1 | /* |
---|
2 | * MrBayes 3 |
---|
3 | * |
---|
4 | * (c) 2002-2010 |
---|
5 | * |
---|
6 | * John P. Huelsenbeck |
---|
7 | * Dept. Integrative Biology |
---|
8 | * University of California, Berkeley |
---|
9 | * Berkeley, CA 94720-3140 |
---|
10 | * johnh@berkeley.edu |
---|
11 | * |
---|
12 | * Fredrik Ronquist |
---|
13 | * Swedish Museum of Natural History |
---|
14 | * Box 50007 |
---|
15 | * SE-10405 Stockholm, SWEDEN |
---|
16 | * fredrik.ronquist@nrm.se |
---|
17 | * |
---|
18 | * With important contributions by |
---|
19 | * |
---|
20 | * Paul van der Mark (paulvdm@sc.fsu.edu) |
---|
21 | * Maxim Teslenko (maxim.teslenko@nrm.se) |
---|
22 | * |
---|
23 | * and by many users (run 'acknowledgements' to see more info) |
---|
24 | * |
---|
25 | * This program is free software; you can redistribute it and/or |
---|
26 | * modify it under the terms of the GNU General Public License |
---|
27 | * as published by the Free Software Foundation; either version 2 |
---|
28 | * of the License, or (at your option) any later version. |
---|
29 | * |
---|
30 | * This program is distributed in the hope that it will be useful, |
---|
31 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
32 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
33 | * GNU General Public License for more details (www.gnu.org). |
---|
34 | * |
---|
35 | */ |
---|
36 | |
---|
37 | #include <stdio.h> |
---|
38 | #include <stdlib.h> |
---|
39 | #include <time.h> |
---|
40 | #include <math.h> |
---|
41 | #include <string.h> |
---|
42 | #include <ctype.h> |
---|
43 | #include "mb.h" |
---|
44 | #include "globals.h" |
---|
45 | #include "command.h" |
---|
46 | #include "bayes.h" |
---|
47 | #include "sump.h" |
---|
48 | #include "mbmath.h" |
---|
49 | #include "mcmc.h" |
---|
50 | #include "utils.h" |
---|
51 | #if defined(__MWERKS__) |
---|
52 | #include "SIOUX.h" |
---|
53 | #endif |
---|
54 | |
---|
55 | const char* const svnRevisionSumpC="$Rev: 513 $"; /* Revision keyword which is expended/updated by svn on each commit/update*/ |
---|
56 | |
---|
57 | /* local prototypes */ |
---|
58 | int CompareModelProbs (const void *x, const void *y); |
---|
59 | int PrintModelStats (char *fileName, char **headerNames, int nHeaders, ParameterSample *parameterSamples, int nRuns, int nSamples); |
---|
60 | int PrintOverlayPlot (MrBFlt **xVals, MrBFlt **yVals, int nRows, int startingFrom, int nSamples); |
---|
61 | int PrintParamStats (char *fileName, char **headerNames, int nHeaders, ParameterSample *parameterSamples, int nRuns, int nSamples); |
---|
62 | void PrintPlotHeader (void); |
---|
63 | |
---|
64 | |
---|
65 | |
---|
66 | /* AllocateParameterSamples: Allocate space for parameter samples */ |
---|
67 | int AllocateParameterSamples (ParameterSample **parameterSamples, int numRuns, int numRows, int numColumns) |
---|
68 | { |
---|
69 | int i, j; |
---|
70 | |
---|
71 | (*parameterSamples) = (ParameterSample *) SafeCalloc (numColumns, sizeof(ParameterSample)); |
---|
72 | if (!(*parameterSamples)) |
---|
73 | return ERROR; |
---|
74 | (*parameterSamples)[0].values = (MrBFlt **) SafeCalloc (numColumns * numRuns, sizeof (MrBFlt *)); |
---|
75 | if (!((*parameterSamples)[0].values)) |
---|
76 | { |
---|
77 | FreeParameterSamples(*parameterSamples); |
---|
78 | return ERROR; |
---|
79 | } |
---|
80 | (*parameterSamples)[0].values[0] = (MrBFlt *) SafeCalloc (numColumns * numRuns * numRows, sizeof (MrBFlt)); |
---|
81 | for (i=1; i<numColumns; i++) |
---|
82 | (*parameterSamples)[i].values = (*parameterSamples)[0].values + i*numRuns; |
---|
83 | for (i=1; i<numRuns; i++) |
---|
84 | (*parameterSamples)[0].values[i] = (*parameterSamples)[0].values[0] + i*numRows; |
---|
85 | for (i=1; i<numColumns; i++) |
---|
86 | { |
---|
87 | for (j=0; j<numRuns; j++) |
---|
88 | { |
---|
89 | (*parameterSamples)[i].values[j] = (*parameterSamples)[0].values[0] + i*numRuns*numRows + j*numRows; |
---|
90 | } |
---|
91 | } |
---|
92 | |
---|
93 | return NO_ERROR; |
---|
94 | } |
---|
95 | |
---|
96 | |
---|
97 | |
---|
98 | |
---|
99 | |
---|
100 | /** Compare function (ModelProb) for qsort. Note reverse sort order (from larger to smaller probs) */ |
---|
101 | int CompareModelProbs (const void *x, const void *y) { |
---|
102 | |
---|
103 | if ((*((ModelProb *)(x))).prob > (*((ModelProb *)(y))).prob) |
---|
104 | return -1; |
---|
105 | else if ((*((ModelProb *)(x))).prob < (*((ModelProb *)(y))).prob) |
---|
106 | return 1; |
---|
107 | else |
---|
108 | return 0; |
---|
109 | } |
---|
110 | |
---|
111 | |
---|
112 | |
---|
113 | |
---|
114 | |
---|
115 | int DoSump (void) |
---|
116 | |
---|
117 | { |
---|
118 | |
---|
119 | int i, n, nHeaders=0, numRows, numColumns, numRuns, whichIsX, whichIsY, |
---|
120 | unreliable, oneUnreliable, burnin, longestHeader, len; |
---|
121 | MrBFlt mean, harm_mean; |
---|
122 | char **headerNames=NULL, temp[120]; |
---|
123 | SumpFileInfo fileInfo, firstFileInfo; |
---|
124 | ParameterSample *parameterSamples=NULL; |
---|
125 | FILE *fpLstat=NULL; |
---|
126 | |
---|
127 | |
---|
128 | # if defined (MPI_ENABLED) |
---|
129 | if (proc_id != 0) |
---|
130 | return NO_ERROR; |
---|
131 | # endif |
---|
132 | |
---|
133 | |
---|
134 | /* tell user we are ready to go */ |
---|
135 | if (sumpParams.numRuns == 1) |
---|
136 | MrBayesPrint ("%s Summarizing parameters in file %s.p\n", spacer, sumpParams.sumpFileName); |
---|
137 | else if (sumpParams.numRuns == 2) |
---|
138 | MrBayesPrint ("%s Summarizing parameters in files %s.run1.p and %s.run2.p\n", spacer, sumpParams.sumpFileName, sumpParams.sumpFileName); |
---|
139 | else /* if (sumpParams.numRuns > 2) */ |
---|
140 | { |
---|
141 | MrBayesPrint ("%s Summarizing parameters in %d files (%s.run1.p,\n", spacer, sumpParams.numRuns, sumpParams.sumpFileName); |
---|
142 | MrBayesPrint ("%s %s.run2.p, etc)\n", spacer, sumpParams.sumpFileName); |
---|
143 | } |
---|
144 | MrBayesPrint ("%s Writing summary statistics to file %s.pstat\n", spacer, sumpParams.sumpFileName); |
---|
145 | |
---|
146 | if (chainParams.relativeBurnin == YES) |
---|
147 | MrBayesPrint ("%s Using relative burnin ('relburnin=yes'), discarding the first %.0f %% of samples\n", |
---|
148 | spacer, chainParams.burninFraction*100.0, chainParams.burninFraction); |
---|
149 | else |
---|
150 | MrBayesPrint ("%s Using absolute burnin ('relburnin=no'), discarding the first %d samples\n", |
---|
151 | spacer, chainParams.chainBurnIn, chainParams.chainBurnIn); |
---|
152 | |
---|
153 | /* Initialize to silence warning. */ |
---|
154 | firstFileInfo.numRows = 0; |
---|
155 | firstFileInfo.numColumns = 0; |
---|
156 | |
---|
157 | /* examine input file(s) */ |
---|
158 | for (i=0; i<sumpParams.numRuns; i++) |
---|
159 | { |
---|
160 | if (sumpParams.numRuns == 1) |
---|
161 | sprintf (temp, "%s.p", sumpParams.sumpFileName); |
---|
162 | else |
---|
163 | sprintf (temp, "%s.run%d.p", sumpParams.sumpFileName, i+1); |
---|
164 | |
---|
165 | if (ExamineSumpFile (temp, &fileInfo, &headerNames, &nHeaders) == ERROR) |
---|
166 | goto errorExit; |
---|
167 | |
---|
168 | if (i==0) |
---|
169 | { |
---|
170 | if (fileInfo.numRows == 0 || fileInfo.numColumns == 0) |
---|
171 | { |
---|
172 | MrBayesPrint ("%s The number of rows or columns in file %d is equal to zero\n", spacer, temp); |
---|
173 | goto errorExit; |
---|
174 | } |
---|
175 | firstFileInfo = fileInfo; |
---|
176 | } |
---|
177 | else |
---|
178 | { |
---|
179 | if (firstFileInfo.numRows != fileInfo.numRows || firstFileInfo.numColumns != fileInfo.numColumns) |
---|
180 | { |
---|
181 | MrBayesPrint ("%s First file had %d rows and %d columns while file %s had %d rows and %d columns\n", |
---|
182 | spacer, firstFileInfo.numRows, firstFileInfo.numColumns, temp, fileInfo.numRows, fileInfo.numColumns); |
---|
183 | MrBayesPrint ("%s MrBayes expects the same number of rows and columns in all files\n", spacer); |
---|
184 | goto errorExit; |
---|
185 | } |
---|
186 | } |
---|
187 | } |
---|
188 | |
---|
189 | numRows = fileInfo.numRows; |
---|
190 | numColumns = fileInfo.numColumns; |
---|
191 | numRuns = sumpParams.numRuns; |
---|
192 | |
---|
193 | /* allocate space to hold parameter information */ |
---|
194 | if (AllocateParameterSamples (¶meterSamples, numRuns, numRows, numColumns) == ERROR) |
---|
195 | return ERROR; |
---|
196 | |
---|
197 | /* read samples */ |
---|
198 | for (i=0; i<sumpParams.numRuns; i++) |
---|
199 | { |
---|
200 | /* derive file name */ |
---|
201 | if (sumpParams.numRuns == 1) |
---|
202 | sprintf (temp, "%s.p", sumpParams.sumpFileName); |
---|
203 | else |
---|
204 | sprintf (temp, "%s.run%d.p", sumpParams.sumpFileName, i+1); |
---|
205 | |
---|
206 | /* read samples */ |
---|
207 | if (ReadParamSamples (temp, &fileInfo, parameterSamples, i) == ERROR) |
---|
208 | goto errorExit; |
---|
209 | } |
---|
210 | |
---|
211 | /* get length of longest header */ |
---|
212 | longestHeader = 9; /* 9 is the length of the word "parameter" (for printing table) */ |
---|
213 | for (i=0; i<nHeaders; i++) |
---|
214 | { |
---|
215 | len = (int) strlen(headerNames[i]); |
---|
216 | if (len > longestHeader) |
---|
217 | longestHeader = len; |
---|
218 | } |
---|
219 | |
---|
220 | |
---|
221 | /* Print header */ |
---|
222 | PrintPlotHeader (); |
---|
223 | |
---|
224 | /* Print trace plots */ |
---|
225 | if (FindHeader("Gen", headerNames, nHeaders, &whichIsX) == ERROR) |
---|
226 | { |
---|
227 | MrBayesPrint ("%s Could not find the 'Gen' column\n", spacer); |
---|
228 | return ERROR; |
---|
229 | } |
---|
230 | if (FindHeader("LnL", headerNames, nHeaders, &whichIsY) == ERROR) |
---|
231 | { |
---|
232 | MrBayesPrint ("%s Could not find the 'LnL' column\n", spacer); |
---|
233 | return ERROR; |
---|
234 | } |
---|
235 | |
---|
236 | |
---|
237 | if (sumpParams.numRuns > 1) |
---|
238 | { |
---|
239 | if (sumpParams.allRuns == YES) |
---|
240 | { |
---|
241 | for (i=0; i<sumpParams.numRuns; i++) |
---|
242 | { |
---|
243 | MrBayesPrint ("\n%s Samples from run %d:\n", spacer, i+1); |
---|
244 | if (PrintPlot (parameterSamples[whichIsX].values[i], parameterSamples[whichIsY].values[i], numRows) == ERROR) |
---|
245 | goto errorExit; |
---|
246 | } |
---|
247 | } |
---|
248 | else |
---|
249 | { |
---|
250 | if (PrintOverlayPlot (parameterSamples[whichIsX].values, parameterSamples[whichIsY].values, numRuns, 0, numRows) == ERROR) |
---|
251 | goto errorExit; |
---|
252 | } |
---|
253 | } |
---|
254 | else |
---|
255 | { |
---|
256 | if (PrintPlot (parameterSamples[whichIsX].values[0], parameterSamples[whichIsY].values[0], numRows) == ERROR) |
---|
257 | goto errorExit; |
---|
258 | } |
---|
259 | |
---|
260 | /* calculate arithmetic and harmonic means of likelihoods */ |
---|
261 | |
---|
262 | /* open output file */ |
---|
263 | strncpy (temp, sumpParams.sumpOutfile, 90); |
---|
264 | strcat (temp, ".lstat"); |
---|
265 | fpLstat = OpenNewMBPrintFile (temp); |
---|
266 | if (!fpLstat) |
---|
267 | goto errorExit; |
---|
268 | |
---|
269 | /* print unique identifier to the output file */ |
---|
270 | if (strlen(stamp) > 1) |
---|
271 | fprintf (fpLstat, "[ID: %s]\n", stamp); |
---|
272 | |
---|
273 | /* print header */ |
---|
274 | if (sumpParams.numRuns == 1) |
---|
275 | MrBayesPrintf(fpLstat, "arithmetic_mean\tharmonic_mean\tvalues_discarded\n"); |
---|
276 | else |
---|
277 | MrBayesPrintf(fpLstat, "run\tarithmetic_mean\tharmonic_mean\tvalues_discarded\n"); |
---|
278 | |
---|
279 | oneUnreliable = NO; |
---|
280 | for (n=0; n<sumpParams.numRuns; n++) |
---|
281 | { |
---|
282 | unreliable = NO; |
---|
283 | if (HarmonicArithmeticMeanOnLogs (parameterSamples[whichIsY].values[n], numRows, &mean, &harm_mean) == ERROR) |
---|
284 | { |
---|
285 | unreliable = YES; |
---|
286 | oneUnreliable = YES; |
---|
287 | } |
---|
288 | if (sumpParams.numRuns == 1) |
---|
289 | { |
---|
290 | MrBayesPrint ("\n"); |
---|
291 | MrBayesPrint ("%s Estimated marginal likelihoods for run sampled in file \"%s.p\":\n", spacer, sumpParams.sumpFileName); |
---|
292 | MrBayesPrint ("%s (Use the harmonic mean for Bayes factor comparisons of models)\n", spacer, sumpParams.sumpFileName); |
---|
293 | MrBayesPrint ("%s (Values are saved to the file %s.lstat)\n\n", spacer, sumpParams.sumpOutfile); |
---|
294 | MrBayesPrint ("%s Arithmetic mean Harmonic mean\n", spacer); |
---|
295 | MrBayesPrint ("%s --------------------------------\n", spacer); |
---|
296 | if (unreliable == NO) |
---|
297 | MrBayesPrint ("%s %9.2lf %9.2lf\n", spacer, mean, harm_mean); |
---|
298 | else |
---|
299 | MrBayesPrint ("%s %9.2lf * %9.2lf *\n", spacer, mean, harm_mean); |
---|
300 | |
---|
301 | /* print to file */ |
---|
302 | MrBayesPrintf(fpLstat, "%s\t", MbPrintNum(mean)); |
---|
303 | MrBayesPrintf(fpLstat, "%s\t", MbPrintNum(harm_mean)); |
---|
304 | if (unreliable == YES) |
---|
305 | MrBayesPrintf(fpLstat, "yes\n"); |
---|
306 | else |
---|
307 | MrBayesPrintf(fpLstat, "no\n"); |
---|
308 | } |
---|
309 | else |
---|
310 | { |
---|
311 | if (n == 0) |
---|
312 | { |
---|
313 | MrBayesPrint ("\n"); |
---|
314 | MrBayesPrint ("%s Estimated marginal likelihoods for runs sampled in files\n", spacer); |
---|
315 | if (sumpParams.numRuns > 2) |
---|
316 | MrBayesPrint ("%s \"%s.run1.p\", \"%s.run2.p\", etc:\n", spacer, sumpParams.sumpFileName, sumpParams.sumpFileName); |
---|
317 | else /* if (sumpParams.numRuns == 2) */ |
---|
318 | MrBayesPrint ("%s \"%s.run1.p\" and \"%s.run2.p\":\n", spacer, sumpParams.sumpFileName, sumpParams.sumpFileName); |
---|
319 | MrBayesPrint ("%s (Use the harmonic mean for Bayes factor comparisons of models)\n\n", spacer, sumpParams.sumpFileName); |
---|
320 | MrBayesPrint ("%s (Values are saved to the file %s.lstat)\n\n", spacer, sumpParams.sumpOutfile); |
---|
321 | MrBayesPrint ("%s Run Arithmetic mean Harmonic mean\n", spacer); |
---|
322 | MrBayesPrint ("%s --------------------------------------\n", spacer); |
---|
323 | } |
---|
324 | if (unreliable == NO) |
---|
325 | MrBayesPrint ("%s %3d %9.2lf %9.2lf\n", spacer, n+1, mean, harm_mean); |
---|
326 | else |
---|
327 | MrBayesPrint ("%s %3d %9.2lf * %9.2lf *\n", spacer, n+1, mean, harm_mean); |
---|
328 | |
---|
329 | /* print to file */ |
---|
330 | MrBayesPrintf(fpLstat, "%d\t", n+1); |
---|
331 | MrBayesPrintf(fpLstat, "%s\t", MbPrintNum(mean)); |
---|
332 | MrBayesPrintf(fpLstat, "%s\t", MbPrintNum(harm_mean)); |
---|
333 | if (unreliable == YES) |
---|
334 | MrBayesPrintf(fpLstat, "yes\n"); |
---|
335 | else |
---|
336 | MrBayesPrintf(fpLstat, "no\n"); |
---|
337 | } |
---|
338 | } /* next run */ |
---|
339 | if (sumpParams.numRuns == 1) |
---|
340 | { |
---|
341 | MrBayesPrint ("%s --------------------------------\n", spacer); |
---|
342 | } |
---|
343 | else |
---|
344 | { |
---|
