, j, k; |
---|
829 | static MrBFlt s; |
---|
830 | static int ii; |
---|
831 | |
---|
832 | /* parameter adjustments */ |
---|
833 | --scale; |
---|
834 | z_dim1 = *nm; |
---|
835 | z_offset = z_dim1 + 1; |
---|
836 | z__ -= z_offset; |
---|
837 | |
---|
838 | /* function Body */ |
---|
839 | if (*m == 0) |
---|
840 | goto L200; |
---|
841 | if (*igh == *low) |
---|
842 | goto L120; |
---|
843 | |
---|
844 | i__1 = *igh; |
---|
845 | for (i__ = *low; i__ <= i__1; ++i__) |
---|
846 | { |
---|
847 | s = scale[i__]; |
---|
848 | /* .......... left hand eigenvectors are back transformed */ |
---|
849 | /* if the foregoing statement is replaced by */ |
---|
850 | /* s=1.0d0/scale(i) ........... */ |
---|
851 | i__2 = *m; |
---|
852 | for (j = 1; j <= i__2; ++j) |
---|
853 | { |
---|
854 | /* L100: */ |
---|
855 | z__[i__ + j * z_dim1] *= s; |
---|
856 | } |
---|
857 | |
---|
858 | /* L110: */ |
---|
859 | } |
---|
860 | |
---|
861 | /* .........for i=low-1 step -1 until 1, igh+1 step 1 until n do -- .......... */ |
---|
862 | L120: |
---|
863 | i__1 = *n; |
---|
864 | for (ii = 1; ii <= i__1; ++ii) |
---|
865 | { |
---|
866 | i__ = ii; |
---|
867 | if (i__ >= *low && i__ <= *igh) |
---|
868 | goto L140; |
---|
869 | if (i__ < *low) |
---|
870 | i__ = *low - ii; |
---|
871 | k = (integer) scale[i__]; |
---|
872 | if (k == i__) |
---|
873 | goto L140; |
---|
874 | |
---|
875 | i__2 = *m; |
---|
876 | for (j = 1; j <= i__2; ++j) |
---|
877 | { |
---|
878 | s = z__[i__ + j * z_dim1]; |
---|
879 | z__[i__ + j * z_dim1] = z__[k + j * z_dim1]; |
---|
880 | z__[k + j * z_dim1] = s; |
---|
881 | /* L130: */ |
---|
882 | } |
---|
883 | L140: |
---|
884 | ; |
---|
885 | } |
---|
886 | |
---|
887 | L200: |
---|
888 | return 0; |
---|
889 | |
---|
890 | } |
---|
891 | /* end f2c version of code */ |
---|
892 | #endif |
---|
893 | |
---|
894 | } |
---|
895 | |
---|
896 | |
---|
897 | |
---|
898 | |
---|
899 | |
---|
900 | void BetaBreaks (MrBFlt alpha, MrBFlt beta, MrBFlt *values, int K) |
---|
901 | |
---|
902 | { |
---|
903 | |
---|
904 | int i; |
---|
905 | MrBFlt r, quantile, lower, upper; |
---|
906 | |
---|
907 | r = (1.0 / K) * 0.5; |
---|
908 | lower = 0.0; |
---|
909 | upper = (1.0 / K); |
---|
910 | r = (upper - lower) * 0.5 + lower; |
---|
911 | for (i=0; i<K; i++) |
---|
912 | { |
---|
913 | quantile = BetaQuantile (alpha, beta, r); |
---|
914 | values[i] = quantile; |
---|
915 | lower += (1.0/K); |
---|
916 | upper += (1.0/K); |
---|
917 | r += (1.0/K); |
---|
918 | } |
---|
919 | |
---|
920 | # if 0 |
---|
921 | for (i=0; i<K; i++) |
---|
922 | { |
---|
923 | MrBayesPrint ("%4d %lf %lf\n", i, values[i]); |
---|
924 | } |
---|
925 | # endif |
---|
926 | |
---|
927 | } |
---|
928 | |
---|
929 | |
---|
930 | |
---|
931 | |
---|
932 | |
---|
933 | MrBFlt BetaCf (MrBFlt a, MrBFlt b, MrBFlt x) |
---|
934 | |
---|
935 | { |
---|
936 | |
---|
937 | int m, m2; |
---|
938 | MrBFlt aa, c, d, del, h, qab, qam, qap; |
---|
939 | |
---|
940 | qab = a + b; |
---|
941 | qap = a + 1.0; |
---|
942 | qam = a - 1.0; |
---|
943 | c = 1.0; |
---|
944 | d = 1.0 - qab * x / qap; |
---|
945 | if (fabs(d) < (1.0e-30)) |
---|
946 | d = (1.0e-30); |
---|
947 | d = 1.0 / d; |
---|
948 | h = d; |
---|
949 | for (m=1; m<=100; m++) |
---|
950 | { |
---|
951 | m2 = 2 * m; |
---|
952 | aa = m * (b-m) * x / ((qam+m2) * (a+m2)); |
---|
953 | d = 1.0 + aa * d; |
---|
954 | if (fabs(d) < (1.0e-30)) |
---|
955 | d = (1.0e-30); |
---|
956 | c = 1.0 + aa / c; |
---|
957 | if (fabs(c) < (1.0e-30)) |
---|
958 | c = (1.0e-30); |
---|
959 | d = 1.0 / d; |
---|
960 | h *= d * c; |
---|
961 | aa = -(a+m) * (qab+m) * x / ((a+m2) * (qap+m2)); |
---|
962 | d = 1.0 + aa * d; |
---|
963 | if (fabs(d) < (1.0e-30)) |
---|
964 | d = (1.0e-30); |
---|
965 | c = 1.0 + aa / c; |
---|
966 | if (fabs(c) < (1.0e-30)) |
---|
967 | c = (1.0e-30); |
---|
968 | d = 1.0 / d; |
---|
969 | del = d * c; |
---|
970 | h *= del; |
---|
971 | if (fabs(del - 1.0) < (3.0e-7)) |
---|
972 | break; |
---|
973 | } |
---|
974 | if (m > 100) |
---|
975 | { |
---|
976 | MrBayesPrint ("%s Error in BetaCf.\n", spacer); |
---|
977 | exit(0); |
---|
978 | } |
---|
979 | return (h); |
---|
980 | |
---|
981 | } |
---|
982 | |
---|
983 | |
---|
984 | |
---|
985 | |
---|
986 | |
---|
987 | MrBFlt BetaQuantile (MrBFlt alpha, MrBFlt beta, MrBFlt x) |
---|
988 | |
---|
989 | { |
---|
990 | |
---|
991 | int i, stopIter, direction, nswitches; |
---|
992 | MrBFlt curPos, curFraction, increment; |
---|
993 | |
---|
994 | i = nswitches = 0; |
---|
995 | curPos = 0.5; |
---|
996 | stopIter = NO; |
---|
997 | increment = 0.25; |
---|
998 | curFraction = IncompleteBetaFunction (alpha, beta, curPos); |
---|
999 | if (curFraction > x) |
---|
1000 | direction = DOWN; |
---|
1001 | else |
---|
1002 | direction = UP; |
---|
1003 | |
---|
1004 | while (stopIter == NO) |
---|
1005 | { |
---|
1006 | curFraction = IncompleteBetaFunction (alpha, beta, curPos); |
---|
1007 | if (curFraction > x && direction == DOWN) |
---|
1008 | { |
---|
1009 | /* continue going down */ |
---|
1010 | while (curPos - increment <= 0.0) |
---|
1011 | { |
---|
1012 | increment /= 2.0; |
---|
1013 | } |
---|
1014 | curPos -= increment; |
---|
1015 | } |
---|
1016 | else if (curFraction > x && direction == UP) |
---|
1017 | { |
---|
1018 | /* switch directions, and go down */ |
---|
1019 | nswitches++; |
---|
1020 | direction = DOWN; |
---|
1021 | while (curPos - increment <= 0.0) |
---|
1022 | { |
---|
1023 | increment /= 2.0; |
---|
1024 | } |
---|
1025 | increment /= 2.0; |
---|
1026 | curPos -= increment; |
---|
1027 | } |
---|
1028 | else if (curFraction < x && direction == UP) |
---|
1029 | { |
---|
1030 | /* continue going up */ |
---|
1031 | while (curPos + increment >= 1.0) |
---|
1032 | { |
---|
1033 | increment /= 2.0; |
---|
1034 | } |
---|
1035 | curPos += increment; |
---|
1036 | } |
---|
1037 | else if (curFraction < x && direction == DOWN) |
---|
1038 | { |
---|
1039 | /* switch directions, and go up */ |
---|
1040 | nswitches++; |
---|
1041 | direction = UP; |
---|
1042 | while (curPos + increment >= 1.0) |
---|
1043 | { |
---|
1044 | increment /= 2.0; |
---|
1045 | } |
---|
1046 | increment /= 2.0; |
---|
1047 | curPos += increment; |
---|
1048 | } |
---|
1049 | else |
---|
1050 | { |
---|
1051 | stopIter = YES; |
---|
1052 | } |
---|
1053 | if (i > 1000 || nswitches > 20) |
---|
1054 | stopIter = YES; |
---|
1055 | i++; |
---|
1056 | } |
---|
1057 | |
---|
1058 | return (curPos); |
---|
1059 | |
---|
1060 | } |
---|
1061 | |
---|
1062 | |
---|
1063 | |
---|
1064 | |
---|
1065 | |
---|
1066 | /*--------------------------------------------------------------------------------- |
---|
1067 | | |
---|
1068 | | CalcCijk |
---|
1069 | | |
---|
1070 | | This function precalculates the product of the eigenvectors and their |
---|
1071 | | inverse for faster calculation of transition probabilities. The output |
---|
1072 | | is a vector of precalculated values. The input is the eigenvectors (u) and |
---|
1073 | | the inverse of the eigenvector matrix (v). |
---|
1074 | | |
---|
1075 | ---------------------------------------------------------------------------------*/ |
---|
1076 | void CalcCijk (int dim, MrBFlt *c_ijk, MrBFlt **u, MrBFlt **v) |
---|
1077 | |
---|
1078 | { |
---|
1079 | |
---|
1080 | register int i, j, k; |
---|
1081 | MrBFlt *pc; |
---|
1082 | |
---|
1083 | pc = c_ijk; |
---|
1084 | for (i=0; i<dim; i++) |
---|
1085 | for (j=0; j<dim; j++) |
---|
1086 | for (k=0; k<dim; k++) |
---|
1087 | *pc++ = u[i][k] * v[k][j]; |
---|
1088 | |
---|
1089 | } |
---|
1090 | |
---|
1091 | |
---|
1092 | |
---|
1093 | |
---|
1094 | |
---|
1095 | /*--------------------------------------------------------------------------------- |
---|
1096 | | |
---|
1097 | | CdfBinormal |
---|
1098 | | |
---|
1099 | | F(h1,h2,r) = prob(x<h1, y<h2), where x and y are standard binormal. |
---|
1100 | | |
---|
1101 | ---------------------------------------------------------------------------------*/ |
---|
1102 | MrBFlt CdfBinormal (MrBFlt h1, MrBFlt h2, MrBFlt r) |
---|
1103 | |
---|
1104 | { |
---|
1105 | |
---|
1106 | return (LBinormal(h1, h2, r) + CdfNormal(h1) + CdfNormal(h2) - 1.0); |
---|
1107 | |
---|
1108 | } |
---|
1109 | |
---|
1110 | |
---|
1111 | |
---|
1112 | |
---|
1113 | |
---|
1114 | /*--------------------------------------------------------------------------------- |
---|
1115 | | |
---|
1116 | | CdfNormal |
---|
1117 | | |
---|
1118 | | Calculates the cumulative density distribution (CDF) for the normal using: |
---|
1119 | | |
---|
1120 | | Hill, I. D. 1973. The normal integral. Applied Statistics, 22:424-427. |
---|
1121 | | (AS66) |
---|
1122 | | |
---|
1123 | ---------------------------------------------------------------------------------*/ |
---|
1124 | MrBFlt CdfNormal (MrBFlt x) |
---|
1125 | |
---|
1126 | { |
---|
1127 | |
---|
1128 | int invers = 0; |
---|
1129 | MrBFlt p, limit = 10.0, t = 1.28, y = x*x/2.0; |
---|
1130 | |
---|
1131 | if (x < 0.0) |
---|
1132 | { |
---|
1133 | invers = 1; |
---|
1134 | x *= -1.0; |
---|
1135 | } |
---|
1136 | if (x > limit) |
---|
1137 | return (invers ? 0 : 1); |
---|
1138 | if (x < t) |
---|
1139 | p = 0.5 - x * (0.398942280444 - 0.399903438504 * y / |
---|
1140 | (y + 5.75885480458 - 29.8213557808 / |
---|
1141 | (y + 2.62433121679 + 48.6959930692 / |
---|
1142 | (y + 5.92885724438)))); |
---|
1143 | else |
---|
1144 | p = 0.398942280385 * exp(-y) / |
---|
1145 | (x - 3.8052e-8 + 1.00000615302 / |
---|
1146 | (x + 3.98064794e-4 + 1.98615381364 / |
---|
1147 | (x - 0.151679116635 + 5.29330324926 / |
---|
1148 | (x + 4.8385912808 - 15.1508972451 / |
---|
1149 | (x + 0.742380924027 + 30.789933034 / |
---|
1150 | (x + 3.99019417011)))))); |
---|
1151 | |
---|
1152 | return (invers ? p : 1-p); |
---|
1153 | |
---|
1154 | } |
---|
1155 | |
---|
1156 | |
---|
1157 | |
---|
1158 | |
---|
1159 | |
---|
1160 | /*--------------------------------------------------------------------------------- |
---|
1161 | | |
---|
1162 | | Complex |
---|
1163 | | |
---|
1164 | | Returns a complex number with specified real and imaginary parts. |
---|
1165 | | |
---|
1166 | ---------------------------------------------------------------------------------*/ |
---|
1167 | complex Complex (MrBFlt a, MrBFlt b) |
---|
1168 | |
---|
1169 | { |
---|
1170 | |
---|
1171 | complex c; |
---|
1172 | |
---|
1173 | c.re = a; |
---|
1174 | c.im = b; |
---|
1175 | |
---|
1176 | return (c); |
---|
1177 | |
---|
1178 | } |
---|
1179 | |
---|
1180 | |
---|
1181 | |
---|
1182 | |
---|
1183 | |
---|
1184 | /*--------------------------------------------------------------------------------- |
---|
1185 | | |
---|
1186 | | ComplexAbsoluteValue |
---|
1187 | | |
---|
1188 | | Returns the complex absolute value (modulus) of a complex number. |
---|
1189 | | |
---|
1190 | ---------------------------------------------------------------------------------*/ |
---|
1191 | MrBFlt ComplexAbsoluteValue (complex a) |
---|
1192 | |
---|
1193 | { |
---|
1194 | |
---|
1195 | MrBFlt x, y, answer, temp; |
---|
1196 | |
---|
1197 | x = fabs(a.re); |
---|
1198 | y = fabs(a.im); |
---|
1199 | if(AreDoublesEqual(x, 0.0, ETA)==YES) /* x == 0.0 */ |
---|
1200 | answer = y; |
---|
1201 | else if (AreDoublesEqual(y, 0.0, ETA)==YES) /* y == 0.0 */ |
---|
1202 | answer = x; |
---|
1203 | else if (x > y) |
---|
1204 | { |
---|
1205 | temp = y / x; |
---|
1206 | answer = x * sqrt(1.0 + temp * temp); |
---|
1207 | } |
---|
1208 | else |
---|
1209 | { |
---|
1210 | temp = x / y; |
---|
1211 | answer = y * sqrt(1.0 + temp * temp); |
---|
1212 | } |
---|
1213 | |
---|
1214 | return (answer); |
---|
1215 | |
---|
1216 | } |
---|
1217 | |
---|
1218 | |
---|
1219 | |
---|
1220 | |
---|
1221 | |
---|
1222 | /*--------------------------------------------------------------------------------- |
---|
1223 | | |
---|
1224 | | ComplexAddition |
---|
1225 | | |
---|
1226 | | Returns the complex sum of two complex numbers. |
---|
1227 | | |
---|
1228 | ---------------------------------------------------------------------------------*/ |
---|
1229 | complex ComplexAddition (complex a, complex b) |
---|
1230 | |
---|
1231 | { |
---|
1232 | |
---|
1233 | complex c; |
---|
1234 | |
---|
1235 | c.re = a.re + b.re; |
---|
1236 | c.im = a.im + b.im; |
---|
1237 | |
---|
1238 | return (c); |
---|
1239 | |
---|
1240 | } |
---|
1241 | |
---|
1242 | |
---|
1243 | |
---|
1244 | |
---|
1245 | |
---|
1246 | /*--------------------------------------------------------------------------------- |
---|
1247 | | |
---|
1248 | | ComplexConjugate |
---|
1249 | | |
---|
1250 | | Returns the complex conjugate of a complex number. |
---|
1251 | | |
---|
1252 | ---------------------------------------------------------------------------------*/ |
---|
1253 | complex ComplexConjugate (complex a) |
---|
1254 | |
---|
1255 | { |
---|
1256 | |
---|
1257 | complex c; |
---|
1258 | |
---|
1259 | c.re = a.re; |
---|
1260 | c.im = -a.im; |
---|
1261 | |
---|
1262 | return (c); |
---|
1263 | |
---|
1264 | } |
---|
1265 | |
---|
1266 | |
---|
1267 | |
---|
1268 | |
---|
1269 | |
---|
1270 | /*--------------------------------------------------------------------------------- |
---|
1271 | | |
---|
1272 | | ComplexDivision |
---|
1273 | | |
---|
1274 | | Returns the complex quotient of two complex numbers. |
---|
1275 | | |
---|
1276 | ---------------------------------------------------------------------------------*/ |
---|
1277 | complex ComplexDivision (complex a, complex b) |
---|
1278 | |
---|
1279 | { |
---|
1280 | |
---|
1281 | complex c; |
---|
1282 | MrBFlt r, den; |
---|
1283 | |
---|
1284 | if(fabs(b.re) >= fabs(b.im)) |
---|
1285 | { |
---|
1286 | r = b.im / b.re; |
---|
1287 | den = b.re + r * b.im; |
---|
1288 | c.re = (a.re + r * a.im) / den; |
---|
1289 | c.im = (a.im - r * a.re) / den; |
---|
1290 | } |
---|
1291 | else |
---|
1292 | { |
---|
1293 | r = b.re / b.im; |
---|
1294 | den = b.im + r * b.re; |
---|
1295 | c.re = (a.re * r + a.im) / den; |
---|
1296 | c.im = (a.im * r - a.re) / den; |
---|
1297 | } |
---|
1298 | |
---|
1299 | return (c); |
---|
1300 | |
---|
1301 | } |
---|
1302 | |
---|
1303 | |
---|
1304 | |
---|
1305 | |
---|
1306 | |
---|
1307 | /*--------------------------------------------------------------------------------- |
---|
1308 | | |
---|
1309 | | ComplexDivision2 |
---|
1310 | | |
---|
1311 | | Returns the complex quotient of two complex numbers. It does not require that |
---|
1312 | | the numbers be in a complex structure. |
---|
1313 | | |
---|
1314 | ---------------------------------------------------------------------------------*/ |
---|
1315 | void ComplexDivision2 (MrBFlt ar, MrBFlt ai, MrBFlt br, MrBFlt bi, MrBFlt *cr, MrBFlt *ci) |
---|
1316 | |
---|
1317 | { |
---|
1318 | |
---|
1319 | MrBFlt s, ais, bis, ars, brs; |
---|
1320 | |
---|
1321 | s = fabs(br) + fabs(bi); |
---|
1322 | ars = ar / s; |
---|
1323 | ais = ai / s; |
---|
1324 | brs = br / s; |
---|
1325 | bis = bi / s; |
---|
1326 | s = brs*brs + bis*bis; |
---|
1327 | *cr = (ars*brs + ais*bis) / s; |
---|
1328 | *ci = (ais*brs - ars*bis) / s; |
---|
1329 | |
---|
1330 | } |
---|
1331 | |
---|
1332 | |
---|
1333 | |
---|
1334 | |
---|
1335 | |
---|
1336 | /*--------------------------------------------------------------------------------- |
---|
1337 | | |
---|
1338 | | ComplexExponentiation |
---|
1339 | | |
---|
1340 | | Returns the complex exponential of a complex number. |
---|
1341 | | |
---|
1342 | ---------------------------------------------------------------------------------*/ |
---|
1343 | complex ComplexExponentiation (complex a) |
---|
1344 | |
---|
1345 | { |
---|
1346 | |
---|
1347 | complex c; |
---|
1348 | |
---|
1349 | c.re = exp(a.re); |
---|
1350 | if (AreDoublesEqual(a.im,0.0, ETA)==YES) /* == 0 */ |
---|
1351 | c.im = 0; |
---|
1352 | else |
---|
1353 | { |
---|
1354 | c.im = c.re*sin(a.im); |
---|
1355 | c.re *= cos(a.im); |
---|
1356 | } |
---|
1357 | |
---|
1358 | return (c); |
---|
1359 | |
---|
1360 | } |
---|
1361 | |
---|
1362 | |
---|
1363 | |
---|
1364 | |
---|
1365 | /*--------------------------------------------------------------------------------- |
---|
1366 | | |
---|
1367 | | ComplexInvertMatrix |
---|
1368 | | |
---|
1369 | | Inverts a matrix of complex numbers using the LU-decomposition method. |
---|
1370 | | The program has the following variables: |
---|
1371 | | |
---|
1372 | | a -- the matrix to be inverted |
---|
1373 | | aInverse -- the results of the matrix inversion |
---|
1374 | | dim -- the dimension of the square matrix a and its inverse |
---|
1375 | | dwork -- a work vector of doubles |
---|
1376 | | indx -- a work vector of integers |
---|
1377 | | col -- carries the results of the back substitution |
---|
1378 | | |
---|
1379 | | The function returns YES (1) or NO (0) if the results are singular. |
---|
1380 | | |
---|
1381 | ---------------------------------------------------------------------------------*/ |
---|
1382 | int ComplexInvertMatrix (int dim, complex **a, MrBFlt *dwork, int *indx, complex **aInverse, complex *col) |
---|
1383 | |
---|
1384 | { |
---|
1385 | |
---|
1386 | int isSingular, i, j; |
---|
1387 | |
---|
1388 | isSingular = ComplexLUDecompose (dim, a, dwork, indx, (MrBFlt *)NULL); |
---|
1389 | |
---|
1390 | if (isSingular == 0) |
---|
1391 | { |
---|
1392 | for (j=0; j<dim; j++) |
---|
1393 | { |
---|
1394 | for (i=0; i<dim; i++) |
---|
1395 | col[i] = Complex (0.0, 0.0); |
---|
1396 | col[j] = Complex (1.0, 0.0); |
---|
1397 | ComplexLUBackSubstitution (dim, a, indx, col); |
---|
1398 | for (i=0; i<dim; i++) |
---|
1399 | aInverse[i][j] = col[i]; |
---|
1400 | } |
---|
1401 | } |
---|
1402 | |
---|
1403 | return (isSingular); |
---|
1404 | |
---|
1405 | } |
---|
1406 | |
---|
1407 | |
---|
1408 | |
---|
1409 | |
---|
1410 | |
---|
1411 | /*--------------------------------------------------------------------------------- |
---|
1412 | | |
---|
1413 | | ComplexExponentiation |
---|
1414 | | |
---|
1415 | | Returns the complex exponential of a complex number. |
---|
1416 | | |
---|
1417 | ---------------------------------------------------------------------------------*/ |
---|
1418 | complex ComplexLog (complex a) |
---|
1419 | |
---|
1420 | { |
---|
1421 | |
---|
1422 | complex c; |
---|
1423 | |
---|
1424 | c.re = log(ComplexAbsoluteValue(a)); |
---|
1425 | if (AreDoublesEqual(a.re,0.0,ETA)==YES) /* == 0.0 */ |
---|
1426 | { |
---|
1427 | c.im = PIOVER2; |
---|
1428 | } |
---|
1429 | else |
---|
1430 | { |
---|
1431 | c.im = atan2(a.im, a.re); |
---|
1432 | } |
---|
1433 | |
---|
1434 | return (c); |
---|
1435 | |
---|
1436 | } |
---|
1437 | |
---|
1438 | |
---|
1439 | |
---|
1440 | |
---|
1441 | |
---|
1442 | |
---|
1443 | /*--------------------------------------------------------------------------------- |
---|
1444 | | |
---|
1445 | | ComplexLUBackSubstitution |
---|
1446 | | |
---|
1447 | | Perform back-substitution into a LU-decomposed matrix to obtain |
---|
1448 | | the inverse. |
---|
1449 | | |
---|
1450 | ---------------------------------------------------------------------------------*/ |
---|
1451 | void ComplexLUBackSubstitution (int dim, complex **a, int *indx, complex *b) |
---|
1452 | |
---|
1453 | { |
---|
1454 | |
---|
1455 | int i, ip, j, ii = -1; |
---|
1456 | complex sum; |
---|
1457 | |
---|
1458 | for (i = 0; i < dim; i++) |
---|
1459 | { |
---|
1460 | ip = indx[i]; |
---|
1461 | sum = b[ip]; |
---|
1462 | b[ip] = b[i]; |
---|
1463 | if (ii >= 0) |
---|
1464 | { |
---|
1465 | for (j = ii; j <= i - 1; j++) |
---|
1466 | sum = ComplexSubtraction (sum, ComplexMultiplication (a[i][j], b[j])); |
