| 1 | /* RAxML-VI-HPC (version 2.2) a program for sequential and parallel estimation of phylogenetic trees |
|---|
| 2 | * Copyright August 2006 by Alexandros Stamatakis |
|---|
| 3 | * |
|---|
| 4 | * Partially derived from |
|---|
| 5 | * fastDNAml, a program for estimation of phylogenetic trees from sequences by Gary J. Olsen |
|---|
| 6 | * |
|---|
| 7 | * and |
|---|
| 8 | * |
|---|
| 9 | * Programs of the PHYLIP package by Joe Felsenstein. |
|---|
| 10 | * This program is free software; you may redistribute it and/or modify its |
|---|
| 11 | * under the terms of the GNU General Public License as published by the Free |
|---|
| 12 | * Software Foundation; either version 2 of the License, or (at your option) |
|---|
| 13 | * any later version. |
|---|
| 14 | * |
|---|
| 15 | * This program is distributed in the hope that it will be useful, but |
|---|
| 16 | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|---|
| 17 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|---|
| 18 | * for more details. |
|---|
| 19 | * |
|---|
| 20 | * |
|---|
| 21 | * For any other enquiries send an Email to Alexandros Stamatakis |
|---|
| 22 | * Alexandros.Stamatakis@epfl.ch |
|---|
| 23 | * |
|---|
| 24 | * When publishing work that is based on the results from RAxML-VI-HPC please cite: |
|---|
| 25 | * |
|---|
| 26 | * Alexandros Stamatakis:"RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models". |
|---|
| 27 | * Bioinformatics 2006; doi: 10.1093/bioinformatics/btl446 |
|---|
| 28 | */ |
|---|
| 29 | |
|---|
| 30 | #ifndef WIN32 |
|---|
| 31 | #include <unistd.h> |
|---|
| 32 | #endif |
|---|
| 33 | |
|---|
| 34 | #include <math.h> |
|---|
| 35 | #include <time.h> |
|---|
| 36 | #include <stdlib.h> |
|---|
| 37 | #include <stdio.h> |
|---|
| 38 | #include <ctype.h> |
|---|
| 39 | #include <string.h> |
|---|
| 40 | #include "axml.h" |
|---|
| 41 | |
|---|
| 42 | |
|---|
| 43 | #ifdef __SIM_SSE3 |
|---|
| 44 | #include <xmmintrin.h> |
|---|
| 45 | #include <pmmintrin.h> |
|---|
| 46 | /*#include <tmmintrin.h>*/ |
|---|
| 47 | #endif |
|---|
| 48 | |
|---|
| 49 | #ifdef _USE_PTHREADS |
|---|
| 50 | extern volatile double *reductionBuffer; |
|---|
| 51 | extern volatile int NumberOfThreads; |
|---|
| 52 | #endif |
|---|
| 53 | |
|---|
| 54 | |
|---|
| 55 | |
|---|
| 56 | extern const unsigned int mask32[32]; |
|---|
| 57 | |
|---|
| 58 | |
|---|
| 59 | static void calcDiagptableFlex(double z, int numberOfCategories, double *rptr, double *EIGN, double *diagptable, const int numStates) |
|---|
| 60 | { |
|---|
| 61 | int |
|---|
| 62 | i, |
|---|
| 63 | l; |
|---|
| 64 | |
|---|
| 65 | double |
|---|
| 66 | lz, |
|---|
| 67 | lza[64]; |
|---|
| 68 | |
|---|
| 69 | const int |
|---|
| 70 | rates = numStates - 1; |
|---|
| 71 | |
|---|
| 72 | assert(numStates <= 64); |
|---|
| 73 | |
|---|
| 74 | if (z < zmin) |
|---|
| 75 | lz = log(zmin); |
|---|
| 76 | else |
|---|
| 77 | lz = log(z); |
|---|
| 78 | |
|---|
| 79 | for(l = 0; l < rates; l++) |
|---|
| 80 | lza[l] = EIGN[l] * lz; |
|---|
| 81 | |
|---|
| 82 | for(i = 0; i < numberOfCategories; i++) |
|---|
| 83 | { |
|---|
| 84 | diagptable[i * numStates] = 1.0; |
|---|
| 85 | |
|---|
| 86 | for(l = 1; l < numStates; l++) |
|---|
| 87 | diagptable[i * numStates + l] = EXP(rptr[i] * lza[l - 1]); |
|---|
| 88 | } |
|---|
| 89 | } |
|---|
| 90 | |
|---|
| 91 | |
|---|
| 92 | static void calcDiagptableFlex_LG4(double z, int numberOfCategories, double *rptr, double *EIGN[4], double *diagptable, const int numStates) |
|---|
| 93 | { |
|---|
| 94 | int |
|---|
| 95 | i, |
|---|
| 96 | l; |
|---|
| 97 | |
|---|
| 98 | double |
|---|
| 99 | lz; |
|---|
| 100 | |
|---|
| 101 | assert(numStates <= 64); |
|---|
| 102 | |
|---|
| 103 | if (z < zmin) |
|---|
| 104 | lz = log(zmin); |
|---|
| 105 | else |
|---|
| 106 | lz = log(z); |
|---|
| 107 | |
|---|
| 108 | for(i = 0; i < numberOfCategories; i++) |
|---|
| 109 | { |
|---|
| 110 | diagptable[i * numStates] = 1.0; |
|---|
| 111 | |
|---|
| 112 | for(l = 1; l < numStates; l++) |
|---|
| 113 | diagptable[i * numStates + l] = EXP(rptr[i] * EIGN[i][l - 1] * lz); |
|---|
| 114 | } |
|---|
| 115 | } |
|---|
| 116 | |
|---|
| 117 | |
|---|
| 118 | static double evaluateCatFlex(int *ex1, int *ex2, int *cptr, int *wptr, |
|---|
| 119 | double *x1, double *x2, double *tipVector, |
|---|
| 120 | unsigned char *tipX1, int n, double *diagptable_start, double *vector, boolean writeVector, const boolean fastScaling, const int numStates) |
|---|
| 121 | { |
|---|
| 122 | double |
|---|
| 123 | sum = 0.0, |
|---|
| 124 | term, |
|---|
| 125 | *diagptable, |
|---|
| 126 | *left, |
|---|
| 127 | *right; |
|---|
| 128 | |
|---|
| 129 | int |
|---|
| 130 | i, |
|---|
| 131 | l; |
|---|
| 132 | |
|---|
| 133 | if(tipX1) |
|---|
| 134 | { |
|---|
| 135 | if(writeVector) |
|---|
| 136 | for (i = 0; i < n; i++) |
|---|
| 137 | { |
|---|
| 138 | left = &(tipVector[numStates * tipX1[i]]); |