345 | if (HarmonicArithmeticMeanOnLogs (parameterSamples[whichIsY].values[0], sumpParams.numRuns*numRows, &mean, &harm_mean) == ERROR) |
---|
346 | { |
---|
347 | unreliable = YES; |
---|
348 | oneUnreliable = YES; |
---|
349 | } |
---|
350 | else |
---|
351 | unreliable = NO; |
---|
352 | MrBayesPrint ("%s --------------------------------------\n", spacer); |
---|
353 | if (unreliable == YES) |
---|
354 | MrBayesPrint ("%s TOTAL %9.2lf * %9.2lf *\n", spacer, mean, harm_mean); |
---|
355 | else |
---|
356 | MrBayesPrint ("%s TOTAL %9.2lf %9.2lf\n", spacer, mean, harm_mean); |
---|
357 | MrBayesPrint ("%s --------------------------------------\n", spacer); |
---|
358 | |
---|
359 | /* print total to file */ |
---|
360 | MrBayesPrintf(fpLstat, "all\t"); |
---|
361 | MrBayesPrintf(fpLstat, "%s\t", MbPrintNum(mean)); |
---|
362 | MrBayesPrintf(fpLstat, "%s\t", MbPrintNum(harm_mean)); |
---|
363 | if (unreliable == YES) |
---|
364 | MrBayesPrintf(fpLstat, "yes\n"); |
---|
365 | else |
---|
366 | MrBayesPrintf(fpLstat, "no\n"); |
---|
367 | } |
---|
368 | if (oneUnreliable == YES) |
---|
369 | { |
---|
370 | MrBayesPrint ("%s * These estimates may be unreliable because \n", spacer); |
---|
371 | MrBayesPrint ("%s some extreme values were excluded\n\n", spacer); |
---|
372 | } |
---|
373 | else |
---|
374 | { |
---|
375 | MrBayesPrint ("\n"); |
---|
376 | } |
---|
377 | SafeFclose(&fpLstat); |
---|
378 | |
---|
379 | /* Calculate burnin */ |
---|
380 | burnin = fileInfo.firstParamLine - fileInfo.headerLine; |
---|
381 | |
---|
382 | /* Print parameter information to screen and to file. */ |
---|
383 | if (sumpParams.numRuns > 1 && sumpParams.allRuns == YES) |
---|
384 | { |
---|
385 | for (i=0; i<sumpParams.numRuns; i++) |
---|
386 | { |
---|
387 | /* print table header */ |
---|
388 | MrBayesPrint ("\n"); |
---|
389 | MrBayesPrint ("%s Model parameter summaries for run sampled in file \"%s.run%d.p\":\n", spacer, sumpParams.sumpFileName, i+1); |
---|
390 | MrBayesPrint ("%s (Based on %d samples out of a total of %d samples from this analysis)\n\n", spacer, numRows, numRows + burnin); |
---|
391 | if (PrintParamStats (sumpParams.sumpOutfile, headerNames, nHeaders, parameterSamples, numRuns, numRows) == ERROR) |
---|
392 | goto errorExit; |
---|
393 | if (PrintModelStats (sumpParams.sumpOutfile, headerNames, nHeaders, parameterSamples, numRuns, numRows) == ERROR) |
---|
394 | goto errorExit; |
---|
395 | } |
---|
396 | } |
---|
397 | |
---|
398 | MrBayesPrint ("\n"); |
---|
399 | if (sumpParams.numRuns == 1) |
---|
400 | MrBayesPrint ("%s Model parameter summaries for run sampled in file \"%s\":\n", spacer, sumpParams.sumpFileName); |
---|
401 | else if (sumpParams.numRuns == 2) |
---|
402 | { |
---|
403 | MrBayesPrint ("%s Model parameter summaries over the runs sampled in files\n", spacer); |
---|
404 | MrBayesPrint ("%s \"%s.run1.p\" and \"%s.run2.p\":\n", spacer, sumpParams.sumpFileName, sumpParams.sumpFileName); |
---|
405 | } |
---|
406 | else |
---|
407 | { |
---|
408 | MrBayesPrint ("%s Model parameter summaries over all %d runs sampled in files\n", spacer, sumpParams.numRuns); |
---|
409 | MrBayesPrint ("%s \"%s.run1.p\", \"%s.run2.p\" etc:\n", spacer, sumpParams.sumpFileName, sumpParams.sumpFileName); |
---|
410 | } |
---|
411 | |
---|
412 | if (sumpParams.numRuns == 1) |
---|
413 | { |
---|
414 | MrBayesPrint ("%s Based on a total of %d samples out of a total of %d samples\n", spacer, numRows, numRows + burnin); |
---|
415 | MrBayesPrint ("%s from this analysis.\n", spacer); |
---|
416 | } |
---|
417 | else |
---|
418 | { |
---|
419 | MrBayesPrint ("%s Summaries are based on a total of %d samples from %d runs.\n", spacer, sumpParams.numRuns*numRows, sumpParams.numRuns); |
---|
420 | MrBayesPrint ("%s Each run produced %d samples of which %d samples were included.\n", spacer, numRows + burnin, numRows); |
---|
421 | } |
---|
422 | MrBayesPrint ("%s Parameter summaries saved to file \"%s.pstat\".\n", spacer, sumpParams.sumpOutfile); |
---|
423 | |
---|
424 | if (PrintParamStats (sumpParams.sumpOutfile, headerNames, nHeaders, parameterSamples, numRuns, numRows) == ERROR) |
---|
425 | goto errorExit; |
---|
426 | if (PrintModelStats (sumpParams.sumpOutfile, headerNames, nHeaders, parameterSamples, numRuns, numRows) == ERROR) |
---|
427 | goto errorExit; |
---|
428 | |
---|
429 | /* free memory */ |
---|
430 | FreeParameterSamples(parameterSamples); |
---|
431 | for (i=0; i<nHeaders; i++) |
---|
432 | free (headerNames[i]); |
---|
433 | free (headerNames); |
---|
434 | |
---|
435 | expecting = Expecting(COMMAND); |
---|
436 | strcpy (spacer, ""); |
---|
437 | |
---|
438 | return (NO_ERROR); |
---|
439 | |
---|
440 | errorExit: |
---|
441 | |
---|
442 | /* free memory */ |
---|
443 | FreeParameterSamples (parameterSamples); |
---|
444 | for (i=0; i<nHeaders; i++) |
---|
445 | free (headerNames[i]); |
---|
446 | free (headerNames); |
---|
447 | |
---|
448 | if (fpLstat) |
---|
449 | SafeFclose (&fpLstat); |
---|
450 | |
---|
451 | expecting = Expecting(COMMAND); |
---|
452 | strcpy (spacer, ""); |
---|
453 | |
---|
454 | return (ERROR); |
---|
455 | } |
---|
456 | |
---|
457 | |
---|
458 | |
---|
459 | |
---|
460 | int DoSumSs (void) |
---|
461 | { |
---|
462 | |
---|
463 | int i, nHeaders=0, numRows, numColumns, numRuns, whichIsX, whichIsY, |
---|
464 | longestHeader, len; |
---|
465 | char **headerNames=NULL, temp[120]; |
---|
466 | SumpFileInfo fileInfo, firstFileInfo; |
---|
467 | ParameterSample *parameterSamples=NULL; |
---|
468 | int stepIndexSS,numSamplesInStepSS, stepBeginSS, stepBurnin; |
---|
469 | MrBFlt *lnlp, *nextSteplnlp, *firstlnlp; |
---|
470 | MrBFlt *marginalLnLSS=NULL,stepScalerSS,stepAcumulatorSS, stepLengthSS, tmpMfl; |
---|
471 | int beginPrint, countPrint; |
---|
472 | float tmpf; |
---|
473 | MrBFlt **plotArrayY=NULL,**plotArrayX=NULL; |
---|
474 | int j,k,count,result; |
---|
475 | MrBFlt sum; |
---|
476 | int firstPass = YES; |
---|
477 | |
---|
478 | # if defined (MPI_ENABLED) |
---|
479 | if (proc_id != 0) |
---|
480 | return NO_ERROR; |
---|
481 | # endif |
---|
482 | |
---|
483 | chainParams.isSS=YES; |
---|
484 | |
---|
485 | /* tell user we are ready to go */ |
---|
486 | if (sumssParams.numRuns == 1) |
---|
487 | MrBayesPrint ("%s Summarizing parameters in file %s.p\n", spacer, sumpParams.sumpFileName); |
---|
488 | else if (sumssParams.numRuns == 2) |
---|
489 | MrBayesPrint ("%s Summarizing parameters in files %s.run1.p and %s.run2.p\n", spacer, sumpParams.sumpFileName, sumpParams.sumpFileName); |
---|
490 | else /* if (sumssParams.numRuns > 2) */ |
---|
491 | { |
---|
492 | MrBayesPrint ("%s Summarizing parameters in %d files (%s.run1.p,\n", spacer, sumssParams.numRuns, sumpParams.sumpFileName); |
---|
493 | MrBayesPrint ("%s %s.run2.p, etc)\n", spacer, sumpParams.sumpFileName); |
---|
494 | } |
---|
495 | //MrBayesPrint ("%s Writing summary statistics to file %s.pstat\n", spacer, sumpParams.sumpFileName); |
---|
496 | |
---|
497 | if (chainParams.relativeBurnin == YES) |
---|
498 | MrBayesPrint ("%s Using relative burnin ('relburnin=yes'), discarding the first %.0f %% of samples within each step.\n", |
---|
499 | spacer, chainParams.burninFraction*100.0, chainParams.burninFraction); |
---|
500 | else |
---|
501 | MrBayesPrint ("%s Using absolute burnin ('relburnin=no'), discarding the first %d samples within each step.\n", |
---|
502 | spacer, chainParams.chainBurnIn, chainParams.chainBurnIn); |
---|
503 | |
---|
504 | /* Initialize to silence warning. */ |
---|
505 | firstFileInfo.numRows = 0; |
---|
506 | firstFileInfo.numColumns = 0; |
---|
507 | |
---|
508 | /* examine input file(s) */ |
---|
509 | for (i=0; i<sumssParams.numRuns; i++) |
---|
510 | { |
---|
511 | if (sumssParams.numRuns == 1) |
---|
512 | sprintf (temp, "%s.p", sumpParams.sumpFileName); |
---|
513 | else |
---|
514 | sprintf (temp, "%s.run%d.p", sumpParams.sumpFileName, i+1); |
---|
515 | |
---|
516 | if (ExamineSumpFile (temp, &fileInfo, &headerNames, &nHeaders) == ERROR) |
---|
517 | goto errorExit; |
---|
518 | |
---|
519 | if (i==0) |
---|
520 | { |
---|
521 | if (fileInfo.numRows == 0 || fileInfo.numColumns == 0) |
---|
522 | { |
---|
523 | MrBayesPrint ("%s The number of rows or columns in file %d is equal to zero\n", spacer, temp); |
---|
524 | goto errorExit; |
---|
525 | } |
---|
526 | firstFileInfo = fileInfo; |
---|
527 | } |
---|
528 | else |
---|
529 | { |
---|
530 | if (firstFileInfo.numRows != fileInfo.numRows || firstFileInfo.numColumns != fileInfo.numColumns) |
---|
531 | { |
---|
532 | MrBayesPrint ("%s First file had %d rows and %d columns while file %s had %d rows and %d columns\n", |
---|
533 | spacer, firstFileInfo.numRows, firstFileInfo.numColumns, temp, fileInfo.numRows, fileInfo.numColumns); |
---|
534 | MrBayesPrint ("%s MrBayes expects the same number of rows and columns in all files\n", spacer); |
---|
535 | goto errorExit; |
---|
536 | } |
---|
537 | } |
---|
538 | } |
---|
539 | |
---|
540 | numRows = fileInfo.numRows; |
---|
541 | numColumns = fileInfo.numColumns; |
---|
542 | numRuns = sumssParams.numRuns; |
---|
543 | |
---|
544 | /* allocate space to hold parameter information */ |
---|
545 | if (AllocateParameterSamples (¶meterSamples, numRuns, numRows, numColumns) == ERROR) |
---|
546 | goto errorExit; |
---|
547 | |
---|
548 | /* read samples */ |
---|
549 | for (i=0; i<sumssParams.numRuns; i++) |
---|
550 | { |
---|
551 | /* derive file name */ |
---|
552 | if (sumssParams.numRuns == 1) |
---|
553 | sprintf (temp, "%s.p", sumpParams.sumpFileName); |
---|
554 | else |
---|
555 | sprintf (temp, "%s.run%d.p", sumpParams.sumpFileName, i+1); |
---|
556 | |
---|
557 | /* read samples */ |
---|
558 | if (ReadParamSamples (temp, &fileInfo, parameterSamples, i) == ERROR) |
---|
559 | goto errorExit; |
---|
560 | } |
---|
561 | |
---|
562 | /* get length of longest header */ |
---|
563 | longestHeader = 9; /* 9 is the length of the word "parameter" (for printing table) */ |
---|
564 | for (i=0; i<nHeaders; i++) |
---|
565 | { |
---|
566 | len = (int) strlen(headerNames[i]); |
---|
567 | if (len > longestHeader) |
---|
568 | longestHeader = len; |
---|
569 | } |
---|
570 | |
---|
571 | |
---|
572 | /* Print trace plots */ |
---|
573 | if (FindHeader("Gen", headerNames, nHeaders, &whichIsX) == ERROR) |
---|
574 | { |
---|
575 | MrBayesPrint ("%s Could not find the 'Gen' column\n", spacer); |
---|
576 | goto errorExit; |
---|
577 | } |
---|
578 | if (FindHeader("LnL", headerNames, nHeaders, &whichIsY) == ERROR) |
---|
579 | { |
---|
580 | MrBayesPrint ("%s Could not find the 'LnL' column\n", spacer); |
---|
581 | goto errorExit; |
---|
582 | } |
---|
583 | |
---|
584 | |
---|
585 | |
---|
586 | if(chainParams.burninSS > 0) |
---|
587 | { |
---|
588 | stepBeginSS = chainParams.burninSS + 1; |
---|
589 | } |
---|
590 | else |
---|
591 | { |
---|
592 | numSamplesInStepSS = (numRows-1)/(chainParams.numStepsSS-chainParams.burninSS); |
---|
593 | stepBeginSS = numSamplesInStepSS + 1; |
---|
594 | } |
---|
595 | |
---|
596 | numSamplesInStepSS = (numRows - stepBeginSS)/chainParams.numStepsSS; |
---|
597 | if( (numRows - stepBeginSS)%chainParams.numStepsSS!=0 ) |
---|
598 | { |
---|
599 | MrBayesPrint ("%s Error: Number of samples could not be evenly devided among steps (%d samples among %d steps). \n", spacer,(numRows - stepBeginSS),chainParams.numStepsSS); |
---|
600 | goto errorExit; |
---|
601 | } |
---|
602 | |
---|
603 | |
---|
604 | if( chainParams.relativeBurnin == YES ) |
---|
605 | { |
---|
606 | stepBurnin = (int)(numSamplesInStepSS*chainParams.burninFraction); |
---|
607 | } |
---|
608 | else |
---|
609 | { |
---|
610 | stepBurnin = chainParams.chainBurnIn; |
---|
611 | if(stepBurnin >= numSamplesInStepSS ) |
---|
612 | { |
---|
613 | MrBayesPrint ("%s Error: Burnin in each step(%d) is longer then the step itself(%d). \n", spacer,stepBurnin, numSamplesInStepSS ); |
---|
614 | goto errorExit; |
---|
615 | } |
---|
616 | } |
---|
617 | |
---|
618 | marginalLnLSS = (MrBFlt *) SafeCalloc (sumssParams.numRuns, sizeof(MrBFlt)); |
---|
619 | /*Preparing and printing joined plot.*/ |
---|
620 | plotArrayY = (MrBFlt **) SafeCalloc (sumssParams.numRuns+1, sizeof(MrBFlt*)); |
---|
621 | for(i=0; i<sumssParams.numRuns+1; i++) |
---|
622 | plotArrayY[i] = (MrBFlt *) SafeCalloc (numSamplesInStepSS, sizeof(MrBFlt)); |
---|
623 | |
---|
624 | plotArrayX = (MrBFlt **) SafeCalloc (sumssParams.numRuns, sizeof(MrBFlt*)); |
---|
625 | for(i=0; i<sumssParams.numRuns; i++) |
---|
626 | { |
---|
627 | plotArrayX[i] = (MrBFlt *) SafeCalloc (numSamplesInStepSS, sizeof(MrBFlt)); |
---|
628 | for(j=0; j<numSamplesInStepSS; j++) |
---|
629 | plotArrayX[i][j]=j+1; |
---|
630 | } |
---|
631 | |
---|
632 | MrBayesPrint ("%s In total %d sampls are red from .p files.\n", spacer, numRows ); |
---|
633 | MrBayesPrint ("\n"); |
---|
634 | MrBayesPrint ("%s Marginal likelihood (in natural log units) is estimated using stepping-stone sampling\n", spacer ); |
---|
635 | MrBayesPrint ("%s based on %d steps with %d samples within each step. \n", spacer, chainParams.numStepsSS, numSamplesInStepSS ); |
---|
636 | MrBayesPrint ("%s First %d samples (including generation 0) are discarded as initial burn-in.\n", spacer, stepBeginSS); |
---|
637 | if(chainParams.startFromPriorSS==YES) |
---|
638 | MrBayesPrint ("%s Sampling is assumed have being done from prior to posterior.\n", spacer); |
---|
639 | else |
---|
640 | { |
---|
641 | MrBayesPrint ("%s Sampling is assumed have being done from posterior to prior.\n", spacer); |
---|
642 | } |
---|
643 | |
---|
644 | sumssTable: |
---|
645 | |
---|
646 | MrBayesPrint ("\n\n%s Step contribution table.\n\n",spacer); |
---|
647 | MrBayesPrint (" Columns in the table: \n"); |
---|
648 | MrBayesPrint (" Step -- Index of the step \n"); |
---|
649 | MrBayesPrint (" runX -- Contribution to the marginal log likelihood of run X, i.e. marginal \n"); |
---|
650 | MrBayesPrint (" log likelihood for run X is the sum across all steps in column runX.\n\n"); |
---|
651 | |
---|
652 | if( firstPass == YES && chainParams.relativeBurnin == YES ) |
---|
653 | MrBayesPrint ("%s The table entrances are based on samples excluding burn-in %d samples (%d%%) \n", spacer, stepBurnin,(int)(100*chainParams.burninFraction) ); |
---|
654 | else |
---|
655 | MrBayesPrint ("%s The table entrances are based on samples excluding burn-in %d samples \n", spacer, stepBurnin); |
---|
656 | MrBayesPrint ("%s discarded at the begining of each step. \n\n", spacer); |
---|
657 | |
---|
658 | //MrBayesPrint ("%s Run Marginal likelihood (ln)\n",spacer); |
---|
659 | //MrBayesPrint ("%s ------------------------------\n",spacer); |
---|
660 | MrBayesPrint (" Step"); |
---|