---|
1467 | } |
---|
1468 | else if (AreDoublesEqual(sum.re,0.0,ETA)==NO || AreDoublesEqual(sum.im, 0.0, ETA)==NO) /* 2x != 0.0 */ |
---|
1469 | ii = i; |
---|
1470 | b[i] = sum; |
---|
1471 | } |
---|
1472 | for (i = dim - 1; i >= 0; i--) |
---|
1473 | { |
---|
1474 | sum = b[i]; |
---|
1475 | for (j = i + 1; j < dim; j++) |
---|
1476 | sum = ComplexSubtraction (sum, ComplexMultiplication (a[i][j], b[j])); |
---|
1477 | b[i] = ComplexDivision (sum, a[i][i]); |
---|
1478 | } |
---|
1479 | |
---|
1480 | } |
---|
1481 | |
---|
1482 | |
---|
1483 | |
---|
1484 | |
---|
1485 | |
---|
1486 | |
---|
1487 | /*--------------------------------------------------------------------------------- |
---|
1488 | | |
---|
1489 | | ComplexLUDecompose |
---|
1490 | | |
---|
1491 | | Replaces the matrix a with its LU-decomposition. |
---|
1492 | | The program has the following variables: |
---|
1493 | | |
---|
1494 | | a -- the matrix |
---|
1495 | | dim -- the dimension of the square matrix a and its inverse |
---|
1496 | | vv -- a work vector of doubles |
---|
1497 | | indx -- row permutation according to partitial pivoting sequence |
---|
1498 | | pd -- 1 if number of row interchanges was even, -1 if number of |
---|
1499 | | row interchanges was odd. Can be NULL. |
---|
1500 | | |
---|
1501 | | The function returns YES (1) or NO (0) if the results are singular. |
---|
1502 | | |
---|
1503 | ---------------------------------------------------------------------------------*/ |
---|
1504 | int ComplexLUDecompose (int dim, complex **a, MrBFlt *vv, int *indx, MrBFlt *pd) |
---|
1505 | |
---|
1506 | { |
---|
1507 | |
---|
1508 | int i, imax, j, k; |
---|
1509 | MrBFlt big, dum, temp, d; |
---|
1510 | complex sum, cdum; |
---|
1511 | |
---|
1512 | d = 1.0; |
---|
1513 | imax = 0; |
---|
1514 | |
---|
1515 | for (i = 0; i < dim; i++) |
---|
1516 | { |
---|
1517 | big = 0.0; |
---|
1518 | for (j = 0; j < dim; j++) |
---|
1519 | { |
---|
1520 | if ((temp = ComplexAbsoluteValue (a[i][j])) > big) |
---|
1521 | big = temp; |
---|
1522 | } |
---|
1523 | if (AreDoublesEqual(big, 0.0, ETA)==YES) /* == 0.0 */ |
---|
1524 | { |
---|
1525 | MrBayesPrint ("%s Error: Problem in ComplexLUDecompose\n", spacer); |
---|
1526 | return (1); |
---|
1527 | } |
---|
1528 | vv[i] = 1.0 / big; |
---|
1529 | } |
---|
1530 | |
---|
1531 | for (j = 0; j < dim; j++) |
---|
1532 | { |
---|
1533 | for (i = 0; i < j; i++) |
---|
1534 | { |
---|
1535 | sum = a[i][j]; |
---|
1536 | for (k = 0; k < i; k++) |
---|
1537 | sum = ComplexSubtraction (sum, ComplexMultiplication (a[i][k], a[k][j])); |
---|
1538 | a[i][j] = sum; |
---|
1539 | } |
---|
1540 | big = 0.0; |
---|
1541 | for (i = j; i < dim; i++) |
---|
1542 | { |
---|
1543 | sum = a[i][j]; |
---|
1544 | for (k = 0; k < j; k++) |
---|
1545 | sum = ComplexSubtraction (sum, ComplexMultiplication (a[i][k], a[k][j])); |
---|
1546 | a[i][j] = sum; |
---|
1547 | dum = vv[i] * ComplexAbsoluteValue (sum); |
---|
1548 | if (dum >= big) |
---|
1549 | { |
---|
1550 | big = dum; |
---|
1551 | imax = i; |
---|
1552 | } |
---|
1553 | } |
---|
1554 | if (j != imax) |
---|
1555 | { |
---|
1556 | for (k = 0; k < dim; k++) |
---|
1557 | { |
---|
1558 | cdum = a[imax][k]; |
---|
1559 | a[imax][k] = a[j][k]; |
---|
1560 | a[j][k] = cdum; |
---|
1561 | } |
---|
1562 | d = -d; |
---|
1563 | vv[imax] = vv[j]; |
---|
1564 | } |
---|
1565 | indx[j] = imax; |
---|
1566 | if (AreDoublesEqual(a[j][j].re, 0.0, ETA)==YES && AreDoublesEqual(a[j][j].im, 0.0, ETA)==YES) /* 2x == 0.0 */ |
---|
1567 | a[j][j] = Complex (1.0e-20, 1.0e-20); |
---|
1568 | if (j != dim - 1) |
---|
1569 | { |
---|
1570 | cdum = ComplexDivision (Complex(1.0, 0.0), a[j][j]); |
---|
1571 | for (i = j + 1; i < dim; i++) |
---|
1572 | a[i][j] = ComplexMultiplication (a[i][j], cdum); |
---|
1573 | } |
---|
1574 | } |
---|
1575 | |
---|
1576 | if (pd != NULL) |
---|
1577 | *pd = d; |
---|
1578 | |
---|
1579 | return (0); |
---|
1580 | |
---|
1581 | } |
---|
1582 | |
---|
1583 | |
---|
1584 | |
---|
1585 | |
---|
1586 | |
---|
1587 | /*--------------------------------------------------------------------------------- |
---|
1588 | | |
---|
1589 | | ComplexMultiplication |
---|
1590 | | |
---|
1591 | | Returns the complex product of two complex numbers. |
---|
1592 | | |
---|
1593 | ---------------------------------------------------------------------------------*/ |
---|
1594 | complex ComplexMultiplication (complex a, complex b) |
---|
1595 | |
---|
1596 | { |
---|
1597 | |
---|
1598 | complex c; |
---|
1599 | |
---|
1600 | c.re = a.re * b.re - a.im * b.im; |
---|
1601 | c.im = a.im * b.re + a.re * b.im; |
---|
1602 | |
---|
1603 | return (c); |
---|
1604 | |
---|
1605 | } |
---|
1606 | |
---|
1607 | |
---|
1608 | |
---|
1609 | |
---|
1610 | |
---|
1611 | /*--------------------------------------------------------------------------------- |
---|
1612 | | |
---|
1613 | | ComplexSquareRoot |
---|
1614 | | |
---|
1615 | | Returns the complex square root of a complex number. |
---|
1616 | | |
---|
1617 | ---------------------------------------------------------------------------------*/ |
---|
1618 | complex ComplexSquareRoot (complex a) |
---|
1619 | |
---|
1620 | { |
---|
1621 | |
---|
1622 | complex c; |
---|
1623 | MrBFlt x, y, w, r; |
---|
1624 | |
---|
1625 | if (AreDoublesEqual(a.re, 0.0, ETA)==YES && AreDoublesEqual(a.im, 0.0, ETA)==YES) /* 2x == 0.0 */ |
---|
1626 | { |
---|
1627 | c.re = 0.0; |
---|
1628 | c.im = 0.0; |
---|
1629 | return (c); |
---|
1630 | } |
---|
1631 | else |
---|
1632 | { |
---|
1633 | x = fabs(a.re); |
---|
1634 | y = fabs(a.im); |
---|
1635 | if (x >= y) |
---|
1636 | { |
---|
1637 | r = y / x; |
---|
1638 | w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r))); |
---|
1639 | } |
---|
1640 | else |
---|
1641 | { |
---|
1642 | r = x / y; |
---|
1643 | w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r))); |
---|
1644 | } |
---|
1645 | if (a.re >= 0.0) |
---|
1646 | { |
---|
1647 | c.re = w; |
---|
1648 | c.im = a.im / (2.0 * w); |
---|
1649 | } |
---|
1650 | else |
---|
1651 | { |
---|
1652 | c.im = (a.im >= 0.0) ? w : -w; |
---|
1653 | c.re = a.im / (2.0 * c.im); |
---|
1654 | } |
---|
1655 | return (c); |
---|
1656 | } |
---|
1657 | |
---|
1658 | } |
---|
1659 | |
---|
1660 | |
---|
1661 | |
---|
1662 | |
---|
1663 | |
---|
1664 | /*--------------------------------------------------------------------------------- |
---|
1665 | | |
---|
1666 | | ComplexSubtraction |
---|
1667 | | |
---|
1668 | | Returns the complex difference of two complex numbers. |
---|
1669 | | |
---|
1670 | ---------------------------------------------------------------------------------*/ |
---|
1671 | complex ComplexSubtraction (complex a, complex b) |
---|
1672 | |
---|
1673 | { |
---|
1674 | |
---|
1675 | complex c; |
---|
1676 | |
---|
1677 | c.re = a.re - b.re; |
---|
1678 | c.im = a.im - b.im; |
---|
1679 | |
---|
1680 | return (c); |
---|
1681 | |
---|
1682 | } |
---|
1683 | |
---|
1684 | |
---|
1685 | |
---|
1686 | |
---|
1687 | |
---|
1688 | /*--------------------------------------------------------------------------------- |
---|
1689 | | |
---|
1690 | | ComputeEigenSystem |
---|
1691 | | |
---|
1692 | | Calculates the eigenvalues, eigenvectors, and the inverse of the eigenvectors |
---|
1693 | | for a matrix of real numbers. |
---|
1694 | | |
---|
1695 | ---------------------------------------------------------------------------------*/ |
---|
1696 | int ComputeEigenSystem (int dim, MrBFlt **a, MrBFlt *v, MrBFlt *vi, MrBFlt **u, int *iwork, MrBFlt *dwork) |
---|
1697 | |
---|
1698 | { |
---|
1699 | |
---|
1700 | int i, rc; |
---|
1701 | |
---|
1702 | rc = EigensForRealMatrix (dim, a, v, vi, u, iwork, dwork); |
---|
1703 | if (rc != NO_ERROR) |
---|
1704 | { |
---|
1705 | MrBayesPrint ("%s Error in ComputeEigenSystem.\n", spacer); |
---|
1706 | return (ERROR); |
---|
1707 | } |
---|
1708 | for (i=0; i<dim; i++) |
---|
1709 | { |
---|
1710 | if (AreDoublesEqual(vi[i], 0.0, ETA)==NO) /* != 0.0 */ |
---|
1711 | return (EVALUATE_COMPLEX_NUMBERS); |
---|
1712 | } |
---|
1713 | |
---|
1714 | return (NO_ERROR); |
---|
1715 | |
---|
1716 | } |
---|
1717 | |
---|
1718 | |
---|
1719 | |
---|
1720 | |
---|
1721 | |
---|
1722 | /*--------------------------------------------------------------------------------- |
---|
1723 | | |
---|
1724 | | ComputeLandU |
---|
1725 | | |
---|
1726 | | This function computes the L and U decomposition of a matrix. Basically, |
---|
1727 | | we find matrices lMat and uMat such that |
---|
1728 | | |
---|
1729 | | lMat * uMat = aMat |
---|
1730 | | |
---|
1731 | ---------------------------------------------------------------------------------*/ |
---|
1732 | void ComputeLandU (int dim, MrBFlt **aMat, MrBFlt **lMat, MrBFlt **uMat) |
---|
1733 | |
---|
1734 | { |
---|
1735 | |
---|
1736 | int i, j, k, m, row, col; |
---|
1737 | |
---|
1738 | for (j=0; j<dim; j++) |
---|
1739 | { |
---|
1740 | for (k=0; k<j; k++) |
---|
1741 | for (i=k+1; i<j; i++) |
---|
1742 | aMat[i][j] = aMat[i][j] - aMat[i][k] * aMat[k][j]; |
---|
1743 | |
---|
1744 | for (k=0; k<j; k++) |
---|
1745 | for (i=j; i<dim; i++) |
---|
1746 | aMat[i][j] = aMat[i][j] - aMat[i][k]*aMat[k][j]; |
---|
1747 | |
---|
1748 | for (m=j+1; m<dim; m++) |
---|
1749 | aMat[m][j] /= aMat[j][j]; |
---|
1750 | } |
---|
1751 | |
---|
1752 | for (row=0; row<dim; row++) |
---|
1753 | { |
---|
1754 | for (col=0; col<dim; col++) |
---|
1755 | { |
---|
1756 | if (row <= col) |
---|
1757 | { |
---|
1758 | uMat[row][col] = aMat[row][col]; |
---|
1759 | lMat[row][col] = (row == col ? 1.0 : 0.0); |
---|
1760 | } |
---|
1761 | else |
---|
1762 | { |
---|
1763 | lMat[row][col] = aMat[row][col]; |
---|
1764 | uMat[row][col] = 0.0; |
---|
1765 | } |
---|
1766 | } |
---|
1767 | } |
---|
1768 | |
---|
1769 | } |
---|
1770 | |
---|
1771 | |
---|
1772 | |
---|
1773 | |
---|
1774 | |
---|
1775 | /*--------------------------------------------------------------------------------- |
---|
1776 | | |
---|
1777 | | ComputeMatrixExponential |
---|
1778 | | |
---|
1779 | | The method approximates the matrix exponential, f = e^a, using |
---|
1780 | | the algorithm 11.3.1, described in: |
---|
1781 | | |
---|
1782 | | Golub, G. H., and C. F. Van Loan. 1996. Matrix Computations, Third Edition. |
---|
1783 | | The Johns Hopkins University Press, Baltimore, Maryland. |
---|
1784 | | |
---|
1785 | | The method has the advantage of error control. The error is controlled by |
---|
1786 | | setting qValue appropriately (using the function SetQValue). |
---|
1787 | | |
---|
1788 | ---------------------------------------------------------------------------------*/ |
---|
1789 | void ComputeMatrixExponential (int dim, MrBFlt **a, int qValue, MrBFlt **f) |
---|
1790 | |
---|
1791 | { |
---|
1792 | |
---|
1793 | int i, j, k, negativeFactor; |
---|
1794 | MrBFlt maxAValue, c, **d, **n, **x, **cX; |
---|
1795 | |
---|
1796 | d = AllocateSquareDoubleMatrix (dim); |
---|
1797 | n = AllocateSquareDoubleMatrix (dim); |
---|
1798 | x = AllocateSquareDoubleMatrix (dim); |
---|
1799 | cX = AllocateSquareDoubleMatrix (dim); |
---|
1800 | |
---|
1801 | SetToIdentity (dim, d); |
---|
1802 | SetToIdentity (dim, n); |
---|
1803 | SetToIdentity (dim, x); |
---|
1804 | |
---|
1805 | maxAValue = 0; |
---|
1806 | for (i=0; i<dim; i++) |
---|
1807 | maxAValue = MAX (maxAValue, a[i][i]); |
---|
1808 | |
---|
1809 | j = MAX (0, LogBase2Plus1 (maxAValue)); |
---|
1810 | |
---|
1811 | DivideByTwos (dim, a, j); |
---|
1812 | |
---|
1813 | c = 1; |
---|
1814 | for (k=1; k<=qValue; k++) |
---|
1815 | { |
---|
1816 | c = c * (qValue - k + 1.0) / ((2.0 * qValue - k + 1.0) * k); |
---|
1817 | |
---|
1818 | /* X = AX */ |
---|
1819 | MultiplyMatrices (dim, a, x, x); |
---|
1820 | |
---|
1821 | /* N = N + cX */ |
---|
1822 | MultiplyMatrixByScalar (dim, x, c, cX); |
---|
1823 | AddTwoMatrices (dim, n, cX, n); |
---|
1824 | |
---|
1825 | /* D = D + (-1)^k*cX */ |
---|
1826 | negativeFactor = (k % 2 == 0 ? 1 : -1); |
---|
1827 | if (negativeFactor == -1) |
---|
1828 | MultiplyMatrixByScalar (dim, cX, negativeFactor, cX); |
---|
1829 | AddTwoMatrices (dim, d, cX, d); |
---|
1830 | } |
---|
1831 | |
---|
1832 | GaussianElimination (dim, d, n, f); |
---|
1833 | |
---|
1834 | for (k = 0; k < j; k++) |
---|
1835 | MultiplyMatrices (dim, f, f, f); |
---|
1836 | |
---|
1837 | for (i=0; i<dim; i++) |
---|
1838 | { |
---|
1839 | for (j=0; j<dim; j++) |
---|
1840 | { |
---|
1841 | if (f[i][j] < 0.0) |
---|
1842 | f[i][j] = fabs(f[i][j]); |
---|
1843 | } |
---|
1844 | } |
---|
1845 | |
---|
1846 | FreeSquareDoubleMatrix (d); |
---|
1847 | FreeSquareDoubleMatrix (n); |
---|
1848 | FreeSquareDoubleMatrix (x); |
---|
1849 | FreeSquareDoubleMatrix (cX); |
---|
1850 | |
---|
1851 | } |
---|
1852 | |
---|
1853 | |
---|
1854 | |
---|
1855 | |
---|
1856 | |
---|
1857 | /*--------------------------------------------------------------------------------- |
---|
1858 | | |
---|
1859 | | CopyComplexMatrices |
---|
1860 | | |
---|
1861 | | Copies the contents of one matrix of complex numbers to another matrix. |
---|
1862 | | |
---|
1863 | ---------------------------------------------------------------------------------*/ |
---|
1864 | void CopyComplexMatrices (int dim, complex **from, complex **to) |
---|
1865 | |
---|
1866 | { |
---|
1867 | |
---|
1868 | int i, j; |
---|
1869 | |
---|
1870 | for (i=0; i<dim; i++) |
---|
1871 | { |
---|
1872 | for (j=0; j<dim; j++) |
---|
1873 | { |
---|
1874 | to[i][j].re = from[i][j].re; |
---|
1875 | to[i][j].im = from[i][j].im; |
---|
1876 | } |
---|
1877 | } |
---|
1878 | |
---|
1879 | } |
---|
1880 | |
---|
1881 | |
---|
1882 | |
---|
1883 | |
---|
1884 | |
---|
1885 | /*--------------------------------------------------------------------------------- |
---|
1886 | | |
---|
1887 | | CopyDoubleMatrices |
---|
1888 | | |
---|
1889 | | Copies the contents of one matrix of doubles to another matrix. |
---|
1890 | | |
---|
1891 | ---------------------------------------------------------------------------------*/ |
---|
1892 | void CopyDoubleMatrices (int dim, MrBFlt **from, MrBFlt **to) |
---|
1893 | |
---|
1894 | { |
---|
1895 | |
---|
1896 | int i, j; |
---|
1897 | |
---|
1898 | for (i=0; i<dim; i++) |
---|
1899 | { |
---|
1900 | for (j=0; j<dim; j++) |
---|
1901 | { |
---|
1902 | to[i][j] = from[i][j]; |
---|
1903 | } |
---|
1904 | } |
---|
1905 | |
---|
1906 | } |
---|
1907 | |
---|
1908 | |
---|
1909 | |
---|
1910 | |
---|
1911 | |
---|
1912 | /*--------------------------------------------------------------------------------- |
---|
1913 | | |
---|
1914 | | DirichletRandomVariable |
---|
1915 | | |
---|
1916 | | Generate a Dirichlet-distributed random variable. The parameter of the |
---|
1917 | | Dirichlet is contained in the vector alp. The random variable is contained |
---|
1918 | | in the vector z. |
---|
1919 | | |
---|
1920 | ---------------------------------------------------------------------------------*/ |
---|
1921 | void DirichletRandomVariable (MrBFlt *alp, MrBFlt *z, int n, SafeLong *seed) |
---|
1922 | |
---|
1923 | { |
---|
1924 | |
---|
1925 | int i; |
---|
1926 | MrBFlt sum; |
---|
1927 | |
---|
1928 | sum = 0.0; |
---|
1929 | for(i=0; i<n; i++) |
---|
1930 | { |
---|
1931 | z[i] = RndGamma (alp[i], seed) / 1.0; |
---|
1932 | sum += z[i]; |
---|
1933 | } |
---|
1934 | for(i=0; i<n; i++) |
---|
1935 | z[i] /= sum; |
---|
1936 | } |
---|
1937 | |
---|
1938 | |
---|
1939 | |
---|
1940 | |
---|
1941 | |
---|
1942 | /*--------------------------------------------------------------------------------- |
---|
1943 | | |
---|
1944 | | DiscreteGamma |
---|
1945 | | |
---|
1946 | | Discretization of gamma distribution with equal proportions in each |
---|
1947 | | category. |
---|
1948 | | |
---|
1949 | ---------------------------------------------------------------------------------*/ |
---|
1950 | int DiscreteGamma (MrBFlt *rK, MrBFlt alfa, MrBFlt beta, int K, int median) |
---|
1951 | |
---|
1952 | { |
---|
1953 | |
---|
1954 | int i; |
---|
1955 | MrBFlt gap05 = 1.0/(2.0*K), t, factor = alfa/beta*K, lnga1; |
---|
1956 | |
---|
1957 | if (median) |
---|
1958 | { |
---|
1959 | for (i=0; i<K; i++) |
---|
1960 | rK[i] = POINTGAMMA((i*2.0+1.0)*gap05, alfa, beta); |
---|
1961 | for (i=0,t=0; i<K; i++) |
---|
1962 | t += rK[i]; |
---|
1963 | for (i=0; i<K; i++) |
---|
1964 | rK[i] *= factor / t; |
---|
1965 | } |
---|
1966 | else |
---|
1967 | { |
---|
1968 | lnga1 = LnGamma(alfa+1); |
---|
1969 | /* calculate the points in the gamma distribution */ |
---|
1970 | for (i=0; i<K-1; i++) |
---|
1971 | rK[i] = POINTGAMMA((i+1.0)/K, alfa, beta); |
---|
1972 | /* calculate the cumulative values */ |
---|
1973 | for (i=0; i<K-1; i++) |
---|
1974 | rK[i] = IncompleteGamma(rK[i] * beta, alfa + 1.0, lnga1); |
---|
1975 | rK[K-1] = 1.0; |
---|
1976 | /* calculate the relative values and rescale */ |
---|
1977 | for (i=K-1; i>0; i--) |
---|
1978 | { |
---|
1979 | rK[i] -= rK[i-1]; |
---|
1980 | rK[i] *= factor; |
---|
1981 | } |
---|
1982 | rK[0] *= factor; |
---|
1983 | } |
---|
1984 | |
---|
1985 | return (NO_ERROR); |
---|
1986 | |
---|
1987 | } |
---|
1988 | |
---|
1989 | |
---|
1990 | |
---|
1991 | |
---|
1992 | |
---|
1993 | /*--------------------------------------------------------------------------------- |
---|
1994 | | |
---|
1995 | | DivideByTwos |
---|
1996 | | |
---|
1997 | | Divides all of the elements of the matrix a by 2^power. |
---|
1998 | | |
---|
1999 | ---------------------------------------------------------------------------------*/ |
---|
2000 | void DivideByTwos (int dim, MrBFlt **a, int power) |
---|
2001 | |
---|
2002 | { |
---|
2003 | |
---|
2004 | int divisor = 1, i, row, col; |
---|
2005 | |
---|
2006 | for (i=0; i<power; i++) |
---|
2007 | divisor = divisor * 2; |
---|
2008 | |
---|
2009 | for (row=0; row<dim; row++) |
---|
2010 | for (col=0; col<dim; col++) |
---|
2011 | a[row][col] /= divisor; |
---|
2012 | |
---|
2013 | } |
---|
2014 | |
---|
2015 | |
---|
2016 | |
---|
2017 | |
---|
2018 | |
---|
2019 | /*--------------------------------------------------------------------------------- |
---|
2020 | | |
---|
2021 | | D_sign |
---|
2022 | | |
---|
2023 | | This function is called from "Hqr2". |
---|
2024 | | |
---|
2025 | ---------------------------------------------------------------------------------*/ |
---|
2026 | MrBFlt D_sign (MrBFlt a, MrBFlt b) |
---|
2027 | |
---|
2028 | { |
---|
2029 | |
---|
2030 | MrBFlt x; |
---|
2031 | |
---|
2032 | x = (a >= 0 ? a : -a); |
---|
2033 | |
---|
2034 | return (b >= 0 ? x : -x); |
---|
2035 | |
---|
2036 | } |
---|
2037 | |
---|
2038 | |
---|
2039 | |
---|
2040 | |
---|
2041 | |
---|
2042 | /*--------------------------------------------------------------------------------- |
---|
2043 | | |
---|
2044 | | Eigens |
---|
2045 | | |
---|
2046 | | The matrix of interest is a. The ouptut is the real and imaginary parts of the |
---|
2047 | | eigenvalues (wr and wi). z contains the real and imaginary parts of the |
---|
2048 | | eigenvectors. iv2 and fv1 are working vectors. |
---|
2049 | | |
---|
2050 | ---------------------------------------------------------------------------------*/ |
---|
2051 | int EigensForRealMatrix (int dim, MrBFlt **a, MrBFlt *wr, MrBFlt *wi, MrBFlt **z, int *iv1, MrBFlt *fv1) |
---|
2052 | |
---|
2053 | { |
---|
2054 | |
---|
2055 | static int is1, is2; |
---|
2056 | int ierr; |
---|
2057 | |
---|
2058 | Balanc (dim, a, &is1, &is2, fv1); |
---|
2059 | ElmHes (dim, is1, is2, a, iv1); |
---|
2060 | ElTran (dim, is1, is2, a, iv1, z); |
---|
2061 | ierr = Hqr2 (dim, is1, is2, a, wr, wi, z); |
---|
2062 | if (ierr == 0) |
---|
