1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"> |
---|
2 | <HTML> |
---|
3 | <HEAD> |
---|
4 | <TITLE>sequence</TITLE> |
---|
5 | <META NAME="description" CONTENT="sequence"> |
---|
6 | <META NAME="keywords" CONTENT="sequence"> |
---|
7 | <META NAME="resource-type" CONTENT="document"> |
---|
8 | <META NAME="distribution" CONTENT="global"> |
---|
9 | <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1"> |
---|
10 | </HEAD> |
---|
11 | <BODY BGCOLOR="#ccffff"> |
---|
12 | <DIV ALIGN=RIGHT> |
---|
13 | version 3.6 |
---|
14 | </DIV> |
---|
15 | <DIV ALIGN=CENTER> |
---|
16 | <H1>Molecular Sequence Programs</H1> |
---|
17 | </CENTER> |
---|
18 | <P> |
---|
19 | (c) Copyright 1986-2000 by The University of |
---|
20 | Washington. Written by Joseph Felsenstein. Permission is granted to copy |
---|
21 | this document provided that no fee is charged for it and that this copyright |
---|
22 | notice is not removed. |
---|
23 | <P> |
---|
24 | These programs estimate phylogenies from protein |
---|
25 | sequence or nucleic acid sequence data. PROTPARS uses a parsimony method |
---|
26 | intermediate between Eck and Dayhoff's |
---|
27 | method (1966) of allowing transitions between all amino acids and counting |
---|
28 | those, and Fitch's (1971) method of counting the number of nucleotide changes |
---|
29 | that would be needed to evolve the protein sequence. DNAPARS uses the |
---|
30 | parsimony method allowing changes between all bases |
---|
31 | and counting the number of those. DNAMOVE is an interactive parsimony |
---|
32 | program allowing the user to rearrange trees by hand and see where |
---|
33 | characters states change. DNAPENNY |
---|
34 | uses the branch-and-bound method to search for all most |
---|
35 | parsimonious trees in the nucleic acid sequence case. DNACOMP |
---|
36 | adapts to nucleotide sequences the compatibility (largest clique) |
---|
37 | approach. DNAINVAR does not directly estimate a phylogeny, but computes Lake's |
---|
38 | (1987) and Cavender's (Cavender and Felsenstein, 1987) phylogenetic invariants, |
---|
39 | which are quantities whose values depend on the phylogeny. DNAML does a |
---|
40 | maximum likelihood estimate of the phylogeny (Felsenstein, 1981a). DNAMLK |
---|
41 | is similar to DNAML but assumes a molecular clock. DNADIST |
---|
42 | computes distance measures between pairs of species from nucleotide sequences, |
---|
43 | distances that can then be used by the distance matrix programs FITCH and |
---|
44 | KITSCH. RESTML does a maximum likelihood estimate from restriction |
---|
45 | sites data. SEQBOOT allows you to read in a data set and then produce |
---|
46 | multiple data sets from it by bootstrapping, delete-half jackknifing, or |
---|
47 | by permuting within sites. This |
---|
48 | then allows most of these methods to be bootstrapped or jackknifed, and |
---|
49 | for the Permutation Tail Probability Test of Archie (1989) and Faith and |
---|
50 | Cranston (1991) to be carried out. |
---|
51 | <P> |
---|
52 | The input and output format for RESTML is described in |
---|
53 | its document files. In general its input format is similar to |
---|
54 | those described here, except that the one-letter codes for restriction sites |
---|
55 | is specific to that program and is described in that document file. Since |
---|
56 | the input formats for the eight DNA sequence and two protein sequence |
---|