661 | for (j=0; j<sumssParams.numRuns ; j++) |
---|
662 | { |
---|
663 | if(j<9) |
---|
664 | MrBayesPrint (" "); |
---|
665 | MrBayesPrint (" run%d", j+1); |
---|
666 | } |
---|
667 | MrBayesPrint ("\n"); |
---|
668 | for(i=0; i<sumssParams.numRuns; i++) |
---|
669 | { |
---|
670 | marginalLnLSS[i] = 0.0; |
---|
671 | } |
---|
672 | for(stepIndexSS = chainParams.numStepsSS-1; stepIndexSS>=0; stepIndexSS--) |
---|
673 | { |
---|
674 | if(chainParams.startFromPriorSS==YES) |
---|
675 | { |
---|
676 | stepLengthSS = BetaQuantile( chainParams.alphaSS, 1.0, (MrBFlt)(chainParams.numStepsSS-stepIndexSS)/(MrBFlt)chainParams.numStepsSS)-BetaQuantile( chainParams.alphaSS, 1.0, (MrBFlt)(chainParams.numStepsSS-1-stepIndexSS)/(MrBFlt)chainParams.numStepsSS); |
---|
677 | } |
---|
678 | else |
---|
679 | { |
---|
680 | stepLengthSS = BetaQuantile ( chainParams.alphaSS, 1.0, (MrBFlt)(stepIndexSS+1)/(MrBFlt)chainParams.numStepsSS) - BetaQuantile ( chainParams.alphaSS, 1.0, (MrBFlt)stepIndexSS/(MrBFlt)chainParams.numStepsSS); |
---|
681 | } |
---|
682 | MrBayesPrint (" %3d ", chainParams.numStepsSS-stepIndexSS); |
---|
683 | for(i=0; i<sumssParams.numRuns; i++) |
---|
684 | { |
---|
685 | lnlp = parameterSamples[whichIsY].values[i] + stepBeginSS + (chainParams.numStepsSS-stepIndexSS-1)*numSamplesInStepSS; |
---|
686 | nextSteplnlp = lnlp+numSamplesInStepSS; |
---|
687 | lnlp+= stepBurnin; |
---|
688 | stepAcumulatorSS = 0.0; |
---|
689 | stepScalerSS = *lnlp*stepLengthSS; |
---|
690 | while( lnlp<nextSteplnlp ) |
---|
691 | { |
---|
692 | if( *lnlp*stepLengthSS > stepScalerSS + 200.0 ) |
---|
693 | { |
---|
694 | // adjust scaler; |
---|
695 | stepAcumulatorSS /= exp( *lnlp*stepLengthSS - 100.0 - stepScalerSS ); |
---|
696 | stepScalerSS= *lnlp*stepLengthSS - 100.0; |
---|
697 | } |
---|
698 | stepAcumulatorSS += exp( *lnlp*stepLengthSS - stepScalerSS ); |
---|
699 | lnlp++; |
---|
700 | } |
---|
701 | tmpMfl = (log( stepAcumulatorSS/(numSamplesInStepSS-stepBurnin) ) + stepScalerSS); |
---|
702 | MrBayesPrint (" %10.3lf", tmpMfl); |
---|
703 | marginalLnLSS[i] += tmpMfl; |
---|
704 | } |
---|
705 | MrBayesPrint ("\n"); |
---|
706 | //MrBayesPrint ("%s %3d %9.2f \n", spacer, i+1, marginalLnLSS ); |
---|
707 | } |
---|
708 | MrBayesPrint (" "); |
---|
709 | for (j=0; j<sumssParams.numRuns ; j++) |
---|
710 | { |
---|
711 | if(j<9) |
---|
712 | MrBayesPrint ("-"); |
---|
713 | MrBayesPrint ("----------"); |
---|
714 | } |
---|
715 | MrBayesPrint ("\n"); |
---|
716 | MrBayesPrint (" Sum: "); |
---|
717 | for (j=0; j<sumssParams.numRuns ; j++) |
---|
718 | MrBayesPrint (" %10.3lf", marginalLnLSS[j]); |
---|
719 | |
---|
720 | MrBayesPrint ("\n"); |
---|
721 | /* |
---|
722 | if (sumssParams.numRuns > 1) |
---|
723 | { |
---|
724 | MrBayesPrint ("%s Below are rough plots of the generations (x-axis) during burn in \n", spacer); |
---|
725 | MrBayesPrint ("%s phase versus the log probability of observing the data (y-axis). \n", spacer); |
---|
726 | MrBayesPrint ("%s You can use these graphs to determine if the burn in for your SS \n", spacer); |
---|
727 | MrBayesPrint ("%s analysis was sufficiant. The log probability suppose to plateau \n", spacer); |
---|
728 | MrBayesPrint ("%s indicating that you may be at stationarity by the time you finish \n", spacer); |
---|
729 | MrBayesPrint ("%s burn in phase. This burn in, unlike burn in within each step, is \n", spacer); |
---|
730 | MrBayesPrint ("%s fixed and can not be changed. \n", spacer); |
---|
731 | } |
---|
732 | else |
---|
733 | { |
---|
734 | MrBayesPrint ("%s Below is a rough plot of the generations (x-axis) during burn in \n", spacer); |
---|
735 | MrBayesPrint ("%s phase versus the log probability of observing the data (y-axis). \n", spacer); |
---|
736 | MrBayesPrint ("%s You can use these graph to determine if the burn in for your SS \n", spacer); |
---|
737 | MrBayesPrint ("%s analysis was sufficiant. The log probability suppose to plateau \n", spacer); |
---|
738 | MrBayesPrint ("%s indicating that you may be at stationarity by the time you finish \n", spacer); |
---|
739 | MrBayesPrint ("%s burn in phase. This burn in, unlike burn in within each step, is \n", spacer); |
---|
740 | MrBayesPrint ("%s fixed and can not be changed. \n", spacer); |
---|
741 | } |
---|
742 | */ |
---|
743 | |
---|
744 | if( firstPass == NO ) |
---|
745 | goto sumssExitOptions; |
---|
746 | |
---|
747 | sumssStepPlot: |
---|
748 | |
---|
749 | MrBayesPrint ("\n\n%s Step plot(s).\n",spacer); |
---|
750 | while(1) |
---|
751 | { |
---|
752 | MrBayesPrint ("\n"); |
---|
753 | if( sumssParams.stepToPlot == 0 ) |
---|
754 | { |
---|
755 | beginPrint=(int)(sumssParams.discardFraction*stepBeginSS); |
---|
756 | countPrint=stepBeginSS-beginPrint; |
---|
757 | MrBayesPrint ("%s Ploting step 0, i.e initial burn-in phase consisting of %d samples.\n", spacer,stepBeginSS); |
---|
758 | MrBayesPrint ("%s According to 'Discardfrac=%.2f', first %d samples are not ploted.\n", spacer,sumssParams.discardFraction,beginPrint); |
---|
759 | } |
---|
760 | else |
---|
761 | { |
---|
762 | if( sumssParams.stepToPlot > chainParams.numStepsSS ) |
---|
763 | { |
---|
764 | MrBayesPrint ("%s Chosen index of step to print %d is out of range of step indices[0,...,%d].\n", spacer,sumssParams.stepToPlot,chainParams.numStepsSS); |
---|
765 | goto errorExit; |
---|
766 | } |
---|
767 | beginPrint=stepBeginSS+(sumssParams.stepToPlot-1)*numSamplesInStepSS + (int)(sumssParams.discardFraction*numSamplesInStepSS); |
---|
768 | countPrint=numSamplesInStepSS-(int)(sumssParams.discardFraction*numSamplesInStepSS); |
---|
769 | MrBayesPrint ("%s Ploting step %d consisting of %d samples.\n", spacer,sumssParams.stepToPlot,numSamplesInStepSS); |
---|
770 | MrBayesPrint ("%s According to 'Discardfrac=%.2f', first %d samples are not ploted.\n", spacer,sumssParams.discardFraction,(int)(sumssParams.discardFraction*numSamplesInStepSS)); |
---|
771 | } |
---|
772 | |
---|
773 | |
---|
774 | if (sumssParams.numRuns > 1) |
---|
775 | { |
---|
776 | if (sumpParams.allRuns == YES) |
---|
777 | { |
---|
778 | for (i=0; i<sumssParams.numRuns; i++) |
---|
779 | { |
---|
780 | MrBayesPrint ("\n%s Samples from run %d:\n", spacer, i+1); |
---|
781 | if (PrintPlot (parameterSamples[whichIsX].values[i]+beginPrint, parameterSamples[whichIsY].values[i]+beginPrint, countPrint) == ERROR) |
---|
782 | goto errorExit; |
---|
783 | } |
---|
784 | } |
---|
785 | else |
---|
786 | { |
---|
787 | if (PrintOverlayPlot (parameterSamples[whichIsX].values, parameterSamples[whichIsY].values, numRuns, beginPrint, countPrint) == ERROR) |
---|
788 | goto errorExit; |
---|
789 | } |
---|
790 | } |
---|
791 | else |
---|
792 | { |
---|
793 | if (PrintPlot (parameterSamples[whichIsX].values[0]+beginPrint, parameterSamples[whichIsY].values[0]+beginPrint, countPrint) == ERROR) |
---|
794 | goto errorExit; |
---|
795 | } |
---|
796 | |
---|
797 | if( sumssParams.askForMorePlots == NO || firstPass == YES ) |
---|
798 | break; |
---|
799 | |
---|
800 | MrBayesPrint (" You can choose to print new step plots for different steps or discard fractions.\n"); |
---|
801 | MrBayesPrint (" Allowed range of 'Steptoplot' are from 0 to %d.\n", chainParams.numStepsSS); |
---|
802 | MrBayesPrint (" If the next entered value is negative, 'sumss' will stop printing step plots.\n"); |
---|
803 | MrBayesPrint (" If the next entered value is positive, but out of range, you will be offered\n"); |
---|
804 | MrBayesPrint (" to change paramiter 'Discardfrac' of 'sumss'.\n"); |
---|
805 | MrBayesPrint (" Enter new step number 'Steptoplot':"); |
---|
806 | result=scanf("%d",&j); |
---|
807 | if(j < 0 ) |
---|
808 | break; |
---|
809 | if(j > chainParams.numStepsSS) |
---|
810 | { |
---|
811 | do |
---|
812 | { |
---|
813 | MrBayesPrint (" Enter new value for 'Discardfrac', should be in range 0.0 to 1.0:"); |
---|
814 | result=scanf("%f",&tmpf); |
---|
815 | sumssParams.discardFraction = (MrBFlt)tmpf; |
---|
816 | } |
---|
817 | while(sumssParams.discardFraction < 0.0 || sumssParams.discardFraction > 1.0); |
---|
818 | } |
---|
819 | else |
---|
820 | sumssParams.stepToPlot=j; |
---|
821 | } |
---|
822 | |
---|
823 | if( firstPass == NO ) |
---|
824 | goto sumssExitOptions; |
---|
825 | |
---|
826 | sumssJoinedPlot: |
---|
827 | |
---|
828 | MrBayesPrint ("\n\n%s Joined plot(s).\n",spacer); |
---|
829 | while(1) |
---|
830 | { |
---|
831 | MrBayesPrint ("\n"); |
---|
832 | MrBayesPrint ("%s Joined plot of %d samples of all steps together. 'smoothing' is set to:%d\n", spacer,numSamplesInStepSS,sumssParams.smoothing); |
---|
833 | MrBayesPrint ("%s According to step burn-in, first %d samples are not ploted.\n", spacer,stepBurnin); |
---|
834 | |
---|
835 | for(i=0; i<sumssParams.numRuns; i++) |
---|
836 | { |
---|
837 | for(j=stepBurnin;j<numSamplesInStepSS;j++) |
---|
838 | plotArrayY[sumssParams.numRuns][j]=0.0; |
---|
839 | lnlp= parameterSamples[whichIsY].values[i] + stepBeginSS; |
---|
840 | nextSteplnlp=lnlp; |
---|
841 | for(stepIndexSS = chainParams.numStepsSS-1; stepIndexSS>0; stepIndexSS--) |
---|
842 | { |
---|
843 | firstlnlp=plotArrayY[sumssParams.numRuns] + stepBurnin; |
---|
844 | lnlp+=stepBurnin; |
---|
845 | nextSteplnlp += numSamplesInStepSS; |
---|
846 | while( lnlp<nextSteplnlp ) |
---|
847 | { |
---|
848 | *firstlnlp+=*lnlp; |
---|
849 | firstlnlp++; |
---|
850 | lnlp++; |
---|
851 | } |
---|
852 | } |
---|
853 | for(j=stepBurnin;j<numSamplesInStepSS;j++) |
---|
854 | { |
---|
855 | sum=0.0; |
---|
856 | count=0; |
---|
857 | for(k=j-sumssParams.smoothing;k<=j+sumssParams.smoothing;k++) |
---|
858 | { |
---|
859 | if(k>=stepBurnin && k<numSamplesInStepSS) |
---|
860 | { |
---|
861 | sum += plotArrayY[sumssParams.numRuns][k]; |
---|
862 | count++; |
---|
863 | } |
---|
864 | } |
---|
865 | plotArrayY[i][j] = sum/count; |
---|
866 | /* |
---|
867 | if( max < plotArrayY[i][j]) |
---|
868 | max=plotArrayY[i][j]; |
---|
869 | */ |
---|
870 | } |
---|
871 | /* for(j=stepBurnin;j<numSamplesInStepSS;j++) |
---|
872 | { |
---|
873 | plotArrayY[i][j] /= max; |
---|
874 | }*/ |
---|
875 | } |
---|
876 | |
---|
877 | beginPrint=stepBurnin; |
---|
878 | countPrint=numSamplesInStepSS-stepBurnin; |
---|
879 | |
---|
880 | if (sumssParams.numRuns > 1) |
---|
881 | { |
---|
882 | if (sumpParams.allRuns == YES) |
---|
883 | { |
---|
884 | for (i=0; i<sumssParams.numRuns; i++) |
---|
885 | { |
---|
886 | MrBayesPrint ("\n%s Samples from run %d:\n", spacer, i+1); |
---|
887 | if (PrintPlot (plotArrayX[i]+beginPrint, plotArrayY[i]+beginPrint, countPrint) == ERROR) |
---|
888 | goto errorExit; |
---|
889 | } |
---|
890 | } |
---|
891 | else |
---|
892 | { |
---|
893 | if (PrintOverlayPlot (plotArrayX, plotArrayY, numRuns, beginPrint, countPrint) == ERROR) |
---|
894 | goto errorExit; |
---|
895 | } |
---|
896 | } |
---|
897 | else |
---|
898 | { |
---|
899 | if (PrintPlot (plotArrayX[0]+beginPrint, plotArrayY[0]+beginPrint, countPrint) == ERROR) |
---|
900 | goto errorExit; |
---|
901 | } |
---|
902 | |
---|
903 | if( sumssParams.askForMorePlots == NO || firstPass == YES ) |
---|
904 | break; |
---|
905 | |
---|
906 | MrBayesPrint (" You can choose to print new joined plots with different step burn-in or smoothing.\n"); |
---|
907 | MrBayesPrint (" Allowed range of step burn-in values are from 0 to %d.\n", numSamplesInStepSS-1); |
---|
908 | MrBayesPrint (" If the next entered value is negative, 'sumss' will stop printing joined plots.\n"); |
---|
909 | MrBayesPrint (" If the next entered value is positive, but out of range, you will be offered\n"); |
---|
910 | MrBayesPrint (" to change 'Smoothimg'.\n"); |
---|
911 | MrBayesPrint (" Enter new step burn-in:"); |
---|
912 | result=scanf("%d",&j); |
---|
913 | if(j < 0 ) |
---|
914 | break; |
---|
915 | if(j >= numSamplesInStepSS) |
---|
916 | { |
---|
917 | MrBayesPrint (" Enter new value for 'Smoothing':"); |
---|
918 | result=scanf("%d",&j); |
---|
919 | sumssParams.smoothing = abs(j); |
---|
920 | } |
---|
921 | else |
---|
922 | stepBurnin=j; |
---|
923 | } |
---|
924 | |
---|
925 | firstPass = NO; |
---|
926 | sumssExitOptions: |
---|
927 | if(sumssParams.askForMorePlots == YES ) |
---|
928 | { |
---|
929 | MrBayesPrint ("\n"); |
---|
930 | MrBayesPrint (" Sumss is interactive, because of paramiter 'Askmore=YES' setting. \n"); |
---|
931 | MrBayesPrint (" What would you like to do next?\n"); |
---|
932 | MrBayesPrint (" 1) Print updated table according to new step burn-in.\n"); |
---|
933 | MrBayesPrint (" 2) Print Step plot(s).\n"); |
---|
934 | MrBayesPrint (" 3) Print Joined plot(s).\n"); |
---|
935 | MrBayesPrint (" 4) Exit 'sumss'.\n"); |
---|
936 | MrBayesPrint (" Enter a number that corresponds to one of the options:"); |
---|
937 | do |
---|
938 | { |
---|
939 | result=scanf("%d",&j); |
---|
940 | }while(j<1 || j>4); |
---|
941 | |
---|
942 | if(j == 1) |
---|
943 | { |
---|
944 | MrBayesPrint (" Allowed range of step burn-in values are from 0 to %d\n", numSamplesInStepSS-1); |
---|
945 | MrBayesPrint (" Current step burn-in value is:%d\n", stepBurnin); |
---|
946 | MrBayesPrint (" Enter new step burn-in:"); |
---|
947 | do |
---|
948 | { |
---|
949 | result=scanf("%d",&stepBurnin); |
---|
950 | } |
---|
951 | while(stepBurnin < 0 || stepBurnin > numSamplesInStepSS-1); |
---|
952 | MrBayesPrint ("\n"); |
---|
953 | goto sumssTable; |
---|
954 | } |
---|
955 | else if(j == 2) |
---|
956 | { |
---|
957 | goto sumssStepPlot; |
---|
958 | } |
---|
959 | else if(j == 3) |
---|
960 | goto sumssJoinedPlot; |
---|
961 | |
---|
962 | } |
---|
963 | |
---|
964 | /* free memory */ |
---|
965 | FreeParameterSamples(parameterSamples); |
---|
966 | for (i=0; i<nHeaders; i++) |
---|
967 | free (headerNames[i]); |
---|
968 | free (headerNames); |
---|
969 | |
---|
970 | expecting = Expecting(COMMAND); |
---|
971 | strcpy (spacer, ""); |
---|
972 | chainParams.isSS=NO; |
---|
973 | for(i=0; i<sumssParams.numRuns+1; i++) |
---|
974 | free(plotArrayY[i]); |
---|
975 | free(plotArrayY); |
---|
976 | for(i=0; i<sumssParams.numRuns; i++) |
---|
977 | free(plotArrayX[i]); |
---|
978 | free(plotArrayX); |
---|
979 | free(marginalLnLSS); |
---|
980 | |
---|
981 | return (NO_ERROR); |
---|
982 | |
---|
983 | errorExit: |
---|
984 | |
---|
985 | /* free memory */ |
---|
986 | FreeParameterSamples (parameterSamples); |
---|
987 | if( headerNames!=NULL ) |
---|
988 | for (i=0; i<nHeaders; i++) |
---|
989 | free (headerNames[i]); |
---|
990 | free (headerNames); |
---|
991 | |
---|
992 | expecting = Expecting(COMMAND); |
---|
993 | strcpy (spacer, ""); |
---|
994 | chainParams.isSS=NO; |
---|
995 | if( plotArrayY!=NULL ) |
---|
996 | for(i=0; i<sumssParams.numRuns+1; i++) |
---|
997 | free(plotArrayY[i]); |
---|
998 | free(plotArrayY); |