|---|
| 139 | right = &(x2[numStates * i]); |
|---|
| 140 | |
|---|
| 141 | diagptable = &diagptable_start[numStates * cptr[i]]; |
|---|
| 142 | |
|---|
| 143 | for(l = 0, term = 0.0; l < numStates; l++) |
|---|
| 144 | term += left[l] * right[l] * diagptable[l]; |
|---|
| 145 | |
|---|
| 146 | if(fastScaling) |
|---|
| 147 | term = LOG(FABS(term)); |
|---|
| 148 | else |
|---|
| 149 | term = LOG(FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 150 | |
|---|
| 151 | vector[i] = term; |
|---|
| 152 | |
|---|
| 153 | sum += wptr[i] * term; |
|---|
| 154 | } |
|---|
| 155 | else |
|---|
| 156 | for (i = 0; i < n; i++) |
|---|
| 157 | { |
|---|
| 158 | left = &(tipVector[numStates * tipX1[i]]); |
|---|
| 159 | right = &(x2[numStates * i]); |
|---|
| 160 | |
|---|
| 161 | diagptable = &diagptable_start[numStates * cptr[i]]; |
|---|
| 162 | |
|---|
| 163 | for(l = 0, term = 0.0; l < numStates; l++) |
|---|
| 164 | term += left[l] * right[l] * diagptable[l]; |
|---|
| 165 | |
|---|
| 166 | if(fastScaling) |
|---|
| 167 | term = LOG(FABS(term)); |
|---|
| 168 | else |
|---|
| 169 | term = LOG(FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 170 | |
|---|
| 171 | sum += wptr[i] * term; |
|---|
| 172 | } |
|---|
| 173 | } |
|---|
| 174 | else |
|---|
| 175 | { |
|---|
| 176 | if(writeVector) |
|---|
| 177 | for (i = 0; i < n; i++) |
|---|
| 178 | { |
|---|
| 179 | left = &x1[numStates * i]; |
|---|
| 180 | right = &x2[numStates * i]; |
|---|
| 181 | |
|---|
| 182 | diagptable = &diagptable_start[numStates * cptr[i]]; |
|---|
| 183 | |
|---|
| 184 | for(l = 0, term = 0.0; l < numStates; l++) |
|---|
| 185 | term += left[l] * right[l] * diagptable[l]; |
|---|
| 186 | |
|---|
| 187 | if(fastScaling) |
|---|
| 188 | term = LOG(FABS(term)); |
|---|
| 189 | else |
|---|
| 190 | term = LOG(FABS(term)) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 191 | |
|---|
| 192 | vector[i] = term; |
|---|
| 193 | |
|---|
| 194 | sum += wptr[i] * term; |
|---|
| 195 | } |
|---|
| 196 | else |
|---|
| 197 | for (i = 0; i < n; i++) |
|---|
| 198 | { |
|---|
| 199 | left = &x1[numStates * i]; |
|---|
| 200 | right = &x2[numStates * i]; |
|---|
| 201 | |
|---|
| 202 | diagptable = &diagptable_start[numStates * cptr[i]]; |
|---|
| 203 | |
|---|
| 204 | for(l = 0, term = 0.0; l < numStates; l++) |
|---|
| 205 | term += left[l] * right[l] * diagptable[l]; |
|---|
| 206 | |
|---|
| 207 | if(fastScaling) |
|---|
| 208 | term = LOG(FABS(term)); |
|---|
| 209 | else |
|---|
| 210 | term = LOG(FABS(term)) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 211 | |
|---|
| 212 | sum += wptr[i] * term; |
|---|
| 213 | } |
|---|
| 214 | } |
|---|
| 215 | |
|---|
| 216 | |
|---|
| 217 | |
|---|
| 218 | return sum; |
|---|
| 219 | } |
|---|
| 220 | |
|---|
| 221 | |
|---|
| 222 | |
|---|
| 223 | |
|---|
| 224 | static double evaluateGammaFlex(int *ex1, int *ex2, int *wptr, |
|---|
| 225 | double *x1, double *x2, |
|---|
| 226 | double *tipVector, |
|---|
| 227 | unsigned char *tipX1, int n, double *diagptable, double *vector, boolean writeVector, const boolean fastScaling, const int numStates) |
|---|
| 228 | { |
|---|
| 229 | double |
|---|
| 230 | sum = 0.0, |
|---|
| 231 | term, |
|---|
| 232 | *left, |
|---|
| 233 | *right; |
|---|
| 234 | |
|---|
| 235 | int |
|---|
| 236 | i, |
|---|
| 237 | j, |
|---|
| 238 | l; |
|---|
| 239 | |
|---|
| 240 | const int |
|---|
| 241 | gammaStates = numStates * 4; |
|---|
| 242 | |
|---|
| 243 | if(tipX1) |
|---|
| 244 | { |
|---|
| 245 | if(writeVector) |
|---|
| 246 | for (i = 0; i < n; i++) |
|---|
| 247 | { |
|---|
| 248 | left = &(tipVector[numStates * tipX1[i]]); |
|---|
| 249 | |
|---|
| 250 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 251 | { |
|---|
| 252 | right = &(x2[gammaStates * i + numStates * j]); |
|---|
| 253 | |
|---|
| 254 | for(l = 0; l < numStates; l++) |
|---|
| 255 | term += left[l] * right[l] * diagptable[j * numStates + l]; |
|---|
| 256 | } |
|---|
| 257 | |
|---|
| 258 | if(fastScaling) |
|---|
| 259 | term = LOG(0.25 * FABS(term)); |
|---|
| 260 | else |
|---|
| 261 | term = LOG(0.25 * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 262 | |
|---|
| 263 | vector[i] = term; |
|---|
| 264 | |
|---|
| 265 | sum += wptr[i] * term; |
|---|
| 266 | } |
|---|
| 267 | else |
|---|
| 268 | { |
|---|
| 269 | for (i = 0; i < n; i++) |
|---|
| 270 | { |
|---|
| 271 | left = &(tipVector[numStates * tipX1[i]]); |
|---|
| 272 | |
|---|
| 273 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 274 | { |
|---|
| 275 | right = &(x2[gammaStates * i + numStates * j]); |
|---|
| 276 | |
|---|
| 277 | for(l = 0; l < numStates; l++) |
|---|
| 278 | term += left[l] * right[l] * diagptable[j * numStates + l]; |
|---|
| 279 | } |
|---|
| 280 | |
|---|
| 281 | if(fastScaling) |
|---|
| 282 | term = LOG(0.25 * FABS(term)); |
|---|
| 283 | else |
|---|