57 | programs apply to more than one program, they are described here. Their |
---|
58 | input formats are standard, making use of the IUPAC standards. |
---|
59 | .sp 2 |
---|
60 | .ce |
---|
61 | INTERLEAVED AND SEQUENTIAL FORMATS |
---|
62 | <P> |
---|
63 | The sequences can continue over multiple lines; when this is done the |
---|
64 | sequences must be either in "interleaved" format, similar to the |
---|
65 | output of alignment programs, or "sequential" format. These are |
---|
66 | described in the main document file. In sequential format all |
---|
67 | of one sequence is given, possibly on multiple lines, before the next starts. |
---|
68 | In interleaved format the first part of the file should contain the first |
---|
69 | part of each of the sequences, then possibly a line containing nothing |
---|
70 | but a carriage-return character, then the second part of each sequence, |
---|
71 | and so on. Only the first parts of the sequences should be preceded by |
---|
72 | names. Here is a hypothetical example of interleaved format: |
---|
73 | <P> |
---|
74 | <TABLE><TR><TD BGCOLOR=white> |
---|
75 | <PRE> |
---|
76 | 5 42 |
---|
77 | Turkey AAGCTNGGGC ATTTCAGGGT |
---|
78 | Salmo gairAAGCCTTGGC AGTGCAGGGT |
---|
79 | H. SapiensACCGGTTGGC CGTTCAGGGT |
---|
80 | Chimp AAACCCTTGC CGTTACGCTT |
---|
81 | Gorilla AAACCCTTGC CGGTACGCTT |
---|
82 | |
---|
83 | GAGCCCGGGC AATACAGGGT AT |
---|
84 | GAGCCGTGGC CGGGCACGGT AT |
---|
85 | ACAGGTTGGC CGTTCAGGGT AA |
---|
86 | AAACCGAGGC CGGGACACTC AT |
---|
87 | AAACCATTGC CGGTACGCTT AA |
---|
88 | </PRE> |
---|
89 | </TD></TR></TABLE> |
---|
90 | <P> |
---|
91 | while in sequential format the same sequences would be: |
---|
92 | <P> |
---|
93 | <TABLE><TR><TD BGCOLOR=white> |
---|
94 | <PRE> |
---|
95 | 5 42 |
---|
96 | Turkey AAGCTNGGGC ATTTCAGGGT |
---|
97 | GAGCCCGGGC AATACAGGGT AT |
---|
98 | Salmo gairAAGCCTTGGC AGTGCAGGGT |
---|
99 | GAGCCGTGGC CGGGCACGGT AT |
---|
100 | H. SapiensACCGGTTGGC CGTTCAGGGT |
---|
101 | ACAGGTTGGC CGTTCAGGGT AA |
---|
102 | Chimp AAACCCTTGC CGTTACGCTT |
---|
103 | AAACCGAGGC CGGGACACTC AT |
---|
104 | Gorilla AAACCCTTGC CGGTACGCTT |
---|
105 | AAACCATTGC CGGTACGCTT AA |
---|
106 | </PRE> |
---|
107 | </TD></TR></TABLE> |
---|
108 | <P> |
---|
109 | Note, of course, that a portion of a sequence like this: |
---|
110 | <P> |
---|
111 | 300 AAGCGTGAAC GTTGTACTAA TRCAG |
---|
112 | <P> |
---|
113 | is perfectly legal, assuming that the species name has gone before, and is |
---|
114 | filled out to full length by blanks. The above |
---|
115 | digits and blanks will be ignored, the sequence being taken as starting |
---|
116 | at the first base symbol (in this case an A). This should enable you to |
---|
117 | use output from many multiple-sequence alignment programs with only |
---|
118 | minimal editing. |
---|
119 | <P> |
---|
120 | In interleaved format |
---|
121 | the present versions of the programs may sometimes have difficulties with the |
---|
122 | blank lines between groups of lines, and if so you might want to retype |
---|
123 | those lines, making sure that they have only a carriage-return and no blank |
---|
124 | characters on them, or you may perhaps have to eliminate them. The symptoms |
---|
125 | of this problem are that the programs complain that the sequences are not |
---|
126 | properly aligned, and you can find no other cause for this complaint. |
---|
127 | <P> |