---|
999 | if( plotArrayX!=NULL ) |
---|
1000 | for(i=0; i<sumssParams.numRuns; i++) |
---|
1001 | free(plotArrayX[i]); |
---|
1002 | free(plotArrayX); |
---|
1003 | free(marginalLnLSS); |
---|
1004 | |
---|
1005 | return (ERROR); |
---|
1006 | } |
---|
1007 | |
---|
1008 | |
---|
1009 | |
---|
1010 | |
---|
1011 | |
---|
1012 | int DoSumpParm (char *parmName, char *tkn) |
---|
1013 | |
---|
1014 | { |
---|
1015 | |
---|
1016 | int tempI; |
---|
1017 | MrBFlt tempD; |
---|
1018 | char tempStr[100]; |
---|
1019 | |
---|
1020 | if (expecting == Expecting(PARAMETER)) |
---|
1021 | { |
---|
1022 | expecting = Expecting(EQUALSIGN); |
---|
1023 | } |
---|
1024 | else |
---|
1025 | { |
---|
1026 | if (!strcmp(parmName, "Xxxxxxxxxx")) |
---|
1027 | { |
---|
1028 | expecting = Expecting(PARAMETER); |
---|
1029 | expecting |= Expecting(SEMICOLON); |
---|
1030 | } |
---|
1031 | /* set Filename (sumpParams.sumpFileName) ***************************************************/ |
---|
1032 | else if (!strcmp(parmName, "Filename")) |
---|
1033 | { |
---|
1034 | if (expecting == Expecting(EQUALSIGN)) |
---|
1035 | { |
---|
1036 | expecting = Expecting(ALPHA); |
---|
1037 | readWord = YES; |
---|
1038 | } |
---|
1039 | else if (expecting == Expecting(ALPHA)) |
---|
1040 | { |
---|
1041 | if(strlen(tkn)>99 && (strchr(tkn,' ')-tkn) > 99 ) |
---|
1042 | { |
---|
1043 | MrBayesPrint ("%s Maximum allowed length of file name is 99 characters. The given name:\n", spacer); |
---|
1044 | MrBayesPrint ("%s '%s'\n", spacer,tkn); |
---|
1045 | return (ERROR); |
---|
1046 | } |
---|
1047 | sscanf (tkn, "%s", tempStr); |
---|
1048 | strcpy (sumpParams.sumpFileName, tempStr); |
---|
1049 | strcpy (sumpParams.sumpOutfile, tempStr); |
---|
1050 | MrBayesPrint ("%s Setting sump filename and output file name to %s\n", spacer, sumpParams.sumpFileName); |
---|
1051 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1052 | } |
---|
1053 | else |
---|
1054 | return (ERROR); |
---|
1055 | } |
---|
1056 | /* set Outputname (sumpParams.sumpOutfile) *******************************************************/ |
---|
1057 | else if (!strcmp(parmName, "Outputname")) |
---|
1058 | { |
---|
1059 | if (expecting == Expecting(EQUALSIGN)) |
---|
1060 | { |
---|
1061 | expecting = Expecting(ALPHA); |
---|
1062 | readWord = YES; |
---|
1063 | } |
---|
1064 | else if (expecting == Expecting(ALPHA)) |
---|
1065 | { |
---|
1066 | if(strlen(tkn)>99 && (strchr(tkn,' ')-tkn) > 99 ) |
---|
1067 | { |
---|
1068 | MrBayesPrint ("%s Maximum allowed length of file name is 99 characters. The given name:\n", spacer); |
---|
1069 | MrBayesPrint ("%s '%s'\n", spacer,tkn); |
---|
1070 | return (ERROR); |
---|
1071 | } |
---|
1072 | sscanf (tkn, "%s", tempStr); |
---|
1073 | strcpy (sumpParams.sumpOutfile, tempStr); |
---|
1074 | MrBayesPrint ("%s Setting sump output file name to \"%s\"\n", spacer, sumpParams.sumpOutfile); |
---|
1075 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1076 | } |
---|
1077 | else |
---|
1078 | return (ERROR); |
---|
1079 | } |
---|
1080 | /* set Relburnin (chainParams.relativeBurnin) ********************************************************/ |
---|
1081 | else if (!strcmp(parmName, "Relburnin")) |
---|
1082 | { |
---|
1083 | if (expecting == Expecting(EQUALSIGN)) |
---|
1084 | expecting = Expecting(ALPHA); |
---|
1085 | else if (expecting == Expecting(ALPHA)) |
---|
1086 | { |
---|
1087 | if (IsArgValid(tkn, tempStr) == NO_ERROR) |
---|
1088 | { |
---|
1089 | if (!strcmp(tempStr, "Yes")) |
---|
1090 | chainParams.relativeBurnin = YES; |
---|
1091 | else |
---|
1092 | chainParams.relativeBurnin = NO; |
---|
1093 | } |
---|
1094 | else |
---|
1095 | { |
---|
1096 | MrBayesPrint ("%s Invalid argument for Relburnin\n", spacer); |
---|
1097 | return (ERROR); |
---|
1098 | } |
---|
1099 | if (chainParams.relativeBurnin == YES) |
---|
1100 | MrBayesPrint ("%s Using relative burnin (a fraction of samples discarded).\n", spacer); |
---|
1101 | else |
---|
1102 | MrBayesPrint ("%s Using absolute burnin (a fixed number of samples discarded).\n", spacer); |
---|
1103 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1104 | } |
---|
1105 | else |
---|
1106 | { |
---|
1107 | return (ERROR); |
---|
1108 | } |
---|
1109 | } |
---|
1110 | /* set Burnin (chainParams.chainBurnIn) ***********************************************************/ |
---|
1111 | else if (!strcmp(parmName, "Burnin")) |
---|
1112 | { |
---|
1113 | if (expecting == Expecting(EQUALSIGN)) |
---|
1114 | expecting = Expecting(NUMBER); |
---|
1115 | else if (expecting == Expecting(NUMBER)) |
---|
1116 | { |
---|
1117 | sscanf (tkn, "%d", &tempI); |
---|
1118 | chainParams.chainBurnIn = tempI; |
---|
1119 | MrBayesPrint ("%s Setting burn-in to %d\n", spacer, chainParams.chainBurnIn); |
---|
1120 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1121 | } |
---|
1122 | else |
---|
1123 | { |
---|
1124 | return (ERROR); |
---|
1125 | } |
---|
1126 | } |
---|
1127 | /* set Burninfrac (chainParams.burninFraction) ************************************************************/ |
---|
1128 | else if (!strcmp(parmName, "Burninfrac")) |
---|
1129 | { |
---|
1130 | if (expecting == Expecting(EQUALSIGN)) |
---|
1131 | expecting = Expecting(NUMBER); |
---|
1132 | else if (expecting == Expecting(NUMBER)) |
---|
1133 | { |
---|
1134 | sscanf (tkn, "%lf", &tempD); |
---|
1135 | if (tempD < 0.01) |
---|
1136 | { |
---|
1137 | MrBayesPrint ("%s Burnin fraction too low (< 0.01)\n", spacer); |
---|
1138 | return (ERROR); |
---|
1139 | } |
---|
1140 | if (tempD > 0.50) |
---|
1141 | { |
---|
1142 | MrBayesPrint ("%s Burnin fraction too high (> 0.50)\n", spacer); |
---|
1143 | return (ERROR); |
---|
1144 | } |
---|
1145 | chainParams.burninFraction = tempD; |
---|
1146 | MrBayesPrint ("%s Setting burnin fraction to %.2f\n", spacer, chainParams.burninFraction); |
---|
1147 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1148 | } |
---|
1149 | else |
---|
1150 | { |
---|
1151 | return (ERROR); |
---|
1152 | } |
---|
1153 | } |
---|
1154 | /* set Minprob (sumpParams.minProb) ************************************************************/ |
---|
1155 | else if (!strcmp(parmName, "Minprob")) |
---|
1156 | { |
---|
1157 | if (expecting == Expecting(EQUALSIGN)) |
---|
1158 | expecting = Expecting(NUMBER); |
---|
1159 | else if (expecting == Expecting(NUMBER)) |
---|
1160 | { |
---|
1161 | sscanf (tkn, "%lf", &tempD); |
---|
1162 | if (tempD > 0.50) |
---|
1163 | { |
---|
1164 | MrBayesPrint ("%s Minprob too high (it should be smaller than 0.50)\n", spacer); |
---|
1165 | return (ERROR); |
---|
1166 | } |
---|
1167 | sumpParams.minProb = tempD; |
---|
1168 | MrBayesPrint ("%s Setting minprob to %1.3f\n", spacer, sumpParams.minProb); |
---|
1169 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1170 | } |
---|
1171 | else |
---|
1172 | { |
---|
1173 | return (ERROR); |
---|
1174 | } |
---|
1175 | } |
---|
1176 | /* set Nruns (sumpParams.numRuns) *******************************************************/ |
---|
1177 | else if (!strcmp(parmName, "Nruns")) |
---|
1178 | { |
---|
1179 | if (expecting == Expecting(EQUALSIGN)) |
---|
1180 | expecting = Expecting(NUMBER); |
---|
1181 | else if (expecting == Expecting(NUMBER)) |
---|
1182 | { |
---|
1183 | sscanf (tkn, "%d", &tempI); |
---|
1184 | if (tempI < 1) |
---|
1185 | { |
---|
1186 | MrBayesPrint ("%s Nruns must be at least 1\n", spacer); |
---|
1187 | return (ERROR); |
---|
1188 | } |
---|
1189 | else |
---|
1190 | { |
---|
1191 | sumpParams.numRuns = tempI; |
---|
1192 | MrBayesPrint ("%s Setting sump nruns to %d\n", spacer, sumpParams.numRuns); |
---|
1193 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1194 | } |
---|
1195 | } |
---|
1196 | else |
---|
1197 | return (ERROR); |
---|
1198 | } |
---|
1199 | /* set Hpd (sumpParams.HPD) ********************************************************/ |
---|
1200 | else if (!strcmp(parmName, "Hpd")) |
---|
1201 | { |
---|
1202 | if (expecting == Expecting(EQUALSIGN)) |
---|
1203 | expecting = Expecting(ALPHA); |
---|
1204 | else if (expecting == Expecting(ALPHA)) |
---|
1205 | { |
---|
1206 | if (IsArgValid(tkn, tempStr) == NO_ERROR) |
---|
1207 | { |
---|
1208 | if (!strcmp(tempStr, "Yes")) |
---|
1209 | sumpParams.HPD = YES; |
---|
1210 | else |
---|
1211 | sumpParams.HPD = NO; |
---|
1212 | } |
---|
1213 | else |
---|
1214 | { |
---|
1215 | MrBayesPrint ("%s Invalid argument for Hpd\n", spacer); |
---|
1216 | return (ERROR); |
---|
1217 | } |
---|
1218 | if (sumpParams.HPD == YES) |
---|
1219 | MrBayesPrint ("%s Reporting 95 %% region of Highest Posterior Density (HPD).\n", spacer); |
---|
1220 | else |
---|
1221 | MrBayesPrint ("%s Reporting median interval containing 95 %% of values.\n", spacer); |
---|
1222 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1223 | } |
---|
1224 | else |
---|
1225 | { |
---|
1226 | return (ERROR); |
---|
1227 | } |
---|
1228 | } |
---|
1229 | /* set Allruns (sumpParams.allRuns) ********************************************************/ |
---|
1230 | else if (!strcmp(parmName, "Allruns")) |
---|
1231 | { |
---|
1232 | if (expecting == Expecting(EQUALSIGN)) |
---|
1233 | expecting = Expecting(ALPHA); |
---|
1234 | else if (expecting == Expecting(ALPHA)) |
---|
1235 | { |
---|
1236 | if (IsArgValid(tkn, tempStr) == NO_ERROR) |
---|
1237 | { |
---|
1238 | if (!strcmp(tempStr, "Yes")) |
---|
1239 | sumpParams.allRuns = YES; |
---|
1240 | else |
---|
1241 | sumpParams.allRuns = NO; |
---|
1242 | } |
---|
1243 | else |
---|
1244 | { |
---|
1245 | MrBayesPrint ("%s Invalid argument for allruns (valid arguments are 'yes' and 'no')\n", spacer); |
---|
1246 | return (ERROR); |
---|
1247 | } |
---|
1248 | if (sumpParams.allRuns == YES) |
---|
1249 | MrBayesPrint ("%s Setting sump to print information for each run\n", spacer); |
---|
1250 | else |
---|
1251 | MrBayesPrint ("%s Setting sump to print only summary information for all runs\n", spacer); |
---|
1252 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1253 | } |
---|
1254 | else |
---|
1255 | return (ERROR); |
---|
1256 | } |
---|
1257 | else |
---|
1258 | return (ERROR); |
---|
1259 | } |
---|
1260 | |
---|
1261 | return (NO_ERROR); |
---|
1262 | |
---|
1263 | } |
---|
1264 | |
---|
1265 | |
---|
1266 | |
---|
1267 | |
---|
1268 | |
---|
1269 | int DoSumSsParm (char *parmName, char *tkn) |
---|
1270 | |
---|
1271 | { |
---|
1272 | |
---|
1273 | int tempI; |
---|
1274 | MrBFlt tempD; |
---|
1275 | char tempStr[100]; |
---|
1276 | |
---|
1277 | if (expecting == Expecting(PARAMETER)) |
---|
1278 | { |
---|
1279 | expecting = Expecting(EQUALSIGN); |
---|
1280 | } |
---|
1281 | else |
---|
1282 | { |
---|
1283 | if (!strcmp(parmName, "Xxxxxxxxxx")) |
---|
1284 | { |
---|
1285 | expecting = Expecting(PARAMETER); |
---|
1286 | expecting |= Expecting(SEMICOLON); |
---|
1287 | } |
---|
1288 | /* set Filename (sumpParams.sumpFileName) ***************************************************/ |
---|
1289 | else if (!strcmp(parmName, "Filename")) |
---|
1290 | { |
---|
1291 | if (expecting == Expecting(EQUALSIGN)) |
---|
1292 | { |
---|
1293 | expecting = Expecting(ALPHA); |
---|
1294 | readWord = YES; |
---|
1295 | } |
---|
1296 | else if (expecting == Expecting(ALPHA)) |
---|
1297 | { |
---|
1298 | if(strlen(tkn)>99 && (strchr(tkn,' ')-tkn) > 99 ) |
---|
1299 | { |
---|
1300 | MrBayesPrint ("%s Maximum allowed length of file name is 99 characters. The given name:\n", spacer); |
---|
1301 | MrBayesPrint ("%s '%s'\n", spacer,tkn); |
---|
1302 | return (ERROR); |
---|
1303 | } |
---|
1304 | sscanf (tkn, "%s", tempStr); |
---|
1305 | strcpy (sumpParams.sumpFileName, tempStr); |
---|
1306 | strcpy (sumpParams.sumpOutfile, tempStr); |
---|
1307 | MrBayesPrint ("%s Setting sump filename and output file name to %s\n", spacer, sumpParams.sumpFileName); |
---|
1308 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1309 | } |
---|
1310 | else |
---|
1311 | return (ERROR); |
---|
1312 | } |
---|
1313 | /* set Outputname (sumpParams.sumpOutfile) *******************************************************/ |
---|
1314 | /*else if (!strcmp(parmName, "Outputname")) |
---|
1315 | { |
---|
1316 | if (expecting == Expecting(EQUALSIGN)) |
---|
1317 | { |
---|
1318 | expecting = Expecting(ALPHA); |
---|
1319 | readWord = YES; |
---|
1320 | } |
---|
1321 | else if (expecting == Expecting(ALPHA)) |
---|
1322 | { |
---|
1323 | if(strlen(tkn)>99 && (strchr(tkn,' ')-tkn) > 99 ) |
---|
1324 | { |
---|
1325 | MrBayesPrint ("%s Maximum allowed length of file name is 99 characters. The given name:\n", spacer); |
---|
1326 | MrBayesPrint ("%s '%s'\n", spacer,tkn); |
---|
1327 | return (ERROR); |
---|
1328 | } |
---|
1329 | sscanf (tkn, "%s", tempStr); |
---|
1330 | strcpy (sumpParams.sumpOutfile, tempStr); |
---|
1331 | MrBayesPrint ("%s Setting sump output file name to \"%s\"\n", spacer, sumpParams.sumpOutfile); |
---|
1332 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1333 | } |
---|
1334 | else |
---|
1335 | return (ERROR); |
---|
1336 | }*/ |
---|
1337 | /* set Relburnin (chainParams.relativeBurnin) ********************************************************/ |
---|
1338 | else if (!strcmp(parmName, "Relburnin")) |
---|
1339 | { |
---|
1340 | if (expecting == Expecting(EQUALSIGN)) |
---|
1341 | expecting = Expecting(ALPHA); |
---|
1342 | else if (expecting == Expecting(ALPHA)) |
---|
1343 | { |
---|
1344 | if (IsArgValid(tkn, tempStr) == NO_ERROR) |
---|
1345 | { |
---|
1346 | if (!strcmp(tempStr, "Yes")) |
---|
1347 | chainParams.relativeBurnin = YES; |
---|
1348 | else |
---|
1349 | chainParams.relativeBurnin = NO; |
---|
1350 | } |
---|
1351 | else |
---|
1352 | { |
---|
1353 | MrBayesPrint ("%s Invalid argument for Relburnin\n", spacer); |
---|
1354 | return (ERROR); |
---|
1355 | } |
---|
1356 | if (chainParams.relativeBurnin == YES) |
---|
1357 | MrBayesPrint ("%s Using relative burnin (a fraction of samples discarded).\n", spacer); |
---|
1358 | else |
---|
1359 | MrBayesPrint ("%s Using absolute burnin (a fixed number of samples discarded).\n", spacer); |
---|
1360 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1361 | } |
---|
1362 | else |
---|
1363 | { |
---|
1364 | return (ERROR); |
---|
1365 | } |
---|
1366 | } |
---|
1367 | /* set Burnin (chainParams.chainBurnIn) ***********************************************************/ |
---|
1368 | else if (!strcmp(parmName, "Burnin")) |
---|
1369 | { |
---|
1370 | if (expecting == Expecting(EQUALSIGN)) |
---|
1371 | expecting = Expecting(NUMBER); |
---|
1372 | else if (expecting == Expecting(NUMBER)) |
---|
1373 | { |
---|
1374 | sscanf (tkn, "%d", &tempI); |
---|
1375 | chainParams.chainBurnIn = tempI; |
---|
1376 | MrBayesPrint ("%s Setting burn-in to %d\n", spacer, chainParams.chainBurnIn); |