2063 | BalBak (dim, is1, is2, fv1, dim, z); |
---|
2064 | |
---|
2065 | return (ierr); |
---|
2066 | |
---|
2067 | } |
---|
2068 | |
---|
2069 | |
---|
2070 | |
---|
2071 | |
---|
2072 | |
---|
2073 | /*--------------------------------------------------------------------------------- |
---|
2074 | | |
---|
2075 | | ElmHes |
---|
2076 | | |
---|
2077 | | Given a real general matrix, this subroutine |
---|
2078 | | reduces a submatrix situated in rows and columns |
---|
2079 | | low through high to upper Hessenberg form by |
---|
2080 | | stabilized elementary similarity transformations. |
---|
2081 | | |
---|
2082 | | On input: |
---|
2083 | | |
---|
2084 | | * dim is the order of the matrix |
---|
2085 | | |
---|
2086 | | * low and high are integers determined by the balancing |
---|
2087 | | subroutine balanc. if balanc has not been used, |
---|
2088 | | set low=1, high=dim. |
---|
2089 | | |
---|
2090 | | * a contains the input matrix. |
---|
2091 | | |
---|
2092 | | On output: |
---|
2093 | | |
---|
2094 | | * a contains the hessenberg matrix. The multipliers |
---|
2095 | | which were used in the reduction are stored in the |
---|
2096 | | remaining triangle under the hessenberg matrix. |
---|
2097 | | |
---|
2098 | | * interchanged contains information on the rows and columns |
---|
2099 | | interchanged in the reduction. |
---|
2100 | | |
---|
2101 | | Only elements low through high are used. |
---|
2102 | | |
---|
2103 | ---------------------------------------------------------------------------------*/ |
---|
2104 | void ElmHes (int dim, int low, int high, MrBFlt **a, int *interchanged) |
---|
2105 | |
---|
2106 | { |
---|
2107 | int i, j, m, la, mm1, kp1, mp1; |
---|
2108 | MrBFlt x, y; |
---|
2109 | |
---|
2110 | la = high - 1; |
---|
2111 | kp1 = low + 1; |
---|
2112 | if (la < kp1) |
---|
2113 | return; /* remove goto statement, which exits at bottom of function */ |
---|
2114 | |
---|
2115 | for (m=kp1; m<=la; m++) |
---|
2116 | { |
---|
2117 | mm1 = m - 1; |
---|
2118 | x = 0.0; |
---|
2119 | i = m; |
---|
2120 | |
---|
2121 | for (j=m; j<=high; j++) |
---|
2122 | { |
---|
2123 | if (fabs(a[j][mm1]) > fabs(x)) /* change direction of inequality */ |
---|
2124 | { /* remove goto statement */ |
---|
2125 | x = a[j][mm1]; |
---|
2126 | i = j; |
---|
2127 | } |
---|
2128 | } |
---|
2129 | |
---|
2130 | interchanged[m] = i; |
---|
2131 | if (i != m) /* change "==" to "!=", eliminating goto statement */ |
---|
2132 | { |
---|
2133 | /* interchange rows and columns of a */ |
---|
2134 | for (j=mm1; j<dim; j++) |
---|
2135 | { |
---|
2136 | y = a[i][j]; |
---|
2137 | a[i][j] = a[m][j]; |
---|
2138 | a[m][j] = y; |
---|
2139 | } |
---|
2140 | for (j=0; j<=high; j++) |
---|
2141 | { |
---|
2142 | y = a[j][i]; |
---|
2143 | a[j][i] = a[j][m]; |
---|
2144 | a[j][m] = y; |
---|
2145 | } |
---|
2146 | } |
---|
2147 | |
---|
2148 | if (AreDoublesEqual(x, 0.0, ETA)==NO) /* change "==" to "!=", eliminating goto statement */ |
---|
2149 | { |
---|
2150 | mp1 = m + 1; |
---|
2151 | |
---|
2152 | for (i=mp1; i<=high; i++) |
---|
2153 | { |
---|
2154 | y = a[i][mm1]; |
---|
2155 | if (AreDoublesEqual(y, 0.0, ETA)==NO) /* != 0.0 */ |
---|
2156 | { |
---|
2157 | y /= x; |
---|
2158 | a[i][mm1] = y; |
---|
2159 | for (j = m; j < dim; j++) |
---|
2160 | a[i][j] -= y * a[m][j]; |
---|
2161 | for (j = 0; j <= high; j++) |
---|
2162 | a[j][m] += y * a[j][i]; |
---|
2163 | } |
---|
2164 | } |
---|
2165 | } |
---|
2166 | } |
---|
2167 | |
---|
2168 | #if 0 |
---|
2169 | /* begin f2c version of code: |
---|
2170 | elmhes.f -- translated by f2c (version 19971204) */ |
---|
2171 | int elmhes (int *nm, int *n, int *low, int *igh, MrBFlt *a, int *int__) |
---|
2172 | |
---|
2173 | { |
---|
2174 | |
---|
2175 | /*system generated locals */ |
---|
2176 | int a_dim1, a_offset, i__1, i__2, i__3; |
---|
2177 | MrBFlt d__1; |
---|
2178 | |
---|
2179 | /* local variables */ |
---|
2180 | static int i__, j, m; |
---|
2181 | static MrBFlt x, y; |
---|
2182 | static int la, mm1, kp1, mp1; |
---|
2183 | |
---|
2184 | /* parameter adjustments */ |
---|
2185 | a_dim1 = *nm; |
---|
2186 | a_offset = a_dim1 + 1; |
---|
2187 | a -= a_offset; |
---|
2188 | --int__; |
---|
2189 | |
---|
2190 | /* function body */ |
---|
2191 | la = *igh - 1; |
---|
2192 | kp1 = *low + 1; |
---|
2193 | if (la < kp1) |
---|
2194 | goto L200; |
---|
2195 | |
---|
2196 | i__1 = la; |
---|
2197 | for (m = kp1; m <= i__1; ++m) |
---|
2198 | { |
---|
2199 | mm1 = m - 1; |
---|
2200 | x = 0.; |
---|
2201 | i__ = m; |
---|
2202 | i__2 = *igh; |
---|
2203 | for (j = m; j <= i__2; ++j) |
---|
2204 | { |
---|
2205 | if ((d__1 = a[j + mm1 * a_dim1], abs(d__1)) <= abs(x)) |
---|
2206 | goto L100; |
---|
2207 | x = a[j + mm1 * a_dim1]; |
---|
2208 | i__ = j; |
---|
2209 | L100: |
---|
2210 | ; |
---|
2211 | } |
---|
2212 | |
---|
2213 | int__[m] = i__; |
---|
2214 | if (i__ == m) |
---|
2215 | goto L130; |
---|
2216 | |
---|
2217 | /* .......... interchange rows and columns of a.......... */ |
---|
2218 | i__2 = *n; |
---|
2219 | for (j = mm1; j <= i__2; ++j) |
---|
2220 | { |
---|
2221 | y = a[i__ + j * a_dim1]; |
---|
2222 | a[i__ + j * a_dim1] = a[m + j * a_dim1]; |
---|
2223 | a[m + j * a_dim1] = y; |
---|
2224 | /* L110: */ |
---|
2225 | } |
---|
2226 | |
---|
2227 | i__2 = *igh; |
---|
2228 | for (j = 1; j <= i__2; ++j) |
---|
2229 | { |
---|
2230 | y = a[j + i__ * a_dim1]; |
---|
2231 | a[j + i__ * a_dim1] = a[j + m * a_dim1]; |
---|
2232 | a[j + m * a_dim1] = y; |
---|
2233 | /* L120: */ |
---|
2234 | } |
---|
2235 | |
---|
2236 | /* .......... end interchange .......... */ |
---|
2237 | L130: |
---|
2238 | if (x == 0.) |
---|
2239 | goto L180; |
---|
2240 | mp1 = m + 1; |
---|
2241 | |
---|
2242 | i__2 = *igh; |
---|
2243 | for (i__ = mp1; i__ <= i__2; ++i__) |
---|
2244 | { |
---|
2245 | y = a[i__ + mm1 * a_dim1]; |
---|
2246 | if (y == 0.) |
---|
2247 | goto L160; |
---|
2248 | y /= x; |
---|
2249 | a[i__ + mm1 * a_dim1] = y; |
---|
2250 | |
---|
2251 | i__3 = *n; |
---|
2252 | for (j = m; j <= i__3; ++j) |
---|
2253 | { |
---|
2254 | /* L140: */ |
---|
2255 | a[i__ + j * a_dim1] -= y * a[m + j * a_dim1]; |
---|
2256 | } |
---|
2257 | |
---|
2258 | i__3 = *igh; |
---|
2259 | for (j = 1; j <= i__3; ++j) |
---|
2260 | { |
---|
2261 | /* L150: */ |
---|
2262 | a[j + m * a_dim1] += y * a[j + i__ * a_dim1]; |
---|
2263 | } |
---|
2264 | |
---|
2265 | L160: |
---|
2266 | ; |
---|
2267 | } |
---|
2268 | |
---|
2269 | L180: |
---|
2270 | ; |
---|
2271 | } |
---|
2272 | |
---|
2273 | L200: |
---|
2274 | return 0; |
---|
2275 | |
---|
2276 | } |
---|
2277 | /* end f2c version of code */ |
---|
2278 | #endif |
---|
2279 | |
---|
2280 | } |
---|
2281 | |
---|
2282 | |
---|
2283 | |
---|
2284 | |
---|
2285 | |
---|
2286 | /*--------------------------------------------------------------------------------- |
---|
2287 | | |
---|
2288 | | ElTran |
---|
2289 | | |
---|
2290 | | This subroutine accumulates the stabilized elementary |
---|
2291 | | similarity transformations used in the reduction of a |
---|
2292 | | real general matrix to upper Hessenberg form by ElmHes. |
---|
2293 | | |
---|
2294 | | On input: |
---|
2295 | | |
---|
2296 | | * dim is the order of the matrix. |
---|
2297 | | |
---|
2298 | | * low and high are integers determined by the balancing |
---|
2299 | | subroutine balanc. If Balanc has not been used, |
---|
2300 | | set low=0, high=dim-1. |
---|
2301 | | |
---|
2302 | | * a contains the multipliers which were used in the |
---|
2303 | | reduction by ElmHes in its lower triangle |
---|
2304 | | below the subdiagonal. |
---|
2305 | | |
---|
2306 | | * interchanged contains information on the rows and columns |
---|
2307 | | interchanged in the reduction by ElmHes. |
---|
2308 | | only elements low through high are used. |
---|
2309 | | |
---|
2310 | | On output: |
---|
2311 | | |
---|
2312 | | * z contains the transformation matrix produced in the |
---|
2313 | | reduction by ElmHes. |
---|
2314 | | |
---|
2315 | | This routine is a translation of the Algol procedure from |
---|
2316 | | Handbook for Automatic Computation, vol. II, Linear Algebra, |
---|
2317 | | by Wilkinson and Reinsch, Springer-Verlag. |
---|
2318 | | |
---|
2319 | ---------------------------------------------------------------------------------*/ |
---|
2320 | void ElTran (int dim, int low, int high, MrBFlt **a, int *interchanged, MrBFlt **z) |
---|
2321 | |
---|
2322 | { |
---|
2323 | |
---|
2324 | int i, j, mp; |
---|
2325 | |
---|
2326 | /* initialize z to identity matrix */ |
---|
2327 | for (j=0; j<dim; j++) |
---|
2328 | { |
---|
2329 | for (i=0; i<dim; i++) |
---|
2330 | z[i][j] = 0.0; |
---|
2331 | z[j][j] = 1.0; |
---|
2332 | } |
---|
2333 | for (mp=high-1; mp>=low+1; mp--) /* there were a number of additional */ |
---|
2334 | { /* variables (kl, la, m, mm, mp1) that */ |
---|
2335 | for (i=mp+1; i<=high; i++) /* have been eliminated here simply by */ |
---|
2336 | z[i][mp] = a[i][mp-1]; /* initializing variables appropriately */ |
---|
2337 | i = interchanged[mp]; /* in the loops */ |
---|
2338 | if (i != mp) /* change "==" to "!=" to eliminate a goto statement */ |
---|
2339 | { |
---|
2340 | for (j=mp; j<=high; j++) |
---|
2341 | { |
---|
2342 | z[mp][j] = z[i][j]; |
---|
2343 | z[i][j] = 0.0; |
---|
2344 | } |
---|
2345 | z[i][mp] = 1.0; |
---|
2346 | } |
---|
2347 | } |
---|
2348 | |
---|
2349 | #if 0 |
---|
2350 | /* begin f2c version of code: |
---|
2351 | eltran.f -- translated by f2c (version 19971204) */ |
---|
2352 | int eltran (int *nm, int *n, int *low, int *igh, MrBFlt *a, int *int__, MrBFlt *z__) |
---|
2353 | |
---|
2354 | { |
---|
2355 | |
---|
2356 | /* system generated locals */ |
---|
2357 | int a_dim1, a_offset, z_dim1, z_offset, i__1, i__2; |
---|
2358 | |
---|
2359 | /* local variables */ |
---|
2360 | static int i__, j, kl, mm, mp, mp1; |
---|
2361 | |
---|
2362 | /* .......... initialize z to identity matrix .......... */ |
---|
2363 | |
---|
2364 | /* parameter adjustments */ |
---|
2365 | z_dim1 = *nm; |
---|
2366 | z_offset = z_dim1 + 1; |
---|
2367 | z__ -= z_offset; |
---|
2368 | --int__; |
---|
2369 | a_dim1 = *nm; |
---|
2370 | a_offset = a_dim1 + 1; |
---|
2371 | a -= a_offset; |
---|
2372 | |
---|
2373 | /* function Body */ |
---|
2374 | i__1 = *n; |
---|
2375 | for (j = 1; j <= i__1; ++j) |
---|
2376 | { |
---|
2377 | i__2 = *n; |
---|
2378 | for (i__ = 1; i__ <= i__2; ++i__) |
---|
2379 | { |
---|
2380 | /* L60: */ |
---|
2381 | z__[i__ + j * z_dim1] = 0.0; |
---|
2382 | } |
---|
2383 | z__[j + j * z_dim1] = 1.0; |
---|
2384 | /* L80: */ |
---|
2385 | } |
---|
2386 | |
---|
2387 | kl = *igh - *low - 1; |
---|
2388 | if (kl < 1) |
---|
2389 | goto L200; |
---|
2390 | |
---|
2391 | /* .......... for mp=igh-1 step -1 until low+1 do -- .......... */ |
---|
2392 | i__1 = kl; |
---|
2393 | for (mm = 1; mm <= i__1; ++mm) |
---|
2394 | { |
---|
2395 | mp = *igh - mm; |
---|
2396 | mp1 = mp + 1; |
---|
2397 | i__2 = *igh; |
---|
2398 | for (i__ = mp1; i__ <= i__2; ++i__) |
---|
2399 | { |
---|
2400 | /* L100: */ |
---|
2401 | z__[i__ + mp * z_dim1] = a[i__ + (mp - 1) * a_dim1]; |
---|
2402 | } |
---|
2403 | i__ = int__[mp]; |
---|
2404 | if (i__ == mp) |
---|
2405 | goto L140; |
---|
2406 | i__2 = *igh; |
---|
2407 | for (j = mp; j <= i__2; ++j) |
---|
2408 | { |
---|
2409 | z__[mp + j * z_dim1] = z__[i__ + j * z_dim1]; |
---|
2410 | z__[i__ + j * z_dim1] = 0.; |
---|
2411 | /* L130: */ |
---|
2412 | } |
---|
2413 | z__[i__ + mp * z_dim1] = 1.; |
---|
2414 | L140: |
---|
2415 | ; |
---|
2416 | } |
---|
2417 | |
---|
2418 | L200: |
---|
2419 | return 0; |
---|
2420 | |
---|
2421 | } |
---|
2422 | /* end f2c version of code */ |
---|
2423 | #endif |
---|
2424 | |
---|
2425 | } |
---|
2426 | |
---|
2427 | |
---|
2428 | |
---|
2429 | |
---|
2430 | |
---|
2431 | /*--------------------------------------------------------------------------------- |
---|
2432 | | |
---|
2433 | | Exchange |
---|
2434 | | |
---|
2435 | ---------------------------------------------------------------------------------*/ |
---|
2436 | void Exchange (int j, int k, int l, int m, int n, MrBFlt **a, MrBFlt *scale) |
---|
2437 | |
---|
2438 | { |
---|
2439 | |
---|
2440 | int i; |
---|
2441 | MrBFlt f; |
---|
2442 | |
---|
2443 | scale[m] = (MrBFlt)j; |
---|
2444 | if (j != m) |
---|
2445 | { |
---|
2446 | for (i = 0; i <= l; i++) |
---|
2447 | { |
---|
2448 | f = a[i][j]; |
---|
2449 | a[i][j] = a[i][m]; |
---|
2450 | a[i][m] = f; |
---|
2451 | } |
---|
2452 | for (i = k; i < n; i++) |
---|
2453 | { |
---|
2454 | f = a[j][i]; |
---|
2455 | a[j][i] = a[m][i]; |
---|
2456 | a[m][i] = f; |
---|
2457 | } |
---|
2458 | } |
---|
2459 | |
---|
2460 | } |
---|
2461 | |
---|
2462 | |
---|
2463 | |
---|
2464 | |
---|
2465 | |
---|
2466 | /*--------------------------------------------------------------------------------- |
---|
2467 | | |
---|
2468 | | Factorial |
---|
2469 | | |
---|
2470 | | Returns x! |
---|
2471 | | |
---|
2472 | ---------------------------------------------------------------------------------*/ |
---|
2473 | MrBFlt Factorial (int x) |
---|
2474 | |
---|
2475 | { |
---|
2476 | |
---|
2477 | int i; |
---|
2478 | MrBFlt fac; |
---|
2479 | |
---|
2480 | fac = 1.0; |
---|
2481 | for (i=0; i<x; i++) |
---|
2482 | { |
---|
2483 | fac *= (i+1); |
---|
2484 | } |
---|
2485 | |
---|
2486 | return (fac); |
---|
2487 | |
---|
2488 | } |
---|
2489 | |
---|
2490 | |
---|
2491 | |
---|
2492 | |
---|
2493 | |
---|
2494 | /*--------------------------------------------------------------------------------- |
---|
2495 | | |
---|
2496 | | ForwardSubstitutionRow |
---|
2497 | | |
---|
2498 | ---------------------------------------------------------------------------------*/ |
---|
2499 | void ForwardSubstitutionRow (int dim, MrBFlt **L, MrBFlt *b) |
---|
2500 | |
---|
2501 | { |
---|
2502 | |
---|
2503 | int i, j; |
---|
2504 | MrBFlt dotProduct; |
---|
2505 | |
---|
2506 | b[0] = b[0] / L[0][0]; |
---|
2507 | for (i=1; i<dim; i++) |
---|
2508 | { |
---|
2509 | dotProduct = 0.0; |
---|
2510 | for (j=0; j<i; j++) |
---|
2511 | dotProduct += L[i][j] * b[j]; |
---|
2512 | b[i] = (b[i] - dotProduct) / L[i][i]; |
---|
2513 | } |
---|
2514 | |
---|
2515 | } |
---|
2516 | |
---|
2517 | |
---|
2518 | |
---|
2519 | |
---|
2520 | |
---|
2521 | /*--------------------------------------------------------------------------------- |
---|
2522 | | |
---|
2523 | | FreeSquareComplexMatrix |
---|
2524 | | |
---|
2525 | | Frees a matrix of complex numbers. |
---|
2526 | | |
---|
2527 | ---------------------------------------------------------------------------------*/ |
---|
2528 | void FreeSquareComplexMatrix (complex **m) |
---|
2529 | |
---|
2530 | { |
---|
2531 | |
---|
2532 | free((char *) (m[0])); |
---|
2533 | free((char *) (m)); |
---|
2534 | |
---|
2535 | } |
---|
2536 | |
---|
2537 | |
---|
2538 | |
---|
2539 | |
---|
2540 | |
---|
2541 | /*--------------------------------------------------------------------------------- |
---|
2542 | | |
---|
2543 | | FreeSquareDoubleMatrix |
---|
2544 | | |
---|
2545 | | Frees a matrix of doubles. |
---|
2546 | | |
---|
2547 | ---------------------------------------------------------------------------------*/ |
---|
2548 | void FreeSquareDoubleMatrix (MrBFlt **m) |
---|
2549 | |
---|
2550 | { |
---|
2551 | |
---|
2552 | free((char *) (m[0])); |
---|
2553 | free((char *) (m)); |
---|
2554 | |
---|
2555 | } |
---|
2556 | |
---|
2557 | |
---|
2558 | |
---|
2559 | |
---|
2560 | /*--------------------------------------------------------------------------------- |
---|
2561 | | |
---|
2562 | | FreeSquareIntegerMatrix |
---|
2563 | | |
---|
2564 | | Frees a matrix of integers. |
---|
2565 | | |
---|
2566 | ---------------------------------------------------------------------------------*/ |
---|
2567 | void FreeSquareIntegerMatrix (int **m) |
---|
2568 | |
---|
2569 | { |
---|
2570 | |
---|
2571 | free((char *) (m[0])); |
---|
2572 | free((char *) (m)); |
---|
2573 | |
---|
2574 | } |
---|
2575 | |
---|
2576 | |
---|
2577 | |
---|
2578 | |
---|
2579 | |
---|
2580 | /*--------------------------------------------------------------------------------- |
---|
2581 | | |
---|
2582 | | GammaRandomVariable |
---|
2583 | | |
---|
2584 | | This function generates a gamma-distributed random variable with parameters |
---|
2585 | | a and b. The mean is E(X) = a / b and the variance is Var(X) = a / b^2. |
---|
2586 | | |
---|
2587 | ---------------------------------------------------------------------------------*/ |
---|
2588 | MrBFlt GammaRandomVariable (MrBFlt a, MrBFlt b, SafeLong *seed) |
---|
2589 | |
---|
2590 | { |
---|
2591 | |
---|
2592 | return (RndGamma (a, seed) / b); |
---|
2593 | |
---|
2594 | } |
---|
2595 | |
---|
2596 | |
---|
2597 | |
---|
2598 | |
---|
2599 | |
---|
2600 | /*--------------------------------------------------------------------------------- |
---|
2601 | | |
---|
2602 | | GaussianElimination |
---|
2603 | | |
---|
2604 | ---------------------------------------------------------------------------------*/ |
---|
2605 | void GaussianElimination (int dim, MrBFlt **a, MrBFlt **bMat, MrBFlt **xMat) |
---|
2606 | |
---|
2607 | { |
---|
2608 | |
---|
2609 | int i, k; |
---|
2610 | MrBFlt *bVec, **lMat, **uMat; |
---|
2611 | |
---|
2612 | lMat = AllocateSquareDoubleMatrix (dim); |
---|
2613 | uMat = AllocateSquareDoubleMatrix (dim); |
---|
2614 | bVec = (MrBFlt *)SafeMalloc((size_t) ((dim) * sizeof(MrBFlt))); |
---|
2615 | if (!bVec) |
---|
2616 | { |
---|
2617 | MrBayesPrint ("%s Error: Problem allocating bVec\n", spacer); |
---|
2618 | exit (0); |
---|
2619 | } |
---|
2620 | |
---|
2621 | ComputeLandU (dim, a, lMat, uMat); |
---|
2622 | |
---|
2623 | for (k=0; k<dim; k++) |
---|
2624 | { |
---|
2625 | |
---|
2626 | for (i=0; i<dim; i++) |
---|
2627 | bVec[i] = bMat[i][k]; |
---|
2628 | |
---|
2629 | /* Answer of Ly = b (which is solving for y) is copied into b. */ |
---|
2630 | ForwardSubstitutionRow (dim, lMat, bVec); |
---|
2631 | |
---|
2632 | /* Answer of Ux = y (solving for x and the y was copied into b above) |
---|
2633 | is also copied into b. */ |
---|
2634 | BackSubstitutionRow (dim, uMat, bVec); |
---|
2635 | |
---|
2636 | for (i=0; i<dim; i++) |
---|
2637 | xMat[i][k] = bVec[i]; |
---|
2638 | |
---|
2639 | } |
---|
2640 | |
---|
2641 | FreeSquareDoubleMatrix (lMat); |
---|
2642 | FreeSquareDoubleMatrix (uMat); |
---|
2643 | free (bVec); |
---|
2644 | |
---|
2645 | } |
---|
2646 | |
---|
2647 | |
---|
2648 | |
---|
2649 | |
---|
2650 | |
---|
2651 | /*--------------------------------------------------------------------------------- |
---|
2652 | | |
---|
2653 | | GetEigens |
---|
2654 | | |
---|
2655 | | returns NO if non complex eigendecomposition, YES if complex eigendecomposition, ABORT if an error has occured |
---|
2656 | | |
---|
2657 | ---------------------------------------------------------------------------------*/ |
---|
2658 | int GetEigens (int dim, MrBFlt **q, MrBFlt *eigenValues, MrBFlt *eigvalsImag, MrBFlt **eigvecs, MrBFlt **inverseEigvecs, complex **Ceigvecs, complex **CinverseEigvecs) |
---|
2659 | |
---|
2660 | { |
---|
2661 | |
---|
2662 | int i, j, rc, *iWork, isComplex; |
---|
2663 | MrBFlt **tempWork, *dWork; |
---|
2664 | complex **cWork, *Ccol; |
---|
2665 | |
---|
2666 | /* allocate memory */ |
---|
2667 | dWork = (MrBFlt *)SafeMalloc((size_t) (dim * sizeof(MrBFlt))); |
---|
2668 | iWork = (int *)SafeMalloc((size_t) (dim * sizeof(int))); |
---|
2669 | if (!dWork || !iWork) |
---|
2670 | { |
---|
2671 | MrBayesPrint ("%s Error: Problem in GetEigens\n", spacer); |
---|
2672 | exit (0); |
---|
2673 | } |
---|
2674 | |
---|