| 284 | term = LOG(0.25 * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 285 | |
|---|
| 286 | sum += wptr[i] * term; |
|---|
| 287 | } |
|---|
| 288 | } |
|---|
| 289 | } |
|---|
| 290 | else |
|---|
| 291 | { |
|---|
| 292 | if(writeVector) |
|---|
| 293 | for (i = 0; i < n; i++) |
|---|
| 294 | { |
|---|
| 295 | |
|---|
| 296 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 297 | { |
|---|
| 298 | left = &(x1[gammaStates * i + numStates * j]); |
|---|
| 299 | right = &(x2[gammaStates * i + numStates * j]); |
|---|
| 300 | |
|---|
| 301 | for(l = 0; l < numStates; l++) |
|---|
| 302 | term += left[l] * right[l] * diagptable[j * numStates + l]; |
|---|
| 303 | } |
|---|
| 304 | |
|---|
| 305 | if(fastScaling) |
|---|
| 306 | term = LOG(0.25 * FABS(term)); |
|---|
| 307 | else |
|---|
| 308 | term = LOG(0.25 * FABS(term)) + ((ex1[i] + ex2[i])*LOG(minlikelihood)); |
|---|
| 309 | |
|---|
| 310 | vector[i] = term; |
|---|
| 311 | |
|---|
| 312 | sum += wptr[i] * term; |
|---|
| 313 | } |
|---|
| 314 | else |
|---|
| 315 | for (i = 0; i < n; i++) |
|---|
| 316 | { |
|---|
| 317 | |
|---|
| 318 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 319 | { |
|---|
| 320 | left = &(x1[gammaStates * i + numStates * j]); |
|---|
| 321 | right = &(x2[gammaStates * i + numStates * j]); |
|---|
| 322 | |
|---|
| 323 | for(l = 0; l < numStates; l++) |
|---|
| 324 | term += left[l] * right[l] * diagptable[j * numStates + l]; |
|---|
| 325 | } |
|---|
| 326 | |
|---|
| 327 | if(fastScaling) |
|---|
| 328 | term = LOG(0.25 * FABS(term)); |
|---|
| 329 | else |
|---|
| 330 | term = LOG(0.25 * FABS(term)) + ((ex1[i] + ex2[i])*LOG(minlikelihood)); |
|---|
| 331 | |
|---|
| 332 | sum += wptr[i] * term; |
|---|
| 333 | } |
|---|
| 334 | } |
|---|
| 335 | |
|---|
| 336 | return sum; |
|---|
| 337 | } |
|---|
| 338 | |
|---|
| 339 | static double evaluateGammaFlex_LG4(int *ex1, int *ex2, int *wptr, |
|---|
| 340 | double *x1, double *x2, |
|---|
| 341 | double *tipVector[4], |
|---|
| 342 | unsigned char *tipX1, int n, double *diagptable, double *vector, boolean writeVector, const boolean fastScaling, const int numStates, double *weights) |
|---|
| 343 | { |
|---|
| 344 | double |
|---|
| 345 | sum = 0.0, |
|---|
| 346 | term, |
|---|
| 347 | *left, |
|---|
| 348 | *right; |
|---|
| 349 | |
|---|
| 350 | int |
|---|
| 351 | i, |
|---|
| 352 | j, |
|---|
| 353 | l; |
|---|
| 354 | |
|---|
| 355 | const int |
|---|
| 356 | gammaStates = numStates * 4; |
|---|
| 357 | |
|---|
| 358 | if(tipX1) |
|---|
| 359 | { |
|---|
| 360 | if(writeVector) |
|---|
| 361 | for (i = 0; i < n; i++) |
|---|
| 362 | { |
|---|
| 363 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 364 | { |
|---|
| 365 | double |
|---|
| 366 | t = 0.0; |
|---|
| 367 | |
|---|
| 368 | left = &(tipVector[j][numStates * tipX1[i]]); |
|---|
| 369 | right = &(x2[gammaStates * i + numStates * j]); |
|---|
| 370 | |
|---|
| 371 | for(l = 0; l < numStates; l++) |
|---|
| 372 | t += left[l] * right[l] * diagptable[j * numStates + l]; |
|---|
| 373 | |
|---|
| 374 | term += weights[j] * t; |
|---|
| 375 | } |
|---|
| 376 | |
|---|
| 377 | if(fastScaling) |
|---|
| 378 | term = LOG(FABS(term)); |
|---|
| 379 | else |
|---|
| 380 | term = LOG(FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 381 | |
|---|
| 382 | vector[i] = term; |
|---|
| 383 | |
|---|
| 384 | sum += wptr[i] * term; |
|---|
| 385 | } |
|---|
| 386 | else |
|---|
| 387 | { |
|---|
| 388 | for (i = 0; i < n; i++) |
|---|
| 389 | { |
|---|
| 390 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 391 | { |
|---|
| 392 | double |
|---|
| 393 | t = 0.0; |
|---|
| 394 | |
|---|
| 395 | left = &(tipVector[j][numStates * tipX1[i]]); |
|---|
| 396 | right = &(x2[gammaStates * i + numStates * j]); |
|---|
| 397 | |
|---|
| 398 | for(l = 0; l < numStates; l++) |
|---|
| 399 | t += left[l] * right[l] * diagptable[j * numStates + l]; |
|---|
| 400 | |
|---|
| 401 | term += weights[j] * t; |
|---|
| 402 | } |
|---|
| 403 | |
|---|
| 404 | if(fastScaling) |
|---|
| 405 | term = LOG(FABS(term)); |
|---|
| 406 | else |
|---|
| 407 | term = LOG(FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 408 | |
|---|
| 409 | sum += wptr[i] * term; |
|---|
| 410 | } |
|---|
| 411 | } |
|---|
| 412 | } |
|---|
| 413 | else |
|---|
| 414 | { |
|---|
| 415 | if(writeVector) |
|---|
| 416 | for (i = 0; i < n; i++) |
|---|
| 417 | { |
|---|
| 418 | |
|---|
| 419 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 420 | { |
|---|
| 421 | left = &(x1[gammaStates * i + numStates * j]); |
|---|
| 422 | right = &(x2[gammaStates * i + numStates * j]); |
|---|
| 423 | |
|---|
| 424 | for(l = 0; l < numStates; l++) |
|---|
| 425 | term += left[l] * right[l] * diagptable[j * numStates + l]; |
|---|
| 426 | } |
|---|
| 427 | |
|---|
| 428 | if(fastScaling) |
|---|
| 429 | term = LOG(0.25 * FABS(term)); |
|---|
| 430 | else |
|---|
| 431 | term = LOG(0.25 * FABS(term)) + ((ex1[i] + ex2[i])*LOG(minlikelihood)); |