---|
1377 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1378 | } |
---|
1379 | else |
---|
1380 | { |
---|
1381 | return (ERROR); |
---|
1382 | } |
---|
1383 | } |
---|
1384 | /* set Burninfrac (chainParams.burninFraction) ************************************************************/ |
---|
1385 | else if (!strcmp(parmName, "Burninfrac")) |
---|
1386 | { |
---|
1387 | if (expecting == Expecting(EQUALSIGN)) |
---|
1388 | expecting = Expecting(NUMBER); |
---|
1389 | else if (expecting == Expecting(NUMBER)) |
---|
1390 | { |
---|
1391 | sscanf (tkn, "%lf", &tempD); |
---|
1392 | if (tempD < 0.01) |
---|
1393 | { |
---|
1394 | MrBayesPrint ("%s Burnin fraction too low (< 0.01)\n", spacer); |
---|
1395 | return (ERROR); |
---|
1396 | } |
---|
1397 | if (tempD > 0.50) |
---|
1398 | { |
---|
1399 | MrBayesPrint ("%s Burnin fraction too high (> 0.50)\n", spacer); |
---|
1400 | return (ERROR); |
---|
1401 | } |
---|
1402 | chainParams.burninFraction = tempD; |
---|
1403 | MrBayesPrint ("%s Setting burnin fraction to %.2f\n", spacer, chainParams.burninFraction); |
---|
1404 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1405 | } |
---|
1406 | else |
---|
1407 | { |
---|
1408 | return (ERROR); |
---|
1409 | } |
---|
1410 | } |
---|
1411 | /* set Nruns (sumssParams.numRuns) *******************************************************/ |
---|
1412 | else if (!strcmp(parmName, "Nruns")) |
---|
1413 | { |
---|
1414 | if (expecting == Expecting(EQUALSIGN)) |
---|
1415 | expecting = Expecting(NUMBER); |
---|
1416 | else if (expecting == Expecting(NUMBER)) |
---|
1417 | { |
---|
1418 | sscanf (tkn, "%d", &tempI); |
---|
1419 | if (tempI < 1) |
---|
1420 | { |
---|
1421 | MrBayesPrint ("%s Nruns must be at least 1\n", spacer); |
---|
1422 | return (ERROR); |
---|
1423 | } |
---|
1424 | else |
---|
1425 | { |
---|
1426 | sumssParams.numRuns = tempI; |
---|
1427 | MrBayesPrint ("%s Setting sumss nruns to %d\n", spacer, sumssParams.numRuns); |
---|
1428 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1429 | } |
---|
1430 | } |
---|
1431 | else |
---|
1432 | return (ERROR); |
---|
1433 | } |
---|
1434 | /* set Allruns (sumssParams.allRuns) ********************************************************/ |
---|
1435 | else if (!strcmp(parmName, "Allruns")) |
---|
1436 | { |
---|
1437 | if (expecting == Expecting(EQUALSIGN)) |
---|
1438 | expecting = Expecting(ALPHA); |
---|
1439 | else if (expecting == Expecting(ALPHA)) |
---|
1440 | { |
---|
1441 | if (IsArgValid(tkn, tempStr) == NO_ERROR) |
---|
1442 | { |
---|
1443 | if (!strcmp(tempStr, "Yes")) |
---|
1444 | sumssParams.allRuns = YES; |
---|
1445 | else |
---|
1446 | sumssParams.allRuns = NO; |
---|
1447 | } |
---|
1448 | else |
---|
1449 | { |
---|
1450 | MrBayesPrint ("%s Invalid argument for allruns (valid arguments are 'yes' and 'no')\n", spacer); |
---|
1451 | return (ERROR); |
---|
1452 | } |
---|
1453 | if (sumssParams.allRuns == YES) |
---|
1454 | MrBayesPrint ("%s Setting sump to print information for each run\n", spacer); |
---|
1455 | else |
---|
1456 | MrBayesPrint ("%s Setting sump to print only summary information for all runs\n", spacer); |
---|
1457 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1458 | } |
---|
1459 | else |
---|
1460 | return (ERROR); |
---|
1461 | } |
---|
1462 | /* set Steptoplot (sumssParams.stepToPlot) *******************************************************/ |
---|
1463 | else if (!strcmp(parmName, "Steptoplot")) |
---|
1464 | { |
---|
1465 | if (expecting == Expecting(EQUALSIGN)) |
---|
1466 | expecting = Expecting(NUMBER); |
---|
1467 | else if (expecting == Expecting(NUMBER)) |
---|
1468 | { |
---|
1469 | sscanf (tkn, "%d", &tempI); |
---|
1470 | if (tempI < 0) |
---|
1471 | { |
---|
1472 | MrBayesPrint ("%s Steptoplot must be at least 0\n", spacer); |
---|
1473 | return (ERROR); |
---|
1474 | } |
---|
1475 | else |
---|
1476 | { |
---|
1477 | sumssParams.stepToPlot = tempI; |
---|
1478 | MrBayesPrint ("%s Setting sumss steptoplot to %d\n", spacer, sumssParams.stepToPlot); |
---|
1479 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1480 | } |
---|
1481 | } |
---|
1482 | else |
---|
1483 | return (ERROR); |
---|
1484 | } |
---|
1485 | /* set Smoothing (sumssParams.smoothing ) *******************************************************/ |
---|
1486 | else if (!strcmp(parmName, "Smoothing")) |
---|
1487 | { |
---|
1488 | if (expecting == Expecting(EQUALSIGN)) |
---|
1489 | expecting = Expecting(NUMBER); |
---|
1490 | else if (expecting == Expecting(NUMBER)) |
---|
1491 | { |
---|
1492 | sscanf (tkn, "%d", &tempI); |
---|
1493 | if (tempI < 0) |
---|
1494 | { |
---|
1495 | MrBayesPrint ("%s Smoothing must be at least 0\n", spacer); |
---|
1496 | return (ERROR); |
---|
1497 | } |
---|
1498 | else |
---|
1499 | { |
---|
1500 | sumssParams.smoothing = tempI; |
---|
1501 | MrBayesPrint ("%s Setting sumss smoothing to %d\n", spacer, sumssParams.smoothing ); |
---|
1502 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1503 | } |
---|
1504 | } |
---|
1505 | else |
---|
1506 | return (ERROR); |
---|
1507 | } |
---|
1508 | /* set Allruns (sumssParams.askForMorePlots) ********************************************************/ |
---|
1509 | else if (!strcmp(parmName, "Askmore")) |
---|
1510 | { |
---|
1511 | if (expecting == Expecting(EQUALSIGN)) |
---|
1512 | expecting = Expecting(ALPHA); |
---|
1513 | else if (expecting == Expecting(ALPHA)) |
---|
1514 | { |
---|
1515 | if (IsArgValid(tkn, tempStr) == NO_ERROR) |
---|
1516 | { |
---|
1517 | if (!strcmp(tempStr, "Yes")) |
---|
1518 | sumssParams.askForMorePlots = YES; |
---|
1519 | else |
---|
1520 | sumssParams.askForMorePlots = NO; |
---|
1521 | } |
---|
1522 | else |
---|
1523 | { |
---|
1524 | MrBayesPrint ("%s Invalid argument for askmore (valid arguments are 'yes' and 'no')\n", spacer); |
---|
1525 | return (ERROR); |
---|
1526 | } |
---|
1527 | if (sumssParams.askForMorePlots == YES) |
---|
1528 | MrBayesPrint ("%s Setting sumss to be interactiva by asking for more plots of burn-in or individual steps.\n", spacer); |
---|
1529 | else |
---|
1530 | MrBayesPrint ("%s Setting sumss not to be interactive. It will not ask to print more plots.\n", spacer); |
---|
1531 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1532 | } |
---|
1533 | else |
---|
1534 | return (ERROR); |
---|
1535 | } |
---|
1536 | /* set Discardfrac (sumssParams.discardFraction) ************************************************************/ |
---|
1537 | else if (!strcmp(parmName, "Discardfrac")) |
---|
1538 | { |
---|
1539 | if (expecting == Expecting(EQUALSIGN)) |
---|
1540 | expecting = Expecting(NUMBER); |
---|
1541 | else if (expecting == Expecting(NUMBER)) |
---|
1542 | { |
---|
1543 | sscanf (tkn, "%lf", &tempD); |
---|
1544 | if (tempD < 0.00) |
---|
1545 | { |
---|
1546 | MrBayesPrint ("%s Discard fraction too low (< 0.00)\n", spacer); |
---|
1547 | return (ERROR); |
---|
1548 | } |
---|
1549 | if (tempD > 1.00) |
---|
1550 | { |
---|
1551 | MrBayesPrint ("%s Discard fraction too high (> 1.00)\n", spacer); |
---|
1552 | return (ERROR); |
---|
1553 | } |
---|
1554 | sumssParams.discardFraction = tempD; |
---|
1555 | MrBayesPrint ("%s Setting discard fraction to %.2f\n", spacer, sumssParams.discardFraction); |
---|
1556 | expecting = Expecting(PARAMETER) | Expecting(SEMICOLON); |
---|
1557 | } |
---|
1558 | else |
---|
1559 | { |
---|
1560 | return (ERROR); |
---|
1561 | } |
---|
1562 | } |
---|
1563 | else |
---|
1564 | return (ERROR); |
---|
1565 | } |
---|
1566 | |
---|
1567 | return (NO_ERROR); |
---|
1568 | |
---|
1569 | } |
---|
1570 | |
---|
1571 | |
---|
1572 | |
---|
1573 | |
---|
1574 | |
---|
1575 | /* ExamineSumpFile: Collect info on the parameter samples in the file */ |
---|
1576 | int ExamineSumpFile (char *fileName, SumpFileInfo *fileInfo, char ***headerNames, int *nHeaders) |
---|
1577 | { |
---|
1578 | char *sumpTokenP, sumpToken[CMD_STRING_LENGTH], *s=NULL, *headerLine, *t; |
---|
1579 | int i, lineTerm, inSumpComment, lineNum, lastNonDigitLine, numParamLines, allDigitLine, |
---|
1580 | lastTokenWasDash, nNumbersOnThisLine, tokenType, burnin, nLines, firstNumCols, |
---|
1581 | numRows, numColumns; |
---|
1582 | MrBFlt tempD; |
---|
1583 | FILE *fp = NULL; |
---|
1584 | |
---|
1585 | |
---|
1586 | /* open binary file */ |
---|
1587 | if ((fp = OpenBinaryFileR(fileName)) == NULL) |
---|
1588 | { |
---|
1589 | /* test for some simple errors */ |
---|
1590 | if (strlen(sumpParams.sumpFileName) > 2) |
---|
1591 | { |
---|
1592 | s = sumpParams.sumpFileName + (int) strlen(sumpParams.sumpFileName) - 2; |
---|
1593 | if (strcmp(s, ".p") == 0) |
---|
1594 | { |
---|
1595 | MrBayesPrint ("%s It appears that you need to remove '.p' from the 'Filename' parameter\n", spacer); |
---|
1596 | MrBayesPrint ("%s Also make sure that 'Nruns' is set correctly\n", spacer); |
---|
1597 | return ERROR; |
---|
1598 | } |
---|
1599 | } |
---|
1600 | MrBayesPrint ("%s Make sure that 'Nruns' is set correctly\n", spacer); |
---|
1601 | return ERROR; |
---|
1602 | } |
---|
1603 | |
---|
1604 | /* find out what type of line termination is used */ |
---|
1605 | lineTerm = LineTermType (fp); |
---|
1606 | if (lineTerm != LINETERM_MAC && lineTerm != LINETERM_DOS && lineTerm != LINETERM_UNIX) |
---|
1607 | { |
---|
1608 | MrBayesPrint ("%s Unknown line termination\n", spacer); |
---|
1609 | goto errorExit; |
---|
1610 | } |
---|
1611 | |
---|
1612 | /* find length of longest line */ |
---|
1613 | fileInfo->longestLineLength = LongestLine (fp); |
---|
1614 | fileInfo->longestLineLength += 10; /* better safe than sorry; if you fgets with raw longestLineLength, you run into problems */ |
---|
1615 | |
---|
1616 | /* allocate string long enough to hold a line */ |
---|
1617 | s = (char *)SafeMalloc((size_t) (2*(fileInfo->longestLineLength + 10) * sizeof(char))); |
---|
1618 | if (!s) |
---|
1619 | { |
---|
1620 | MrBayesPrint ("%s Problem allocating string for reading sump file\n", spacer); |
---|
1621 | goto errorExit; |
---|
1622 | } |
---|
1623 | headerLine = s + fileInfo->longestLineLength + 10; |
---|
1624 | |
---|
1625 | /* close binary file */ |
---|
1626 | SafeFclose (&fp); |
---|
1627 | |
---|
1628 | /* open text file */ |
---|
1629 | if ((fp = OpenTextFileR(fileName)) == NULL) |
---|
1630 | goto errorExit; |
---|
1631 | |
---|
1632 | /* Check file for appropriate blocks. We want to find the last block |
---|
1633 | in the file and start from there. */ |
---|
1634 | inSumpComment = NO; |
---|
1635 | lineNum = lastNonDigitLine = numParamLines = 0; |
---|
1636 | while (fgets (s, fileInfo->longestLineLength + 2, fp) != NULL) |
---|
1637 | { |
---|
1638 | sumpTokenP = &s[0]; |
---|
1639 | allDigitLine = YES; |
---|
1640 | lastTokenWasDash = NO; |
---|
1641 | nNumbersOnThisLine = 0; |
---|
1642 | do { |
---|
1643 | if(GetToken (sumpToken, &tokenType, &sumpTokenP)) |
---|
1644 | goto errorExit; |
---|
1645 | /*printf ("%s (%d)\n", sumpToken, tokenType);*/ |
---|
1646 | if (IsSame("[", sumpToken) == SAME) |
---|
1647 | inSumpComment = YES; |
---|
1648 | if (IsSame("]", sumpToken) == SAME) |
---|
1649 | inSumpComment = NO; |
---|
1650 | |
---|
1651 | if (inSumpComment == NO) |
---|
1652 | { |
---|
1653 | if (tokenType == NUMBER) |
---|
1654 | { |
---|
1655 | sscanf (sumpToken, "%lf", &tempD); |
---|
1656 | if (lastTokenWasDash == YES) |
---|
1657 | tempD *= -1.0; |
---|
1658 | nNumbersOnThisLine++; |
---|
1659 | lastTokenWasDash = NO; |
---|
1660 | } |
---|
1661 | else if (tokenType == DASH) |
---|
1662 | { |
---|
1663 | lastTokenWasDash = YES; |
---|
1664 | } |
---|
1665 | else if (tokenType != UNKNOWN_TOKEN_TYPE) |
---|
1666 | { |
---|
1667 | allDigitLine = NO; |
---|
1668 | lastTokenWasDash = NO; |
---|
1669 | } |
---|
1670 | } |
---|
1671 | } while (*sumpToken); |
---|
1672 | lineNum++; |
---|
1673 | |
---|
1674 | if (allDigitLine == NO) |
---|
1675 | { |
---|
1676 | lastNonDigitLine = lineNum; |
---|
1677 | numParamLines = 0; |
---|
1678 | } |
---|
1679 | else |
---|
1680 | { |
---|
1681 | if (nNumbersOnThisLine > 0) |
---|
1682 | numParamLines++; |
---|
1683 | } |
---|
1684 | } |
---|
1685 | |
---|
1686 | /* Now, check some aspects of the .p file. */ |
---|
1687 | if (inSumpComment == YES) |
---|
1688 | { |
---|
1689 | MrBayesPrint ("%s Unterminated comment in file \"%s\"\n", spacer, fileName); |
---|
1690 | goto errorExit; |
---|
1691 | } |
---|
1692 | if (numParamLines <= 0) |
---|
1693 | { |
---|
1694 | MrBayesPrint ("%s No parameters were found in file or there characters not representing a number in last string of the file.\"%s\"\n", spacer, fileName); |
---|
1695 | goto errorExit; |
---|
1696 | } |
---|
1697 | |
---|
1698 | /* calculate burnin */ |
---|
1699 | if ( chainParams.isSS == YES ) |
---|
1700 | { |
---|
1701 | burnin = 0; |
---|
1702 | } |
---|
1703 | else |
---|
1704 | { |
---|
1705 | if (chainParams.relativeBurnin == YES) |
---|
1706 | burnin = (int) (chainParams.burninFraction * numParamLines); |
---|
1707 | else |
---|
1708 | burnin = chainParams.chainBurnIn; |
---|
1709 | } |
---|
1710 | |
---|
1711 | /* check against burnin */ |
---|
1712 | if (burnin > numParamLines) |
---|
1713 | { |
---|
1714 | MrBayesPrint ("%s No parameters can be sampled from file %s as the burnin (%d) exceeds the number of lines in last block (%d)\n", |
---|
1715 | spacer, fileName, burnin, numParamLines); |
---|
1716 | MrBayesPrint ("%s Try setting burnin to a number less than %d\n", spacer, numParamLines); |
---|
1717 | goto errorExit; |
---|
1718 | } |
---|
1719 | |
---|
1720 | /* Set some info in fileInfo */ |
---|
1721 | fileInfo->firstParamLine = lastNonDigitLine + burnin; |
---|
1722 | fileInfo->headerLine = lastNonDigitLine; |
---|
1723 | |
---|
1724 | /* Calculate and check the number of columns and rows for the file; get header line at the same time */ |
---|
1725 | (void)fseek(fp, 0L, 0); |
---|
1726 | for (lineNum=0; lineNum<lastNonDigitLine; lineNum++) |
---|
1727 | if(fgets (s, fileInfo->longestLineLength + 2, fp)==NULL) |
---|
1728 | goto errorExit; |
---|
1729 | strcpy(headerLine, s); |
---|
1730 | for (; lineNum < lastNonDigitLine+burnin; lineNum++) |
---|
1731 | if(fgets (s, fileInfo->longestLineLength + 2, fp)==NULL) |
---|
1732 | goto errorExit; |
---|
1733 | |
---|
1734 | inSumpComment = NO; |
---|
1735 | nLines = 0; |
---|
1736 | numRows = numColumns = firstNumCols = 0; |
---|
1737 | while (fgets (s, fileInfo->longestLineLength + 2, fp) != NULL) |
---|
1738 | { |
---|
1739 | sumpTokenP = &s[0]; |
---|
1740 | allDigitLine = YES; |
---|
1741 | lastTokenWasDash = NO; |
---|
1742 | nNumbersOnThisLine = 0; |
---|
1743 | do { |
---|
1744 | if(GetToken (sumpToken, &tokenType, &sumpTokenP)) |
---|
1745 | goto errorExit; |
---|