2675 | /* calculate eigenvalues and eigenvectors */ |
---|
2676 | isComplex = NO; |
---|
2677 | rc = ComputeEigenSystem (dim, q, eigenValues, eigvalsImag, eigvecs, iWork, dWork); |
---|
2678 | if (rc != NO_ERROR) |
---|
2679 | { |
---|
2680 | if (rc == EVALUATE_COMPLEX_NUMBERS) |
---|
2681 | isComplex = YES; |
---|
2682 | else |
---|
2683 | isComplex = ABORT; |
---|
2684 | } |
---|
2685 | |
---|
2686 | /* invert eigenvectors */ |
---|
2687 | if (isComplex == NO) |
---|
2688 | { |
---|
2689 | tempWork = AllocateSquareDoubleMatrix (dim); |
---|
2690 | CopyDoubleMatrices (dim, eigvecs, tempWork); |
---|
2691 | InvertMatrix (dim, tempWork, dWork, iWork, inverseEigvecs); |
---|
2692 | FreeSquareDoubleMatrix (tempWork); |
---|
2693 | } |
---|
2694 | else if (isComplex == YES) |
---|
2695 | { |
---|
2696 | for(i=0; i<dim; i++) |
---|
2697 | { |
---|
2698 | if (fabs(eigvalsImag[i])<1E-20) /* == 0.0 */ |
---|
2699 | { |
---|
2700 | for(j=0; j<dim; j++) |
---|
2701 | { |
---|
2702 | Ceigvecs[j][i].re = eigvecs[j][i]; |
---|
2703 | Ceigvecs[j][i].im = 0.0; |
---|
2704 | } |
---|
2705 | } |
---|
2706 | else if (eigvalsImag[i] > 0) |
---|
2707 | { |
---|
2708 | for (j=0; j<dim; j++) |
---|
2709 | { |
---|
2710 | Ceigvecs[j][i].re = eigvecs[j][i]; |
---|
2711 | Ceigvecs[j][i].im = eigvecs[j][i + 1]; |
---|
2712 | } |
---|
2713 | } |
---|
2714 | else if (eigvalsImag[i] < 0) |
---|
2715 | { |
---|
2716 | for (j=0; j<dim; j++) |
---|
2717 | { |
---|
2718 | Ceigvecs[j][i].re = eigvecs[j][i-1]; |
---|
2719 | Ceigvecs[j][i].im = -eigvecs[j][i]; |
---|
2720 | } |
---|
2721 | } |
---|
2722 | } |
---|
2723 | Ccol = (complex *)SafeMalloc((size_t) (dim * sizeof(complex))); |
---|
2724 | if (!Ccol) |
---|
2725 | { |
---|
2726 | MrBayesPrint ("%s Error: Problem in GetEigens\n", spacer); |
---|
2727 | exit (0); |
---|
2728 | } |
---|
2729 | cWork = AllocateSquareComplexMatrix (dim); |
---|
2730 | CopyComplexMatrices (dim, Ceigvecs, cWork); |
---|
2731 | ComplexInvertMatrix (dim, cWork, dWork, iWork, CinverseEigvecs, Ccol); |
---|
2732 | free (Ccol); |
---|
2733 | FreeSquareComplexMatrix (cWork); |
---|
2734 | } |
---|
2735 | |
---|
2736 | free (dWork); |
---|
2737 | free (iWork); |
---|
2738 | |
---|
2739 | return (isComplex); |
---|
2740 | |
---|
2741 | } |
---|
2742 | |
---|
2743 | |
---|
2744 | |
---|
2745 | |
---|
2746 | |
---|
2747 | /*--------------------------------------------------------------------------------- |
---|
2748 | | |
---|
2749 | | Hqr2 |
---|
2750 | | |
---|
2751 | | This subroutine finds the eigenvalues and eigenvectors |
---|
2752 | | of a real upper Hessenberg matrix by the QR method. The |
---|
2753 | | eigenvectors of a real general matrix can also be found |
---|
2754 | | if ElmHes and ElTran or OrtHes and OrTran have |
---|
2755 | | been used to reduce this general matrix to Hessenberg form |
---|
2756 | | and to accumulate the similarity transformations. |
---|
2757 | | |
---|
2758 | | On input: |
---|
2759 | | |
---|
2760 | | * dim is the order of the matrix. |
---|
2761 | | |
---|
2762 | | * low and high are integers determined by the balancing |
---|
2763 | | subroutine balanc. If balanc has not been used, |
---|
2764 | | set low=0, high=dim-1. |
---|
2765 | | |
---|
2766 | | * h contains the upper hessenberg matrix. Information about |
---|
2767 | | the transformations used in the reduction to Hessenberg |
---|
2768 | | form by ElmHes or OrtHes, if performed, is stored |
---|
2769 | | in the remaining triangle under the Hessenberg matrix. |
---|
2770 | | |
---|
2771 | | On output: |
---|
2772 | | |
---|
2773 | | * h has been destroyed. |
---|
2774 | | |
---|
2775 | | * wr and wi contain the real and imaginary parts, |
---|
2776 | | respectively, of the eigenvalues. The eigenvalues |
---|
2777 | | are unordered except that complex conjugate pairs |
---|
2778 | | of values appear consecutively with the eigenvalue |
---|
2779 | | having the positive imaginary part first. If an |
---|
2780 | | error exit is made, the eigenvalues should be correct |
---|
2781 | | for indices j,...,dim-1. |
---|
2782 | | |
---|
2783 | | * z contains the transformation matrix produced by ElTran |
---|
2784 | | after the reduction by ElmHes, or by OrTran after the |
---|
2785 | | reduction by OrtHes, if performed. If the eigenvectors |
---|
2786 | | of the Hessenberg matrix are desired, z must contain the |
---|
2787 | | identity matrix. |
---|
2788 | | |
---|
2789 | | Calls ComplexDivision2 for complex division. |
---|
2790 | | |
---|
2791 | | This function returns: |
---|
2792 | | zero for normal return, |
---|
2793 | | j if the limit of 30*n iterations is exhausted |
---|
2794 | | while the j-th eigenvalue is being sought. |
---|
2795 | | |
---|
2796 | | This subroutine is a translation of the ALGOL procedure HQR2, |
---|
2797 | | Num. Math. 14, 219,231(1970) by Martin, Peters, and Wilkinson. |
---|
2798 | | Handbook for Automatic Computation, vol. II - Linear Algebra, |
---|
2799 | | pp. 357-391 (1971). |
---|
2800 | | |
---|
2801 | ---------------------------------------------------------------------------------*/ |
---|
2802 | int Hqr2 (int dim, int low, int high, MrBFlt **h, MrBFlt *wr, MrBFlt *wi, MrBFlt **z) |
---|
2803 | |
---|
2804 | { |
---|
2805 | |
---|
2806 | int i, j, k, l, m, na, en, notlas, mp2, itn, its, enm2, twoRoots; |
---|
2807 | MrBFlt norm, p=0.0, q=0.0, r=0.0, s=0.0, t, w=0.0, x, y=0.0, ra, sa, vi, vr, zz=0.0, tst1, tst2; |
---|
2808 | |
---|
2809 | norm = 0.0; |
---|
2810 | k = 0; /* used for array indexing. FORTRAN version: k = 1 */ |
---|
2811 | |
---|
2812 | /* store roots isolated by balance, and compute matrix norm */ |
---|
2813 | for (i=0; i<dim; i++) |
---|
2814 | { |
---|
2815 | for (j=k; j<dim; j++) |
---|
2816 | norm += fabs(h[i][j]); |
---|
2817 | |
---|
2818 | k = i; |
---|
2819 | if ((i < low) || (i > high)) |
---|
2820 | { |
---|
2821 | wr[i] = h[i][i]; |
---|
2822 | wi[i] = 0.0; |
---|
2823 | } |
---|
2824 | } |
---|
2825 | en = high; |
---|
2826 | t = 0.0; |
---|
2827 | itn = dim * 30; |
---|
2828 | |
---|
2829 | /* search for next eigenvalues */ |
---|
2830 | while (en >= low) /* changed from an "if(en < lo)" to eliminate a goto statement */ |
---|
2831 | { |
---|
2832 | its = 0; |
---|
2833 | na = en - 1; |
---|
2834 | enm2 = na - 1; |
---|
2835 | twoRoots = FALSE; |
---|
2836 | |
---|
2837 | for (;;) |
---|
2838 | { |
---|
2839 | for (l=en; l>low; l--) /* changed indexing, got rid of lo, ll */ |
---|
2840 | { |
---|
2841 | s = fabs(h[l-1][l-1]) + fabs(h[l][l]); |
---|
2842 | if (AreDoublesEqual(s, 0.0, ETA)==YES) /* == 0.0 */ |
---|
2843 | s = norm; |
---|
2844 | tst1 = s; |
---|
2845 | tst2 = tst1 + fabs(h[l][l-1]); |
---|
2846 | if (fabs(tst2 - tst1) < ETA) /* tst2 == tst1 */ |
---|
2847 | break; /* changed to break to remove a goto statement */ |
---|
2848 | } |
---|
2849 | |
---|
2850 | /* form shift */ |
---|
2851 | x = h[en][en]; |
---|
2852 | if (l == en) /* changed to break to remove a goto statement */ |
---|
2853 | break; |
---|
2854 | y = h[na][na]; |
---|
2855 | w = h[en][na] * h[na][en]; |
---|
2856 | if (l == na) /* used to return to other parts of the code */ |
---|
2857 | { |
---|
2858 | twoRoots = TRUE; |
---|
2859 | break; |
---|
2860 | } |
---|
2861 | if (itn == 0) |
---|
2862 | return (en); |
---|
2863 | |
---|
2864 | /* form exceptional shift */ |
---|
2865 | if ((its == 10) || (its == 20)) /* changed to remove a goto statement */ |
---|
2866 | { |
---|
2867 | t += x; |
---|
2868 | for (i = low; i <= en; i++) |
---|
2869 | h[i][i] -= x; |
---|
2870 | s = fabs(h[en][na]) + fabs(h[na][enm2]); |
---|
2871 | x = 0.75 * s; |
---|
2872 | y = x; |
---|
2873 | w = -0.4375 * s * s; |
---|
2874 | } |
---|
2875 | its++; |
---|
2876 | itn--; |
---|
2877 | |
---|
2878 | /* look for two consecutive small sub-diagonal elements */ |
---|
2879 | for (m=enm2; m>=l; m--) |
---|
2880 | { |
---|
2881 | /* removed m = enm2 + l - mm and above loop to remove variables */ |
---|
2882 | zz = h[m][m]; |
---|
2883 | r = x - zz; |
---|
2884 | s = y - zz; |
---|
2885 | p = (r * s - w) / h[m+1][m] + h[m][m+1]; |
---|
2886 | q = h[m+1][m+1] - zz - r - s; |
---|
2887 | r = h[m+2][m+1]; |
---|
2888 | s = fabs(p) + fabs(q) + fabs(r); |
---|
2889 | p /= s; |
---|
2890 | q /= s; |
---|
2891 | r /= s; |
---|
2892 | if (m == l) |
---|
2893 | break; /* changed to break to remove a goto statement */ |
---|
2894 | tst1 = fabs(p) * (fabs(h[m-1][m-1]) + fabs(zz) + fabs(h[m+1][m+1])); |
---|
2895 | tst2 = tst1 + fabs(h[m][m-1]) * (fabs(q) + fabs(r)); |
---|
2896 | if (fabs(tst2 - tst1) < ETA) /* tst2 == tst1 */ |
---|
2897 | break; /* changed to break to remove a goto statement */ |
---|
2898 | } |
---|
2899 | |
---|
2900 | mp2 = m + 2; |
---|
2901 | for (i = mp2; i <= en; i++) |
---|
2902 | { |
---|
2903 | h[i][i-2] = 0.0; |
---|
2904 | if (i != mp2) /* changed "==" to "!=" to remove a goto statement */ |
---|
2905 | h[i][i-3] = 0.0; |
---|
2906 | } |
---|
2907 | |
---|
2908 | /* MrBFlt QR step involving rows l to en and columns m to en */ |
---|
2909 | for (k=m; k<=na; k++) |
---|
2910 | { |
---|
2911 | notlas = (k != na); |
---|
2912 | if (k != m) /* changed "==" to "!=" to remove a goto statement */ |
---|
2913 | { |
---|
2914 | p = h[k][k-1]; |
---|
2915 | q = h[k+1][k-1]; |
---|
2916 | r = 0.0; |
---|
2917 | if (notlas) |
---|
2918 | r = h[k+2][k-1]; |
---|
2919 | x = fabs(p) + fabs(q) + fabs(r); |
---|
2920 | if (x < ETA) /* == 0.0 */ |
---|
2921 | continue; /* changed to continue remove a goto statement */ |
---|
2922 | p /= x; |
---|
2923 | q /= x; |
---|
2924 | r /= x; |
---|
2925 | } |
---|
2926 | |
---|
2927 | /*s = sqrt(p*p+q*q+r*r); |
---|
2928 | sgn = (p<0)?-1:(p>0); |
---|
2929 | s = sgn*sqrt(p*p+q*q+r*r);*/ |
---|
2930 | s = D_sign(sqrt(p*p + q*q + r*r), p); |
---|
2931 | if (k != m) /* changed "==" to "!=" to remove a goto statement */ |
---|
2932 | h[k][k-1] = -s * x; |
---|
2933 | else if (l != m) /* else if gets rid of another goto statement */ |
---|
2934 | h[k][k-1] = -h[k][k-1]; |
---|
2935 | p += s; |
---|
2936 | x = p / s; |
---|
2937 | y = q / s; |
---|
2938 | zz = r / s; |
---|
2939 | q /= p; |
---|
2940 | r /= p; |
---|
2941 | if (!notlas) /* changed to !notlas to remove goto statement (see **) */ |
---|
2942 | { |
---|
2943 | /* row modification */ |
---|
2944 | for (j=k; j<dim; j++) |
---|
2945 | { |
---|
2946 | p = h[k][j] + q * h[k+1][j]; |
---|
2947 | h[k][j] -= p * x; |
---|
2948 | h[k+1][j] -= p * y; |
---|
2949 | } |
---|
2950 | j = MIN(en, k + 3); |
---|
2951 | |
---|
2952 | /* column modification */ |
---|
2953 | for (i=0; i<=j; i++) |
---|
2954 | { |
---|
2955 | p = x * h[i][k] + y * h[i][k+1]; |
---|
2956 | h[i][k] -= p; |
---|
2957 | h[i][k+1] -= p * q; |
---|
2958 | } |
---|
2959 | |
---|
2960 | /* accumulate transformations */ |
---|
2961 | for (i=low; i<=high; i++) |
---|
2962 | { |
---|
2963 | p = x * z[i][k] + y * z[i][k+1]; |
---|
2964 | z[i][k] -= p; |
---|
2965 | z[i][k+1] -= p * q; |
---|
2966 | } |
---|
2967 | } |
---|
2968 | else /* (**) also put in else */ |
---|
2969 | { |
---|
2970 | /* row modification */ |
---|
2971 | for (j=k; j<dim; j++) |
---|
2972 | { |
---|
2973 | p = h[k][j] + q * h[k+1][j] + r * h[k+2][j]; |
---|
2974 | h[k][j] -= p * x; |
---|
2975 | h[k+1][j] -= p * y; |
---|
2976 | h[k+2][j] -= p * zz; |
---|
2977 | } |
---|
2978 | j = MIN(en, k + 3); |
---|
2979 | |
---|
2980 | /* column modification */ |
---|
2981 | for (i = 0; i <= j; i++) |
---|
2982 | { |
---|
2983 | p = x * h[i][k] + y * h[i][k+1] + zz * h[i][k+2]; |
---|
2984 | h[i][k] -= p; |
---|
2985 | h[i][k+1] -= p * q; |
---|
2986 | h[i][k+2] -= p * r; |
---|
2987 | } |
---|
2988 | |
---|
2989 | /* accumulate transformations */ |
---|
2990 | for (i = low; i <= high; i++) |
---|
2991 | { |
---|
2992 | p = x * z[i][k] + y * z[i][k+1] + zz * z[i][k+2]; |
---|
2993 | z[i][k] -= p; |
---|
2994 | z[i][k+1] -= p * q; |
---|
2995 | z[i][k+2] -= p * r; |
---|
2996 | } |
---|
2997 | } |
---|
2998 | } |
---|
2999 | } |
---|
3000 | |
---|
3001 | if (twoRoots) |
---|
3002 | { |
---|
3003 | /* two roots found */ |
---|
3004 | p = (y - x) / 2.0; |
---|
3005 | q = p * p + w; |
---|
3006 | zz = sqrt(fabs(q)); |
---|
3007 | h[en][en] = x + t; |
---|
3008 | x = h[en][en]; |
---|
3009 | h[na][na] = y + t; |
---|
3010 | if (q >= -1e-12) /* change "<" to ">=", and also change "0.0" to */ |
---|
3011 | { /* a small number (Swofford's change) */ |
---|
3012 | /* real pair */ |
---|
3013 | zz = p + D_sign(zz, p); |
---|
3014 | wr[na] = x + zz; |
---|
3015 | wr[en] = wr[na]; |
---|
3016 | if (fabs(zz) > ETA) /* != 0.0 */ |
---|
3017 | wr[en] = x - w/zz; |
---|
3018 | wi[na] = 0.0; |
---|
3019 | wi[en] = 0.0; |
---|
3020 | x = h[en][na]; |
---|
3021 | s = fabs(x) + fabs(zz); |
---|
3022 | p = x / s; |
---|
3023 | q = zz / s; |
---|
3024 | r = sqrt(p*p + q*q); |
---|
3025 | p /= r; |
---|
3026 | q /= r; |
---|
3027 | |
---|
3028 | /* row modification */ |
---|
3029 | for (j=na; j<dim; j++) |
---|
3030 | { |
---|
3031 | zz = h[na][j]; |
---|
3032 | h[na][j] = q * zz + p * h[en][j]; |
---|
3033 | h[en][j] = q * h[en][j] - p * zz; |
---|
3034 | } |
---|
3035 | |
---|
3036 | /* column modification */ |
---|
3037 | for (i = 0; i <= en; i++) |
---|
3038 | { |
---|
3039 | zz = h[i][na]; |
---|
3040 | h[i][na] = q * zz + p * h[i][en]; |
---|
3041 | h[i][en] = q * h[i][en] - p * zz; |
---|
3042 | } |
---|
3043 | |
---|
3044 | /* accumulate transformations */ |
---|
3045 | for (i = low; i <= high; i++) |
---|
3046 | { |
---|
3047 | zz = z[i][na]; |
---|
3048 | z[i][na] = q * zz + p * z[i][en]; |
---|
3049 | z[i][en] = q * z[i][en] - p * zz; |
---|
3050 | } |
---|
3051 | } |
---|
3052 | else |
---|
3053 | { |
---|
3054 | /* complex pair */ |
---|
3055 | wr[na] = x + p; |
---|
3056 | wr[en] = x + p; |
---|
3057 | wi[na] = zz; |
---|
3058 | wi[en] = -zz; |
---|
3059 | } |
---|
3060 | en = enm2; |
---|
3061 | } |
---|
3062 | else |
---|
3063 | { |
---|
3064 | /* one root found */ |
---|
3065 | h[en][en] = x + t; |
---|
3066 | wr[en] = h[en][en]; |
---|
3067 | wi[en] = 0.0; |
---|
3068 | en = na; |
---|
3069 | } |
---|
3070 | } |
---|
3071 | |
---|
3072 | if (fabs(norm) < ETA) /* == 0.0 */ |
---|
3073 | return (0); /* was a goto end of function */ |
---|
3074 | |
---|
3075 | for (en=dim-1; en>=0; en--) |
---|
3076 | { |
---|
3077 | /*en = n - nn - 1; and change for loop */ |
---|
3078 | p = wr[en]; |
---|
3079 | q = wi[en]; |
---|
3080 | na = en - 1; |
---|
3081 | |
---|
3082 | if (q < -1e-12) |
---|
3083 | { |
---|
3084 | /* last vector component chosen imaginary so that eigenvector |
---|
3085 | matrix is triangular */ |
---|
3086 | m = na; |
---|
3087 | if (fabs(h[en][na]) > fabs(h[na][en])) |
---|
3088 | { |
---|
3089 | h[na][na] = q / h[en][na]; |
---|
3090 | h[na][en] = -(h[en][en] - p) / h[en][na]; |
---|
3091 | } |
---|
3092 | else |
---|
3093 | ComplexDivision2 (0.0, -h[na][en], h[na][na] - p, q, &h[na][na], &h[na][en]); |
---|
3094 | |
---|
3095 | h[en][na] = 0.0; |
---|
3096 | h[en][en] = 1.0; |
---|
3097 | enm2 = na - 1; |
---|
3098 | if (enm2 >= 0) /* changed direction to remove goto statement */ |
---|
3099 | { |
---|
3100 | for (i=enm2; i>=0; i--) |
---|
3101 | { |
---|
3102 | w = h[i][i] - p; |
---|
3103 | ra = 0.0; |
---|
3104 | sa = 0.0; |
---|
3105 | |
---|
3106 | for (j=m; j<=en; j++) |
---|
3107 | { |
---|
3108 | ra += h[i][j] * h[j][na]; |
---|
3109 | sa += h[i][j] * h[j][en]; |
---|
3110 | } |
---|
3111 | |
---|
3112 | if (wi[i] < 0.0) /* changed direction to remove goto statement */ |
---|
3113 | { |
---|
3114 | zz = w; |
---|
3115 | r = ra; |
---|
3116 | s = sa; |
---|
3117 | } |
---|
3118 | else |
---|
3119 | { |
---|
3120 | m = i; |
---|
3121 | if (fabs(wi[i])<ETA) /* == 0.0 */ /* changed direction to remove goto statement */ |
---|
3122 | ComplexDivision2 (-ra, -sa, w, q, &h[i][na], &h[i][en]); |
---|
3123 | else |
---|
3124 | { |
---|
3125 | /* solve complex equations */ |
---|
3126 | x = h[i][i+1]; |
---|
3127 | y = h[i+1][i]; |
---|
3128 | vr = (wr[i] - p) * (wr[i] - p) + wi[i] * wi[i] - q * q; |
---|
3129 | vi = (wr[i] - p) * 2.0 * q; |
---|
3130 | if ((fabs(vr)<ETA) && (fabs(vi)<ETA)) |
---|
3131 | { |
---|
3132 | tst1 = norm * (fabs(w) + fabs(q) + fabs(x) + fabs(y) + fabs(zz)); |
---|
3133 | vr = tst1; |
---|
3134 | do { |
---|
3135 | vr *= .01; |
---|
3136 | tst2 = tst1 + vr; |
---|
3137 | } |
---|
3138 | while (tst2 > tst1); /* made into a do/while loop */ |
---|
3139 | } |
---|
3140 | ComplexDivision2 (x * r - zz * ra + q * sa, x * s - zz * sa - q * ra, vr, vi, &h[i][na], &h[i][en]); |
---|
3141 | if (fabs(x) > fabs(zz) + fabs(q)) /* changed direction to remove goto statement */ |
---|
3142 | { |
---|
3143 | h[i+1][na] = (-ra - w * h[i][na] + q * h[i][en]) / x; |
---|
3144 | h[i+1][en] = (-sa - w * h[i][en] - q * h[i][na]) / x; |
---|
3145 | } |
---|
3146 | else |
---|
3147 | ComplexDivision2 (-r - y * h[i][na], -s - y * h[i][en], zz, q, &h[i+1][na], &h[i+1][en]); |
---|
3148 | } |
---|
3149 | |
---|
3150 | /* overflow control */ |
---|
3151 | tst1 = fabs(h[i][na]); |
---|
3152 | tst2 = fabs(h[i][en]); |
---|
3153 | t = MAX(tst1, tst2); |
---|
3154 | if (t > ETA) /* t != 0.0 */ |
---|
3155 | { |
---|
3156 | tst1 = t; |
---|
3157 | tst2 = tst1 + 1.0 / tst1; |
---|
3158 | if (tst2 <= tst1) |
---|
3159 | { |
---|
3160 | for (j = i; j <= en; j++) |
---|
3161 | { |
---|
3162 | h[j][na] /= t; |
---|
3163 | h[j][en] /= t; |
---|
3164 | } |
---|
3165 | } |
---|
3166 | } |
---|
3167 | } |
---|
3168 | } |
---|
3169 | } |
---|
3170 | } |
---|
3171 | else if (fabs(q)<ETA) |
---|
3172 | { |
---|
3173 | /* real vector */ |
---|
3174 | m = en; |
---|
3175 | h[en][en] = 1.0; |
---|
3176 | if (na >= 0) |
---|
3177 | { |
---|
3178 | for (i=na; i>=0; i--) |
---|
3179 | { |
---|
3180 | w = h[i][i] - p; |
---|
3181 | r = 0.0; |
---|
3182 | for (j = m; j <= en; j++) |
---|
3183 | r += h[i][j] * h[j][en]; |
---|
3184 | if (wi[i] < 0.0) /* changed direction to remove goto statement */ |
---|
3185 | { |
---|
3186 | zz = w; |
---|
3187 | s = r; |
---|
3188 | continue; /* changed to continue to remove goto statement */ |
---|
3189 | } |
---|
3190 | else |
---|
3191 | { |
---|
3192 | m = i; |
---|
3193 | if (fabs(wi[i])<ETA) /* changed to remove goto statement */ |
---|
3194 | { |
---|
3195 | t = w; |
---|
3196 | if (fabs(t)<ETA) /* changed to remove goto statement */ |
---|
3197 | { |
---|
3198 | tst1 = norm; |
---|
3199 | t = tst1; |
---|
3200 | do { |
---|
3201 | t *= .01; |
---|
3202 | tst2 = norm + t; |
---|
3203 | } |
---|
3204 | while (tst2 > tst1); |
---|
3205 | } |
---|
3206 | h[i][en] = -r / t; |
---|
3207 | } |
---|
3208 | else |
---|
3209 | { |
---|
3210 | /* solve real equations */ |
---|
3211 | x = h[i][i+1]; |
---|
3212 | y = h[i+1][i]; |
---|
3213 | q = (wr[i] - p) * (wr[i] - p) + wi[i] * wi[i]; |
---|
3214 | t = (x * s - zz * r) / q; |
---|
3215 | h[i][en] = t; |
---|
3216 | if (fabs(x) > fabs(zz)) /* changed direction to remove goto statement */ |
---|
3217 | h[i+1][en] = (-r - w * t) / x; |
---|
3218 | else |
---|
3219 | h[i+1][en] = (-s - y * t) / zz; |
---|
3220 | } |
---|
3221 | |
---|
3222 | /* overflow control */ |
---|
3223 | t = fabs(h[i][en]); |
---|
3224 | if (t > ETA) |
---|
3225 | { |
---|
3226 | tst1 = t; |
---|
3227 | tst2 = tst1 + 1. / tst1; |
---|
3228 | if (tst2 <= tst1) |
---|
3229 | { |
---|
3230 | for (j = i; j <= en; j++) |
---|
3231 | h[j][en] /= t; |
---|
3232 | } |
---|
3233 | } |
---|
3234 | } |
---|
3235 | } |
---|
3236 | } |
---|
3237 | } |
---|
3238 | } |
---|
3239 | |
---|
3240 | for (i=0; i<dim; i++) |
---|
3241 | { |
---|
3242 | if ((i < low) || (i > high)) /* changed to rid goto statement */ |
---|
3243 | { |
---|
3244 | for (j=i; j<dim; j++) |
---|