|---|
| 432 | |
|---|
| 433 | vector[i] = term; |
|---|
| 434 | |
|---|
| 435 | sum += wptr[i] * term; |
|---|
| 436 | } |
|---|
| 437 | else |
|---|
| 438 | for (i = 0; i < n; i++) |
|---|
| 439 | { |
|---|
| 440 | |
|---|
| 441 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 442 | { |
|---|
| 443 | left = &(x1[gammaStates * i + numStates * j]); |
|---|
| 444 | right = &(x2[gammaStates * i + numStates * j]); |
|---|
| 445 | |
|---|
| 446 | for(l = 0; l < numStates; l++) |
|---|
| 447 | term += left[l] * right[l] * diagptable[j * numStates + l]; |
|---|
| 448 | } |
|---|
| 449 | |
|---|
| 450 | if(fastScaling) |
|---|
| 451 | term = LOG(0.25 * FABS(term)); |
|---|
| 452 | else |
|---|
| 453 | term = LOG(0.25 * FABS(term)) + ((ex1[i] + ex2[i])*LOG(minlikelihood)); |
|---|
| 454 | |
|---|
| 455 | sum += wptr[i] * term; |
|---|
| 456 | } |
|---|
| 457 | } |
|---|
| 458 | |
|---|
| 459 | return sum; |
|---|
| 460 | } |
|---|
| 461 | |
|---|
| 462 | |
|---|
| 463 | |
|---|
| 464 | static double evaluateGammaInvarFlex (int *ex1, int *ex2, int *wptr, int *iptr, |
|---|
| 465 | double *x1, double *x2, |
|---|
| 466 | double *tipVector,double *tFreqs, double invariants, |
|---|
| 467 | unsigned char *tipX1, int n, double *diagptable, double *vector, boolean writeVector, const boolean fastScaling, |
|---|
| 468 | const int numStates) |
|---|
| 469 | { |
|---|
| 470 | double |
|---|
| 471 | sum = 0.0, |
|---|
| 472 | term, |
|---|
| 473 | freqs[64], |
|---|
| 474 | scaler = 0.25 * (1.0 - invariants), |
|---|
| 475 | *left, |
|---|
| 476 | *right; |
|---|
| 477 | |
|---|
| 478 | int |
|---|
| 479 | i, |
|---|
| 480 | j, |
|---|
| 481 | l; |
|---|
| 482 | |
|---|
| 483 | const int gammaStates = numStates * 4; |
|---|
| 484 | |
|---|
| 485 | for(i = 0; i < numStates; i++) |
|---|
| 486 | freqs[i] = tFreqs[i] * invariants; |
|---|
| 487 | |
|---|
| 488 | if(tipX1) |
|---|
| 489 | { |
|---|
| 490 | if(writeVector) |
|---|
| 491 | for (i = 0; i < n; i++) |
|---|
| 492 | { |
|---|
| 493 | left = &(tipVector[numStates * tipX1[i]]); |
|---|
| 494 | |
|---|
| 495 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 496 | { |
|---|
| 497 | right = &(x2[gammaStates * i + numStates * j]); |
|---|
| 498 | |
|---|
| 499 | for(l = 0; l < numStates; l++) |
|---|
| 500 | term += left[l] * right[l] * diagptable[j * numStates + l]; |
|---|
| 501 | } |
|---|
| 502 | |
|---|
| 503 | if(iptr[i] < numStates) |
|---|
| 504 | if(fastScaling) |
|---|
| 505 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 506 | else |
|---|
| 507 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + ex2[i] * LOG(minlikelihood); |
|---|
| 508 | else |
|---|
| 509 | if(fastScaling) |
|---|
| 510 | term = LOG(scaler * FABS(term)); |
|---|
| 511 | else |
|---|
| 512 | term = LOG(scaler * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 513 | |
|---|
| 514 | vector[i] = term; |
|---|
| 515 | |
|---|
| 516 | sum += wptr[i] * term; |
|---|
| 517 | } |
|---|
| 518 | else |
|---|
| 519 | for (i = 0; i < n; i++) |
|---|
| 520 | { |
|---|
| 521 | left = &(tipVector[numStates * tipX1[i]]); |
|---|
| 522 | |
|---|
| 523 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 524 | { |
|---|
| 525 | right = &(x2[gammaStates * i + numStates * j]); |
|---|
| 526 | |
|---|
| 527 | for(l = 0; l < numStates; l++) |
|---|
| 528 | term += left[l] * right[l] * diagptable[j * numStates + l]; |
|---|
| 529 | } |
|---|
| 530 | |
|---|
| 531 | if(iptr[i] < numStates) |
|---|
| 532 | if(fastScaling) |
|---|
| 533 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 534 | else |
|---|
| 535 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + ex2[i] * LOG(minlikelihood); |
|---|
| 536 | else |
|---|
| 537 | if(fastScaling) |
|---|
| 538 | term = LOG(scaler * FABS(term)); |
|---|
| 539 | else |
|---|
| 540 | term = LOG(scaler * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 541 | |
|---|
| 542 | sum += wptr[i] * term; |
|---|
| 543 | } |
|---|
| 544 | } |
|---|
| 545 | else |
|---|
| 546 | { |
|---|
| 547 | if(writeVector) |
|---|
| 548 | for (i = 0; i < n; i++) |
|---|
| 549 | { |
|---|
| 550 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 551 | { |
|---|
| 552 | left = &(x1[gammaStates * i + numStates * j]); |
|---|
| 553 | right = &(x2[gammaStates * i + numStates * j]); |
|---|
| 554 | |
|---|
| 555 | for(l = 0; l < numStates; l++) |
|---|
| 556 | term += left[l] * right[l] * diagptable[j * numStates + l]; |
|---|
| 557 | } |
|---|
| 558 | |
|---|
| 559 | if(iptr[i] < numStates) |
|---|
| 560 | if(fastScaling) |
|---|
| 561 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 562 | else |
|---|
| 563 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + (ex1[i] + ex2[i]) * LOG(minlikelihood); |
|---|
| 564 | else |
|---|
| 565 | if(fastScaling) |
|---|
| 566 | term = LOG(scaler * FABS(term)); |
|---|
| 567 | else |
|---|
| 568 | term = LOG(scaler * FABS(term)) + (ex1[i] + ex2[i]) * LOG(minlikelihood); |