---|
128 | <H2>INPUT FOR THE DNA SEQUENCE PROGRAMS</H2> |
---|
129 | <P> |
---|
130 | The input format for the DNA sequence programs is |
---|
131 | standard: the data have A's, G's, C's and T's (or U's). The first line of the |
---|
132 | input file contains the number of species and the number of sites. As |
---|
133 | with the other programs, options information may follow this. Following this, |
---|
134 | each species starts on a new line. The first 10 |
---|
135 | characters of that line are the species name. There then follows |
---|
136 | the base sequence of that species, each character |
---|
137 | being one of the letters A, B, C, D, G, H, K, M, N, O, R, S, T, U, V, |
---|
138 | W, X, Y, ?, or - (a period was also previously allowed but it is no longer |
---|
139 | allowed, because it sometimes is used in different senses in other |
---|
140 | programs). Blanks will be ignored, and so will numerical |
---|
141 | digits. This allows GENBANK and EMBL sequence entries to be read with |
---|
142 | minimum editing. |
---|
143 | <P> |
---|
144 | These characters can be either upper or lower case. The algorithms |
---|
145 | convert all input characters to upper case (which is how they |
---|
146 | are treated). The characters constitute the IUPAC (IUB) nucleic acid code |
---|
147 | plus some slight |
---|
148 | extensions. They enable input of nucleic acid sequences taking full account |
---|
149 | of any ambiguities in the sequence. |
---|
150 | <P> |
---|
151 | <DIV ALIGN=CENTER> |
---|
152 | <TABLE BORDER=0> |
---|
153 | <TR><TD ALIGN=LEFT><B>Symbol</B><TD><TD><B>Meaning</B></TD><TD></TD></TR> |
---|
154 | <TR><TD></TD><TD></TD></TD></TR> |
---|
155 | <TR><TD>A<TD><TD>Adenine</TD><TD></TD></TR> |
---|
156 | <TR><TD>G<TD><TD>Guanine</TD><TD></TD></TR> |
---|
157 | <TR><TD>C<TD><TD>Cytosine</TD><TD></TD></TR> |
---|
158 | <TR><TD>T<TD><TD>Thymine</TD><TD></TD></TR> |
---|
159 | <TR><TD>U<TD><TD>Uracil </TD><TD></TD></TR> |
---|
160 | <TR><TD>Y<TD><TD>pYrimidine<TD><TD>(C or T)</TD></TR> |
---|
161 | <TR><TD>R<TD><TD>puRine<TD><TD>(A or G)</TD></TR> |
---|
162 | <TR><TD>W<TD><TD>"Weak"<TD><TD>(A or T)</TD></TR> |
---|
163 | <TR><TD>S<TD><TD>"Strong"<TD><TD>(C or G)</TD></TR> |
---|
164 | <TR><TD>K<TD><TD>"Keto"<TD><TD>(T or G)</TD></TR> |
---|
165 | <TR><TD>M<TD><TD>"aMino"<TD><TD>(C or A)</TD></TR> |
---|
166 | <TR><TD>B<TD><TD>not A<TD><TD>(C or G or T)</TD></TR> |
---|
167 | <TR><TD>D<TD><TD>not C<TD><TD>(A or G or T)</TD></TR> |
---|
168 | <TR><TD>H<TD><TD>not G<TD><TD>(A or C or T)</TD></TR> |
---|
169 | <TR><TD>V<TD><TD>not T<TD><TD>(A or C or G)</TD></TR> |
---|
170 | <TR><TD>X,N,?<TD><TD>unknown<TD><TD>(A or C or G or T)</TD></TR> |
---|
171 | <TR><TD>O<TD><TD>deletion</TD><TD></TD></TR> |
---|
172 | <TR><TD>-<TD><TD>deletion</TD><TD></TD></TR> |
---|
173 | </TABLE> |
---|
174 | </DIV> |
---|
175 | <P> |
---|
176 | <H2>INPUT FOR THE PROTEIN SEQUENCE PROGRAMS</H2> |
---|
177 | <P> |
---|
178 | The input for the protein sequence programs is fairly standard. The first |
---|
179 | line contains the |
---|
180 | number of species and the number of amino acid positions (counting any |
---|
181 | stop codons that you want to include). These are followed on the same line |
---|
182 | by the options. The only options which |
---|
183 | need information in the input file are U (User Tree) and W (Weights). They are |
---|