3245 | z[i][j] = h[i][j]; |
---|
3246 | } |
---|
3247 | } |
---|
3248 | |
---|
3249 | /* multiply by transformation matrix to give vectors of original |
---|
3250 | full matrix */ |
---|
3251 | for (j=dim-1; j>=low; j--) |
---|
3252 | { |
---|
3253 | m = MIN(j, high); |
---|
3254 | for (i=low; i<=high; i++) |
---|
3255 | { |
---|
3256 | zz = 0.0; |
---|
3257 | for (k = low; k <= m; k++) |
---|
3258 | zz += z[i][k] * h[k][j]; |
---|
3259 | z[i][j] = zz; |
---|
3260 | } |
---|
3261 | } |
---|
3262 | |
---|
3263 | return (0); |
---|
3264 | |
---|
3265 | #if 0 |
---|
3266 | int hqr2 (int *nm, int *n, int *low, int *igh, MrBFlt *h__, MrBFlt *wr, MrBFlt *wi, MrBFlt *z__, int *ierr) |
---|
3267 | |
---|
3268 | { |
---|
3269 | |
---|
3270 | /* system generated locals */ |
---|
3271 | int h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3; |
---|
3272 | MrBFlt d__1, d__2, d__3, d__4; |
---|
3273 | |
---|
3274 | /* builtin functions */ |
---|
3275 | MrBFlt sqrt(doublereal), d_sign(doublereal *, doublereal *); |
---|
3276 | |
---|
3277 | /* Local variables */ |
---|
3278 | static MrBFlt norm; |
---|
3279 | static int i__, j, k, l, m; |
---|
3280 | static MrBFlt p, q, r__, s, t, w, x, y; |
---|
3281 | static int na, ii, en, jj; |
---|
3282 | static MrBFlt ra, sa; |
---|
3283 | static int ll, mm, nn; |
---|
3284 | static MrBFlt vi, vr, zz; |
---|
3285 | static logical notlas; |
---|
3286 | static int mp2, itn, its, enm2; |
---|
3287 | static MrBFlt tst1, tst2; |
---|
3288 | |
---|
3289 | /* parameter adjustments */ |
---|
3290 | z_dim1 = *nm; |
---|
3291 | z_offset = z_dim1 + 1; |
---|
3292 | z__ -= z_offset; |
---|
3293 | --wi; |
---|
3294 | --wr; |
---|
3295 | h_dim1 = *nm; |
---|
3296 | h_offset = h_dim1 + 1; |
---|
3297 | h__ -= h_offset; |
---|
3298 | |
---|
3299 | /* function Body */ |
---|
3300 | *ierr = 0; |
---|
3301 | norm = 0.; |
---|
3302 | k = 1; |
---|
3303 | |
---|
3304 | /* .......... store roots isolated by balanc and compute matrix norm .......... */ |
---|
3305 | i__1 = *n; |
---|
3306 | for (i__ = 1; i__ <= i__1; ++i__) |
---|
3307 | { |
---|
3308 | i__2 = *n; |
---|
3309 | for (j = k; j <= i__2; ++j) |
---|
3310 | { |
---|
3311 | /* L40: */ |
---|
3312 | norm += (d__1 = h__[i__ + j * h_dim1], abs(d__1)); |
---|
3313 | } |
---|
3314 | k = i__; |
---|
3315 | if (i__ >= *low && i__ <= *igh) |
---|
3316 | goto L50; |
---|
3317 | wr[i__] = h__[i__ + i__ * h_dim1]; |
---|
3318 | wi[i__] = 0.; |
---|
3319 | L50: |
---|
3320 | ; |
---|
3321 | } |
---|
3322 | |
---|
3323 | en = *igh; |
---|
3324 | t = 0.; |
---|
3325 | itn = *n * 30; |
---|
3326 | |
---|
3327 | /* ..........search for next eigenvalues.......... */ |
---|
3328 | L60: |
---|
3329 | if (en < *low) |
---|
3330 | goto L340; |
---|
3331 | its = 0; |
---|
3332 | na = en - 1; |
---|
3333 | enm2 = na - 1; |
---|
3334 | |
---|
3335 | /* ..........look for single small sub-diagonal element for l=en step -1 until low do -- .......... */ |
---|
3336 | L70: |
---|
3337 | i__1 = en; |
---|
3338 | for (ll = *low; ll <= i__1; ++ll) |
---|
3339 | { |
---|
3340 | l = en + *low - ll; |
---|
3341 | if (l == *low) |
---|
3342 | goto L100; |
---|
3343 | s = (d__1 = h__[l - 1 + (l - 1) * h_dim1], abs(d__1)) + (d__2 = h__[l + l * h_dim1], abs(d__2)); |
---|
3344 | if (s == 0.0) |
---|
3345 | s = norm; |
---|
3346 | tst1 = s; |
---|
3347 | tst2 = tst1 + (d__1 = h__[l + (l - 1) * h_dim1], abs(d__1)); |
---|
3348 | if (tst2 == tst1) |
---|
3349 | goto L100; |
---|
3350 | /* L80: */ |
---|
3351 | } |
---|
3352 | |
---|
3353 | /* .......... form shift .......... */ |
---|
3354 | L100: |
---|
3355 | x = h__[en + en * h_dim1]; |
---|
3356 | if (l == en) |
---|
3357 | goto L270; |
---|
3358 | y = h__[na + na * h_dim1]; |
---|
3359 | w = h__[en + na * h_dim1] * h__[na + en * h_dim1]; |
---|
3360 | if (l == na) |
---|
3361 | goto L280; |
---|
3362 | if (itn == 0) |
---|
3363 | goto L1000; |
---|
3364 | if (its != 10 && its != 20) |
---|
3365 | goto L130; |
---|
3366 | |
---|
3367 | /* .......... form exceptional shift .......... */ |
---|
3368 | t += x; |
---|
3369 | |
---|
3370 | i__1 = en; |
---|
3371 | for (i__ = *low; i__ <= i__1; ++i__) |
---|
3372 | { |
---|
3373 | /* L120: */ |
---|
3374 | h__[i__ + i__ * h_dim1] -= x; |
---|
3375 | } |
---|
3376 | |
---|
3377 | s = (d__1 = h__[en + na * h_dim1], abs(d__1)) + (d__2 = h__[na + enm2 * h_dim1], abs(d__2)); |
---|
3378 | x = s * 0.75; |
---|
3379 | y = x; |
---|
3380 | w = s * -0.4375 * s; |
---|
3381 | L130: |
---|
3382 | ++its; |
---|
3383 | --itn; |
---|
3384 | |
---|
3385 | /* .......... look for two consecutive small sub-diagonal elements for m=en-2 step -1 until l do -- .......... */ |
---|
3386 | i__1 = enm2; |
---|
3387 | for (mm = l; mm <= i__1; ++mm) |
---|
3388 | { |
---|
3389 | m = enm2 + l - mm; |
---|
3390 | zz = h__[m + m * h_dim1]; |
---|
3391 | r__ = x - zz; |
---|
3392 | s = y - zz; |
---|
3393 | p = (r__ * s - w) / h__[m + 1 + m * h_dim1] + h__[m + (m + 1) * h_dim1]; |
---|
3394 | q = h__[m + 1 + (m + 1) * h_dim1] - zz - r__ - s; |
---|
3395 | r__ = h__[m + 2 + (m + 1) * h_dim1]; |
---|
3396 | s = abs(p) + abs(q) + abs(r__); |
---|
3397 | p /= s; |
---|
3398 | q /= s; |
---|
3399 | r__ /= s; |
---|
3400 | if (m == l) |
---|
3401 | goto L150; |
---|
3402 | tst1 = abs(p) * ((d__1 = h__[m - 1 + (m - 1) * h_dim1], abs(d__1)) + |
---|
3403 | abs(zz) + (d__2 = h__[m + 1 + (m + 1) * h_dim1], abs(d__2))); |
---|
3404 | tst2 = tst1 + (d__1 = h__[m + (m - 1) * h_dim1], abs(d__1)) * (abs(q) + abs(r__)); |
---|
3405 | if (tst2 == tst1) |
---|
3406 | goto L150; |
---|
3407 | /* L140: */ |
---|
3408 | } |
---|
3409 | L150: |
---|
3410 | mp2 = m + 2; |
---|
3411 | |
---|
3412 | i__1 = en; |
---|
3413 | for (i__ = mp2; i__ <= i__1; ++i__) |
---|
3414 | { |
---|
3415 | h__[i__ + (i__ - 2) * h_dim1] = 0.0; |
---|
3416 | if (i__ == mp2) |
---|
3417 | goto L160; |
---|
3418 | h__[i__ + (i__ - 3) * h_dim1] = 0.; |
---|
3419 | L160: |
---|
3420 | ; |
---|
3421 | } |
---|
3422 | |
---|
3423 | /* .......... MrBFlt qr step involving rows l to en and columns m to en .......... */ |
---|
3424 | i__1 = na; |
---|
3425 | for (k = m; k <= i__1; ++k) |
---|
3426 | { |
---|
3427 | notlas = k != na; |
---|
3428 | if (k == m) |
---|
3429 | goto L170; |
---|
3430 | p = h__[k + (k - 1) * h_dim1]; |
---|
3431 | q = h__[k + 1 + (k - 1) * h_dim1]; |
---|
3432 | r__ = 0.; |
---|
3433 | if (notlas) |
---|
3434 | r__ = h__[k + 2 + (k - 1) * h_dim1]; |
---|
3435 | x = abs(p) + abs(q) + abs(r__); |
---|
3436 | if (x == 0.) |
---|
3437 | goto L260; |
---|
3438 | p /= x; |
---|
3439 | q /= x; |
---|
3440 | r__ /= x; |
---|
3441 | L170: |
---|
3442 | d__1 = sqrt(p * p + q * q + r__ * r__); |
---|
3443 | s = d_sign(&d__1, &p); |
---|
3444 | if (k == m) |
---|
3445 | goto L180; |
---|
3446 | h__[k + (k - 1) * h_dim1] = -s * x; |
---|
3447 | goto L190; |
---|
3448 | L180: |
---|
3449 | if (l != m) |
---|
3450 | { |
---|
3451 | h__[k + (k - 1) * h_dim1] = -h__[k + (k - 1) * h_dim1]; |
---|
3452 | } |
---|
3453 | L190: |
---|
3454 | p += s; |
---|
3455 | x = p / s; |
---|
3456 | y = q / s; |
---|
3457 | zz = r__ / s; |
---|
3458 | q /= p; |
---|
3459 | r__ /= p; |
---|
3460 | if (notlas) |
---|
3461 | goto L225; |
---|
3462 | |
---|
3463 | /* .......... row modification .......... */ |
---|
3464 | i__2 = *n; |
---|
3465 | for (j = k; j <= i__2; ++j) |
---|
3466 | { |
---|
3467 | p = h__[k + j * h_dim1] + q * h__[k + 1 + j * h_dim1]; |
---|
3468 | h__[k + j * h_dim1] -= p * x; |
---|
3469 | h__[k + 1 + j * h_dim1] -= p * y; |
---|
3470 | /* L200: */ |
---|
3471 | } |
---|
3472 | |
---|
3473 | /* computing MIN */ |
---|
3474 | i__2 = en, i__3 = k + 3; |
---|
3475 | j = min(i__2,i__3); |
---|
3476 | |
---|
3477 | /* .......... column modification .......... */ |
---|
3478 | i__2 = j; |
---|
3479 | for (i__ = 1; i__ <= i__2; ++i__) |
---|
3480 | { |
---|
3481 | p = x * h__[i__ + k * h_dim1] + y * h__[i__ + (k + 1) * h_dim1]; |
---|
3482 | h__[i__ + k * h_dim1] -= p; |
---|
3483 | h__[i__ + (k + 1) * h_dim1] -= p * q; |
---|
3484 | /* L210: */ |
---|
3485 | } |
---|
3486 | |
---|
3487 | /* .......... accumulate transformations .......... */ |
---|
3488 | i__2 = *igh; |
---|
3489 | for (i__ = *low; i__ <= i__2; ++i__) |
---|
3490 | { |
---|
3491 | p = x * z__[i__ + k * z_dim1] + y * z__[i__ + (k + 1) * z_dim1]; |
---|
3492 | z__[i__ + k * z_dim1] -= p; |
---|
3493 | z__[i__ + (k + 1) * z_dim1] -= p * q; |
---|
3494 | /* L220: */ |
---|
3495 | } |
---|
3496 | goto L255; |
---|
3497 | L225: |
---|
3498 | |
---|
3499 | /* .......... row modification .......... */ |
---|
3500 | i__2 = *n; |
---|
3501 | for (j = k; j <= i__2; ++j) |
---|
3502 | { |
---|
3503 | p = h__[k + j * h_dim1] + q * h__[k + 1 + j * h_dim1] + r__ * h__[k + 2 + j * h_dim1]; |
---|
3504 | h__[k + j * h_dim1] -= p * x; |
---|
3505 | h__[k + 1 + j * h_dim1] -= p * y; |
---|
3506 | h__[k + 2 + j * h_dim1] -= p * zz; |
---|
3507 | /* L230: */ |
---|
3508 | } |
---|
3509 | |
---|
3510 | /* computing MIN */ |
---|
3511 | i__2 = en, i__3 = k + 3; |
---|
3512 | j = min(i__2,i__3); |
---|
3513 | |
---|
3514 | /* .......... column modification .......... */ |
---|
3515 | i__2 = j; |
---|
3516 | for (i__ = 1; i__ <= i__2; ++i__) |
---|
3517 | { |
---|
3518 | p = x * h__[i__ + k * h_dim1] + y * h__[i__ + (k + 1) * h_dim1] + |
---|
3519 | zz * h__[i__ + (k + 2) * h_dim1]; |
---|
3520 | h__[i__ + k * h_dim1] -= p; |
---|
3521 | h__[i__ + (k + 1) * h_dim1] -= p * q; |
---|
3522 | h__[i__ + (k + 2) * h_dim1] -= p * r__; |
---|
3523 | /* L240: */ |
---|
3524 | } |
---|
3525 | |
---|
3526 | /* .......... accumulate transformations .......... */ |
---|
3527 | i__2 = *igh; |
---|
3528 | for (i__ = *low; i__ <= i__2; ++i__) |
---|
3529 | { |
---|
3530 | p = x * z__[i__ + k * z_dim1] + y * z__[i__ + (k + 1) * z_dim1] + zz * z__[i__ + (k + 2) * z_dim1]; |
---|
3531 | z__[i__ + k * z_dim1] -= p; |
---|
3532 | z__[i__ + (k + 1) * z_dim1] -= p * q; |
---|
3533 | z__[i__ + (k + 2) * z_dim1] -= p * r__; |
---|
3534 | /* L250: */ |
---|
3535 | } |
---|
3536 | L255: |
---|
3537 | L260: |
---|
3538 | ; |
---|
3539 | } |
---|
3540 | goto L70; |
---|
3541 | |
---|
3542 | /* .......... one root found .......... */ |
---|
3543 | L270: |
---|
3544 | h__[en + en * h_dim1] = x + t; |
---|
3545 | wr[en] = h__[en + en * h_dim1]; |
---|
3546 | wi[en] = 0.; |
---|
3547 | en = na; |
---|
3548 | goto L60; |
---|
3549 | |
---|
3550 | /* .......... two roots found .......... */ |
---|
3551 | L280: |
---|
3552 | p = (y - x) / 2.; |
---|
3553 | q = p * p + w; |
---|
3554 | zz = sqrt((abs(q))); |
---|
3555 | h__[en + en * h_dim1] = x + t; |
---|
3556 | x = h__[en + en * h_dim1]; |
---|
3557 | h__[na + na * h_dim1] = y + t; |
---|
3558 | if (q < 0.) |
---|
3559 | goto L320; |
---|
3560 | |
---|
3561 | /* .......... real pair .......... */ |
---|
3562 | zz = p + d_sign(&zz, &p); |
---|
3563 | wr[na] = x + zz; |
---|
3564 | wr[en] = wr[na]; |
---|
3565 | if (zz != 0.) |
---|
3566 | { |
---|
3567 | wr[en] = x - w / zz; |
---|
3568 | } |
---|
3569 | wi[na] = 0.0; |
---|
3570 | wi[en] = 0.0; |
---|
3571 | x = h__[en + na * h_dim1]; |
---|
3572 | s = abs(x) + abs(zz); |
---|
3573 | p = x / s; |
---|
3574 | q = zz / s; |
---|
3575 | r__ = sqrt(p * p + q * q); |
---|
3576 | p /= r__; |
---|
3577 | q /= r__; |
---|
3578 | |
---|
3579 | /* .......... row modification .......... */ |
---|
3580 | i__1 = *n; |
---|
3581 | for (j = na; j <= i__1; ++j) |
---|
3582 | { |
---|
3583 | zz = h__[na + j * h_dim1]; |
---|
3584 | h__[na + j * h_dim1] = q * zz + p * h__[en + j * h_dim1]; |
---|
3585 | h__[en + j * h_dim1] = q * h__[en + j * h_dim1] - p * zz; |
---|
3586 | /* L290: */ |
---|
3587 | } |
---|
3588 | |
---|
3589 | /* .......... column modification .......... */ |
---|
3590 | i__1 = en; |
---|
3591 | for (i__ = 1; i__ <= i__1; ++i__) |
---|
3592 | { |
---|
3593 | zz = h__[i__ + na * h_dim1]; |
---|
3594 | h__[i__ + na * h_dim1] = q * zz + p * h__[i__ + en * h_dim1]; |
---|
3595 | h__[i__ + en * h_dim1] = q * h__[i__ + en * h_dim1] - p * zz; |
---|
3596 | /* L300: */ |
---|
3597 | } |
---|
3598 | |
---|
3599 | /* .......... accumulate transformations .......... */ |
---|
3600 | i__1 = *igh; |
---|
3601 | for (i__ = *low; i__ <= i__1; ++i__) |
---|
3602 | { |
---|
3603 | zz = z__[i__ + na * z_dim1]; |
---|
3604 | z__[i__ + na * z_dim1] = q * zz + p * z__[i__ + en * z_dim1]; |
---|
3605 | z__[i__ + en * z_dim1] = q * z__[i__ + en * z_dim1] - p * zz; |
---|
3606 | /* L310: */ |
---|
3607 | } |
---|
3608 | goto L330; |
---|
3609 | |
---|
3610 | /* .......... complex pair .......... */ |
---|
3611 | L320: |
---|
3612 | wr[na] = x + p; |
---|
3613 | wr[en] = x + p; |
---|
3614 | wi[na] = zz; |
---|
3615 | wi[en] = -zz; |
---|
3616 | L330: |
---|
3617 | en = enm2; |
---|
3618 | goto L60; |
---|
3619 | |
---|
3620 | /* .......... all roots found. backsubstitute to find vectors of upper triangular form .......... */ |
---|
3621 | L340: |
---|
3622 | if (norm == 0.0) |
---|
3623 | goto L1001; |
---|
3624 | |
---|
3625 | /* .......... for en=n step -1 until 1 do -- .......... */ |
---|
3626 | i__1 = *n; |
---|
3627 | for (nn = 1; nn <= i__1; ++nn) |
---|
3628 | { |
---|
3629 | en = *n + 1 - nn; |
---|
3630 | p = wr[en]; |
---|
3631 | q = wi[en]; |
---|
3632 | na = en - 1; |
---|
3633 | if (q < 0.) |
---|
3634 | goto L710; |
---|
3635 | else if (q == 0) |
---|
3636 | goto L600; |
---|
3637 | else |
---|
3638 | goto L800; |
---|
3639 | |
---|
3640 | /* .......... real vector .......... */ |
---|
3641 | L600: |
---|
3642 | m = en; |
---|
3643 | h__[en + en * h_dim1] = 1.0; |
---|
3644 | if (na == 0) |
---|
3645 | goto L800; |
---|
3646 | |
---|
3647 | /* .......... for i=en-1 step -1 until 1 do -- .......... */ |
---|
3648 | i__2 = na; |
---|
3649 | for (ii = 1; ii <= i__2; ++ii) |
---|
3650 | { |
---|
3651 | i__ = en - ii; |
---|
3652 | w = h__[i__ + i__ * h_dim1] - p; |
---|
3653 | r__ = 0.0; |
---|
3654 | |
---|
3655 | i__3 = en; |
---|
3656 | for (j = m; j <= i__3; ++j) |
---|
3657 | { |
---|
3658 | /* L610: */ |
---|
3659 | r__ += h__[i__ + j * h_dim1] * h__[j + en * h_dim1]; |
---|
3660 | } |
---|
3661 | |
---|
3662 | if (wi[i__] >= 0.0) |
---|
3663 | goto L630; |
---|
3664 | zz = w; |
---|
3665 | s = r__; |
---|
3666 | goto L700; |
---|
3667 | L630: |
---|
3668 | m = i__; |
---|
3669 | if (wi[i__] != 0.0) |
---|
3670 | goto L640; |
---|
3671 | t = w; |
---|
3672 | if (t != 0.0) |
---|
3673 | goto L635; |
---|
3674 | tst1 = norm; |
---|
3675 | t = tst1; |
---|
3676 | L632: |
---|
3677 | t *= 0.01; |
---|
3678 | tst2 = norm + t; |
---|
3679 | if (tst2 > tst1) |
---|
3680 | goto L632; |
---|
3681 | L635: |
---|
3682 | h__[i__ + en * h_dim1] = -r__ / t; |
---|
3683 | goto L680; |
---|
3684 | |
---|
3685 | /* .......... solve real equations .......... */ |
---|
3686 | L640: |
---|
3687 | x = h__[i__ + (i__ + 1) * h_dim1]; |
---|
3688 | y = h__[i__ + 1 + i__ * h_dim1]; |
---|
3689 | q = (wr[i__] - p) * (wr[i__] - p) + wi[i__] * wi[i__]; |
---|
3690 | t = (x * s - zz * r__) / q; |
---|
3691 | h__[i__ + en * h_dim1] = t; |
---|
3692 | if (abs(x) <= abs(zz)) |
---|
3693 | goto L650; |
---|
3694 | h__[i__ + 1 + en * h_dim1] = (-r__ - w * t) / x; |
---|
3695 | goto L680; |
---|
3696 | L650: |
---|
3697 | h__[i__ + 1 + en * h_dim1] = (-s - y * t) / zz; |
---|
3698 | |
---|
3699 | /* .......... overflow control .......... */ |
---|
3700 | L680: |
---|
3701 | t = (d__1 = h__[i__ + en * h_dim1], abs(d__1)); |
---|
3702 | if (t == 0.0) |
---|
3703 | goto L700; |
---|
3704 | tst1 = t; |
---|
3705 | tst2 = tst1 + 1.0 / tst1; |
---|
3706 | if (tst2 > tst1) |
---|
3707 | goto L700; |
---|
3708 | i__3 = en; |
---|
3709 | for (j = i__; j <= i__3; ++j) |
---|
3710 | { |
---|
3711 | h__[j + en * h_dim1] /= t; |
---|
3712 | /* L690: */ |
---|
3713 | } |
---|
3714 | |
---|
3715 | L700: |
---|
3716 | ; |
---|
3717 | } |
---|
3718 | |
---|
3719 | /* .......... end real vector .......... */ |
---|
3720 | goto L800; |
---|
3721 | |
---|
3722 | /* .......... complex vector .......... */ |
---|
3723 | L710: |
---|
3724 | m = na; |
---|
3725 | |
---|
3726 | /* .......... last vector component chosen imaginary so that eigenvector matrix is triangular .......... */ |
---|
3727 | if ((d__1 = h__[en + na * h_dim1], abs(d__1)) <= (d__2 = h__[na + en * |
---|
3728 | h_dim1], abs(d__2))) |
---|
3729 | goto L720; |
---|
3730 | h__[na + na * h_dim1] = q / h__[en + na * h_dim1]; |
---|
3731 | h__[na + en * h_dim1] = -(h__[en + en * h_dim1] - p) / h__[en + na * h_dim1]; |
---|
3732 | goto L730; |
---|
3733 | L720: |
---|
3734 | d__1 = -h__[na + en * h_dim1]; |
---|
3735 | d__2 = h__[na + na * h_dim1] - p; |
---|
3736 | cdiv_(&c_b49, &d__1, &d__2, &q, &h__[na + na * h_dim1], &h__[na + en * |
---|
3737 | h_dim1]); |
---|
3738 | L730: |
---|
3739 | h__[en + na * h_dim1] = 0.0; |
---|
3740 | h__[en + en * h_dim1] = 1.0; |
---|
3741 | enm2 = na - 1; |
---|
3742 | if (enm2 == 0) |
---|
3743 | goto L800; |
---|
3744 | |
---|
3745 | /* .......... for i=en-2 step -1 until 1 do -- .......... */ |
---|
3746 | i__2 = enm2; |
---|
3747 | for (ii = 1; ii <= i__2; ++ii) |
---|
3748 | { |
---|
3749 | i__ = na - ii; |
---|
3750 | w = h__[i__ + i__ * h_dim1] - p; |
---|
3751 | ra = 0.0; |
---|
3752 | sa = 0.0; |
---|
3753 | |
---|
3754 | i__3 = en; |
---|
3755 | for (j = m; j <= i__3; ++j) |
---|
3756 | { |
---|
3757 | ra += h__[i__ + j * h_dim1] * h__[j + na * h_dim1]; |
---|
3758 | sa += h__[i__ + j * h_dim1] * h__[j + en * h_dim1]; |
---|
3759 | /* L760: */ |
---|
3760 | } |
---|
3761 | |
---|
3762 | if (wi[i__] >= 0.0) |
---|
3763 | goto L770; |
---|
3764 | zz = w; |
---|
3765 | r__ = ra; |
---|
3766 | s = sa; |
---|
3767 | goto L795; |
---|
3768 | L770: |
---|
3769 | m = i__; |
---|
3770 | if (wi[i__] != 0.0) |
---|
3771 | goto L780; |
---|
3772 | d__1 = -ra; |
---|
3773 | d__2 = -sa; |
---|
3774 | cdiv_(&d__1, &d__2, &w, &q, &h__[i__ + na * h_dim1], &h__[i__ + en * h_dim1]); |
---|
3775 | goto L790; |
---|
3776 | |
---|
3777 | /* .......... solve complex equations .......... */ |
---|
3778 | L780: |
---|
3779 | x = h__[i__ + (i__ + 1) * h_dim1]; |
---|
3780 | y = h__[i__ + 1 + i__ * h_dim1]; |
---|
3781 | vr = (wr[i__] - p) * (wr[i__] - p) + wi[i__] * wi[i__] - q * q; |
---|
3782 | vi = (wr[i__] - p) * 2.0 * q; |
---|
3783 | if (vr != 0.0 || vi != 0.0) |
---|
3784 | goto L784; |
---|
3785 | tst1 = norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(zz)); |
---|
3786 | vr = tst1; |
---|
3787 | L783: |
---|
3788 | vr *= 0.01; |
---|
3789 | tst2 = tst1 + vr; |
---|
3790 | if (tst2 > tst1) |
---|
3791 | goto L783; |
---|
3792 | L784: |
---|
3793 | d__1 = x * r__ - zz * ra + q * sa; |
---|
3794 | d__2 = x * s - zz * sa - q * ra; |
---|
3795 | cdiv_(&d__1, &d__2, &vr, &vi, &h__[i__ + na * h_dim1], &h__[i__ + en * h_dim1]); |
---|
3796 | if (abs(x) <= abs(zz) + abs(q)) |
---|
3797 | goto L785; |
---|
3798 | h__[i__ + 1 + na * h_dim1] = (-ra - w * h__[i__ + na * h_dim1] + q * h__[i__ + en * h_dim1]) / x; |
---|
3799 | h__[i__ + 1 + en * h_dim1] = (-sa - w * h__[i__ + en * h_dim1] - q * h__[i__ + na * h_dim1]) / x; |
---|
3800 | goto L790; |
---|
3801 | L785: |
---|
3802 | d__1 = -r__ - y * h__[i__ + na * h_dim1]; |
---|
3803 | d__2 = -s - y * h__[i__ + en * h_dim1]; |
---|
3804 | cdiv_(&d__1, &d__2, &zz, &q, &h__[i__ + 1 + na * h_dim1], &h__[i__ + 1 + en * h_dim1]); |
---|
3805 | |
---|
3806 | /* .......... overflow control .......... */ |
---|
3807 | L790: |
---|
3808 | /* Computing MAX */ |
---|
3809 | d__3 = (d__1 = h__[i__ + na * h_dim1], abs(d__1)), d__4 = (d__2 = h__[i__ + en * h_dim1], abs(d__2)); |
---|
3810 | t = max(d__3,d__4); |
---|
3811 | if (t == 0.0) |
---|
3812 | goto L795; |
---|