|---|
| 569 | |
|---|
| 570 | vector[i] = term; |
|---|
| 571 | |
|---|
| 572 | sum += wptr[i] * term; |
|---|
| 573 | } |
|---|
| 574 | else |
|---|
| 575 | for (i = 0; i < n; i++) |
|---|
| 576 | { |
|---|
| 577 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 578 | { |
|---|
| 579 | left = &(x1[gammaStates * i + numStates * j]); |
|---|
| 580 | right = &(x2[gammaStates * i + numStates * j]); |
|---|
| 581 | |
|---|
| 582 | for(l = 0; l < numStates; l++) |
|---|
| 583 | term += left[l] * right[l] * diagptable[j * numStates + l]; |
|---|
| 584 | } |
|---|
| 585 | |
|---|
| 586 | if(iptr[i] < numStates) |
|---|
| 587 | if(fastScaling) |
|---|
| 588 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 589 | else |
|---|
| 590 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + (ex1[i] + ex2[i]) * LOG(minlikelihood); |
|---|
| 591 | else |
|---|
| 592 | if(fastScaling) |
|---|
| 593 | term = LOG(scaler * FABS(term)); |
|---|
| 594 | else |
|---|
| 595 | term = LOG(scaler * FABS(term)) + (ex1[i] + ex2[i]) * LOG(minlikelihood); |
|---|
| 596 | |
|---|
| 597 | sum += wptr[i] * term; |
|---|
| 598 | } |
|---|
| 599 | } |
|---|
| 600 | |
|---|
| 601 | return sum; |
|---|
| 602 | } |
|---|
| 603 | |
|---|
| 604 | |
|---|
| 605 | |
|---|
| 606 | void calcDiagptable(double z, int data, int numberOfCategories, double *rptr, double *EIGN, double *diagptable) |
|---|
| 607 | { |
|---|
| 608 | int i, l; |
|---|
| 609 | double lz; |
|---|
| 610 | |
|---|
| 611 | if (z < zmin) |
|---|
| 612 | lz = log(zmin); |
|---|
| 613 | else |
|---|
| 614 | lz = log(z); |
|---|
| 615 | |
|---|
| 616 | switch(data) |
|---|
| 617 | { |
|---|
| 618 | case BINARY_DATA: |
|---|
| 619 | { |
|---|
| 620 | double lz1; |
|---|
| 621 | lz1 = EIGN[0] * lz; |
|---|
| 622 | for(i = 0; i < numberOfCategories; i++) |
|---|
| 623 | { |
|---|
| 624 | diagptable[2 * i] = 1.0; |
|---|
| 625 | diagptable[2 * i + 1] = EXP(rptr[i] * lz1); |
|---|
| 626 | } |
|---|
| 627 | } |
|---|
| 628 | break; |
|---|
| 629 | case DNA_DATA: |
|---|
| 630 | { |
|---|
| 631 | double lz1, lz2, lz3; |
|---|
| 632 | lz1 = EIGN[0] * lz; |
|---|
| 633 | lz2 = EIGN[1] * lz; |
|---|
| 634 | lz3 = EIGN[2] * lz; |
|---|
| 635 | |
|---|
| 636 | for(i = 0; i < numberOfCategories; i++) |
|---|
| 637 | { |
|---|
| 638 | diagptable[4 * i] = 1.0; |
|---|
| 639 | diagptable[4 * i + 1] = EXP(rptr[i] * lz1); |
|---|
| 640 | diagptable[4 * i + 2] = EXP(rptr[i] * lz2); |
|---|
| 641 | diagptable[4 * i + 3] = EXP(rptr[i] * lz3); |
|---|
| 642 | } |
|---|
| 643 | } |
|---|
| 644 | break; |
|---|
| 645 | case AA_DATA: |
|---|
| 646 | { |
|---|
| 647 | double lza[19]; |
|---|
| 648 | |
|---|
| 649 | for(l = 0; l < 19; l++) |
|---|
| 650 | lza[l] = EIGN[l] * lz; |
|---|
| 651 | |
|---|
| 652 | for(i = 0; i < numberOfCategories; i++) |
|---|
| 653 | { |
|---|
| 654 | diagptable[i * 20] = 1.0; |
|---|
| 655 | |
|---|
| 656 | for(l = 1; l < 20; l++) |
|---|
| 657 | diagptable[i * 20 + l] = EXP(rptr[i] * lza[l - 1]); |
|---|
| 658 | } |
|---|
| 659 | } |
|---|
| 660 | break; |
|---|
| 661 | case SECONDARY_DATA: |
|---|
| 662 | { |
|---|
| 663 | double lza[15]; |
|---|
| 664 | |
|---|
| 665 | for(l = 0; l < 15; l++) |
|---|
| 666 | lza[l] = EIGN[l] * lz; |
|---|
| 667 | |
|---|
| 668 | for(i = 0; i < numberOfCategories; i++) |
|---|
| 669 | { |
|---|
| 670 | diagptable[i * 16] = 1.0; |
|---|
| 671 | |
|---|
| 672 | for(l = 1; l < 16; l++) |
|---|
| 673 | diagptable[i * 16 + l] = EXP(rptr[i] * lza[l - 1]); |
|---|
| 674 | } |
|---|
| 675 | } |
|---|
| 676 | break; |
|---|
| 677 | case SECONDARY_DATA_6: |
|---|
| 678 | { |
|---|
| 679 | double lza[5]; |
|---|
| 680 | |
|---|
| 681 | for(l = 0; l < 5; l++) |
|---|
| 682 | lza[l] = EIGN[l] * lz; |
|---|
| 683 | |
|---|
| 684 | for(i = 0; i < numberOfCategories; i++) |
|---|
| 685 | { |
|---|
| 686 | diagptable[i * 6] = 1.0; |
|---|
| 687 | |
|---|
| 688 | for(l = 1; l < 6; l++) |
|---|
| 689 | diagptable[i * 6 + l] = EXP(rptr[i] * lza[l - 1]); |
|---|
| 690 | } |
|---|
| 691 | } |
|---|
| 692 | break; |
|---|
| 693 | case SECONDARY_DATA_7: |
|---|
| 694 | { |
|---|
| 695 | double lza[6]; |
|---|
| 696 | |
|---|
| 697 | for(l = 0; l < 6; l++) |
|---|
| 698 | lza[l] = EIGN[l] * lz; |
|---|
| 699 | |
|---|
| 700 | for(i = 0; i < numberOfCategories; i++) |
|---|
| 701 | { |
|---|
| 702 | diagptable[i * 7] = 1.0; |
|---|
| 703 | |
|---|
| 704 | for(l = 1; l < 7; l++) |
|---|
| 705 | diagptable[i * 7 + l] = EXP(rptr[i] * lza[l - 1]); |
|---|
| 706 | } |
|---|
| 707 | } |
|---|
| 708 | break; |
|---|
| 709 | default: |
|---|
| 710 | assert(0); |
|---|
| 711 | } |
|---|
| 712 | } |
|---|
| 713 | |
|---|
| 714 | |
|---|
| 715 | #ifdef __SIM_SSE3 |
|---|
| 716 | |
|---|
| 717 | |
|---|
| 718 | |
|---|
| 719 | |
|---|
| 720 | static double evaluateGTRCATPROT_SAVE (int *ex1, int *ex2, int *cptr, int *wptr, |
|---|
| 721 | double *x1, double *x2, double *tipVector, |