1746 | if (IsSame("[", sumpToken) == SAME) |
---|
1747 | inSumpComment = YES; |
---|
1748 | if (IsSame("]", sumpToken) == SAME) |
---|
1749 | inSumpComment = NO; |
---|
1750 | if (inSumpComment == NO) |
---|
1751 | { |
---|
1752 | if (tokenType == NUMBER) |
---|
1753 | { |
---|
1754 | nNumbersOnThisLine++; |
---|
1755 | lastTokenWasDash = NO; |
---|
1756 | } |
---|
1757 | else if (tokenType == DASH) |
---|
1758 | { |
---|
1759 | lastTokenWasDash = YES; |
---|
1760 | } |
---|
1761 | else if (tokenType != UNKNOWN_TOKEN_TYPE) |
---|
1762 | { |
---|
1763 | allDigitLine = NO; |
---|
1764 | lastTokenWasDash = NO; |
---|
1765 | } |
---|
1766 | } |
---|
1767 | } while (*sumpToken); |
---|
1768 | lineNum++; |
---|
1769 | if (allDigitLine == NO) |
---|
1770 | { |
---|
1771 | MrBayesPrint ("%s Found a line with non-digit characters (line %d) in file %s\n", spacer, lineNum, fileName); |
---|
1772 | goto errorExit; |
---|
1773 | } |
---|
1774 | else |
---|
1775 | { |
---|
1776 | if (nNumbersOnThisLine > 0) |
---|
1777 | { |
---|
1778 | nLines++; |
---|
1779 | if (nLines == 1) |
---|
1780 | firstNumCols = nNumbersOnThisLine; |
---|
1781 | else |
---|
1782 | { |
---|
1783 | if (nNumbersOnThisLine != firstNumCols) |
---|
1784 | { |
---|
1785 | MrBayesPrint ("%s Number of columns is not even (%d in first line and %d in %d line of file %s)\n", spacer, firstNumCols, nNumbersOnThisLine, lineNum, fileName); |
---|
1786 | goto errorExit; |
---|
1787 | } |
---|
1788 | } |
---|
1789 | } |
---|
1790 | } |
---|
1791 | } |
---|
1792 | fileInfo->numRows = nLines; |
---|
1793 | fileInfo->numColumns = firstNumCols; |
---|
1794 | |
---|
1795 | /* set or check headers */ |
---|
1796 | if ((*headerNames) == NULL) |
---|
1797 | { |
---|
1798 | GetHeaders (headerNames, headerLine, nHeaders); |
---|
1799 | if (*nHeaders != fileInfo->numColumns) |
---|
1800 | { |
---|
1801 | MrBayesPrint ("%s Expected %d headers but found %d headers\n", spacer, fileInfo->numColumns, *nHeaders); |
---|
1802 | for (i=0; i<*nHeaders; i++) |
---|
1803 | SafeFree ((void **) &((*headerNames)[i])); |
---|
1804 | SafeFree ((void **) &(*headerNames)); |
---|
1805 | *nHeaders=0; |
---|
1806 | goto errorExit; |
---|
1807 | } |
---|
1808 | } |
---|
1809 | else |
---|
1810 | { |
---|
1811 | if (*nHeaders != fileInfo->numColumns) |
---|
1812 | { |
---|
1813 | MrBayesPrint ("%s Expected %d columns but found %d columns\n", spacer, *nHeaders, fileInfo->numColumns); |
---|
1814 | goto errorExit; |
---|
1815 | } |
---|
1816 | for (i=0, t=strtok(headerLine,"\t\n\r"); t!=NULL; t=strtok(NULL,"\t\n\r"), i++) |
---|
1817 | { |
---|
1818 | if (i == *nHeaders) |
---|
1819 | { |
---|
1820 | MrBayesPrint ("%s Expected %d headers but found more headers.\n", |
---|
1821 | spacer, fileInfo->numColumns); |
---|
1822 | goto errorExit; |
---|
1823 | } |
---|
1824 | if (strcmp(t,(*headerNames)[i])!=0) |
---|
1825 | { |
---|
1826 | MrBayesPrint ("%s Expected header '%s' for column %d but the header for this column was '%s' in file '%s'\n", spacer, (*headerNames)[i], i+1, t, fileName); |
---|
1827 | MrBayesPrint ("%s It could be that some paramiter values are not numbers and the whole string containing \n",spacer); |
---|
1828 | MrBayesPrint ("%s this wrongly formated paramiter is treated as a header.\n",spacer); |
---|
1829 | goto errorExit; |
---|
1830 | } |
---|
1831 | } |
---|
1832 | if (t != NULL) |
---|
1833 | { |
---|
1834 | MrBayesPrint ("%s Expected %d headers but found more headers.\n",spacer, fileInfo->numColumns); |
---|
1835 | goto errorExit; |
---|
1836 | } |
---|
1837 | if (i < *nHeaders) |
---|
1838 | { |
---|
1839 | MrBayesPrint ("%s Expected header '%s' for column %d but the header for this column was '%s' in file '%s'\n", |
---|
1840 | spacer, (*headerNames)[i], i+1, t, fileName); |
---|
1841 | goto errorExit; |
---|
1842 | } |
---|
1843 | } |
---|
1844 | |
---|
1845 | free (s); |
---|
1846 | fclose(fp); |
---|
1847 | return (NO_ERROR); |
---|
1848 | |
---|
1849 | errorExit: |
---|
1850 | |
---|
1851 | free(s); |
---|
1852 | fclose(fp); |
---|
1853 | return (ERROR); |
---|
1854 | } |
---|
1855 | |
---|
1856 | |
---|
1857 | |
---|
1858 | |
---|
1859 | |
---|
1860 | /*************************************************** |
---|
1861 | | |
---|
1862 | | FindHeader: Find token in list |
---|
1863 | | |
---|
1864 | ----------------------------------------------------*/ |
---|
1865 | int FindHeader (char *token, char **headerNames, int nHeaders, int *index) |
---|
1866 | { |
---|
1867 | int i, match=0, nMatches; |
---|
1868 | |
---|
1869 | *index = -1; |
---|
1870 | nMatches = 0; |
---|
1871 | for (i=0; i<nHeaders; i++) |
---|
1872 | { |
---|
1873 | if (!strcmp(token,headerNames[i])) |
---|
1874 | { |
---|
1875 | nMatches++; |
---|
1876 | match = i; |
---|
1877 | } |
---|
1878 | } |
---|
1879 | |
---|
1880 | if (nMatches != 1) |
---|
1881 | return (ERROR); |
---|
1882 | |
---|
1883 | *index = match; |
---|
1884 | return (NO_ERROR); |
---|
1885 | } |
---|
1886 | |
---|
1887 | |
---|
1888 | |
---|
1889 | |
---|
1890 | |
---|
1891 | /* FreeParameterSamples: Free parameter samples space */ |
---|
1892 | void FreeParameterSamples (ParameterSample *parameterSamples) |
---|
1893 | { |
---|
1894 | if (parameterSamples != NULL) |
---|
1895 | { |
---|
1896 | free (parameterSamples[0].values[0]); |
---|
1897 | free (parameterSamples[0].values); |
---|
1898 | free (parameterSamples); |
---|
1899 | } |
---|
1900 | } |
---|
1901 | |
---|
1902 | |
---|
1903 | |
---|
1904 | |
---|
1905 | |
---|
1906 | /*************************************************** |
---|
1907 | | |
---|
1908 | | GetHeaders: Get headers from headerLine and put |
---|
1909 | | them in list while updating nHeaders to reflect |
---|
1910 | | the number of headers |
---|
1911 | | |
---|
1912 | ----------------------------------------------------*/ |
---|
1913 | int GetHeaders (char ***headerNames, char *headerLine, int *nHeaders) |
---|
1914 | { |
---|
1915 | char *s; |
---|
1916 | |
---|
1917 | (*nHeaders) = 0; |
---|
1918 | for (s=strtok(headerLine," \t\n\r"); s!=NULL; s=strtok(NULL," \t\n\r")) |
---|
1919 | { |
---|
1920 | if (AddString (headerNames, *nHeaders, s) == ERROR) |
---|
1921 | { |
---|
1922 | MrBayesPrint ("%s Error adding header to list of headers \n", spacer, s); |
---|
1923 | return ERROR; |
---|
1924 | } |
---|
1925 | (*nHeaders)++; |
---|
1926 | } |
---|
1927 | |
---|
1928 | # if 0 |
---|
1929 | for (i=0; i<(*nHeaders); i++) |
---|
1930 | printf ("%4d -> '%s'\n", i, headerNames[i]); |
---|
1931 | # endif |
---|
1932 | |
---|
1933 | return (NO_ERROR); |
---|
1934 | } |
---|
1935 | |
---|
1936 | |
---|
1937 | |
---|
1938 | |
---|
1939 | |
---|
1940 | /* PrintMargLikes: Print marginal likelihoods to screen and to .lstat file */ |
---|
1941 | int PrintMargLikes (char *fileName, char **headerNames, int nHeaders, ParameterSample *parameterSamples, int nRuns, int nSamples) |
---|
1942 | { |
---|
1943 | int i, j, len, longestHeader, *sampleCounts=NULL; |
---|
1944 | char temp[100]; |
---|
1945 | Stat theStats; |
---|
1946 | FILE *fp; |
---|
1947 | |
---|
1948 | /* calculate longest header */ |
---|
1949 | longestHeader = 9; /* length of 'parameter' */ |
---|
1950 | for (i=0; i<nHeaders; i++) |
---|
1951 | { |
---|
1952 | strcpy (temp, headerNames[i]); |
---|
1953 | len = (int) strlen(temp); |
---|
1954 | for (j=0; modelIndicatorParams[j][0]!='\0'; j++) |
---|
1955 | if (IsSame (temp,modelIndicatorParams[j]) != DIFFERENT) |
---|
1956 | break; |
---|
1957 | if (modelIndicatorParams[j][0]!='\0') |
---|
1958 | continue; |
---|
1959 | if (!strcmp (temp, "Gen")) |
---|
1960 | continue; |
---|
1961 | if (!strcmp (temp, "lnL") == SAME) |
---|
1962 | continue; |
---|
1963 | if (len > longestHeader) |
---|
1964 | longestHeader = len; |
---|
1965 | } |
---|
1966 | |
---|
1967 | /* open output file */ |
---|
1968 | strncpy (temp, fileName, 90); |
---|
1969 | strcat (temp, ".pstat"); |
---|
1970 | fp = OpenNewMBPrintFile (temp); |
---|
1971 | if (!fp) |
---|
1972 | return ERROR; |
---|
1973 | |
---|
1974 | /* print unique identifier to the output file */ |
---|
1975 | if (strlen(stamp) > 1) |
---|
1976 | fprintf (fp, "[ID: %s]\n", stamp); |
---|
1977 | |
---|
1978 | /* allocate and set nSamples */ |
---|
1979 | sampleCounts = (int *) SafeCalloc (nRuns, sizeof(int)); |
---|
1980 | if (!sampleCounts) |
---|
1981 | { |
---|
1982 | fclose(fp); |
---|
1983 | return ERROR; |
---|
1984 | } |
---|
1985 | for (i=0; i<nRuns; i++) |
---|
1986 | sampleCounts[i] = nSamples; |
---|
1987 | |
---|
1988 | /* print the header rows */ |
---|
1989 | MrBayesPrint("\n"); |
---|
1990 | if (sumpParams.HPD == YES) |
---|
1991 | MrBayesPrint ("%s %*c 95%% HPD Interval\n", spacer, longestHeader, ' '); |
---|
1992 | else |
---|
1993 | MrBayesPrint ("%s %*c 95%% Cred. Interval\n", spacer, longestHeader, ' '); |
---|
1994 | MrBayesPrint ("%s %*c --------------------\n", spacer, longestHeader, ' '); |
---|
1995 | |
---|
1996 | MrBayesPrint ("%s Parameter%*c Mean Variance Lower Upper Median", spacer, longestHeader-9, ' '); |
---|
1997 | if (nRuns > 1) |
---|
1998 | MrBayesPrint (" PSRF+ "); |
---|
1999 | MrBayesPrint ("\n"); |
---|
2000 | |
---|
2001 | MrBayesPrint ("%s ", spacer); |
---|
2002 | for (j=0; j<longestHeader+1; j++) |
---|
2003 | MrBayesPrint ("-"); |
---|
2004 | MrBayesPrint ("-----------------------------------------------------------"); |
---|
2005 | if (nRuns > 1) |
---|
2006 | MrBayesPrint ("----------"); |
---|
2007 | MrBayesPrint ("\n"); |
---|
2008 | if (nRuns > 1) |
---|
2009 | MrBayesPrintf (fp, "Parameter\tMean\tVariance\tLower\tUpper\tMedian\tPSRF\n"); |
---|
2010 | else |
---|
2011 | MrBayesPrintf (fp, "Parameter\tMean\tVariance\tLower\tUpper\tMedian\n"); |
---|
2012 | |
---|
2013 | /* print table values */ |
---|
2014 | for (i=0; i<nHeaders; i++) |
---|
2015 | { |
---|
2016 | strcpy (temp, headerNames[i]); |
---|
2017 | len = (int) strlen(temp); |
---|
2018 | for (j=0; modelIndicatorParams[j][0]!='\0'; j++) |
---|
2019 | if (IsSame (temp,modelIndicatorParams[j]) != DIFFERENT) |
---|
2020 | break; |
---|
2021 | if (IsSame (temp, "Gen") == SAME) |
---|
2022 | continue; |
---|
2023 | if (IsSame (temp, "lnL") == SAME) |
---|
2024 | continue; |
---|
2025 | |
---|
2026 | GetSummary (parameterSamples[i].values, nRuns, sampleCounts, &theStats, sumpParams.HPD); |
---|
2027 | |
---|
2028 | MrBayesPrint ("%s %-*s ", spacer, longestHeader, temp); |
---|
2029 | MrBayesPrint ("%10.6lf %10.6lf %10.6lf %10.6lf %10.6lf", theStats.mean, theStats.var, theStats.lower, theStats.upper, theStats.median); |
---|
2030 | MrBayesPrintf (fp, "%s", temp); |
---|
2031 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.mean)); |
---|
2032 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.var)); |
---|
2033 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.lower)); |
---|
2034 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.upper)); |
---|
2035 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.median)); |
---|
2036 | if (nRuns > 1) |
---|
2037 | { |
---|
2038 | if (theStats.PSRF < 0.0) |
---|
2039 | { |
---|
2040 | MrBayesPrint (" NA "); |
---|
2041 | MrBayesPrintf (fp, "NA"); |
---|
2042 | } |
---|
2043 | else |
---|
2044 | { |
---|
2045 | MrBayesPrint (" %7.3lf", theStats.PSRF); |
---|
2046 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.PSRF)); |
---|
2047 | } |
---|
2048 | } |
---|
2049 | MrBayesPrint ("\n"); |
---|
2050 | MrBayesPrintf (fp, "\n"); |
---|
2051 | } |
---|
2052 | MrBayesPrint ("%s ", spacer); |
---|
2053 | for (j=0; j<longestHeader+1; j++) |
---|
2054 | MrBayesPrint ("-"); |
---|
2055 | MrBayesPrint ("-----------------------------------------------------------"); |
---|
2056 | if (nRuns > 1) |
---|
2057 | MrBayesPrint ("----------"); |
---|
2058 | MrBayesPrint ("\n"); |
---|
2059 | if (nRuns > 1) |
---|
2060 | { |
---|
2061 | MrBayesPrint ("%s + Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman\n", spacer); |
---|
2062 | MrBayesPrint ("%s and Rubin, 1992) should approach 1.0 as runs converge.\n", spacer); |
---|
2063 | } |
---|
2064 | |
---|
2065 | fclose (fp); |
---|
2066 | free (sampleCounts); |
---|
2067 | |
---|
2068 | return (NO_ERROR); |
---|
2069 | } |
---|
2070 | |
---|
2071 | |
---|
2072 | |
---|
2073 | |
---|
2074 | |
---|
2075 | /* PrintModelStats: Print model stats to screen and to .mstat file */ |
---|
2076 | int PrintModelStats (char *fileName, char **headerNames, int nHeaders, ParameterSample *parameterSamples, int nRuns, int nSamples) |
---|
2077 | { |
---|
2078 | int i, j, j1, j2, k, longestName, nElements, *modelCounts=NULL; |
---|
2079 | MrBFlt f, *prob=NULL, *sum=NULL, *ssq=NULL, *min=NULL, *max=NULL, *stddev=NULL; |
---|
2080 | char temp[100]; |
---|
2081 | FILE *fp; |
---|
2082 | ModelProb *elem = NULL; |
---|
2083 | |
---|
2084 | /* nHeaders - is a convenient synonym for number of column headers */ |
---|
2085 | |
---|
2086 | /* check if we have any model indicator variables and also check for longest header */ |
---|
2087 | k = 0; |
---|
2088 | longestName = 0; |
---|
2089 | for (i=0; i<nHeaders; i++) |
---|
2090 | { |
---|
2091 | for (j=0; strcmp(modelIndicatorParams[j],"")!=0; j++) |
---|
2092 | { |
---|
2093 | if (IsSame (headerNames[i], modelIndicatorParams[j]) != DIFFERENT) |
---|
2094 | { |
---|
2095 | k++; |
---|
2096 | for (j1=0; strcmp(modelElementNames[j][j1],"")!=0; j1++) |
---|
2097 | { |
---|
2098 | j2 = (int)(strlen(headerNames[i]) + 2 + strlen(modelElementNames[j][j1])); |
---|
2099 | if (j2 > longestName) |
---|
2100 | longestName = j2; |
---|
2101 | } |
---|
2102 | break; |
---|
2103 | } |
---|
2104 | } |
---|
2105 | } |
---|
2106 | |
---|
2107 | /* return if nothing to do */ |
---|
2108 | if (k==0) |
---|
2109 | return NO_ERROR; |
---|
2110 | |
---|
2111 | /* open output file */ |
---|
2112 | MrBayesPrint ("%s Model probabilities above %1.3lf\n", spacer, sumpParams.minProb); |
---|
2113 | MrBayesPrint ("%s Estimates saved to file \"%s.mstat\".\n", spacer, sumpParams.sumpOutfile); |
---|
2114 | strncpy (temp,fileName,90); |
---|
2115 | strcat (temp, ".mstat"); |
---|
2116 | fp = OpenNewMBPrintFile(temp); |
---|
2117 | if (!fp) |
---|
2118 | return ERROR; |
---|
2119 | MrBayesPrint ("\n"); |
---|
2120 | |
---|
2121 | /* print unique identifier to the output file */ |
---|
2122 | if (strlen(stamp) > 1) |
---|
2123 | fprintf (fp, "[ID: %s]\n", stamp); |
---|
2124 | |
---|
2125 | /* print header */ |
---|
2126 | MrBayesPrintf (fp, "\n\n"); |
---|
2127 | if (nRuns == 1) |
---|
2128 | { |
---|
2129 | MrBayesPrint ("%s %*c Posterior\n", spacer, longestName-5, ' '); |
---|
2130 | MrBayesPrint ("%s Model%*c Probability\n", spacer, longestName-5, ' '); |
---|
2131 | MrBayesPrint ("%s -----", spacer); |
---|
2132 | for (i=0; i<longestName-5; i++) |
---|