3813 | tst1 = t; |
---|
3814 | tst2 = tst1 + 1.0 / tst1; |
---|
3815 | if (tst2 > tst1) |
---|
3816 | goto L795; |
---|
3817 | i__3 = en; |
---|
3818 | for (j = i__; j <= i__3; ++j) |
---|
3819 | { |
---|
3820 | h__[j + na * h_dim1] /= t; |
---|
3821 | h__[j + en * h_dim1] /= t; |
---|
3822 | /* L792: */ |
---|
3823 | } |
---|
3824 | L795: |
---|
3825 | ; |
---|
3826 | } |
---|
3827 | /* .......... end complex vector .......... */ |
---|
3828 | L800: |
---|
3829 | ; |
---|
3830 | } |
---|
3831 | /* .......... end back substitution vectors of isolated roots .......... */ |
---|
3832 | i__1 = *n; |
---|
3833 | for (i__ = 1; i__ <= i__1; ++i__) |
---|
3834 | { |
---|
3835 | if (i__ >= *low && i__ <= *igh) |
---|
3836 | goto L840; |
---|
3837 | i__2 = *n; |
---|
3838 | for (j = i__; j <= i__2; ++j) |
---|
3839 | { |
---|
3840 | /* L820: */ |
---|
3841 | z__[i__ + j * z_dim1] = h__[i__ + j * h_dim1]; |
---|
3842 | } |
---|
3843 | L840: |
---|
3844 | ; |
---|
3845 | } |
---|
3846 | |
---|
3847 | /* .......... multiply by transformation matrix to give vectors of original full matrix. */ |
---|
3848 | /* for j=n step -1 until low do -- .......... */ |
---|
3849 | i__1 = *n; |
---|
3850 | for (jj = *low; jj <= i__1; ++jj) |
---|
3851 | { |
---|
3852 | j = *n + *low - jj; |
---|
3853 | m = min(j,*igh); |
---|
3854 | |
---|
3855 | i__2 = *igh; |
---|
3856 | for (i__ = *low; i__ <= i__2; ++i__) |
---|
3857 | { |
---|
3858 | zz = 0.0; |
---|
3859 | i__3 = m; |
---|
3860 | for (k = *low; k <= i__3; ++k) |
---|
3861 | { |
---|
3862 | /* L860: */ |
---|
3863 | zz += z__[i__ + k * z_dim1] * h__[k + j * h_dim1]; |
---|
3864 | } |
---|
3865 | |
---|
3866 | z__[i__ + j * z_dim1] = zz; |
---|
3867 | /* L880: */ |
---|
3868 | } |
---|
3869 | } |
---|
3870 | |
---|
3871 | goto L1001; |
---|
3872 | /* .......... set error -- all eigenvalues have not converged after 30*n iterations .......... */ |
---|
3873 | L1000: |
---|
3874 | *ierr = en; |
---|
3875 | L1001: |
---|
3876 | return 0; |
---|
3877 | |
---|
3878 | } |
---|
3879 | /* end f2c version of code */ |
---|
3880 | #endif |
---|
3881 | |
---|
3882 | } |
---|
3883 | |
---|
3884 | |
---|
3885 | |
---|
3886 | |
---|
3887 | |
---|
3888 | MrBFlt IncompleteBetaFunction (MrBFlt alpha, MrBFlt beta, MrBFlt x) |
---|
3889 | |
---|
3890 | { |
---|
3891 | |
---|
3892 | MrBFlt bt, gm1, gm2, gm3, temp; |
---|
3893 | |
---|
3894 | if (x < 0.0 || x > 1.0) |
---|
3895 | { |
---|
3896 | MrBayesPrint ("%s Error: Problem in IncompleteBetaFunction.\n", spacer); |
---|
3897 | exit (0); |
---|
3898 | } |
---|
3899 | if (fabs(x) < ETA || fabs(x-1.0)<ETA) /* x == 0.0 || x == 1.0 */ |
---|
3900 | { |
---|
3901 | bt = 0.0; |
---|
3902 | } |
---|
3903 | else |
---|
3904 | { |
---|
3905 | gm1 = LnGamma (alpha + beta); |
---|
3906 | gm2 = LnGamma (alpha); |
---|
3907 | gm3 = LnGamma (beta); |
---|
3908 | temp = gm1 - gm2 - gm3 + (alpha) * log(x) + (beta) * log(1.0 - x); |
---|
3909 | bt = exp(temp); |
---|
3910 | } |
---|
3911 | if (x < (alpha + 1.0)/(alpha + beta + 2.0)) |
---|
3912 | return (bt * BetaCf(alpha, beta, x) / alpha); |
---|
3913 | else |
---|
3914 | return (1.0 - bt * BetaCf(beta, alpha, 1.0-x) / beta); |
---|
3915 | |
---|
3916 | } |
---|
3917 | |
---|
3918 | |
---|
3919 | |
---|
3920 | |
---|
3921 | |
---|
3922 | /*--------------------------------------------------------------------------------- |
---|
3923 | | |
---|
3924 | | IncompleteGamma |
---|
3925 | | |
---|
3926 | | Returns the incomplete gamma ratio I(x,alpha) where x is the upper |
---|
3927 | | limit of the integration and alpha is the shape parameter. Returns (-1) |
---|
3928 | | if in error. |
---|
3929 | | |
---|
3930 | | Bhattacharjee, G. P. 1970. The incomplete gamma integral. Applied |
---|
3931 | | Statistics, 19:285-287 (AS32) |
---|
3932 | | |
---|
3933 | ---------------------------------------------------------------------------------*/ |
---|
3934 | MrBFlt IncompleteGamma (MrBFlt x, MrBFlt alpha, MrBFlt LnGamma_alpha) |
---|
3935 | |
---|
3936 | { |
---|
3937 | |
---|
3938 | int i; |
---|
3939 | MrBFlt p = alpha, g = LnGamma_alpha, |
---|
3940 | accurate = 1e-8, overflow = 1e30, |
---|
3941 | factor, gin = 0.0, rn = 0.0, a = 0.0, b = 0.0, an = 0.0, |
---|
3942 | dif = 0.0, term = 0.0, pn[6]; |
---|
3943 | |
---|
3944 | if (fabs(x) < ETA) |
---|
3945 | return (0.0); |
---|
3946 | if (x < 0 || p <= 0) |
---|
3947 | return (-1.0); |
---|
3948 | |
---|
3949 | factor = exp(p*log(x)-x-g); |
---|
3950 | if (x>1 && x>=p) |
---|
3951 | goto l30; |
---|
3952 | gin = 1.0; |
---|
3953 | term = 1.0; |
---|
3954 | rn = p; |
---|
3955 | l20: |
---|
3956 | rn++; |
---|
3957 | term *= x/rn; |
---|
3958 | gin += term; |
---|
3959 | if (term > accurate) |
---|
3960 | goto l20; |
---|
3961 | gin *= factor/p; |
---|
3962 | goto l50; |
---|
3963 | l30: |
---|
3964 | a = 1.0-p; |
---|
3965 | b = a+x+1.0; |
---|
3966 | term = 0.0; |
---|
3967 | pn[0] = 1.0; |
---|
3968 | pn[1] = x; |
---|
3969 | pn[2] = x+1; |
---|
3970 | pn[3] = x*b; |
---|
3971 | gin = pn[2]/pn[3]; |
---|
3972 | l32: |
---|
3973 | a++; |
---|
3974 | b += 2.0; |
---|
3975 | term++; |
---|
3976 | an = a*term; |
---|
3977 | for (i=0; i<2; i++) |
---|
3978 | pn[i+4] = b*pn[i+2]-an*pn[i]; |
---|
3979 | if (fabs(pn[5]) < ETA) |
---|
3980 | goto l35; |
---|
3981 | rn = pn[4]/pn[5]; |
---|
3982 | dif = fabs(gin-rn); |
---|
3983 | if (dif>accurate) |
---|
3984 | goto l34; |
---|
3985 | if (dif<=accurate*rn) |
---|
3986 | goto l42; |
---|
3987 | l34: |
---|
3988 | gin = rn; |
---|
3989 | l35: |
---|
3990 | for (i=0; i<4; i++) |
---|
3991 | pn[i] = pn[i+2]; |
---|
3992 | if (fabs(pn[4]) < overflow) |
---|
3993 | goto l32; |
---|
3994 | for (i=0; i<4; i++) |
---|
3995 | pn[i] /= overflow; |
---|
3996 | goto l32; |
---|
3997 | l42: |
---|
3998 | gin = 1.0-factor*gin; |
---|
3999 | l50: |
---|
4000 | return (gin); |
---|
4001 | |
---|
4002 | } |
---|
4003 | |
---|
4004 | |
---|
4005 | |
---|
4006 | |
---|
4007 | |
---|
4008 | /*--------------------------------------------------------------------------------- |
---|
4009 | | |
---|
4010 | | InvertMatrix |
---|
4011 | | |
---|
4012 | | Calculates aInv = a^{-1} using LU-decomposition. The input matrix a is |
---|
4013 | | destroyed in the process. The program returns an error if the matrix is |
---|
4014 | | singular. col and indx are work vectors. |
---|
4015 | | |
---|
4016 | ---------------------------------------------------------------------------------*/ |
---|
4017 | int InvertMatrix (int dim, MrBFlt **a, MrBFlt *col, int *indx, MrBFlt **aInv) |
---|
4018 | |
---|
4019 | { |
---|
4020 | |
---|
4021 | int rc, i, j; |
---|
4022 | |
---|
4023 | rc = LUDecompose (dim, a, col, indx, (MrBFlt *)NULL); |
---|
4024 | if (rc == FALSE) |
---|
4025 | { |
---|
4026 | for (j = 0; j < dim; j++) |
---|
4027 | { |
---|
4028 | for (i = 0; i < dim; i++) |
---|
4029 | col[i] = 0.0; |
---|
4030 | col[j] = 1.0; |
---|
4031 | LUBackSubstitution (dim, a, indx, col); |
---|
4032 | for (i = 0; i < dim; i++) |
---|
4033 | aInv[i][j] = col[i]; |
---|
4034 | } |
---|
4035 | } |
---|
4036 | |
---|
4037 | return (rc); |
---|
4038 | |
---|
4039 | } |
---|
4040 | |
---|
4041 | |
---|
4042 | |
---|
4043 | |
---|
4044 | |
---|
4045 | /*--------------------------------------------------------------------------------- |
---|
4046 | | |
---|
4047 | | LBinormal |
---|
4048 | | |
---|
4049 | | L(h1,h2,r) = prob(x>h1, y>h2), where x and y are standard binormal, |
---|
4050 | | with r=corr(x,y), error < 2e-7. |
---|
4051 | | |
---|
4052 | | Drezner Z., and G.O. Wesolowsky (1990) On the computation of the |
---|
4053 | | bivariate normal integral. J. Statist. Comput. Simul. 35:101-107. |
---|
4054 | | |
---|
4055 | ---------------------------------------------------------------------------------*/ |
---|
4056 | MrBFlt LBinormal (MrBFlt h1, MrBFlt h2, MrBFlt r) |
---|
4057 | |
---|
4058 | { |
---|
4059 | |
---|
4060 | int i; |
---|
4061 | MrBFlt x[]={0.04691008, 0.23076534, 0.5, 0.76923466, 0.95308992}; |
---|
4062 | MrBFlt w[]={0.018854042, 0.038088059, 0.0452707394,0.038088059,0.018854042}; |
---|
4063 | MrBFlt Lh=0.0, r1, r2, r3, rr, aa, ab, h3, h5, h6, h7, h12, temp1, temp2, exp1, exp2; |
---|
4064 | |
---|
4065 | h12 = (h1 * h1 + h2 * h2) / 2.0; |
---|
4066 | if (fabs(r) >= 0.7) |
---|
4067 | { |
---|
4068 | r2 = 1.0 - r * r; |
---|
4069 | r3 = sqrt(r2); |
---|
4070 | if (r < 0) |
---|
4071 | h2 *= -1; |
---|
4072 | h3 = h1 * h2; |
---|
4073 | h7 = exp(-h3 / 2.0); |
---|
4074 | if (fabs(r-1.0)>ETA) /* fabs(r) != 1.0 */ |
---|
4075 | { |
---|
4076 | h6 = fabs(h1-h2); |
---|
4077 | h5 = h6 * h6 / 2.0; |
---|
4078 | h6 /= r3; |
---|
4079 | aa = 0.5 - h3 / 8; |
---|
4080 | ab = 3.0 - 2.0 * aa * h5; |
---|
4081 | temp1 = -h5 / r2; |
---|
4082 | if (temp1 < -100.0) |
---|
4083 | exp1 = 0.0; |
---|
4084 | else |
---|
4085 | exp1 = exp(temp1); |
---|
4086 | Lh = 0.13298076 * h6 * ab * (1.0 - CdfNormal(h6)) - exp1 * (ab + aa * r2) * 0.053051647; |
---|
4087 | for (i=0; i<5; i++) |
---|
4088 | { |
---|
4089 | r1 = r3 * x[i]; |
---|
4090 | rr = r1 * r1; |
---|
4091 | r2 = sqrt(1.0 - rr); |
---|
4092 | temp1 = -h5 / rr; |
---|
4093 | if (temp1 < -100.0) |
---|
4094 | exp1 = 0.0; |
---|
4095 | else |
---|
4096 | exp1 = exp(temp1); |
---|
4097 | temp2 = -h3 / (1.0 + r2); |
---|
4098 | if (temp2 < -100.0) |
---|
4099 | exp2 = 0.0; |
---|
4100 | else |
---|
4101 | exp2 = exp(temp2); |
---|
4102 | Lh -= w[i] * exp1 * (exp2 / r2 / h7 - 1.0 - aa * rr); |
---|
4103 | } |
---|
4104 | } |
---|
4105 | if (r > 0) |
---|
4106 | Lh = Lh * r3 * h7 + (1.0 - CdfNormal(MAX(h1, h2))); |
---|
4107 | else if (r<0) |
---|
4108 | Lh = (h1 < h2 ? CdfNormal(h2) - CdfNormal(h1) : 0) - Lh * r3 * h7; |
---|
4109 | } |
---|
4110 | else |
---|
4111 | { |
---|
4112 | h3 = h1 * h2; |
---|
4113 | if (fabs(r)>ETA) |
---|
4114 | { |
---|
4115 | for (i=0; i<5; i++) |
---|
4116 | { |
---|
4117 | r1 = r * x[i]; |
---|
4118 | r2 = 1.0 - r1 * r1; |
---|
4119 | temp1 = (r1 * h3 - h12) / r2; |
---|
4120 | if (temp1 < -100.0) |
---|
4121 | exp1 = 0.0; |
---|
4122 | else |
---|
4123 | exp1 = exp(temp1); |
---|
4124 | Lh += w[i] * exp1 / sqrt(r2); |
---|
4125 | } |
---|
4126 | } |
---|
4127 | Lh = (1.0 - CdfNormal(h1)) * (1.0 - CdfNormal(h2)) + r * Lh; |
---|
4128 | } |
---|
4129 | return (Lh); |
---|
4130 | |
---|
4131 | } |
---|
4132 | |
---|
4133 | |
---|
4134 | |
---|
4135 | |
---|
4136 | |
---|
4137 | /*--------------------------------------------------------------------------------- |
---|
4138 | | |
---|
4139 | | LnFactorial: Calculates the log of the factorial for an integer |
---|
4140 | | |
---|
4141 | ---------------------------------------------------------------------------------*/ |
---|
4142 | MrBFlt LnFactorial (int value) |
---|
4143 | { |
---|
4144 | int i; |
---|
4145 | MrBFlt result; |
---|
4146 | |
---|
4147 | result = 0.0; |
---|
4148 | |
---|
4149 | for (i = 2; i<=value; i++) |
---|
4150 | result += log(i); |
---|
4151 | |
---|
4152 | return result; |
---|
4153 | } |
---|
4154 | |
---|
4155 | |
---|
4156 | |
---|
4157 | |
---|
4158 | |
---|
4159 | /*--------------------------------------------------------------------------------- |
---|
4160 | | |
---|
4161 | | LnGamma |
---|
4162 | | |
---|
4163 | | Calculates the log of the gamma function. The Gamma function is equal |
---|
4164 | | to: |
---|
4165 | | |
---|
4166 | | Gamma(alp) = {integral from 0 to infinity} t^{alp-1} e^-t dt |
---|
4167 | | |
---|
4168 | | The result is accurate to 10 decimal places. Stirling's formula is used |
---|
4169 | | for the central polynomial part of the procedure. |
---|
4170 | | |
---|
4171 | | Pike, M. C. and I. D. Hill. 1966. Algorithm 291: Logarithm of the gamma |
---|
4172 | | function. Communications of the Association for Computing |
---|
4173 | | Machinery, 9:684. |
---|
4174 | | |
---|
4175 | ---------------------------------------------------------------------------------*/ |
---|
4176 | MrBFlt LnGamma (MrBFlt alp) |
---|
4177 | |
---|
4178 | { |
---|
4179 | |
---|
4180 | MrBFlt x = alp, f = 0.0, z; |
---|
4181 | |
---|
4182 | if (x < 7) |
---|
4183 | { |
---|
4184 | f = 1.0; |
---|
4185 | z = x-1.0; |
---|
4186 | while (++z < 7.0) |
---|
4187 | f *= z; |
---|
4188 | x = z; |
---|
4189 | f = -log(f); |
---|
4190 | } |
---|
4191 | z = 1.0 / (x*x); |
---|
4192 | return (f + (x-0.5)*log(x) - x + 0.918938533204673 + |
---|
4193 | (((-0.000595238095238*z+0.000793650793651)*z-0.002777777777778)*z + |
---|
4194 | 0.083333333333333)/x); |
---|
4195 | |
---|
4196 | } |
---|
4197 | |
---|
4198 | |
---|
4199 | |
---|
4200 | |
---|
4201 | |
---|
4202 | /* Calculate probability of a realization for exponential random variable */ |
---|
4203 | MrBFlt LnPriorProbExponential(MrBFlt val, MrBFlt *params) |
---|
4204 | { |
---|
4205 | return log(params[0]) - params[0] * val; |
---|
4206 | } |
---|
4207 | |
---|
4208 | |
---|
4209 | |
---|
4210 | |
---|
4211 | |
---|
4212 | /* Calculate probability of a realization for a fixed variable */ |
---|
4213 | MrBFlt LnPriorProbFix(MrBFlt val, MrBFlt *params) |
---|
4214 | { |
---|
4215 | if (AreDoublesEqual(val, params[0], 0.00001) == YES) |
---|
4216 | return 0.0; |
---|
4217 | else |
---|
4218 | return NEG_INFINITY; |
---|
4219 | } |
---|
4220 | |
---|
4221 | |
---|
4222 | |
---|
4223 | |
---|
4224 | |
---|
4225 | /* Calculate probability of a realization for gamma random variable */ |
---|
4226 | MrBFlt LnPriorProbGamma(MrBFlt val, MrBFlt *params) |
---|
4227 | { |
---|
4228 | return (params[0] - 1) * log(val) + params[0] * log(params[1]) - params[1] * val - LnGamma(params[0]); |
---|
4229 | } |
---|
4230 | |
---|
4231 | |
---|
4232 | |
---|
4233 | |
---|
4234 | |
---|
4235 | /* Calculate probability of a realization for lognormal random variable */ |
---|
4236 | MrBFlt LnPriorProbLognormal(MrBFlt val, MrBFlt *params) |
---|
4237 | { |
---|
4238 | MrBFlt z; |
---|
4239 | |
---|
4240 | z = (log(val) - params[0]) / params[1]; |
---|
4241 | |
---|
4242 | return -log(params[1] * val * sqrt(2.0 * PI)) - z * z / 2.0; |
---|
4243 | } |
---|
4244 | |
---|
4245 | |
---|
4246 | |
---|
4247 | |
---|
4248 | |
---|
4249 | /* Calculate probability of a realization for normal random variable */ |
---|
4250 | MrBFlt LnPriorProbNormal(MrBFlt val, MrBFlt *params) |
---|
4251 | { |
---|
4252 | MrBFlt z; |
---|
4253 | |
---|
4254 | z = (val - params[0]) / params[1]; |
---|
4255 | |
---|
4256 | return -log(params[1] * sqrt(2.0 * PI)) - z * z / 2.0; |
---|
4257 | } |
---|
4258 | |
---|
4259 | |
---|
4260 | |
---|
4261 | |
---|
4262 | |
---|
4263 | /* Calculate probability of a realization for truncated (only positive values) normal random variable */ |
---|
4264 | MrBFlt LnPriorProbTruncatedNormal(MrBFlt val, MrBFlt *params) |
---|
4265 | { |
---|
4266 | MrBFlt z, z_0, normConst; |
---|
4267 | |
---|
4268 | z = (val - params[0]) / params[1]; |
---|
4269 | |
---|
4270 | z_0 = (0.0 - params[0]) / params[1]; |
---|
4271 | normConst = CdfNormal(z_0); |
---|
4272 | |
---|
4273 | return -log(params[1] * sqrt(2.0 * PI)) - z * z / 2.0 - log(normConst); |
---|
4274 | } |
---|
4275 | |
---|
4276 | |
---|
4277 | |
---|
4278 | |
---|
4279 | |
---|
4280 | /* Calculate probability of a realization for uniform random variable */ |
---|
4281 | MrBFlt LnPriorProbUniform(MrBFlt val, MrBFlt *params) |
---|
4282 | { |
---|
4283 | return - log(params[1] - params[0]); |
---|
4284 | } |
---|
4285 | |
---|
4286 | |
---|
4287 | |
---|
4288 | |
---|
4289 | |
---|
4290 | /* Calculate probability ratio of realizations for exponential random variable */ |
---|
4291 | MrBFlt LnProbRatioExponential(MrBFlt newX, MrBFlt oldX, MrBFlt *params) |
---|
4292 | { |
---|
4293 | return params[0] * (oldX - newX); |
---|
4294 | } |
---|
4295 | |
---|
4296 | |
---|
4297 | |
---|
4298 | |
---|
4299 | |
---|
4300 | /* Calculate probability ratio of realizations for gamma random variable */ |
---|
4301 | MrBFlt LnProbRatioGamma(MrBFlt newX, MrBFlt oldX, MrBFlt *params) |
---|
4302 | { |
---|
4303 | return (params[1] - 1.0) * (log(newX) - log(oldX)) - params[0] * (newX - oldX); |
---|
4304 | } |
---|
4305 | |
---|
4306 | |
---|
4307 | |
---|
4308 | |
---|
4309 | |
---|
4310 | /* Calculate probability ratio of realizations for log normal random variable */ |
---|
4311 | MrBFlt LnProbRatioLognormal (MrBFlt newX, MrBFlt oldX, MrBFlt *params) |
---|
4312 | { |
---|
4313 | MrBFlt newZ, oldZ; |
---|
4314 | |
---|
4315 | newZ = (log(newX) - params[0]) / params[1]; |
---|
4316 | oldZ = (log(oldX) - params[0]) / params[1]; |
---|
4317 | |
---|
4318 | return (oldZ * oldZ - newZ * newZ) / 2.0 + log(oldX) - log(newX); |
---|
4319 | } |
---|
4320 | |
---|
4321 | |
---|
4322 | |
---|
4323 | |
---|
4324 | |
---|
4325 | /* Calculate probability ratio of realizations for normal random variable */ |
---|
4326 | MrBFlt LnProbRatioNormal (MrBFlt newX, MrBFlt oldX, MrBFlt *params) |
---|
4327 | { |
---|
4328 | MrBFlt newZ, oldZ; |
---|
4329 | |
---|
4330 | newZ = (newX - params[0]) / params[1]; |
---|
4331 | oldZ = (oldX - params[0]) / params[1]; |
---|
4332 | |
---|
4333 | return (oldZ * oldZ - newZ * newZ) / 2.0; |
---|
4334 | } |
---|
4335 | |
---|
4336 | |
---|
4337 | |
---|
4338 | |
---|
4339 | |
---|
4340 | /* Calculate probability ratio of realizations for truncated normal random variable */ |
---|
4341 | MrBFlt LnProbRatioTruncatedNormal (MrBFlt newX, MrBFlt oldX, MrBFlt *params) |
---|
4342 | { |
---|
4343 | MrBFlt newZ, oldZ; |
---|
4344 | |
---|
4345 | if (newX <= 0.0) |
---|
4346 | return NEG_INFINITY; |
---|
4347 | else if (oldX <= 0.0) |
---|
4348 | return (POS_INFINITY); |
---|
4349 | |
---|
4350 | newZ = (newX - params[0]) / params[1]; |
---|
4351 | oldZ = (oldX - params[0]) / params[1]; |
---|
4352 | |
---|
4353 | return (oldZ * oldZ - newZ * newZ) / 2.0; |
---|
4354 | } |
---|
4355 | |
---|
4356 | |
---|
4357 | |
---|
4358 | |
---|
4359 | |
---|
4360 | /* Calculate probability ratio of realizations for uniform random variable */ |
---|
4361 | MrBFlt LnProbRatioUniform (MrBFlt newX, MrBFlt oldX, MrBFlt *params) |
---|
4362 | { |
---|
4363 | return 0.0; |
---|
4364 | } |
---|
4365 | |
---|
4366 | |
---|
4367 | |
---|
4368 | |
---|
4369 | |
---|
4370 | /* Log probability for a value drawn from a lognormal distribution; parameters are |
---|
4371 | mean and variance of value (not of log value) */ |
---|
4372 | MrBFlt LnProbTK02LogNormal (MrBFlt mean, MrBFlt var, MrBFlt x) |
---|
4373 | |
---|
4374 | { |
---|
4375 | MrBFlt z, lnProb, mu, sigma; |
---|
4376 | |
---|
4377 | sigma = sqrt(log(1.0 + (var / (mean*mean)))); |
---|
4378 | mu = log(mean) - sigma * sigma / 2.0; |
---|
4379 | |
---|
4380 | z = (log(x) - mu) / sigma; |
---|
4381 | |
---|
4382 | lnProb = - log (x * sigma * sqrt (2.0 * PI)) - (z*z / 2.0); |
---|
4383 | |
---|
4384 | return lnProb; |
---|
4385 | } |
---|
4386 | |
---|
4387 | |
---|
4388 | |
---|
4389 | |
---|
4390 | |
---|
4391 | /* Log probability for a value drawn from a gamma distribution */ |
---|
4392 | MrBFlt LnProbGamma (MrBFlt alpha, MrBFlt beta, MrBFlt x) |
---|
4393 | |
---|
4394 | { |
---|
4395 | MrBFlt lnProb; |
---|
4396 | |
---|
4397 | lnProb = (alpha-1.0)*log(x) + alpha*log(beta) - x*beta - LnGamma(alpha); |
---|
4398 | |
---|
4399 | return lnProb; |
---|
4400 | } |
---|
4401 | |
---|
4402 | |
---|
4403 | |
---|
4404 | |
---|
4405 | |
---|
4406 | /* Log probability for a value drawn from a lognormal distribution */ |
---|
4407 | MrBFlt LnProbLogNormal (MrBFlt exp, MrBFlt sd, MrBFlt x) |
---|
4408 | |
---|
4409 | { |
---|
4410 | MrBFlt z, lnProb; |
---|
4411 | |
---|
4412 | z = (log(x) - exp) / sd; |
---|
4413 | |
---|
4414 | lnProb = - log (x * sd * sqrt (2.0 * PI)) - (z*z / 2.0); |
---|
4415 | |
---|