|---|
| 722 | unsigned char *tipX1, int n, double *diagptable_start, const boolean fastScaling, |
|---|
| 723 | double *x1_gapColumn, double *x2_gapColumn, unsigned int *x1_gap, unsigned int *x2_gap) |
|---|
| 724 | { |
|---|
| 725 | double |
|---|
| 726 | sum = 0.0, |
|---|
| 727 | term, |
|---|
| 728 | *diagptable, |
|---|
| 729 | *left, |
|---|
| 730 | *right, |
|---|
| 731 | *left_ptr = x1, |
|---|
| 732 | *right_ptr = x2; |
|---|
| 733 | |
|---|
| 734 | int |
|---|
| 735 | i, |
|---|
| 736 | l; |
|---|
| 737 | |
|---|
| 738 | if(tipX1) |
|---|
| 739 | { |
|---|
| 740 | for (i = 0; i < n; i++) |
|---|
| 741 | { |
|---|
| 742 | left = &(tipVector[20 * tipX1[i]]); |
|---|
| 743 | |
|---|
| 744 | if(isGap(x2_gap, i)) |
|---|
| 745 | right = x2_gapColumn; |
|---|
| 746 | else |
|---|
| 747 | { |
|---|
| 748 | right = right_ptr; |
|---|
| 749 | right_ptr += 20; |
|---|
| 750 | } |
|---|
| 751 | |
|---|
| 752 | diagptable = &diagptable_start[20 * cptr[i]]; |
|---|
| 753 | |
|---|
| 754 | __m128d tv = _mm_setzero_pd(); |
|---|
| 755 | |
|---|
| 756 | for(l = 0; l < 20; l+=2) |
|---|
| 757 | { |
|---|
| 758 | __m128d lv = _mm_load_pd(&left[l]); |
|---|
| 759 | __m128d rv = _mm_load_pd(&right[l]); |
|---|
| 760 | __m128d mul = _mm_mul_pd(lv, rv); |
|---|
| 761 | __m128d dv = _mm_load_pd(&diagptable[l]); |
|---|
| 762 | |
|---|
| 763 | tv = _mm_add_pd(tv, _mm_mul_pd(mul, dv)); |
|---|
| 764 | } |
|---|
| 765 | |
|---|
| 766 | tv = _mm_hadd_pd(tv, tv); |
|---|
| 767 | _mm_storel_pd(&term, tv); |
|---|
| 768 | |
|---|
| 769 | if(fastScaling) |
|---|
| 770 | term = LOG(term); |
|---|
| 771 | else |
|---|
| 772 | term = LOG(term) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 773 | |
|---|
| 774 | sum += wptr[i] * term; |
|---|
| 775 | } |
|---|
| 776 | } |
|---|
| 777 | else |
|---|
| 778 | { |
|---|
| 779 | |
|---|
| 780 | for (i = 0; i < n; i++) |
|---|
| 781 | { |
|---|
| 782 | if(isGap(x1_gap, i)) |
|---|
| 783 | left = x1_gapColumn; |
|---|
| 784 | else |
|---|
| 785 | { |
|---|
| 786 | left = left_ptr; |
|---|
| 787 | left_ptr += 20; |
|---|
| 788 | } |
|---|
| 789 | |
|---|
| 790 | if(isGap(x2_gap, i)) |
|---|
| 791 | right = x2_gapColumn; |
|---|
| 792 | else |
|---|
| 793 | { |
|---|
| 794 | right = right_ptr; |
|---|
| 795 | right_ptr += 20; |
|---|
| 796 | } |
|---|
| 797 | |
|---|
| 798 | diagptable = &diagptable_start[20 * cptr[i]]; |
|---|
| 799 | |
|---|
| 800 | __m128d tv = _mm_setzero_pd(); |
|---|
| 801 | |
|---|
| 802 | for(l = 0; l < 20; l+=2) |
|---|
| 803 | { |
|---|
| 804 | __m128d lv = _mm_load_pd(&left[l]); |
|---|
| 805 | __m128d rv = _mm_load_pd(&right[l]); |
|---|
| 806 | __m128d mul = _mm_mul_pd(lv, rv); |
|---|
| 807 | __m128d dv = _mm_load_pd(&diagptable[l]); |
|---|
| 808 | |
|---|
| 809 | tv = _mm_add_pd(tv, _mm_mul_pd(mul, dv)); |
|---|
| 810 | } |
|---|
| 811 | |
|---|
| 812 | tv = _mm_hadd_pd(tv, tv); |
|---|
| 813 | _mm_storel_pd(&term, tv); |
|---|
| 814 | |
|---|
| 815 | if(fastScaling) |
|---|
| 816 | term = LOG(term); |
|---|
| 817 | else |
|---|
| 818 | term = LOG(term) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 819 | |
|---|
| 820 | sum += wptr[i] * term; |
|---|
| 821 | } |
|---|
| 822 | } |
|---|
| 823 | |
|---|
| 824 | return sum; |
|---|
| 825 | } |
|---|
| 826 | |
|---|
| 827 | |
|---|
| 828 | static double evaluateGTRCAT_SAVE (int *ex1, int *ex2, int *cptr, int *wptr, |
|---|
| 829 | double *x1_start, double *x2_start, double *tipVector, |
|---|
| 830 | unsigned char *tipX1, int n, double *diagptable_start, const boolean fastScaling, |
|---|
| 831 | double *x1_gapColumn, double *x2_gapColumn, unsigned int *x1_gap, unsigned int *x2_gap) |
|---|
| 832 | { |
|---|
| 833 | double sum = 0.0, term; |
|---|
| 834 | int i; |
|---|
| 835 | |
|---|
| 836 | double *diagptable, |
|---|
| 837 | *x1, |
|---|
| 838 | *x2, |
|---|
| 839 | *x1_ptr = x1_start, |
|---|
| 840 | *x2_ptr = x2_start; |
|---|
| 841 | |
|---|
| 842 | if(tipX1) |
|---|
| 843 | { |
|---|
| 844 | for (i = 0; i < n; i++) |
|---|
| 845 | { |
|---|
| 846 | double t[2] __attribute__ ((aligned (BYTE_ALIGNMENT))); |
|---|
| 847 | __m128d x1v1, x1v2, x2v1, x2v2, dv1, dv2; |
|---|
| 848 | |
|---|
| 849 | x1 = &(tipVector[4 * tipX1[i]]); |
|---|
| 850 | |
|---|
| 851 | if(isGap(x2_gap, i)) |
|---|
| 852 | x2 = x2_gapColumn; |
|---|
| 853 | else |
|---|
| 854 | { |
|---|
| 855 | x2 = x2_ptr; |
|---|
| 856 | x2_ptr += 4; |
|---|
| 857 | } |
|---|
| 858 | |
|---|
| 859 | diagptable = &diagptable_start[4 * cptr[i]]; |
|---|
| 860 | |
|---|
| 861 | x1v1 = _mm_load_pd(&x1[0]); |
|---|
| 862 | x1v2 = _mm_load_pd(&x1[2]); |
|---|
| 863 | x2v1 = _mm_load_pd(&x2[0]); |
|---|
| 864 | x2v2 = _mm_load_pd(&x2[2]); |
|---|
| 865 | dv1 = _mm_load_pd(&diagptable[0]); |
|---|
| 866 | dv2 = _mm_load_pd(&diagptable[2]); |
|---|
| 867 | |
|---|
| 868 | x1v1 = _mm_mul_pd(x1v1, x2v1); |
|---|
| 869 | x1v1 = _mm_mul_pd(x1v1, dv1); |