2133 | MrBayesPrint ("-"); |
---|
2134 | MrBayesPrint ("------------------\n"); |
---|
2135 | MrBayesPrintf (fp, "Model\tProbability\n"); |
---|
2136 | } |
---|
2137 | else |
---|
2138 | { |
---|
2139 | MrBayesPrint ("%s %*c Posterior Standard Min. Max. \n", spacer, longestName-5, ' '); |
---|
2140 | MrBayesPrint ("%s Model%*c Probability Deviation Probability Probability\n", spacer, longestName-5, ' '); |
---|
2141 | MrBayesPrint ("%s -----", spacer); |
---|
2142 | for (i=0; i<longestName-5; i++) |
---|
2143 | MrBayesPrint ("-"); |
---|
2144 | MrBayesPrint ("---------------------------------------------------------------\n"); |
---|
2145 | MrBayesPrintf (fp, "Model\tProbability\tStd_dev\tMin_prob\tMax_prob\n"); |
---|
2146 | } |
---|
2147 | |
---|
2148 | /* calculate and print values */ |
---|
2149 | for (i=0; i<nHeaders; i++) |
---|
2150 | { |
---|
2151 | for (j=0; modelIndicatorParams[j][0]!='\0'; j++) |
---|
2152 | if (IsSame (headerNames[i], modelIndicatorParams[j]) != DIFFERENT) |
---|
2153 | break; |
---|
2154 | if (modelIndicatorParams[j][0] == '\0') |
---|
2155 | continue; |
---|
2156 | |
---|
2157 | for (nElements=0; modelElementNames[j][nElements][0]!='\0'; nElements++) |
---|
2158 | ; |
---|
2159 | |
---|
2160 | modelCounts = (int *) SafeCalloc (nElements, sizeof(int)); |
---|
2161 | if (!modelCounts) |
---|
2162 | { |
---|
2163 | fclose(fp); |
---|
2164 | return ERROR; |
---|
2165 | } |
---|
2166 | prob = (MrBFlt *) SafeCalloc (6*nElements, sizeof(MrBFlt)); |
---|
2167 | if (!prob) |
---|
2168 | { |
---|
2169 | free (modelCounts); |
---|
2170 | fclose (fp); |
---|
2171 | return ERROR; |
---|
2172 | } |
---|
2173 | sum = prob + nElements; |
---|
2174 | ssq = prob + 2*nElements; |
---|
2175 | stddev = prob + 3*nElements; |
---|
2176 | min = prob + 4*nElements; |
---|
2177 | max = prob + 5*nElements; |
---|
2178 | |
---|
2179 | for (j1=0; j1<nElements; j1++) |
---|
2180 | min[j1] = 1.0; |
---|
2181 | |
---|
2182 | for (j1=0; j1<nRuns; j1++) |
---|
2183 | { |
---|
2184 | for (j2=0; j2<nElements; j2++) |
---|
2185 | modelCounts[j2] = 0; |
---|
2186 | for (j2=0; j2<nSamples; j2++) |
---|
2187 | modelCounts[(int)(parameterSamples[i].values[j1][j2] + 0.1)]++; |
---|
2188 | for (j2=0; j2<nElements; j2++) |
---|
2189 | { |
---|
2190 | f = (MrBFlt) modelCounts[j2] / (MrBFlt) nSamples; |
---|
2191 | sum[j2] += f; |
---|
2192 | ssq[j2] += f*f; |
---|
2193 | if (f<min[j2]) |
---|
2194 | min[j2] = f; |
---|
2195 | if (f > max[j2]) |
---|
2196 | max[j2] = f; |
---|
2197 | } |
---|
2198 | } |
---|
2199 | |
---|
2200 | for (j1=0; j1<nElements; j1++) |
---|
2201 | { |
---|
2202 | prob[j1] = sum[j1] / (MrBFlt) nRuns; |
---|
2203 | f = ssq[j1] - (sum[j1] * sum[j1] / (MrBFlt) nRuns); |
---|
2204 | f /= (nRuns - 1); |
---|
2205 | if (f <= 0.0) |
---|
2206 | stddev[j1] = 0.0; |
---|
2207 | else |
---|
2208 | stddev[j1] = sqrt (f); |
---|
2209 | } |
---|
2210 | |
---|
2211 | elem = (ModelProb *) SafeCalloc (nElements, sizeof(ModelProb)); |
---|
2212 | for (j1=0; j1<nElements; j1++) |
---|
2213 | { |
---|
2214 | elem[j1].index = j1; |
---|
2215 | elem[j1].prob = prob[j1]; |
---|
2216 | } |
---|
2217 | |
---|
2218 | /* sort in terms of decreasing probabilities */ |
---|
2219 | qsort((void *) elem, (size_t) nElements, (size_t) sizeof(ModelProb), CompareModelProbs); |
---|
2220 | |
---|
2221 | for (j1=0; j1<nElements; j1++) |
---|
2222 | { |
---|
2223 | if (elem[j1].prob <= sumpParams.minProb) |
---|
2224 | break; |
---|
2225 | |
---|
2226 | if (nRuns == 1) |
---|
2227 | { |
---|
2228 | sprintf (temp, "%s[%s]", headerNames[i], modelElementNames[j][elem[j1].index]); |
---|
2229 | MrBayesPrint ("%s %-*s %1.3lf\n", spacer, longestName, temp, prob[elem[j1].index]); |
---|
2230 | MrBayesPrintf (fp, "%s\t%s\n", temp, MbPrintNum(prob[elem[j1].index])); |
---|
2231 | } |
---|
2232 | else /* if (nRuns > 1) */ |
---|
2233 | { |
---|
2234 | sprintf (temp, "%s[%s]", headerNames[i], modelElementNames[j][elem[j1].index]); |
---|
2235 | MrBayesPrint ("%s %-*s %1.3lf %1.3lf %1.3lf %1.3lf\n", |
---|
2236 | spacer, longestName, temp, prob[elem[j1].index], stddev[elem[j1].index], min[elem[j1].index], max[elem[j1].index]); |
---|
2237 | MrBayesPrintf (fp, "%s", temp); |
---|
2238 | MrBayesPrintf (fp, "\t%s", MbPrintNum(prob[elem[j1].index])); |
---|
2239 | MrBayesPrintf (fp, "\t%s", MbPrintNum(stddev[elem[j1].index])); |
---|
2240 | MrBayesPrintf (fp, "\t%s", MbPrintNum(min[elem[j1].index])); |
---|
2241 | MrBayesPrintf (fp, "\t%s", MbPrintNum(max[elem[j1].index])); |
---|
2242 | MrBayesPrintf (fp, "\n"); |
---|
2243 | } |
---|
2244 | } |
---|
2245 | free(elem); |
---|
2246 | elem = NULL; |
---|
2247 | free(modelCounts); |
---|
2248 | modelCounts = NULL; |
---|
2249 | free (prob); |
---|
2250 | prob = NULL; |
---|
2251 | } |
---|
2252 | |
---|
2253 | /* print footer */ |
---|
2254 | if (nRuns == 1) |
---|
2255 | { |
---|
2256 | MrBayesPrint ("%s -----", spacer); |
---|
2257 | for (i=0; i<longestName-5; i++) |
---|
2258 | MrBayesPrint ("-"); |
---|
2259 | MrBayesPrint ("------------------\n\n"); |
---|
2260 | } |
---|
2261 | else |
---|
2262 | { |
---|
2263 | MrBayesPrint ("%s -----", spacer); |
---|
2264 | for (i=0; i<longestName-5; i++) |
---|
2265 | MrBayesPrint ("-"); |
---|
2266 | MrBayesPrint ("---------------------------------------------------------------\n\n"); |
---|
2267 | } |
---|
2268 | |
---|
2269 | /* close output file */ |
---|
2270 | fclose (fp); |
---|
2271 | |
---|
2272 | return (NO_ERROR); |
---|
2273 | } |
---|
2274 | |
---|
2275 | |
---|
2276 | |
---|
2277 | |
---|
2278 | |
---|
2279 | /* PrintOverlayPlot: Print overlay x-y plot of log likelihood vs. generation for several runs */ |
---|
2280 | int PrintOverlayPlot (MrBFlt **xVals, MrBFlt **yVals, int nRuns, int startingFrom, int nSamples) |
---|
2281 | { |
---|
2282 | int i, j, k, k2, n, screenHeight, screenWidth, numY[60], width; |
---|
2283 | char plotSymbol[15][60]; |
---|
2284 | MrBFlt x, y, minX, maxX, minY, maxY, meanY[60]; |
---|
2285 | |
---|
2286 | if (nRuns == 2) |
---|
2287 | MrBayesPrint ("\n%s Overlay plot for both runs:\n", spacer); |
---|
2288 | else |
---|
2289 | MrBayesPrint ("\n%s Overlay plot for all %d runs:\n", spacer, sumpParams.numRuns); |
---|
2290 | if (nRuns > 9) |
---|
2291 | MrBayesPrint ("%s (1 = Run number 1; 2 = Run number 2 etc.; x = Run number 10 or above; * = Several runs)\n", spacer); |
---|
2292 | else if (nRuns > 2) |
---|
2293 | MrBayesPrint ("%s (1 = Run number 1; 2 = Run number 2 etc.; * = Several runs)\n", spacer); |
---|
2294 | else |
---|
2295 | MrBayesPrint ("%s (1 = Run number 1; 2 = Run number 2; * = Both runs)\n", spacer); |
---|
2296 | |
---|
2297 | /* print overlay x-y plot of log likelihood vs. generation for all runs */ |
---|
2298 | screenWidth = 60; /* don't change this without changing numY, meanY, and plotSymbol declared above */ |
---|
2299 | screenHeight = 15; |
---|
2300 | |
---|
2301 | /* find minX, minY, maxX, and maxY over all runs */ |
---|
2302 | minX = minY = 1000000000.0; |
---|
2303 | maxX = maxY = -1000000000.0; |
---|
2304 | for (n=0; n<nRuns; n++) |
---|
2305 | { |
---|
2306 | for (i=startingFrom; i<startingFrom+nSamples; i++) |
---|
2307 | { |
---|
2308 | x = xVals[n][i]; |
---|
2309 | if (x < minX) |
---|
2310 | minX = x; |
---|
2311 | if (x > maxX) |
---|
2312 | maxX = x; |
---|
2313 | } |
---|
2314 | } |
---|
2315 | for (n=0; n<nRuns; n++) |
---|
2316 | { |
---|
2317 | y = 0.0; |
---|
2318 | j = 0; |
---|
2319 | k2 = 0; |
---|
2320 | for (i=startingFrom; i<startingFrom+nSamples; i++) |
---|
2321 | { |
---|
2322 | x = xVals[n][i]; |
---|
2323 | k = (int) (((x - minX) / (maxX - minX)) * screenWidth); |
---|
2324 | if (k <= 0) |
---|
2325 | k = 0; |
---|
2326 | if (k >= screenWidth) |
---|
2327 | k = screenWidth - 1; |
---|
2328 | if (k == j) |
---|
2329 | { |
---|
2330 | y += yVals[n][i]; |
---|
2331 | k2 ++; |
---|
2332 | } |
---|
2333 | else |
---|
2334 | { |
---|
2335 | y /= k2; |
---|
2336 | if (y < minY) |
---|
2337 | minY = y; |
---|
2338 | if (y > maxY) |
---|
2339 | maxY = y; |
---|
2340 | k2 = 1; |
---|
2341 | y = yVals[n][i]; |
---|
2342 | j++; |
---|
2343 | } |
---|
2344 | } |
---|
2345 | if (k2 > 0) |
---|
2346 | { |
---|
2347 | y /= k2; |
---|
2348 | if (y < minY) |
---|
2349 | minY = y; |
---|
2350 | if (y > maxY) |
---|
2351 | maxY = y; |
---|
2352 | } |
---|
2353 | } |
---|
2354 | |
---|
2355 | /* initialize the plot symbols */ |
---|
2356 | for (i=0; i<screenHeight; i++) |
---|
2357 | for (j=0; j<screenWidth; j++) |
---|
2358 | plotSymbol[i][j] = ' '; |
---|
2359 | |
---|
2360 | /* assemble the plot symbols */ |
---|
2361 | for (n=0; n<nRuns; n++) |
---|
2362 | { |
---|
2363 | /* find the plot points for this run */ |
---|
2364 | for (i=0; i<screenWidth; i++) |
---|
2365 | { |
---|
2366 | numY[i] = 0; |
---|
2367 | meanY[i] = 0.0; |
---|
2368 | } |
---|
2369 | for (i=startingFrom; i<startingFrom+nSamples; i++) |
---|
2370 | { |
---|
2371 | x = xVals[n][i]; |
---|
2372 | y = yVals[n][i]; |
---|
2373 | k = (int)(((x - minX) / (maxX - minX)) * screenWidth); |
---|
2374 | if (k >= screenWidth) |
---|
2375 | k = screenWidth - 1; |
---|
2376 | if (k <= 0) |
---|
2377 | k = 0; |
---|
2378 | meanY[k] += y; |
---|
2379 | numY[k]++; |
---|
2380 | } |
---|
2381 | |
---|
2382 | /* transfer these points to the overlay */ |
---|
2383 | for (i=0; i<screenWidth; i++) |
---|
2384 | { |
---|
2385 | if (numY[i] > 0) |
---|
2386 | { |
---|
2387 | k = (int) ((((meanY[i] / numY[i]) - minY)/ (maxY - minY)) * screenHeight); |
---|
2388 | if (k < 0) |
---|
2389 | k = 0; |
---|
2390 | else if (k >= screenHeight) |
---|
2391 | k = screenHeight - 1; |
---|
2392 | if (plotSymbol[k][i] == ' ') |
---|
2393 | { |
---|
2394 | if (n <= 8) |
---|
2395 | plotSymbol[k][i] = '1' + n; |
---|
2396 | else |
---|
2397 | plotSymbol[k][i] = 'x'; |
---|
2398 | } |
---|
2399 | else |
---|
2400 | plotSymbol[k][i] = '*'; |
---|
2401 | } |
---|
2402 | } |
---|
2403 | } /* next run */ |
---|
2404 | |
---|
2405 | /* now print the overlay plot */ |
---|
2406 | MrBayesPrint ("\n%s +", spacer); |
---|
2407 | for (i=0; i<screenWidth; i++) |
---|
2408 | MrBayesPrint ("-"); |
---|
2409 | MrBayesPrint ("+ %1.2lf\n", maxY); |
---|
2410 | for (i=screenHeight-1; i>=0; i--) |
---|
2411 | { |
---|
2412 | MrBayesPrint ("%s |", spacer); |
---|
2413 | for (j=0; j<screenWidth; j++) |
---|
2414 | { |
---|
2415 | MrBayesPrint ("%c", plotSymbol[i][j]); |
---|
2416 | } |
---|
2417 | MrBayesPrint ("|\n"); |
---|
2418 | } |
---|
2419 | MrBayesPrint ("%s +", spacer); |
---|
2420 | for (i=0; i<screenWidth; i++) |
---|
2421 | { |
---|
2422 | if (i % (screenWidth/10) == 0 && i != 0) |
---|
2423 | MrBayesPrint ("+"); |
---|
2424 | else |
---|
2425 | MrBayesPrint ("-"); |
---|
2426 | } |
---|
2427 | MrBayesPrint ("+ %1.2lf\n", minY); |
---|
2428 | MrBayesPrint ("%s ^", spacer); |
---|
2429 | for (i=0; i<screenWidth; i++) |
---|
2430 | MrBayesPrint (" "); |
---|
2431 | MrBayesPrint ("^\n"); |
---|
2432 | MrBayesPrint ("%s %1.0lf", spacer, minX); |
---|
2433 | if((int)minX>0) |
---|
2434 | width=(int)(log10(minX)); |
---|
2435 | else if((int)minX==0) |
---|
2436 | width=1; |
---|
2437 | else |
---|
2438 | width=(int)(log10(-minX))+1; |
---|
2439 | for (i=0; i<screenWidth-width; i++) |
---|
2440 | MrBayesPrint (" "); |
---|
2441 | MrBayesPrint ("%1.0lf\n\n", maxX); |
---|
2442 | |
---|
2443 | return (NO_ERROR); |
---|
2444 | } |
---|
2445 | |
---|
2446 | |
---|
2447 | |
---|
2448 | |
---|
2449 | |
---|
2450 | /* PrintParamStats: Print parameter table (not model indicator params) to screen and .pstat file */ |
---|
2451 | int PrintParamStats (char *fileName, char **headerNames, int nHeaders, ParameterSample *parameterSamples, int nRuns, int nSamples) |
---|
2452 | { |
---|
2453 | int i, j, len, longestHeader, *sampleCounts=NULL; |
---|
2454 | static char *temp=NULL; |
---|
2455 | char tempf[100]; |
---|
2456 | Stat theStats; |
---|
2457 | FILE *fp; |
---|
2458 | |
---|
2459 | /* calculate longest header */ |
---|
2460 | longestHeader = 9; /* length of 'parameter' */ |
---|
2461 | for (i=0; i<nHeaders; i++) |
---|
2462 | { |
---|
2463 | SafeStrcpy (&temp, headerNames[i]); |
---|
2464 | len = (int) strlen(temp); |
---|
2465 | for (j=0; modelIndicatorParams[j][0]!='\0'; j++) |
---|
2466 | if (IsSame (temp,modelIndicatorParams[j]) != DIFFERENT) |
---|
2467 | break; |
---|
2468 | if (modelIndicatorParams[j][0]!='\0') |
---|
2469 | continue; |
---|
2470 | if (!strcmp (temp, "Gen")) |
---|
2471 | continue; |
---|
2472 | if (!strcmp (temp, "lnL") == SAME) |
---|
2473 | continue; |
---|
2474 | if (len > longestHeader) |
---|
2475 | longestHeader = len; |
---|
2476 | } |
---|
2477 | |
---|
2478 | /* open output file */ |
---|
2479 | strncpy (tempf, fileName, 90); |
---|
2480 | strcat (tempf, ".pstat"); |
---|
2481 | fp = OpenNewMBPrintFile (tempf); |
---|
2482 | if (!fp) |
---|
2483 | return ERROR; |
---|
2484 | |
---|
2485 | /* print unique identifier to the output file */ |
---|
2486 | if (strlen(stamp) > 1) |
---|
2487 | fprintf (fp, "[ID: %s]\n", stamp); |
---|
2488 | |
---|
2489 | /* allocate and set nSamples */ |
---|
2490 | sampleCounts = (int *) SafeCalloc (nRuns, sizeof(int)); |
---|
2491 | if (!sampleCounts) |
---|
2492 | { |
---|
2493 | fclose(fp); |
---|
2494 | return ERROR; |
---|
2495 | } |
---|
2496 | for (i=0; i<nRuns; i++) |
---|
2497 | sampleCounts[i] = nSamples; |
---|
2498 | |
---|
2499 | /* print the header rows */ |
---|
2500 | MrBayesPrint("\n"); |
---|
2501 | if (sumpParams.HPD == YES) |
---|
2502 | MrBayesPrint ("%s %*c 95%% HPD Interval\n", spacer, longestHeader, ' '); |
---|
2503 | else |
---|
2504 | MrBayesPrint ("%s %*c 95%% Cred. Interval\n", spacer, longestHeader, ' '); |
---|
2505 | MrBayesPrint ("%s %*c --------------------\n", spacer, longestHeader, ' '); |
---|
2506 | |
---|
2507 | if (nRuns > 1) |
---|
2508 | MrBayesPrint ("%s Parameter%*c Mean Variance Lower Upper Median min ESS* avg ESS PSRF+ ", spacer, longestHeader-9, ' '); |
---|
2509 | else |
---|
2510 | MrBayesPrint ("%s Parameter%*c Mean Variance Lower Upper Median ESS*", spacer, longestHeader-9, ' '); |
---|
2511 | MrBayesPrint ("\n"); |
---|
2512 | |
---|
2513 | MrBayesPrint ("%s ", spacer); |
---|
2514 | for (j=0; j<longestHeader+1; j++) |
---|
2515 | MrBayesPrint ("-"); |
---|
2516 | MrBayesPrint ("---------------------------------------------------------------------"); |
---|
2517 | if (nRuns > 1) |
---|
2518 | MrBayesPrint ("-------------------"); |
---|
2519 | MrBayesPrint ("\n"); |
---|
2520 | if (nRuns > 1) |
---|
2521 | MrBayesPrintf (fp, "Parameter\tMean\tVariance\tLower\tUpper\tMedian\tminESS\tavgESS\tPSRF\n"); |
---|
2522 | else |
---|
2523 | MrBayesPrintf (fp, "Parameter\tMean\tVariance\tLower\tUpper\tMedian\tESS\n"); |
---|