4416 | return lnProb; |
---|
4417 | } |
---|
4418 | |
---|
4419 | |
---|
4420 | |
---|
4421 | |
---|
4422 | |
---|
4423 | /* Log probability for a value drawn from a scaled gamma distribution */ |
---|
4424 | MrBFlt LnProbScaledGamma (MrBFlt alpha, MrBFlt x) |
---|
4425 | |
---|
4426 | { |
---|
4427 | MrBFlt lnProb; |
---|
4428 | |
---|
4429 | lnProb = (alpha - 1.0) * log(x) - LnGamma(alpha) + alpha*log(alpha) - x*alpha; |
---|
4430 | |
---|
4431 | return lnProb; |
---|
4432 | } |
---|
4433 | |
---|
4434 | |
---|
4435 | |
---|
4436 | |
---|
4437 | |
---|
4438 | /* Log probability for a value drawn from a truncated gamma distribution */ |
---|
4439 | MrBFlt LnProbTruncGamma (MrBFlt alpha, MrBFlt beta, MrBFlt x, MrBFlt min, MrBFlt max) |
---|
4440 | |
---|
4441 | { |
---|
4442 | MrBFlt lnProb; |
---|
4443 | |
---|
4444 | lnProb = (alpha-1.0)*log(x) + alpha*log(beta) - x*beta - LnGamma(alpha); |
---|
4445 | |
---|
4446 | lnProb -= log (IncompleteGamma (max*beta, alpha, LnGamma(alpha)) - IncompleteGamma (min*beta, alpha, LnGamma(alpha))); |
---|
4447 | |
---|
4448 | return lnProb; |
---|
4449 | } |
---|
4450 | |
---|
4451 | |
---|
4452 | |
---|
4453 | |
---|
4454 | |
---|
4455 | /* Log ratio for two values drawn from a lognormal distribution */ |
---|
4456 | MrBFlt LnRatioTK02LogNormal (MrBFlt mean, MrBFlt var, MrBFlt xNew, MrBFlt xOld) |
---|
4457 | |
---|
4458 | { |
---|
4459 | MrBFlt newZ, oldZ, mu, sigma; |
---|
4460 | |
---|
4461 | sigma = sqrt(log(1.0 + (var / (mean*mean)))); |
---|
4462 | mu = log(mean) - sigma * sigma / 2.0; |
---|
4463 | |
---|
4464 | newZ = (log(xNew) - mu) / sigma; |
---|
4465 | oldZ = (log(xOld) - mu) / sigma; |
---|
4466 | |
---|
4467 | return (oldZ * oldZ - newZ * newZ) / 2.0 + log(xOld) - log(xNew); |
---|
4468 | } |
---|
4469 | |
---|
4470 | |
---|
4471 | |
---|
4472 | |
---|
4473 | |
---|
4474 | /* Log ratio for two values drawn from a lognormal distribution */ |
---|
4475 | MrBFlt LnRatioLogNormal (MrBFlt exp, MrBFlt sd, MrBFlt xNew, MrBFlt xOld) |
---|
4476 | |
---|
4477 | { |
---|
4478 | MrBFlt newZ, oldZ; |
---|
4479 | |
---|
4480 | newZ = (log(xNew) - exp) / sd; |
---|
4481 | oldZ = (log(xOld) - exp) / sd; |
---|
4482 | |
---|
4483 | return (oldZ * oldZ - newZ * newZ) / 2.0 + log(xOld) - log(xNew); |
---|
4484 | } |
---|
4485 | |
---|
4486 | |
---|
4487 | |
---|
4488 | |
---|
4489 | |
---|
4490 | /*--------------------------------------------------------------------------------- |
---|
4491 | | |
---|
4492 | | LogBase2Plus1 |
---|
4493 | | |
---|
4494 | | This function is called from ComputeMatrixExponential. |
---|
4495 | | |
---|
4496 | ---------------------------------------------------------------------------------*/ |
---|
4497 | int LogBase2Plus1 (MrBFlt x) |
---|
4498 | |
---|
4499 | { |
---|
4500 | |
---|
4501 | int j = 0; |
---|
4502 | |
---|
4503 | while(x > 1.0 - 1.0e-07) |
---|
4504 | { |
---|
4505 | x /= 2.0; |
---|
4506 | j++; |
---|
4507 | } |
---|
4508 | |
---|
4509 | return (j); |
---|
4510 | |
---|
4511 | } |
---|
4512 | |
---|
4513 | |
---|
4514 | |
---|
4515 | |
---|
4516 | |
---|
4517 | /*--------------------------------------------------------------------------------- |
---|
4518 | | |
---|
4519 | | LogNormalRandomVariable |
---|
4520 | | |
---|
4521 | | Draw a random variable from a lognormal distribution. |
---|
4522 | | |
---|
4523 | ---------------------------------------------------------------------------------*/ |
---|
4524 | MrBFlt LogNormalRandomVariable (MrBFlt mean, MrBFlt sd, SafeLong *seed) |
---|
4525 | |
---|
4526 | { |
---|
4527 | |
---|
4528 | MrBFlt x; |
---|
4529 | |
---|
4530 | x = PointNormal(RandomNumber(seed)); |
---|
4531 | |
---|
4532 | x*= sd; |
---|
4533 | x += mean; |
---|
4534 | |
---|
4535 | return exp(x); |
---|
4536 | } |
---|
4537 | |
---|
4538 | |
---|
4539 | |
---|
4540 | |
---|
4541 | |
---|
4542 | /*--------------------------------------------------------------------------------- |
---|
4543 | | |
---|
4544 | | LUBackSubstitution |
---|
4545 | | |
---|
4546 | | Back substitute into an LU-decomposed matrix. |
---|
4547 | | |
---|
4548 | ---------------------------------------------------------------------------------*/ |
---|
4549 | void LUBackSubstitution (int dim, MrBFlt **a, int *indx, MrBFlt *b) |
---|
4550 | |
---|
4551 | { |
---|
4552 | |
---|
4553 | int i, ip, j, ii = -1; |
---|
4554 | MrBFlt sum; |
---|
4555 | |
---|
4556 | for (i=0; i<dim; i++) |
---|
4557 | { |
---|
4558 | ip = indx[i]; |
---|
4559 | sum = b[ip]; |
---|
4560 | b[ip] = b[i]; |
---|
4561 | if (ii >= 0) |
---|
4562 | { |
---|
4563 | for (j=ii; j<=i-1; j++) |
---|
4564 | sum -= a[i][j] * b[j]; |
---|
4565 | } |
---|
4566 | else if (fabs(sum)>ETA) |
---|
4567 | ii = i; |
---|
4568 | b[i] = sum; |
---|
4569 | } |
---|
4570 | for (i=dim-1; i>=0; i--) |
---|
4571 | { |
---|
4572 | sum = b[i]; |
---|
4573 | for (j=i+1; j<dim; j++) |
---|
4574 | sum -= a[i][j] * b[j]; |
---|
4575 | b[i] = sum / a[i][i]; |
---|
4576 | } |
---|
4577 | |
---|
4578 | } |
---|
4579 | |
---|
4580 | |
---|
4581 | |
---|
4582 | |
---|
4583 | |
---|
4584 | /*--------------------------------------------------------------------------------- |
---|
4585 | | |
---|
4586 | | LUDecompose |
---|
4587 | | |
---|
4588 | | Calculate the LU-decomposition of the matrix a. The matrix a is replaced. |
---|
4589 | | |
---|
4590 | ---------------------------------------------------------------------------------*/ |
---|
4591 | int LUDecompose (int dim, MrBFlt **a, MrBFlt *vv, int *indx, MrBFlt *pd) |
---|
4592 | |
---|
4593 | { |
---|
4594 | |
---|
4595 | int i, imax=0, j, k; |
---|
4596 | MrBFlt big, dum, sum, temp, d; |
---|
4597 | |
---|
4598 | d = 1.0; |
---|
4599 | for (i=0; i<dim; i++) |
---|
4600 | { |
---|
4601 | big = 0.0; |
---|
4602 | for (j = 0; j < dim; j++) |
---|
4603 | { |
---|
4604 | if ((temp = fabs(a[i][j])) > big) |
---|
4605 | big = temp; |
---|
4606 | } |
---|
4607 | if (fabs(big)<ETA) |
---|
4608 | { |
---|
4609 | MrBayesPrint ("%s Error: Problem in LUDecompose\n", spacer); |
---|
4610 | return (ERROR); |
---|
4611 | } |
---|
4612 | vv[i] = 1.0 / big; |
---|
4613 | } |
---|
4614 | for (j=0; j<dim; j++) |
---|
4615 | { |
---|
4616 | for (i = 0; i < j; i++) |
---|
4617 | { |
---|
4618 | sum = a[i][j]; |
---|
4619 | for (k = 0; k < i; k++) |
---|
4620 | sum -= a[i][k] * a[k][j]; |
---|
4621 | a[i][j] = sum; |
---|
4622 | } |
---|
4623 | big = 0.0; |
---|
4624 | for (i=j; i<dim; i++) |
---|
4625 | { |
---|
4626 | sum = a[i][j]; |
---|
4627 | for (k = 0; k < j; k++) |
---|
4628 | sum -= a[i][k] * a[k][j]; |
---|
4629 | a[i][j] = sum; |
---|
4630 | dum = vv[i] * fabs(sum); |
---|
4631 | if (dum >= big) |
---|
4632 | { |
---|
4633 | big = dum; |
---|
4634 | imax = i; |
---|
4635 | } |
---|
4636 | } |
---|
4637 | if (j != imax) |
---|
4638 | { |
---|
4639 | for (k=0; k<dim; k++) |
---|
4640 | { |
---|
4641 | dum = a[imax][k]; |
---|
4642 | a[imax][k] = a[j][k]; |
---|
4643 | a[j][k] = dum; |
---|
4644 | } |
---|
4645 | d = -d; |
---|
4646 | vv[imax] = vv[j]; |
---|
4647 | } |
---|
4648 | indx[j] = imax; |
---|
4649 | if (fabs(a[j][j])<ETA) |
---|
4650 | a[j][j] = TINY; |
---|
4651 | if (j != dim - 1) |
---|
4652 | { |
---|
4653 | dum = 1.0 / (a[j][j]); |
---|
4654 | for (i=j+1; i<dim; i++) |
---|
4655 | a[i][j] *= dum; |
---|
4656 | } |
---|
4657 | } |
---|
4658 | if (pd != NULL) |
---|
4659 | *pd = d; |
---|
4660 | |
---|
4661 | return (NO_ERROR); |
---|
4662 | |
---|
4663 | } |
---|
4664 | |
---|
4665 | |
---|
4666 | |
---|
4667 | |
---|
4668 | |
---|
4669 | /*--------------------------------------------------------------------------------- |
---|
4670 | | |
---|
4671 | | MultiplyMatrices |
---|
4672 | | |
---|
4673 | | Multiply matrix a by matrix b and put the results in matrix result. |
---|
4674 | | |
---|
4675 | ---------------------------------------------------------------------------------*/ |
---|
4676 | void MultiplyMatrices (int dim, MrBFlt **a, MrBFlt **b, MrBFlt **result) |
---|
4677 | |
---|
4678 | { |
---|
4679 | |
---|
4680 | register int i, j, k; |
---|
4681 | MrBFlt **temp; |
---|
4682 | |
---|
4683 | temp = AllocateSquareDoubleMatrix (dim); |
---|
4684 | |
---|
4685 | for (i=0; i<dim; i++) |
---|
4686 | { |
---|
4687 | for (j=0; j<dim; j++) |
---|
4688 | { |
---|
4689 | temp[i][j] = 0.0; |
---|
4690 | for (k=0; k<dim; k++) |
---|
4691 | { |
---|
4692 | temp[i][j] += a[i][k] * b[k][j]; |
---|
4693 | } |
---|
4694 | } |
---|
4695 | } |
---|
4696 | for (i=0; i<dim; i++) |
---|
4697 | { |
---|
4698 | for (j=0; j<dim; j++) |
---|
4699 | { |
---|
4700 | result[i][j] = temp[i][j]; |
---|
4701 | } |
---|
4702 | } |
---|
4703 | |
---|
4704 | FreeSquareDoubleMatrix (temp); |
---|
4705 | |
---|
4706 | } |
---|
4707 | |
---|
4708 | |
---|
4709 | |
---|
4710 | |
---|
4711 | |
---|
4712 | /*--------------------------------------------------------------------------------- |
---|
4713 | | |
---|
4714 | | MultiplyMatrixByScalar |
---|
4715 | | |
---|
4716 | | Multiply the elements of matrix a by a scalar. |
---|
4717 | | |
---|
4718 | ---------------------------------------------------------------------------------*/ |
---|
4719 | void MultiplyMatrixByScalar (int dim, MrBFlt **a, MrBFlt scalar, MrBFlt **result) |
---|
4720 | |
---|
4721 | { |
---|
4722 | |
---|
4723 | int row, col; |
---|
4724 | |
---|
4725 | for (row=0; row<dim; row++) |
---|
4726 | for (col=0; col<dim; col++) |
---|
4727 | result[row][col] = a[row][col] * scalar; |
---|
4728 | |
---|
4729 | } |
---|
4730 | |
---|
4731 | |
---|
4732 | |
---|
4733 | |
---|
4734 | |
---|
4735 | /*--------------------------------------------------------------------------------- |
---|
4736 | | |
---|
4737 | | MultiplyMatrixNTimes |
---|
4738 | | |
---|
4739 | ---------------------------------------------------------------------------------*/ |
---|
4740 | int MultiplyMatrixNTimes (int dim, MrBFlt **Mat, int power, MrBFlt **Result) |
---|
4741 | |
---|
4742 | { |
---|
4743 | |
---|
4744 | register int i, j; |
---|
4745 | int k, numSquares, numRemaining; |
---|
4746 | MrBFlt **TempIn, **TempOut; |
---|
4747 | |
---|
4748 | if (power < 0) |
---|
4749 | { |
---|
4750 | MrBayesPrint ("%s Error: Power cannot be a negative number.\n", spacer); |
---|
4751 | return (ERROR); |
---|
4752 | } |
---|
4753 | else if (power == 0) |
---|
4754 | { |
---|
4755 | for (i=0; i<dim; i++) |
---|
4756 | for (j=0; j<dim; j++) |
---|
4757 | Result[i][j] = 1.0; |
---|
4758 | } |
---|
4759 | else |
---|
4760 | { |
---|
4761 | TempIn = AllocateSquareDoubleMatrix (dim); |
---|
4762 | TempOut = AllocateSquareDoubleMatrix (dim); |
---|
4763 | |
---|
4764 | /* how many times can I multiply the matrices together */ |
---|
4765 | numSquares = 0; |
---|
4766 | while (pow (2.0, (MrBFlt)(numSquares)) < power) |
---|
4767 | numSquares++; |
---|
4768 | numRemaining = power - (int)(pow(2.0, (MrBFlt)(numSquares))); |
---|
4769 | |
---|
4770 | /* now, multiply matrix by power of 2's */ |
---|
4771 | CopyDoubleMatrices (dim, Mat, TempIn); |
---|
4772 | for (k=0; k<numSquares; k++) |
---|
4773 | { |
---|
4774 | MultiplyMatrices (dim, TempIn, TempIn, TempOut); |
---|
4775 | CopyDoubleMatrices (dim, TempOut, TempIn); |
---|
4776 | } |
---|
4777 | |
---|
4778 | /* TempIn is Mat^numSquares. Now, multiply it by Mat numRemaining times */ |
---|
4779 | for (k=0; k<numSquares; k++) |
---|
4780 | { |
---|
4781 | MultiplyMatrices (dim, TempIn, Mat, TempOut); |
---|
4782 | CopyDoubleMatrices (dim, TempOut, TempIn); |
---|
4783 | } |
---|
4784 | |
---|
4785 | /* copy result */ |
---|
4786 | CopyDoubleMatrices (dim, TempIn, Result); |
---|
4787 | |
---|
4788 | FreeSquareDoubleMatrix (TempIn); |
---|
4789 | FreeSquareDoubleMatrix (TempOut); |
---|
4790 | } |
---|
4791 | |
---|
4792 | return (NO_ERROR); |
---|
4793 | |
---|
4794 | } |
---|
4795 | |
---|
4796 | |
---|
4797 | |
---|
4798 | |
---|
4799 | |
---|
4800 | /*--------------------------------------------------------------------------------- |
---|
4801 | | |
---|
4802 | | PointChi2 |
---|
4803 | | |
---|
4804 | | Returns z so that Prob(x < z) = prob where x is Chi2 distributed with df=v. |
---|
4805 | | Returns -1 if in error. 0.000002 < prob < 0.999998. |
---|
4806 | | |
---|
4807 | ---------------------------------------------------------------------------------*/ |
---|
4808 | MrBFlt PointChi2 (MrBFlt prob, MrBFlt v) |
---|
4809 | |
---|
4810 | { |
---|
4811 | |
---|
4812 | MrBFlt e = 0.5e-6, aa = 0.6931471805, p = prob, g, |
---|
4813 | xx, c, ch, a = 0.0, q = 0.0, p1 = 0.0, p2 = 0.0, t = 0.0, |
---|
4814 | x = 0.0, b = 0.0, s1, s2, s3, s4, s5, s6; |
---|
4815 | |
---|
4816 | if (p < 0.000002 || p > 0.999998 || v <= 0.0) |
---|
4817 | return (-1.0); |
---|
4818 | g = LnGamma (v/2.0); |
---|
4819 | xx = v/2.0; |
---|
4820 | c = xx - 1.0; |
---|
4821 | if (v >= -1.24*log(p)) |
---|
4822 | goto l1; |
---|
4823 | ch = pow((p*xx*exp(g+xx*aa)), 1.0/xx); |
---|
4824 | if (ch-e<0) |
---|
4825 | return (ch); |
---|
4826 | goto l4; |
---|
4827 | l1: |
---|
4828 | if (v > 0.32) |
---|
4829 | goto l3; |
---|
4830 | ch = 0.4; |
---|
4831 | a = log(1.0-p); |
---|
4832 | l2: |
---|
4833 | q = ch; |
---|
4834 | p1 = 1.0+ch*(4.67+ch); |
---|
4835 | p2 = ch*(6.73+ch*(6.66+ch)); |
---|
4836 | t = -0.5+(4.67+2.0*ch)/p1 - (6.73+ch*(13.32+3.0*ch))/p2; |
---|
4837 | ch -= (1.0-exp(a+g+0.5*ch+c*aa)*p2/p1)/t; |
---|
4838 | if (fabs(q/ch-1.0)-0.01 <= 0.0) |
---|
4839 | goto l4; |
---|
4840 | else |
---|
4841 | goto l2; |
---|
4842 | l3: |
---|
4843 | x = PointNormal (p); |
---|
4844 | p1 = 0.222222/v; |
---|
4845 | ch = v*pow((x*sqrt(p1)+1.0-p1), 3.0); |
---|
4846 | if (ch > 2.2*v+6.0) |
---|
4847 | ch = -2.0*(log(1.0-p)-c*log(0.5*ch)+g); |
---|
4848 | l4: |
---|
4849 | q = ch; |
---|
4850 | p1 = 0.5*ch; |
---|
4851 | if ((t = IncompleteGamma (p1, xx, g)) < 0.0) |
---|
4852 | { |
---|
4853 | MrBayesPrint ("%s Error: Problem in PointChi2", spacer); |
---|
4854 | return (-1.0); |
---|
4855 | } |
---|
4856 | p2 = p-t; |
---|
4857 | t = p2*exp(xx*aa+g+p1-c*log(ch)); |
---|
4858 | b = t/ch; |
---|
4859 | a = 0.5*t-b*c; |
---|
4860 | s1 = (210.0+a*(140.0+a*(105.0+a*(84.0+a*(70.0+60.0*a))))) / 420.0; |
---|
4861 | s2 = (420.0+a*(735.0+a*(966.0+a*(1141.0+1278.0*a))))/2520.0; |
---|
4862 | s3 = (210.0+a*(462.0+a*(707.0+932.0*a)))/2520.0; |
---|
4863 | s4 = (252.0+a*(672.0+1182.0*a)+c*(294.0+a*(889.0+1740.0*a)))/5040.0; |
---|
4864 | s5 = (84.0+264.0*a+c*(175.0+606.0*a)) / 2520.0; |
---|
4865 | s6 = (120.0+c*(346.0+127.0*c)) / 5040.0; |
---|
4866 | ch += t*(1+0.5*t*s1-b*c*(s1-b*(s2-b*(s3-b*(s4-b*(s5-b*s6)))))); |
---|
4867 | if (fabs(q/ch-1.0) > e) |
---|
4868 | goto l4; |
---|
4869 | return (ch); |
---|
4870 | |
---|
4871 | } |
---|
4872 | |
---|
4873 | |
---|
4874 | |
---|
4875 | |
---|
4876 | |
---|
4877 | /*--------------------------------------------------------------------------------- |
---|
4878 | | |
---|
4879 | | PointNormal |
---|
4880 | | |
---|
4881 | | Returns z so That Prob{x<z} = prob where x ~ N(0,1) and |
---|
4882 | | (1e-12) < prob < 1-(1e-12). Returns (-9999) if in error. |
---|
4883 | | |
---|
4884 | | Odeh, R. E. and J. O. Evans. 1974. The percentage points of the normal |
---|
4885 | | distribution. Applied Statistics, 22:96-97 (AS70). |
---|
4886 | | |
---|
4887 | | Newer methods: |
---|
4888 | | |
---|
4889 | | Wichura, M. J. 1988. Algorithm AS 241: The percentage points of the |
---|
4890 | | normal distribution. 37:477-484. |
---|
4891 | | Beasley, JD & S. G. Springer. 1977. Algorithm AS 111: The percentage |
---|
4892 | | points of the normal distribution. 26:118-121. |
---|
4893 | | |
---|
4894 | ---------------------------------------------------------------------------------*/ |
---|
4895 | MrBFlt PointNormal (MrBFlt prob) |
---|
4896 | |
---|
4897 | { |
---|
4898 | |
---|
4899 | MrBFlt a0 = -0.322232431088, a1 = -1.0, a2 = -0.342242088547, a3 = -0.0204231210245, |
---|
4900 | a4 = -0.453642210148e-4, b0 = 0.0993484626060, b1 = 0.588581570495, |
---|
4901 | b2 = 0.531103462366, b3 = 0.103537752850, b4 = 0.0038560700634, |
---|
4902 | y, z = 0, p = prob, p1; |
---|
4903 | |
---|
4904 | p1 = (p<0.5 ? p : 1-p); |
---|
4905 | if (p1<1e-20) |
---|
4906 | return (-9999); |
---|
4907 | y = sqrt (log(1/(p1*p1))); |
---|
4908 | z = y + ((((y*a4+a3)*y+a2)*y+a1)*y+a0) / ((((y*b4+b3)*y+b2)*y+b1)*y+b0); |
---|
4909 | |
---|
4910 | return (p<0.5 ? -z : z); |
---|
4911 | |
---|
4912 | } |
---|
4913 | |
---|
4914 | |
---|
4915 | |
---|
4916 | |
---|
4917 | |
---|
4918 | /*--------------------------------------------------------------------------------- |
---|
4919 | | |
---|
4920 | | PrintComplexVector |
---|
4921 | | |
---|
4922 | | Prints a vector of dim complex numbers. |
---|
4923 | | |
---|
4924 | ---------------------------------------------------------------------------------*/ |
---|
4925 | void PrintComplexVector (int dim, complex *vec) |
---|
4926 | |
---|
4927 | { |
---|
4928 | |
---|
4929 | int i; |
---|
4930 | |
---|
4931 | MrBayesPrint ("{"); |
---|
4932 | for (i = 0; i < (dim - 1); i++) |
---|
4933 | { |
---|
4934 | MrBayesPrint ("%lf + %lfi, ", vec[i].re, vec[i].im); |
---|
4935 | if(i == 1) |
---|
4936 | MrBayesPrint("\n "); |
---|
4937 | } |
---|
4938 | MrBayesPrint ("%lf + %lfi}\n", vec[dim - 1].re, vec[dim - 1].im); |
---|
4939 | |
---|
4940 | } |
---|
4941 | |
---|
4942 | |
---|
4943 | |
---|
4944 | |
---|
4945 | |
---|
4946 | /*--------------------------------------------------------------------------------- |
---|
4947 | | |
---|
4948 | | PrintSquareComplexMatrix |
---|
4949 | | |
---|
4950 | | Prints a square matrix of complex numbers. |
---|
4951 | | |
---|
4952 | ---------------------------------------------------------------------------------*/ |
---|
4953 | void PrintSquareComplexMatrix (int dim, complex **m) |
---|
4954 | |
---|
4955 | { |
---|
4956 | |
---|
4957 | int row, col; |
---|
4958 | |
---|
4959 | MrBayesPrint ("{"); |
---|
4960 | for (row = 0; row < (dim - 1); row++) |
---|
4961 | { |
---|
4962 | MrBayesPrint ("{"); |
---|
4963 | for(col = 0; col < (dim - 1); col++) |
---|
4964 | { |
---|
4965 | MrBayesPrint ("%lf + %lfi, ", m[row][col].re, m[row][col].im); |
---|
4966 | if(col == 1) |
---|
4967 | MrBayesPrint ("\n "); |
---|
4968 | } |
---|
4969 | MrBayesPrint ("%lf + %lfi},\n", |
---|
4970 | m[row][dim - 1].re, m[row][dim - 1].im); |
---|
4971 | } |
---|
4972 | MrBayesPrint ("{"); |
---|
4973 | for (col = 0; col < (dim - 1); col++) |
---|
4974 | { |
---|
4975 | MrBayesPrint ("%lf + %lfi, ", m[dim - 1][col].re, m[dim - 1][col].im); |
---|
4976 | if(col == 1) |
---|
4977 | MrBayesPrint ("\n "); |
---|
4978 | } |
---|
4979 | MrBayesPrint ("%lf + %lfi}}", m[dim - 1][dim - 1].re, m[dim - 1][dim - 1].im); |
---|
4980 | MrBayesPrint ("\n"); |
---|
4981 | |
---|
4982 | } |
---|
4983 | |
---|
4984 | |
---|
4985 | |
---|
4986 | |
---|
4987 | |
---|
4988 | /*--------------------------------------------------------------------------------- |
---|
4989 | | |
---|
4990 | | PrintSquareDoubleMatrix |
---|
4991 | | |
---|
4992 | | Prints a square matrix of doubles. |
---|
4993 | | |
---|
4994 | ---------------------------------------------------------------------------------*/ |
---|
4995 | void PrintSquareDoubleMatrix (int dim, MrBFlt **matrix) |
---|
4996 | |
---|
4997 | { |
---|
4998 | |
---|
4999 | int i, j; |
---|
5000 | |
---|
5001 | for (i=0; i<dim; i++) |
---|
5002 | { |
---|
5003 | for(j=0; j<dim; j++) |
---|
5004 | MrBayesPrint ("%1.6lf ", matrix[i][j]); |
---|
5005 | MrBayesPrint ("\n"); |
---|
5006 | } |
---|
5007 | |
---|
5008 | } |
---|
5009 | |
---|
5010 | |
---|
5011 | |
---|
5012 | |
---|
5013 | |
---|
5014 | /*--------------------------------------------------------------------------------- |