184 | as described in the main documentation file. If the W (Weights) option is |
---|
185 | used there must be a W in the first line of the input file. |
---|
186 | <P> |
---|
187 | Next come the species data. Each |
---|
188 | sequence starts on a new line, has a ten-character species name |
---|
189 | that must be blank-filled to be of that length, followed immediately |
---|
190 | by the species data in the one-letter code. The sequences must either |
---|
191 | be in the "interleaved" or "sequential" formats. The I option |
---|
192 | selects between them. The sequences can have internal |
---|
193 | blanks in the sequence but there must be no extra blanks at the end of the |
---|
194 | terminated line. Note that a blank is not a valid symbol for a deletion. |
---|
195 | <P> |
---|
196 | The protein sequences are given by the one-letter code used by |
---|
197 | the late Margaret Dayhoff's group in the Atlas of Protein Sequences, |
---|
198 | and consistent with the IUB standard abbreviations. |
---|
199 | In the present version it is: |
---|
200 | <P> |
---|
201 | <DIV ALIGN=CENTER> |
---|
202 | <TABLE> |
---|
203 | <TR><TD><B ALIGN=CENTER>Symbol</B></TD><TD ALIGN=CENTER><B>Stands for</B></TD></TR> |
---|
204 | <TR><TD ALIGN=CENTER></TD><TD ALIGN=CENTER></TD></TR> |
---|
205 | <TR><TD ALIGN=CENTER>A</TD><TD ALIGN=CENTER>ala</TD></TR> |
---|
206 | <TR><TD ALIGN=CENTER>B</TD><TD ALIGN=CENTER>asx</TD></TR> |
---|
207 | <TR><TD ALIGN=CENTER>C</TD><TD ALIGN=CENTER>cys</TD></TR> |
---|
208 | <TR><TD ALIGN=CENTER>D</TD><TD ALIGN=CENTER>asp</TD></TR> |
---|
209 | <TR><TD ALIGN=CENTER>E</TD><TD ALIGN=CENTER>glu</TD></TR> |
---|
210 | <TR><TD ALIGN=CENTER>F</TD><TD ALIGN=CENTER>phe</TD></TR> |
---|
211 | <TR><TD ALIGN=CENTER>G</TD><TD ALIGN=CENTER>gly</TD></TR> |
---|
212 | <TR><TD ALIGN=CENTER>H</TD><TD ALIGN=CENTER>his</TD></TR> |
---|
213 | <TR><TD ALIGN=CENTER>I</TD><TD ALIGN=CENTER>ileu</TD></TR> |
---|
214 | <TR><TD ALIGN=CENTER>J</TD><TD ALIGN=CENTER>(not used)</TD></TR> |
---|
215 | <TR><TD ALIGN=CENTER>K</TD><TD ALIGN=CENTER>lys</TD></TR> |
---|
216 | <TR><TD ALIGN=CENTER>L</TD><TD ALIGN=CENTER>leu</TD></TR> |
---|
217 | <TR><TD ALIGN=CENTER>M</TD><TD ALIGN=CENTER>met</TD></TR> |
---|
218 | <TR><TD ALIGN=CENTER>N</TD><TD ALIGN=CENTER>asn</TD></TR> |
---|
219 | <TR><TD ALIGN=CENTER>O</TD><TD ALIGN=CENTER>(not used)</TD></TR> |
---|
220 | <TR><TD ALIGN=CENTER>P</TD><TD ALIGN=CENTER>pro</TD></TR> |
---|
221 | <TR><TD ALIGN=CENTER>Q</TD><TD ALIGN=CENTER>gln</TD></TR> |
---|
222 | <TR><TD ALIGN=CENTER>R</TD><TD ALIGN=CENTER>arg</TD></TR> |
---|
223 | <TR><TD ALIGN=CENTER>S</TD><TD ALIGN=CENTER>ser</TD></TR> |
---|
224 | <TR><TD ALIGN=CENTER>T</TD><TD ALIGN=CENTER>thr</TD></TR> |
---|
225 | <TR><TD ALIGN=CENTER>U</TD><TD ALIGN=CENTER>(not used)</TD></TR> |
---|
226 | <TR><TD ALIGN=CENTER>V</TD><TD ALIGN=CENTER>val</TD></TR> |
---|
227 | <TR><TD ALIGN=CENTER>W</TD><TD ALIGN=CENTER>trp</TD></TR> |
---|
228 | <TR><TD ALIGN=CENTER>X</TD><TD ALIGN=CENTER>unknown amino acid</TD></TR> |
---|
229 | <TR><TD ALIGN=CENTER>Y</TD><TD ALIGN=CENTER>tyr</TD></TR> |
---|
230 | <TR><TD ALIGN=CENTER>Z</TD><TD ALIGN=CENTER>glx</TD></TR> |
---|
231 | <TR><TD ALIGN=CENTER>*</TD><TD ALIGN=CENTER>nonsense (stop)</TD></TR> |
---|
232 | <TR><TD ALIGN=CENTER>?</TD><TD ALIGN=CENTER>unknown amino acid or deletion</TD></TR> |
---|
233 | <TR><TD ALIGN=CENTER>-</TD><TD ALIGN=CENTER>deletion</TD></TR> |
---|
234 | </TABLE> |
---|