|---|
| 870 | |
|---|
| 871 | x1v2 = _mm_mul_pd(x1v2, x2v2); |
|---|
| 872 | x1v2 = _mm_mul_pd(x1v2, dv2); |
|---|
| 873 | |
|---|
| 874 | x1v1 = _mm_add_pd(x1v1, x1v2); |
|---|
| 875 | |
|---|
| 876 | _mm_store_pd(t, x1v1); |
|---|
| 877 | |
|---|
| 878 | if(fastScaling) |
|---|
| 879 | term = LOG(t[0] + t[1]); |
|---|
| 880 | else |
|---|
| 881 | term = LOG(t[0] + t[1]) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 882 | |
|---|
| 883 | sum += wptr[i] * term; |
|---|
| 884 | } |
|---|
| 885 | } |
|---|
| 886 | else |
|---|
| 887 | { |
|---|
| 888 | for (i = 0; i < n; i++) |
|---|
| 889 | { |
|---|
| 890 | double t[2] __attribute__ ((aligned (BYTE_ALIGNMENT))); |
|---|
| 891 | __m128d x1v1, x1v2, x2v1, x2v2, dv1, dv2; |
|---|
| 892 | |
|---|
| 893 | if(isGap(x1_gap, i)) |
|---|
| 894 | x1 = x1_gapColumn; |
|---|
| 895 | else |
|---|
| 896 | { |
|---|
| 897 | x1 = x1_ptr; |
|---|
| 898 | x1_ptr += 4; |
|---|
| 899 | } |
|---|
| 900 | |
|---|
| 901 | if(isGap(x2_gap, i)) |
|---|
| 902 | x2 = x2_gapColumn; |
|---|
| 903 | else |
|---|
| 904 | { |
|---|
| 905 | x2 = x2_ptr; |
|---|
| 906 | x2_ptr += 4; |
|---|
| 907 | } |
|---|
| 908 | |
|---|
| 909 | diagptable = &diagptable_start[4 * cptr[i]]; |
|---|
| 910 | |
|---|
| 911 | x1v1 = _mm_load_pd(&x1[0]); |
|---|
| 912 | x1v2 = _mm_load_pd(&x1[2]); |
|---|
| 913 | x2v1 = _mm_load_pd(&x2[0]); |
|---|
| 914 | x2v2 = _mm_load_pd(&x2[2]); |
|---|
| 915 | dv1 = _mm_load_pd(&diagptable[0]); |
|---|
| 916 | dv2 = _mm_load_pd(&diagptable[2]); |
|---|
| 917 | |
|---|
| 918 | x1v1 = _mm_mul_pd(x1v1, x2v1); |
|---|
| 919 | x1v1 = _mm_mul_pd(x1v1, dv1); |
|---|
| 920 | |
|---|
| 921 | x1v2 = _mm_mul_pd(x1v2, x2v2); |
|---|
| 922 | x1v2 = _mm_mul_pd(x1v2, dv2); |
|---|
| 923 | |
|---|
| 924 | x1v1 = _mm_add_pd(x1v1, x1v2); |
|---|
| 925 | |
|---|
| 926 | _mm_store_pd(t, x1v1); |
|---|
| 927 | |
|---|
| 928 | if(fastScaling) |
|---|
| 929 | term = LOG(t[0] + t[1]); |
|---|
| 930 | else |
|---|
| 931 | term = LOG(t[0] + t[1]) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 932 | |
|---|
| 933 | sum += wptr[i] * term; |
|---|
| 934 | } |
|---|
| 935 | } |
|---|
| 936 | |
|---|
| 937 | return sum; |
|---|
| 938 | } |
|---|
| 939 | |
|---|
| 940 | #endif |
|---|
| 941 | |
|---|
| 942 | |
|---|
| 943 | |
|---|
| 944 | |
|---|
| 945 | static double evaluateGTRCATPROT (int *ex1, int *ex2, int *cptr, int *wptr, |
|---|
| 946 | double *x1, double *x2, double *tipVector, |
|---|
| 947 | unsigned char *tipX1, int n, double *diagptable_start, const boolean fastScaling) |
|---|
| 948 | { |
|---|
| 949 | double sum = 0.0, term; |
|---|
| 950 | double *diagptable, *left, *right; |
|---|
| 951 | int i, l; |
|---|
| 952 | |
|---|
| 953 | if(tipX1) |
|---|
| 954 | { |
|---|
| 955 | for (i = 0; i < n; i++) |
|---|
| 956 | { |
|---|
| 957 | left = &(tipVector[20 * tipX1[i]]); |
|---|
| 958 | right = &(x2[20 * i]); |
|---|
| 959 | |
|---|
| 960 | diagptable = &diagptable_start[20 * cptr[i]]; |
|---|
| 961 | #ifdef __SIM_SSE3 |
|---|
| 962 | __m128d tv = _mm_setzero_pd(); |
|---|
| 963 | |
|---|
| 964 | for(l = 0; l < 20; l+=2) |
|---|
| 965 | { |
|---|
| 966 | __m128d lv = _mm_load_pd(&left[l]); |
|---|
| 967 | __m128d rv = _mm_load_pd(&right[l]); |
|---|
| 968 | __m128d mul = _mm_mul_pd(lv, rv); |
|---|
| 969 | __m128d dv = _mm_load_pd(&diagptable[l]); |
|---|
| 970 | |
|---|
| 971 | tv = _mm_add_pd(tv, _mm_mul_pd(mul, dv)); |
|---|
| 972 | } |
|---|
| 973 | |
|---|
| 974 | tv = _mm_hadd_pd(tv, tv); |
|---|
| 975 | _mm_storel_pd(&term, tv); |
|---|
| 976 | #else |
|---|
| 977 | for(l = 0, term = 0.0; l < 20; l++) |
|---|
| 978 | term += left[l] * right[l] * diagptable[l]; |
|---|
| 979 | #endif |
|---|
| 980 | if(fastScaling) |
|---|
| 981 | term = LOG(FABS(term)); |
|---|
| 982 | else |
|---|
| 983 | term = LOG(FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 984 | |
|---|
| 985 | sum += wptr[i] * term; |
|---|
| 986 | } |
|---|
| 987 | } |
|---|
| 988 | else |
|---|
| 989 | { |
|---|
| 990 | |
|---|
| 991 | for (i = 0; i < n; i++) |
|---|
| 992 | { |
|---|
| 993 | left = &x1[20 * i]; |
|---|
| 994 | right = &x2[20 * i]; |
|---|
| 995 | |
|---|
| 996 | diagptable = &diagptable_start[20 * cptr[i]]; |
|---|
| 997 | #ifdef __SIM_SSE3 |
|---|
| 998 | __m128d tv = _mm_setzero_pd(); |
|---|
| 999 | |
|---|
| 1000 | for(l = 0; l < 20; l+=2) |
|---|
| 1001 | { |
|---|
| 1002 | __m128d lv = _mm_load_pd(&left[l]); |
|---|
| 1003 | __m128d rv = _mm_load_pd(&right[l]); |
|---|
| 1004 | __m128d mul = _mm_mul_pd(lv, rv); |
|---|
| 1005 | __m128d dv = _mm_load_pd(&diagptable[l]); |
|---|
| 1006 | |
|---|
| 1007 | tv = _mm_add_pd(tv, _mm_mul_pd(mul, dv)); |
|---|
| 1008 | } |
|---|
| 1009 | |
|---|
| 1010 | tv = _mm_hadd_pd(tv, tv); |
|---|
| 1011 | _mm_storel_pd(&term, tv); |
|---|
| 1012 | #else |
|---|
| 1013 | for(l = 0, term = 0.0; l < 20; l++) |
|---|
| 1014 | term += left[l] * right[l] * diagptable[l]; |
|---|