2524 | |
---|
2525 | /* print table values */ |
---|
2526 | for (i=0; i<nHeaders; i++) |
---|
2527 | { |
---|
2528 | SafeStrcpy(&temp, headerNames[i]); |
---|
2529 | len = (int) strlen(temp); |
---|
2530 | for (j=0; modelIndicatorParams[j][0]!='\0'; j++) |
---|
2531 | if (IsSame (temp,modelIndicatorParams[j]) != DIFFERENT) |
---|
2532 | break; |
---|
2533 | if (modelIndicatorParams[j][0]!='\0') |
---|
2534 | continue; |
---|
2535 | if (IsSame (temp, "Gen") == SAME) |
---|
2536 | continue; |
---|
2537 | if (IsSame (temp, "lnL") == SAME) |
---|
2538 | continue; |
---|
2539 | |
---|
2540 | GetSummary (parameterSamples[i].values, nRuns, sampleCounts, &theStats, sumpParams.HPD); |
---|
2541 | |
---|
2542 | MrBayesPrint ("%s %-*s ", spacer, longestHeader, temp); |
---|
2543 | MrBayesPrint ("%10.6lf %10.6lf %10.6lf %10.6lf %10.6lf", theStats.mean, theStats.var, theStats.lower, theStats.upper, theStats.median); |
---|
2544 | MrBayesPrintf (fp, "%s", temp); |
---|
2545 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.mean)); |
---|
2546 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.var)); |
---|
2547 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.lower)); |
---|
2548 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.upper)); |
---|
2549 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.median)); |
---|
2550 | |
---|
2551 | if(theStats.minESS == theStats.minESS) |
---|
2552 | { |
---|
2553 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.minESS)); |
---|
2554 | MrBayesPrint (" %8.2lf", theStats.minESS); |
---|
2555 | } |
---|
2556 | else |
---|
2557 | { |
---|
2558 | MrBayesPrint (" NA "); |
---|
2559 | MrBayesPrintf (fp, "NA"); |
---|
2560 | } |
---|
2561 | if (nRuns > 1) |
---|
2562 | { |
---|
2563 | if(theStats.minESS == theStats.minESS) |
---|
2564 | { |
---|
2565 | MrBayesPrint (" %8.2lf", theStats.avrESS); |
---|
2566 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.avrESS)); |
---|
2567 | } |
---|
2568 | else |
---|
2569 | { |
---|
2570 | MrBayesPrint (" NA "); |
---|
2571 | MrBayesPrintf (fp, "NA"); |
---|
2572 | } |
---|
2573 | if (theStats.PSRF < 0.0) |
---|
2574 | { |
---|
2575 | MrBayesPrint (" NA "); |
---|
2576 | MrBayesPrintf (fp, "NA"); |
---|
2577 | } |
---|
2578 | else |
---|
2579 | { |
---|
2580 | MrBayesPrint (" %7.3lf", theStats.PSRF); |
---|
2581 | MrBayesPrintf (fp, "\t%s", MbPrintNum(theStats.PSRF)); |
---|
2582 | } |
---|
2583 | } |
---|
2584 | MrBayesPrint ("\n"); |
---|
2585 | MrBayesPrintf (fp, "\n"); |
---|
2586 | } |
---|
2587 | MrBayesPrint ("%s ", spacer); |
---|
2588 | for (j=0; j<longestHeader+1; j++) |
---|
2589 | MrBayesPrint ("-"); |
---|
2590 | MrBayesPrint ("---------------------------------------------------------------------"); |
---|
2591 | if (nRuns > 1) |
---|
2592 | MrBayesPrint ("-------------------"); |
---|
2593 | MrBayesPrint ("\n"); |
---|
2594 | if (nRuns > 1) |
---|
2595 | { |
---|
2596 | MrBayesPrint ("%s * Convergence diagnostic (ESS = Estimated Sample Size); min and avg values\n", spacer); |
---|
2597 | MrBayesPrint ("%s correspond to minimal and average ESS among runs. \n", spacer); |
---|
2598 | MrBayesPrint ("%s ESS value below 100 may indicate that the parameter is undersampled. \n", spacer); |
---|
2599 | MrBayesPrint ("%s + Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman\n", spacer); |
---|
2600 | MrBayesPrint ("%s and Rubin, 1992) should approach 1.0 as runs converge.\n", spacer); |
---|
2601 | } |
---|
2602 | else |
---|
2603 | { |
---|
2604 | MrBayesPrint ("%s * Convergence diagnostic (ESS = Estimated Sample Size); ESS value \n", spacer); |
---|
2605 | MrBayesPrint ("%s below 100 may indicate that the parameter is undersampled. \n", spacer); |
---|
2606 | } |
---|
2607 | MrBayesPrint ("\n\n"); |
---|
2608 | |
---|
2609 | fclose (fp); |
---|
2610 | free (sampleCounts); |
---|
2611 | SafeFree ((void **)&temp); |
---|
2612 | |
---|
2613 | return (NO_ERROR); |
---|
2614 | } |
---|
2615 | |
---|
2616 | |
---|
2617 | |
---|
2618 | |
---|
2619 | |
---|
2620 | /* PrintPlot: Print x-y plot of log likelihood vs. generation */ |
---|
2621 | int PrintPlot (MrBFlt *xVals, MrBFlt *yVals, int numVals) |
---|
2622 | { |
---|
2623 | int i, j, k, numY[60], screenWidth, screenHeight; |
---|
2624 | MrBFlt x, y, minX, maxX, minY, maxY, meanY[60], diff; |
---|
2625 | |
---|
2626 | /* print x-y plot of log likelihood vs. generation */ |
---|
2627 | screenWidth = 60; /* don't change this without changing numY and meanY, declared above */ |
---|
2628 | screenHeight = 15; |
---|
2629 | |
---|
2630 | /* find minX and maxX */ |
---|
2631 | minX = xVals[0]; |
---|
2632 | maxX = xVals[0]; |
---|
2633 | for (i=0; i<numVals; i++) |
---|
2634 | { |
---|
2635 | x = xVals[i]; |
---|
2636 | if (x < minX) |
---|
2637 | minX = x; |
---|
2638 | if (x > maxX) |
---|
2639 | maxX = x; |
---|
2640 | } |
---|
2641 | |
---|
2642 | /* collect Y data */ |
---|
2643 | for (i=0; i<screenWidth; i++) |
---|
2644 | { |
---|
2645 | numY[i] = 0; |
---|
2646 | meanY[i] = 0.0; |
---|
2647 | } |
---|
2648 | for (i=0; i<numVals; i++) |
---|
2649 | { |
---|
2650 | x = xVals[i]; |
---|
2651 | y = yVals[i]; |
---|
2652 | k = (int)(((x - minX) / (maxX - minX)) * screenWidth); |
---|
2653 | if (k >= screenWidth) |
---|
2654 | k = screenWidth - 1; |
---|
2655 | if (k < 0) |
---|
2656 | k = 0; |
---|
2657 | meanY[k] += y; |
---|
2658 | numY[k]++; |
---|
2659 | } |
---|
2660 | |
---|
2661 | /* find minY and maxY */ |
---|
2662 | minY = maxY = meanY[0] / numY[0]; |
---|
2663 | for (i=0; i<screenWidth; i++) |
---|
2664 | { |
---|
2665 | if( meanY[i] == 0) /* with some compilers if( NaN < 1 ) is equal true !!! so we realy need this check*/ |
---|
2666 | continue; |
---|
2667 | meanY[i] /= numY[i]; |
---|
2668 | if (meanY[i] < minY) |
---|
2669 | minY = meanY[i]; |
---|
2670 | if (meanY[i] > maxY) |
---|
2671 | maxY = meanY[i]; |
---|
2672 | } |
---|
2673 | |
---|
2674 | /* find difference */ |
---|
2675 | diff = maxY - minY; |
---|
2676 | |
---|
2677 | /* print plot */ |
---|
2678 | MrBayesPrint ("\n +"); |
---|
2679 | for (i=0; i<screenWidth; i++) |
---|
2680 | MrBayesPrint ("-"); |
---|
2681 | MrBayesPrint ("+ %1.3lf\n", maxY); |
---|
2682 | for (j=screenHeight-1; j>=0; j--) |
---|
2683 | { |
---|
2684 | MrBayesPrint (" |"); |
---|
2685 | for (i=0; i<screenWidth; i++) |
---|
2686 | { |
---|
2687 | if (numY[i] > 0) |
---|
2688 | { |
---|
2689 | if ((meanY[i] > ((diff/screenHeight)*j)+minY && meanY[i] <= ((diff/screenHeight)*(j+1))+minY) || |
---|
2690 | (j == 0 && meanY[i] <= minY)) |
---|
2691 | MrBayesPrint ("*"); |
---|
2692 | else |
---|
2693 | MrBayesPrint (" "); |
---|
2694 | } |
---|
2695 | else |
---|
2696 | { |
---|
2697 | MrBayesPrint (" "); |
---|
2698 | } |
---|
2699 | } |
---|
2700 | MrBayesPrint ("|\n"); |
---|
2701 | } |
---|
2702 | MrBayesPrint (" +"); |
---|
2703 | for (i=0; i<screenWidth; i++) |
---|
2704 | { |
---|
2705 | if (i % (screenWidth/10) == 0 && i != 0) |
---|
2706 | MrBayesPrint ("+"); |
---|
2707 | else |
---|
2708 | MrBayesPrint ("-"); |
---|
2709 | } |
---|
2710 | MrBayesPrint ("+ %1.3lf\n", minY); |
---|
2711 | MrBayesPrint (" ^"); |
---|
2712 | for (i=0; i<screenWidth; i++) |
---|
2713 | MrBayesPrint (" "); |
---|
2714 | MrBayesPrint ("^\n"); |
---|
2715 | MrBayesPrint (" %1.0lf", minX); |
---|
2716 | if (minX == 0) |
---|
2717 | j = 1; |
---|
2718 | else |
---|
2719 | j = (int)(log10(minX)) + 1; |
---|
2720 | for (i=0; i<screenWidth-j; i++) |
---|
2721 | MrBayesPrint (" "); |
---|
2722 | MrBayesPrint ("%1.0lf\n\n", maxX); |
---|
2723 | |
---|
2724 | return (NO_ERROR); |
---|
2725 | } |
---|
2726 | |
---|
2727 | |
---|
2728 | |
---|
2729 | |
---|
2730 | |
---|
2731 | void PrintPlotHeader (void) |
---|
2732 | { |
---|
2733 | MrBayesPrint ("\n"); |
---|
2734 | if (sumpParams.numRuns > 1) |
---|
2735 | { |
---|
2736 | MrBayesPrint ("%s Below are rough plots of the generation (x-axis) versus the log \n", spacer); |
---|
2737 | MrBayesPrint ("%s probability of observing the data (y-axis). You can use these \n", spacer); |
---|
2738 | MrBayesPrint ("%s graphs to determine what the burn in for your analysis should be. \n", spacer); |
---|
2739 | MrBayesPrint ("%s When the log probability starts to plateau you may be at station- \n", spacer); |
---|
2740 | MrBayesPrint ("%s arity. Sample trees and parameters after the log probability \n", spacer); |
---|
2741 | MrBayesPrint ("%s plateaus. Of course, this is not a guarantee that you are at sta- \n", spacer); |
---|
2742 | MrBayesPrint ("%s tionarity. Also examine the convergence diagnostics provided by \n", spacer); |
---|
2743 | MrBayesPrint ("%s the 'sump' and 'sumt' commands for all the parameters in your \n", spacer); |
---|
2744 | MrBayesPrint ("%s model. Remember that the burn in is the number of samples to dis- \n", spacer); |
---|
2745 | MrBayesPrint ("%s card. There are a total of ngen / samplefreq samples taken during \n", spacer); |
---|
2746 | MrBayesPrint ("%s a MCMC analysis. \n", spacer); |
---|
2747 | } |
---|
2748 | else |
---|
2749 | { |
---|
2750 | MrBayesPrint ("%s Below is a rough plot of the generation (x-axis) versus the log \n", spacer); |
---|
2751 | MrBayesPrint ("%s probability of observing the data (y-axis). You can use this \n", spacer); |
---|
2752 | MrBayesPrint ("%s graph to determine what the burn in for your analysis should be. \n", spacer); |
---|
2753 | MrBayesPrint ("%s When the log probability starts to plateau you may be at station- \n", spacer); |
---|
2754 | MrBayesPrint ("%s arity. Sample trees and parameters after the log probability \n", spacer); |
---|
2755 | MrBayesPrint ("%s plateaus. Of course, this is not a guarantee that you are at sta- \n", spacer); |
---|
2756 | MrBayesPrint ("%s analysis should be. When the log probability starts to plateau \n", spacer); |
---|
2757 | MrBayesPrint ("%s tionarity. When possible, run multiple analyses starting from dif-\n", spacer); |
---|
2758 | MrBayesPrint ("%s ferent random trees; if the inferences you make for independent \n", spacer); |
---|
2759 | MrBayesPrint ("%s analyses are the same, this is reasonable evidence that the chains\n", spacer); |
---|
2760 | MrBayesPrint ("%s have converged. You can use MrBayes to run several independent \n", spacer); |
---|
2761 | MrBayesPrint ("%s analyses simultaneously. During such a run, MrBayes will monitor \n", spacer); |
---|
2762 | MrBayesPrint ("%s the convergence of topologies. After the run has been completed, \n", spacer); |
---|
2763 | MrBayesPrint ("%s the 'sumt' and 'sump' functions will provide additional conver- \n", spacer); |
---|
2764 | MrBayesPrint ("%s gence diagnostics for all the parameters in your model. Remember \n", spacer); |
---|
2765 | MrBayesPrint ("%s that the burn in is the number of samples to discard. There are \n", spacer); |
---|
2766 | MrBayesPrint ("%s a total of ngen / samplefreq samples taken during a MCMC analysis.\n", spacer); |
---|
2767 | } |
---|
2768 | } |
---|
2769 | |
---|
2770 | |
---|
2771 | |
---|
2772 | |
---|
2773 | |
---|
2774 | /* ReadParamSamples: Read parameter samples from .p file */ |
---|
2775 | int ReadParamSamples (char *fileName, SumpFileInfo *fileInfo, ParameterSample *parameterSamples, int runNo) |
---|
2776 | { |
---|
2777 | char sumpToken[CMD_STRING_LENGTH], *s=NULL, *p; |
---|
2778 | int inSumpComment, lineNum, numLinesRead, numLinesToRead, column, lastTokenWasDash, |
---|
2779 | tokenType; |
---|
2780 | MrBFlt tempD; |
---|
2781 | FILE *fp; |
---|
2782 | |
---|
2783 | /* open file */ |
---|
2784 | if ((fp = OpenTextFileR (fileName)) == NULL) |
---|
2785 | return ERROR; |
---|
2786 | |
---|
2787 | /* allocate space for reading lines */ |
---|
2788 | s = (char *) SafeCalloc (fileInfo->longestLineLength + 10, sizeof(char)); |
---|
2789 | |
---|
2790 | /* fast forward to beginning of last unburned parameter line. */ |
---|
2791 | for (lineNum=0; lineNum<fileInfo->firstParamLine; lineNum++) |
---|
2792 | if (fgets (s, fileInfo->longestLineLength + 5, fp) == 0) |
---|
2793 | goto errorExit; |
---|
2794 | |
---|
2795 | /* parse file, line-by-line. We are only parsing lines that have digits that should be read. */ |
---|
2796 | inSumpComment = NO; |
---|
2797 | numLinesToRead = fileInfo->numRows; |
---|
2798 | numLinesRead = 0; |
---|
2799 | while (fgets (s, fileInfo->longestLineLength + 1, fp) != NULL) |
---|
2800 | { |
---|
2801 | lastTokenWasDash = NO; |
---|
2802 | column = 0; |
---|
2803 | p = s; |
---|
2804 | do { |
---|
2805 | if(GetToken (sumpToken, &tokenType, &p)) |
---|
2806 | goto errorExit; |
---|
2807 | if (IsSame("[", sumpToken) == SAME) |
---|
2808 | inSumpComment = YES; |
---|
2809 | if (IsSame("]", sumpToken) == SAME) |
---|
2810 | inSumpComment = NO; |
---|
2811 | if (inSumpComment == NO) |
---|
2812 | { |
---|
2813 | if (tokenType == NUMBER) |
---|
2814 | { |
---|
2815 | /* read the number */ |
---|
2816 | if (column >= fileInfo->numColumns) |
---|
2817 | { |
---|
2818 | MrBayesPrint ("%s Too many values read on line %d of file %s\n", spacer, lineNum, fileName); |
---|
2819 | goto errorExit; |
---|
2820 | } |
---|
2821 | sscanf (sumpToken, "%lf", &tempD); |
---|
2822 | if (lastTokenWasDash == YES) |
---|
2823 | tempD *= -1.0; |
---|
2824 | parameterSamples[column].values[runNo][numLinesRead] = tempD; |
---|
2825 | column++; |
---|
2826 | lastTokenWasDash = NO; |
---|
2827 | } |
---|
2828 | else if (tokenType == DASH) |
---|
2829 | { |
---|
2830 | lastTokenWasDash = YES; |
---|
2831 | } |
---|
2832 | else if (tokenType != UNKNOWN_TOKEN_TYPE) |
---|
2833 | { |
---|
2834 | /* we have a problem */ |
---|
2835 | MrBayesPrint ("%s Line %d of file %s has non-digit characters\n", spacer, lineNum, fileName); |
---|
2836 | goto errorExit; |
---|
2837 | } |
---|
2838 | } |
---|
2839 | } while (*sumpToken); |
---|
2840 | |
---|
2841 | lineNum++; |
---|
2842 | if (column == fileInfo->numColumns) |
---|
2843 | numLinesRead++; |
---|
2844 | else if (column != 0) |
---|
2845 | { |
---|
2846 | MrBayesPrint ("%s Too few values on line %d of file %s\n", spacer, lineNum, fileName); |
---|
2847 | goto errorExit; |
---|
2848 | } |
---|
2849 | } |
---|
2850 | |
---|
2851 | |
---|
2852 | /* Check how many parameter line was read in. */ |
---|
2853 | if (numLinesRead != numLinesToRead) |
---|
2854 | { |
---|
2855 | MrBayesPrint ("%s Unable to read all lines that should contain parameter samples\n", spacer); |
---|
2856 | goto errorExit; |
---|
2857 | } |
---|
2858 | |
---|
2859 | fclose (fp); |
---|
2860 | free (s); |
---|
2861 | |
---|
2862 | return (NO_ERROR); |
---|
2863 | |
---|
2864 | errorExit: |
---|
2865 | |
---|
2866 | fclose (fp); |
---|
2867 | free (s); |
---|
2868 | |
---|
2869 | return ERROR; |
---|
2870 | } |
---|
2871 | |
---|
2872 | |
---|
2873 | |
---|
2874 | |
---|