235 | </DIV> |
---|
236 | <P> |
---|
237 | where "nonsense", and "unknown" mean respectively a nonsense (chain |
---|
238 | termination) codon and an amino acid whose identity has not been |
---|
239 | determined. The state "asx" means "either asn or asp", |
---|
240 | and the state "glx" means "either gln or glu" and the state "deletion" |
---|
241 | means that alignment studies indicate a deletion has happened in the |
---|
242 | ancestry of this position, so that it is no longer present. Note that |
---|
243 | if two polypeptide chains are being used that are of different length |
---|
244 | owing to one terminating before the other, they can be coded as (say) |
---|
245 | <PRE> |
---|
246 | HIINMA*???? |
---|
247 | HIPNMGVWABT |
---|
248 | </PRE> |
---|
249 | since after the stop codon we do not definitely know that |
---|
250 | there has been a deletion, and do not know what amino acid would |
---|
251 | have been there. If DNA studies tell us that there is |
---|
252 | DNA sequence in that region, then we could use "X" rather than "?". Note |
---|
253 | that "X" means an unknown amino acid, but definitely an amino acid, |
---|
254 | while "?" could mean either that or a deletion. Otherwise one will usually |
---|
255 | want to use "?" after a stop codon, if one does not know what amino acid is |
---|
256 | there. If the DNA sequence has been observed there, one probably ought to |
---|
257 | resist putting in the amino acids that this DNA would code for, and one should |
---|
258 | use "X" instead, because under the assumptions implicit in this either the |
---|
259 | parsimony or the distance |
---|
260 | methods, changes to any noncoding sequence are much easier than |
---|
261 | changes in a coding region that change the amino acid |
---|
262 | <P> |
---|
263 | Here are the same one-letter codes tabulated the other way 'round: |
---|
264 | <P> |
---|
265 | <DIV ALIGN=CENTER> |
---|
266 | <TABLE> |
---|
267 | <TR><TD ALIGN=CENTER><B>Amino acid</B></TD><TD ALIGN=CENTER><B>One-letter code</B></TD></TR> |
---|
268 | <TR><TD ALIGN=CENTER></TD><TD ALIGN=CENTER></TD></TR></TD></TR> |
---|
269 | <TR><TD ALIGN=CENTER>ala</TD><TD ALIGN=CENTER>A</TD></TR> |
---|
270 | <TR><TD ALIGN=CENTER>arg</TD><TD ALIGN=CENTER>R</TD></TR> |
---|
271 | <TR><TD ALIGN=CENTER>asn</TD><TD ALIGN=CENTER>N</TD></TR> |
---|
272 | <TR><TD ALIGN=CENTER>asp</TD><TD ALIGN=CENTER>D</TD></TR> |
---|
273 | <TR><TD ALIGN=CENTER>asx</TD><TD ALIGN=CENTER>B</TD></TR> |
---|
274 | <TR><TD ALIGN=CENTER>cys</TD><TD ALIGN=CENTER>C</TD></TR> |
---|
275 | <TR><TD ALIGN=CENTER>gln</TD><TD ALIGN=CENTER>Q</TD></TR> |
---|
276 | <TR><TD ALIGN=CENTER>glu</TD><TD ALIGN=CENTER>E</TD></TR> |
---|
277 | <TR><TD ALIGN=CENTER>gly</TD><TD ALIGN=CENTER>G</TD></TR> |
---|
278 | <TR><TD ALIGN=CENTER>glx</TD><TD ALIGN=CENTER>Z</TD></TR> |
---|
279 | <TR><TD ALIGN=CENTER>his</TD><TD ALIGN=CENTER>H</TD></TR> |
---|
280 | <TR><TD ALIGN=CENTER>ileu</TD><TD ALIGN=CENTER>I</TD></TR> |
---|
281 | <TR><TD ALIGN=CENTER>leu</TD><TD ALIGN=CENTER>L</TD></TR> |
---|
282 | <TR><TD ALIGN=CENTER>lys</TD><TD ALIGN=CENTER>K</TD></TR> |
---|
283 | <TR><TD ALIGN=CENTER>met</TD><TD ALIGN=CENTER>M</TD></TR> |
---|
284 | <TR><TD ALIGN=CENTER>phe</TD><TD ALIGN=CENTER>F</TD></TR> |
---|
285 | <TR><TD ALIGN=CENTER>pro</TD><TD ALIGN=CENTER>P</TD></TR> |
---|
286 | <TR><TD ALIGN=CENTER>ser</TD><TD ALIGN=CENTER>S</TD></TR> |
---|