---|
5015 | | |
---|
5016 | | PrintSquareIntegerMatrix |
---|
5017 | | |
---|
5018 | | Prints a square matrix of integers. |
---|
5019 | | |
---|
5020 | ---------------------------------------------------------------------------------*/ |
---|
5021 | void PrintSquareIntegerMatrix (int dim, int **matrix) |
---|
5022 | |
---|
5023 | { |
---|
5024 | |
---|
5025 | int i, j; |
---|
5026 | |
---|
5027 | for (i=0; i<dim; i++) |
---|
5028 | { |
---|
5029 | for(j=0; j<dim; j++) |
---|
5030 | MrBayesPrint ("%d ", matrix[i][j]); |
---|
5031 | MrBayesPrint ("\n"); |
---|
5032 | } |
---|
5033 | |
---|
5034 | } |
---|
5035 | |
---|
5036 | |
---|
5037 | |
---|
5038 | |
---|
5039 | |
---|
5040 | /*--------------------------------------------------------------------------------- |
---|
5041 | | |
---|
5042 | | ProductOfRealAndComplex |
---|
5043 | | |
---|
5044 | | Returns the complex product of a real and complex number. |
---|
5045 | | |
---|
5046 | ---------------------------------------------------------------------------------*/ |
---|
5047 | complex ProductOfRealAndComplex (MrBFlt a, complex b) |
---|
5048 | |
---|
5049 | { |
---|
5050 | |
---|
5051 | complex c; |
---|
5052 | |
---|
5053 | c.re = a * b.re; |
---|
5054 | c.im = a * b.im; |
---|
5055 | |
---|
5056 | return (c); |
---|
5057 | |
---|
5058 | } |
---|
5059 | |
---|
5060 | |
---|
5061 | |
---|
5062 | |
---|
5063 | |
---|
5064 | /*--------------------------------------------------------------------------------- |
---|
5065 | | |
---|
5066 | | PsiExp: Returns psi (also called digamma) exponentiated |
---|
5067 | | Algorithm from http://lib.stat.cmu.edu/apstat/103 |
---|
5068 | | |
---|
5069 | ---------------------------------------------------------------------------------*/ |
---|
5070 | MrBFlt PsiExp (MrBFlt alpha) |
---|
5071 | |
---|
5072 | { |
---|
5073 | MrBFlt digamma, y, r, s, c, s3, s4, s5, d1; |
---|
5074 | |
---|
5075 | s = 1.0e-05; |
---|
5076 | c = 8.5; |
---|
5077 | s3 = 8.333333333333333333333333e-02; |
---|
5078 | s4 = 8.333333333333333333333333e-03; |
---|
5079 | s5 = 3.968253968e-03; |
---|
5080 | d1 = -0.577215664901532860606512; /* negative of Euler's constant */ |
---|
5081 | |
---|
5082 | digamma = 0.0; |
---|
5083 | y = alpha; |
---|
5084 | if (y <= 0.0) |
---|
5085 | return (0.0); |
---|
5086 | |
---|
5087 | if (y <= s) |
---|
5088 | { |
---|
5089 | digamma = d1 - 1.0 / y; |
---|
5090 | return (exp (digamma)); |
---|
5091 | } |
---|
5092 | |
---|
5093 | while (y < c) |
---|
5094 | { |
---|
5095 | digamma -= 1.0 / y; |
---|
5096 | y += 1.0; |
---|
5097 | } |
---|
5098 | |
---|
5099 | r = 1.0 / y; |
---|
5100 | digamma += (log (y) - 0.5 * r); |
---|
5101 | r *= r; |
---|
5102 | digamma -= r * (s3 - r * (s4 - r * s5)); |
---|
5103 | |
---|
5104 | return (exp (digamma)); |
---|
5105 | |
---|
5106 | } |
---|
5107 | |
---|
5108 | |
---|
5109 | |
---|
5110 | |
---|
5111 | |
---|
5112 | /*--------------------------------------------------------------------------------- |
---|
5113 | | |
---|
5114 | | PsiGammaLnProb: Calculates the log probability of a PsiGamma distributed |
---|
5115 | | variable |
---|
5116 | | |
---|
5117 | ---------------------------------------------------------------------------------*/ |
---|
5118 | MrBFlt PsiGammaLnProb (MrBFlt alpha, MrBFlt value) |
---|
5119 | { |
---|
5120 | MrBFlt beta, lnProb; |
---|
5121 | |
---|
5122 | beta = PsiExp (alpha); |
---|
5123 | |
---|
5124 | lnProb = alpha * log (beta) - LnGamma (alpha) + (alpha - 1.0) * log (value) - beta * value; |
---|
5125 | |
---|
5126 | return lnProb; |
---|
5127 | } |
---|
5128 | |
---|
5129 | |
---|
5130 | |
---|
5131 | |
---|
5132 | |
---|
5133 | /*--------------------------------------------------------------------------------- |
---|
5134 | | |
---|
5135 | | PsiGammaLnRatio: Calculates the log prob ratio of two PsiGamma distributed |
---|
5136 | | variables |
---|
5137 | | |
---|
5138 | ---------------------------------------------------------------------------------*/ |
---|
5139 | MrBFlt PsiGammaLnRatio (MrBFlt alpha, MrBFlt numerator, MrBFlt denominator) |
---|
5140 | |
---|
5141 | { |
---|
5142 | MrBFlt beta, lnRatio; |
---|
5143 | |
---|
5144 | beta = PsiExp (alpha); |
---|
5145 | |
---|
5146 | lnRatio = (alpha - 1.0) * (log (numerator) - log (denominator)) - beta * (numerator - denominator); |
---|
5147 | |
---|
5148 | return (lnRatio); |
---|
5149 | } |
---|
5150 | |
---|
5151 | |
---|
5152 | |
---|
5153 | |
---|
5154 | |
---|
5155 | /*--------------------------------------------------------------------------------- |
---|
5156 | | |
---|
5157 | | PsiGammaRandomVariable: Returns a random draw from the PsiGamma |
---|
5158 | | |
---|
5159 | ---------------------------------------------------------------------------------*/ |
---|
5160 | MrBFlt PsiGammaRandomVariable (MrBFlt alpha, SafeLong *seed) |
---|
5161 | { |
---|
5162 | return GammaRandomVariable (alpha, PsiExp(alpha), seed); |
---|
5163 | } |
---|
5164 | |
---|
5165 | |
---|
5166 | |
---|
5167 | |
---|
5168 | |
---|
5169 | /*--------------------------------------------------------------------------------- |
---|
5170 | | |
---|
5171 | | QuantileGamma |
---|
5172 | | |
---|
5173 | ---------------------------------------------------------------------------------*/ |
---|
5174 | MrBFlt QuantileGamma (MrBFlt x, MrBFlt alfa, MrBFlt beta) |
---|
5175 | |
---|
5176 | { |
---|
5177 | |
---|
5178 | MrBFlt lnga1, quantile; |
---|
5179 | |
---|
5180 | lnga1 = LnGamma(alfa + 1.0); |
---|
5181 | quantile = POINTGAMMA(x, alfa, beta); |
---|
5182 | |
---|
5183 | return (quantile); |
---|
5184 | |
---|
5185 | } |
---|
5186 | |
---|
5187 | |
---|
5188 | |
---|
5189 | |
---|
5190 | |
---|
5191 | /*--------------------------------------------------------------------------------- |
---|
5192 | | |
---|
5193 | | RandomNumber |
---|
5194 | | |
---|
5195 | | This pseudorandom number generator is described in: |
---|
5196 | | Park, S. K. and K. W. Miller. 1988. Random number generators: good |
---|
5197 | | ones are hard to find. Communications of the ACM, 31(10):1192-1201. |
---|
5198 | | |
---|
5199 | ---------------------------------------------------------------------------------*/ |
---|
5200 | MrBFlt RandomNumber (SafeLong *seed) |
---|
5201 | |
---|
5202 | { |
---|
5203 | SafeLong lo, hi, test; |
---|
5204 | |
---|
5205 | hi = (*seed) / 127773; |
---|
5206 | lo = (*seed) % 127773; |
---|
5207 | test = 16807 * lo - 2836 * hi; |
---|
5208 | if (test > 0) |
---|
5209 | *seed = test; |
---|
5210 | else |
---|
5211 | *seed = test + 2147483647; |
---|
5212 | return ((MrBFlt)(*seed) / (MrBFlt)2147483647); |
---|
5213 | |
---|
5214 | } |
---|
5215 | |
---|
5216 | |
---|
5217 | |
---|
5218 | |
---|
5219 | |
---|
5220 | /*--------------------------------------------------------------------------------- |
---|
5221 | | |
---|
5222 | | RndGamma |
---|
5223 | | |
---|
5224 | ---------------------------------------------------------------------------------*/ |
---|
5225 | MrBFlt RndGamma (MrBFlt s, SafeLong *seed) |
---|
5226 | |
---|
5227 | { |
---|
5228 | |
---|
5229 | MrBFlt r=0.0; |
---|
5230 | |
---|
5231 | if (s <= 0.0) |
---|
5232 | puts ("Gamma parameter less than zero\n"); |
---|
5233 | |
---|
5234 | else if (s < 1.0) |
---|
5235 | r = RndGamma1 (s, seed); |
---|
5236 | else if (s > 1.0) |
---|
5237 | r = RndGamma2 (s, seed); |
---|
5238 | else /* 0-log() == -1 * log(), but =- looks confusing */ |
---|
5239 | r -= log(RandomNumber(seed)); |
---|
5240 | |
---|
5241 | return (r); |
---|
5242 | |
---|
5243 | } |
---|
5244 | |
---|
5245 | |
---|
5246 | |
---|
5247 | |
---|
5248 | |
---|
5249 | /*--------------------------------------------------------------------------------- |
---|
5250 | | |
---|
5251 | | RndGamma1 |
---|
5252 | | |
---|
5253 | ---------------------------------------------------------------------------------*/ |
---|
5254 | MrBFlt RndGamma1 (MrBFlt s, SafeLong *seed) |
---|
5255 | |
---|
5256 | { |
---|
5257 | |
---|
5258 | MrBFlt r, x=0.0, small=1e-37, w; |
---|
5259 | static MrBFlt a, p, uf, ss=10.0, d; |
---|
5260 | |
---|
5261 | if (fabs(s-ss)>ETA) /* s != ss */ |
---|
5262 | { |
---|
5263 | a = 1.0 - s; |
---|
5264 | p = a / (a + s * exp(-a)); |
---|
5265 | uf = p * pow(small / a, s); |
---|
5266 | d = a * log(a); |
---|
5267 | ss = s; |
---|
5268 | } |
---|
5269 | for (;;) |
---|
5270 | { |
---|
5271 | r = RandomNumber (seed); |
---|
5272 | if (r > p) |
---|
5273 | x = a - log((1.0 - r) / (1.0 - p)), w = a * log(x) - d; |
---|
5274 | else if (r>uf) |
---|
5275 | x = a * pow(r / p, 1.0 / s), w = x; |
---|
5276 | else |
---|
5277 | return (0.0); |
---|
5278 | r = RandomNumber (seed); |
---|
5279 | if (1.0 - r <= w && r > 0.0) |
---|
5280 | if (r*(w + 1.0) >= 1.0 || -log(r) <= w) |
---|
5281 | continue; |
---|
5282 | break; |
---|
5283 | } |
---|
5284 | |
---|
5285 | return (x); |
---|
5286 | |
---|
5287 | } |
---|
5288 | |
---|
5289 | |
---|
5290 | |
---|
5291 | |
---|
5292 | |
---|
5293 | /*--------------------------------------------------------------------------------- |
---|
5294 | | |
---|
5295 | | RndGamma2 |
---|
5296 | | |
---|
5297 | ---------------------------------------------------------------------------------*/ |
---|
5298 | MrBFlt RndGamma2 (MrBFlt s, SafeLong *seed) |
---|
5299 | |
---|
5300 | { |
---|
5301 | |
---|
5302 | MrBFlt r , d, f, g, x; |
---|
5303 | static MrBFlt b, h, ss=0.0; |
---|
5304 | |
---|
5305 | if (fabs(s-ss)>ETA) /* s != ss */ |
---|
5306 | { |
---|
5307 | b = s - 1.0; |
---|
5308 | h = sqrt(3.0 * s - 0.75); |
---|
5309 | ss = s; |
---|
5310 | } |
---|
5311 | for (;;) |
---|
5312 | { |
---|
5313 | r = RandomNumber (seed); |
---|
5314 | g = r - r * r; |
---|
5315 | f = (r - 0.5) * h / sqrt(g); |
---|
5316 | x = b + f; |
---|
5317 | if (x <= 0.0) |
---|
5318 | continue; |
---|
5319 | r = RandomNumber (seed); |
---|
5320 | d = 64 * r * r * g * g * g; |
---|
5321 | if (d * x < x - 2.0 * f * f || log(d) < 2.0 * (b * log(x / b) - f)) |
---|
5322 | break; |
---|
5323 | } |
---|
5324 | |
---|
5325 | return (x); |
---|
5326 | |
---|
5327 | } |
---|
5328 | |
---|
5329 | |
---|
5330 | |
---|
5331 | |
---|
5332 | |
---|
5333 | /*--------------------------------------------------------------------------------- |
---|
5334 | | |
---|
5335 | | SetQvalue |
---|
5336 | | |
---|
5337 | | The Pade method for calculating the matrix exponential, tMat = e^{qMat * v}, |
---|
5338 | | has an error, e(p,q), that can be controlled by setting p and q to appropriate |
---|
5339 | | values. The error is: |
---|
5340 | | |
---|
5341 | | e(p,q) = 2^(3-(p+q)) * ((p!*q!) / (p+q)! * (p+q+1)!) |
---|
5342 | | |
---|
5343 | | Setting p = q will minimize the error for a given amount of work. This function |
---|
5344 | | assumes that p = q. The function takes in as a parameter the desired tolerance |
---|
5345 | | for the accuracy of the matrix exponentiation, and returns qV = p = q, that |
---|
5346 | | will achieve the tolerance. The Pade approximation method is described in: |
---|
5347 | | |
---|
5348 | | Golub, G. H., and C. F. Van Loan. 1996. Matrix Computations, Third Edition. |
---|
5349 | | The Johns Hopkins University Press, Baltimore, Maryland. |
---|
5350 | | |
---|
5351 | | The function is called from TiProbsUsingPadeApprox. |
---|
5352 | | |
---|
5353 | ---------------------------------------------------------------------------------*/ |
---|
5354 | int SetQvalue (MrBFlt tol) |
---|
5355 | |
---|
5356 | { |
---|
5357 | |
---|
5358 | int qV; |
---|
5359 | MrBFlt x; |
---|
5360 | |
---|
5361 | x = pow(2.0, 3.0 - (0 + 0)) * Factorial(0) * Factorial (0) / (Factorial(0+0) * Factorial (0+0+1)); |
---|
5362 | qV = 0; |
---|
5363 | while (x > tol) |
---|
5364 | { |
---|
5365 | qV++; |
---|
5366 | x = pow(2.0, 3.0 - (qV + qV)) * Factorial(qV) * Factorial (qV) / (Factorial(qV+qV) * Factorial (qV+qV+1)); |
---|
5367 | } |
---|
5368 | |
---|
5369 | return (qV); |
---|
5370 | |
---|
5371 | } |
---|
5372 | |
---|
5373 | |
---|
5374 | |
---|
5375 | |
---|
5376 | |
---|
5377 | /*--------------------------------------------------------------------------------- |
---|
5378 | | |
---|
5379 | | SetToIdentity |
---|
5380 | | |
---|
5381 | | Make a dim X dim identity matrix. |
---|
5382 | | |
---|
5383 | ---------------------------------------------------------------------------------*/ |
---|
5384 | void SetToIdentity (int dim, MrBFlt **matrix) |
---|
5385 | |
---|
5386 | { |
---|
5387 | |
---|
5388 | int row, col; |
---|
5389 | |
---|
5390 | for (row=0; row<dim; row++) |
---|
5391 | for (col=0; col<dim; col++) |
---|
5392 | matrix[row][col] = (row == col ? 1.0 : 0.0); |
---|
5393 | |
---|
5394 | } |
---|
5395 | |
---|
5396 | |
---|
5397 | |
---|
5398 | |
---|
5399 | |
---|
5400 | /*--------------------------------------------------------------------------------- |
---|
5401 | | |
---|
5402 | | Tha |
---|
5403 | | |
---|
5404 | | Calculate Owen's (1956) T(h,a) function, -inf <= h, a <= inf, |
---|
5405 | | where h = h1/h2, a = a1/a2, from the program of: |
---|
5406 | | |
---|
5407 | | Young, J. C. and C. E. Minder. 1974. Algorithm AS 76. An integral |
---|
5408 | | useful in calculating non-central t and bivariate normal |
---|
5409 | | probabilities. Appl. Statist., 23:455-457. [Correction: Appl. |
---|
5410 | | Statist., 28:113 (1979). Remarks: Appl. Statist. 27:379 (1978), |
---|
5411 | | 28: 113 (1979), 34:100-101 (1985), 38:580-582 (1988)] |
---|
5412 | | |
---|
5413 | | See also: |
---|
5414 | | |
---|
5415 | | Johnson, N. L. and S. Kotz. 1972. Distributions in statistics: |
---|
5416 | | multivariate distributions. Wiley and Sons. New York. pp. 93-100. |
---|
5417 | | |
---|
5418 | ---------------------------------------------------------------------------------*/ |
---|
5419 | MrBFlt Tha (MrBFlt h1, MrBFlt h2, MrBFlt a1, MrBFlt a2) |
---|
5420 | |
---|
5421 | { |
---|
5422 | |
---|
5423 | int ng = 5, i; |
---|
5424 | MrBFlt U[] = {0.0744372, 0.2166977, 0.3397048, 0.4325317, 0.4869533}, |
---|
5425 | R[] = {0.1477621, 0.1346334, 0.1095432, 0.0747257, 0.0333357}, |
---|
5426 | pai2 = 6.283185307, tv1 = 1e-35, tv2 = 15.0, tv3 = 15.0, tv4 = 1e-5, |
---|
5427 | a, h, rt, t, x1, x2, r1, r2, s, k, sign = 1.0; |
---|
5428 | |
---|
5429 | if (fabs(h2) < tv1) |
---|
5430 | return (0.0); |
---|
5431 | h = h1 / h2; |
---|
5432 | if (fabs(a2) < tv1) |
---|
5433 | { |
---|
5434 | t = CdfNormal(h); |
---|
5435 | if (h >= 0.0) |
---|
5436 | t = (1.0 - t) / 2.0; |
---|
5437 | else |
---|
5438 | t /= 2.0; |
---|
5439 | return (t*(a1 >= 0.0 ? 1.0 : -1.0)); |
---|
5440 | } |
---|
5441 | a = a1 / a2; |
---|
5442 | if (a < 0.0) |
---|
5443 | sign = -1.0; |
---|
5444 | a = fabs(a); |
---|
5445 | h = fabs(h); |
---|
5446 | k = h*a; |
---|
5447 | if (h > tv2 || a < tv1) |
---|
5448 | return (0.0); |
---|
5449 | if (h < tv1) |
---|
5450 | return (atan(a)/pai2*sign); |
---|
5451 | if (h < 0.3 && a > 7.0) /* (Boys RJ, 1989) */ |
---|
5452 | { |
---|
5453 | x1 = exp(-k*k/2.0)/k; |
---|
5454 | x2 = (CdfNormal(k)-0.5)*sqrt(pai2); |
---|
5455 | t = 0.25 - (x1+x2)/pai2*h + ((1.0+2.0/(k*k))*x1+x2)/(6.0*pai2)*h*h*h; |
---|
5456 | return (MAX(t,0)*sign); |
---|
5457 | } |
---|
5458 | t = -h*h / 2.0; |
---|
5459 | x2 = a; |
---|
5460 | s = a*a; |
---|
5461 | if (log(1.0+s)-t*s >= tv3) |
---|
5462 | { |
---|
5463 | x1 = a/2; |
---|
5464 | s /= 4.0; |
---|
5465 | for (;;) /* truncation point by Newton iteration */ |
---|
5466 | { |
---|
5467 | x2 = x1 + (t*s+tv3-log(s+1.0)) / (2.0*x1*(1.0/(s+1.0)-t)); |
---|
5468 | s = x2*x2; |
---|
5469 | if (fabs(x2-x1) < tv4) |
---|
5470 | break; |
---|
5471 | x1 = x2; |
---|
5472 | } |
---|
5473 | } |
---|
5474 | for (i=0,rt=0; i<ng; i++) /* Gauss quadrature */ |
---|
5475 | { |
---|
5476 | r1 = 1.0+s*SQUARE(0.5+U[i]); |
---|
5477 | r2 = 1.0+s*SQUARE(0.5-U[i]); |
---|
5478 | rt+= R[i]*(exp(t*r1)/r1 + exp(t*r2)/r2); |
---|
5479 | } |
---|
5480 | |
---|
5481 | return (MAX(rt*x2/pai2,0)*sign); |
---|
5482 | |
---|
5483 | } |
---|
5484 | |
---|
5485 | |
---|
5486 | |
---|
5487 | |
---|
5488 | |
---|
5489 | /*--------------------------------------------------------------------------------- |
---|
5490 | | |
---|
5491 | | TiProbsUsingEigens |
---|
5492 | | |
---|
5493 | ---------------------------------------------------------------------------------*/ |
---|
5494 | void TiProbsUsingEigens (int dim, MrBFlt *cijk, MrBFlt *eigenVals, MrBFlt v, MrBFlt r, MrBFlt **tMat, MrBFlt **fMat, MrBFlt **sMat) |
---|
5495 | |
---|
5496 | { |
---|
5497 | |
---|
5498 | int i, j, s; |
---|
5499 | MrBFlt sum, sumF, sumS, *ptr, EigValexp[192]; |
---|
5500 | |
---|
5501 | for (s=0; s<dim; s++) |
---|
5502 | EigValexp[s] = exp(eigenVals[s] * v * r); |
---|
5503 | |
---|
5504 | ptr = cijk; |
---|
5505 | for (i=0; i<dim; i++) |
---|
5506 | { |
---|
5507 | for (j=0; j<dim; j++) |
---|
5508 | { |
---|
5509 | sum = 0.0; |
---|
5510 | for(s=0; s<dim; s++) |
---|
5511 | sum += (*ptr++) * EigValexp[s]; |
---|
5512 | tMat[i][j] = (sum < 0.0) ? 0.0 : sum; |
---|
5513 | } |
---|
5514 | } |
---|
5515 | |
---|
5516 | # if 0 |
---|
5517 | for (i=0; i<dim; i++) |
---|
5518 | { |
---|
5519 | sum = 0.0; |
---|
5520 | for (j=0; j<dim; j++) |
---|
5521 | { |
---|
5522 | sum += tMat[i][j]; |
---|
5523 | } |
---|
5524 | if (sum > 1.0001 || sum < 0.9999) |
---|
5525 | { |
---|
5526 | MrBayesPrint ("%s Warning: Transition probabilities do not sum to 1.0 (%lf)\n", spacer, sum); |
---|
5527 | } |
---|
5528 | } |
---|
5529 | # endif |
---|
5530 | |
---|
5531 | if (fMat != NULL && sMat != NULL) |
---|
5532 | { |
---|
5533 | ptr = cijk; |
---|
5534 | for (i=0; i<dim; i++) |
---|
5535 | { |
---|
5536 | for (j=0; j<dim; j++) |
---|
5537 | { |
---|
5538 | sumF = sumS = 0.0; |
---|
5539 | for(s=0; s<dim; s++) |
---|
5540 | { |
---|
5541 | sumF += (*ptr ) * eigenVals[s] * r * EigValexp[s]; |
---|
5542 | sumS += (*ptr++) * eigenVals[s] * eigenVals[s] * r * r * EigValexp[s]; |
---|
5543 | } |
---|
5544 | fMat[i][j] = sumF; |
---|
5545 | sMat[i][j] = sumS; |
---|
5546 | } |
---|
5547 | } |
---|
5548 | } |
---|
5549 | |
---|
5550 | } |
---|
5551 | |
---|
5552 | |
---|
5553 | |
---|
5554 | |
---|
5555 | |
---|
5556 | /*--------------------------------------------------------------------------------- |
---|
5557 | | |
---|
5558 | | TiProbsUsingPadeApprox |
---|
5559 | | |
---|
5560 | | The method approximates the matrix exponential, tMat = e^{qMat * v}, using |
---|
5561 | | the Pade approximation method, described in: |
---|
5562 | | |
---|
5563 | | Golub, G. H., and C. F. Van Loan. 1996. Matrix Computations, Third Edition. |
---|
5564 | | The Johns Hopkins University Press, Baltimore, Maryland. |
---|
5565 | | |
---|
5566 | | The method approximates the matrix exponential with accuracy tol. |
---|
5567 | | |
---|
5568 | ---------------------------------------------------------------------------------*/ |
---|
5569 | void TiProbsUsingPadeApprox (int dim, MrBFlt **qMat, MrBFlt v, MrBFlt r, MrBFlt **tMat, MrBFlt **fMat, MrBFlt **sMat) |
---|
5570 | |
---|
5571 | { |
---|
5572 | |
---|
5573 | int qValue; |
---|
5574 | MrBFlt **a, tol; |
---|
5575 | |
---|
5576 | tol = 0.0000001; |
---|
5577 | |
---|
5578 | a = AllocateSquareDoubleMatrix (dim); |
---|
5579 | |
---|
5580 | MultiplyMatrixByScalar (dim, qMat, v * r, a); |
---|
5581 | |
---|
5582 | qValue = SetQvalue (tol); |
---|
5583 | |
---|
5584 | ComputeMatrixExponential (dim, a, qValue, tMat); |
---|
5585 | |
---|
5586 | FreeSquareDoubleMatrix (a); |
---|
5587 | |
---|
5588 | if (fMat != NULL && sMat != NULL) |
---|
5589 | { |
---|
5590 | MultiplyMatrices (dim, qMat, tMat, fMat); |
---|
5591 | MultiplyMatrices (dim, qMat, fMat, sMat); |
---|
5592 | } |
---|
5593 | |
---|
5594 | } |
---|
5595 | |
---|