287 | <TR><TD ALIGN=CENTER>thr</TD><TD ALIGN=CENTER>T</TD></TR> |
---|
288 | <TR><TD ALIGN=CENTER>trp</TD><TD ALIGN=CENTER>W</TD></TR> |
---|
289 | <TR><TD ALIGN=CENTER>tyr</TD><TD ALIGN=CENTER>Y</TD></TR> |
---|
290 | <TR><TD ALIGN=CENTER>val</TD><TD ALIGN=CENTER>V</TD></TR> |
---|
291 | <TR><TD ALIGN=CENTER>deletion</TD><TD ALIGN=CENTER>-</TD></TR> |
---|
292 | <TR><TD ALIGN=CENTER>nonsense (stop)</TD><TD ALIGN=CENTER>*</TD></TR> |
---|
293 | <TR><TD ALIGN=CENTER>unknown amino acid</TD><TD ALIGN=CENTER>X</TD></TR> |
---|
294 | <TR><TD ALIGN=CENTER>unknown (incl. deletion)</TD><TD ALIGN=CENTER>?</TD></TR> |
---|
295 | </TABLE> |
---|
296 | </DIV> |
---|
297 | <P> |
---|
298 | <H2>THE OPTIONS</H2> |
---|
299 | <P> |
---|
300 | The programs allow options chosen from their menus. Many of these are as described in the |
---|
301 | main documentation file, particularly the options J, O, U, T, W, |
---|
302 | and Y. (Although T has a different meaning in the programs DNAML and |
---|
303 | DNADIST than in the others). |
---|
304 | <P> |
---|
305 | The U option indicates that |
---|
306 | user-defined trees are provided at the end of the input file. This |
---|
307 | happens in the usual way, except that for PROTPARS, DNAPARS, DNACOMP, and |
---|
308 | DNAMLK, the trees must be strictly |
---|
309 | bifurcating, containing only two-way splits, e. g.: ((A,B),(C,(D,E)));. For |
---|
310 | DNAML and RESTML it must have a trifurcation at its base, |
---|
311 | e. g.: ((A,B),C,(D,E));. The |
---|
312 | root of the tree may in those cases be placed arbitrarily, since the trees |
---|
313 | needed are actually unrooted, though they look different when printed out. The |
---|
314 | program RETREE should enable you to reroot the trees without having to |
---|
315 | hand-edit or retype them. For |
---|
316 | DNAMOVE the U option is not available (although |
---|
317 | there is an equivalent feature which uses rooted user trees). |
---|
318 | <P> |
---|
319 | A feature of the nucleotide sequence programs other than DNAMOVE |
---|
320 | is that they save time and computer memory space by recognizing sites |
---|
321 | at which the pattern of bases is the same, and doing their computation only |
---|
322 | once. Thus if we have only four species but a large number of sites, there |
---|
323 | are (ignoring ambiguous bases) only about 256 different patterns of |
---|
324 | nucleotides (4 x 4 x 4 x 4) that can occur. The programs automatically |
---|
325 | count how many occurrences there are of each and then only needs to do as much |
---|
326 | computation as would be |
---|
327 | needed with 256 sites, even though the number of sites is actually much |
---|
328 | larger. If there are ambiguities (such as Y or R nucleotides), these are also |
---|
329 | handled correctly, and do not cause trouble. The programs store the full |
---|
330 | sequences but reserve other space for bookkeeping only for the distinct |
---|
331 | patterns. This saves space. Thus the programs will run very effectively |
---|
332 | with few species and many sites. On larger numbers of species, |
---|
333 | if rates of evolution are small, many of the sites will be invariant |
---|
334 | (such as having all A's) and thus will mostly have one of four patterns. The |
---|
335 | programs will in this way automatically avoid doing duplicate |
---|
336 | computations for such sites. |
---|
337 | </BODY> |
---|
338 | </HTML> |
---|