| 1015 | #endif |
|---|
| 1016 | |
|---|
| 1017 | if(fastScaling) |
|---|
| 1018 | term = LOG(FABS(term)); |
|---|
| 1019 | else |
|---|
| 1020 | term = LOG(FABS(term)) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 1021 | |
|---|
| 1022 | sum += wptr[i] * term; |
|---|
| 1023 | } |
|---|
| 1024 | } |
|---|
| 1025 | |
|---|
| 1026 | return sum; |
|---|
| 1027 | } |
|---|
| 1028 | |
|---|
| 1029 | |
|---|
| 1030 | static double evaluateGTRCATSECONDARY (int *ex1, int *ex2, int *cptr, int *wptr, |
|---|
| 1031 | double *x1, double *x2, double *tipVector, |
|---|
| 1032 | unsigned char *tipX1, int n, double *diagptable_start, const boolean fastScaling) |
|---|
| 1033 | { |
|---|
| 1034 | double sum = 0.0, term; |
|---|
| 1035 | double *diagptable, *left, *right; |
|---|
| 1036 | int i, l; |
|---|
| 1037 | |
|---|
| 1038 | if(tipX1) |
|---|
| 1039 | { |
|---|
| 1040 | for (i = 0; i < n; i++) |
|---|
| 1041 | { |
|---|
| 1042 | left = &(tipVector[16 * tipX1[i]]); |
|---|
| 1043 | right = &(x2[16 * i]); |
|---|
| 1044 | |
|---|
| 1045 | diagptable = &diagptable_start[16 * cptr[i]]; |
|---|
| 1046 | |
|---|
| 1047 | for(l = 0, term = 0.0; l < 16; l++) |
|---|
| 1048 | term += left[l] * right[l] * diagptable[l]; |
|---|
| 1049 | |
|---|
| 1050 | if(fastScaling) |
|---|
| 1051 | term = LOG(FABS(term)); |
|---|
| 1052 | else |
|---|
| 1053 | term = LOG(FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 1054 | |
|---|
| 1055 | sum += wptr[i] * term; |
|---|
| 1056 | } |
|---|
| 1057 | } |
|---|
| 1058 | else |
|---|
| 1059 | { |
|---|
| 1060 | |
|---|
| 1061 | for (i = 0; i < n; i++) |
|---|
| 1062 | { |
|---|
| 1063 | left = &x1[16 * i]; |
|---|
| 1064 | right = &x2[16 * i]; |
|---|
| 1065 | |
|---|
| 1066 | diagptable = &diagptable_start[16 * cptr[i]]; |
|---|
| 1067 | |
|---|
| 1068 | for(l = 0, term = 0.0; l < 16; l++) |
|---|
| 1069 | term += left[l] * right[l] * diagptable[l]; |
|---|
| 1070 | |
|---|
| 1071 | if(fastScaling) |
|---|
| 1072 | term = LOG(FABS(term)); |
|---|
| 1073 | else |
|---|
| 1074 | term = LOG(FABS(term)) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 1075 | |
|---|
| 1076 | sum += wptr[i] * term; |
|---|
| 1077 | } |
|---|
| 1078 | } |
|---|
| 1079 | |
|---|
| 1080 | return sum; |
|---|
| 1081 | } |
|---|
| 1082 | |
|---|
| 1083 | static double evaluateGTRCATSECONDARY_6 (int *ex1, int *ex2, int *cptr, int *wptr, |
|---|
| 1084 | double *x1, double *x2, double *tipVector, |
|---|
| 1085 | unsigned char *tipX1, int n, double *diagptable_start, const boolean fastScaling) |
|---|
| 1086 | { |
|---|
| 1087 | double sum = 0.0, term; |
|---|
| 1088 | double *diagptable, *left, *right; |
|---|
| 1089 | int i, l; |
|---|
| 1090 | |
|---|
| 1091 | if(tipX1) |
|---|
| 1092 | { |
|---|
| 1093 | for (i = 0; i < n; i++) |
|---|
| 1094 | { |
|---|
| 1095 | left = &(tipVector[6 * tipX1[i]]); |
|---|
| 1096 | right = &(x2[6 * i]); |
|---|
| 1097 | |
|---|
| 1098 | diagptable = &diagptable_start[6 * cptr[i]]; |
|---|
| 1099 | |
|---|
| 1100 | for(l = 0, term = 0.0; l < 6; l++) |
|---|
| 1101 | term += left[l] * right[l] * diagptable[l]; |
|---|
| 1102 | |
|---|
| 1103 | if(fastScaling) |
|---|
| 1104 | term = LOG(FABS(term)); |
|---|
| 1105 | else |
|---|
| 1106 | term = LOG(FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 1107 | |
|---|
| 1108 | sum += wptr[i] * term; |
|---|
| 1109 | } |
|---|
| 1110 | } |
|---|
| 1111 | else |
|---|
| 1112 | { |
|---|
| 1113 | |
|---|
| 1114 | for (i = 0; i < n; i++) |
|---|
| 1115 | { |
|---|
| 1116 | left = &x1[6 * i]; |
|---|
| 1117 | right = &x2[6 * i]; |
|---|
| 1118 | |
|---|
| 1119 | diagptable = &diagptable_start[6 * cptr[i]]; |
|---|
| 1120 | |
|---|
| 1121 | for(l = 0, term = 0.0; l < 6; l++) |
|---|
| 1122 | term += left[l] * right[l] * diagptable[l]; |
|---|
| 1123 | |
|---|
| 1124 | if(fastScaling) |
|---|
| 1125 | term = LOG(FABS(term)); |
|---|
| 1126 | else |
|---|
| 1127 | term = LOG(FABS(term)) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 1128 | |
|---|
| 1129 | sum += wptr[i] * term; |
|---|
| 1130 | } |
|---|
| 1131 | } |
|---|
| 1132 | |
|---|
| 1133 | return sum; |
|---|
| 1134 | } |
|---|
| 1135 | |
|---|
| 1136 | static double evaluateGTRCATSECONDARY_7(int *ex1, int *ex2, int *cptr, int *wptr, |
|---|
| 1137 | double *x1, double *x2, double *tipVector, |
|---|
| 1138 | unsigned char *tipX1, int n, double *diagptable_start, const boolean fastScaling) |
|---|
| 1139 | { |
|---|
| 1140 | double sum = 0.0, term; |
|---|
| 1141 | double *diagptable, *left, *right; |
|---|
| 1142 | int i, l; |
|---|
| 1143 | |
|---|
| 1144 | if(tipX1) |
|---|
| 1145 | { |
|---|
| 1146 | for (i = 0; i < n; i++) |
|---|
| 1147 | { |
|---|
| 1148 | left = &(tipVector[7 * tipX1[i]]); |
|---|
| 1149 | right = &(x2[7 * i]); |
|---|
| 1150 | |
|---|
| 1151 | diagptable = &diagptable_start[7 * cptr[i]]; |
|---|
| 1152 | |
|---|
| 1153 | for(l = 0, term = 0.0; l < 7; l++) |
|---|
| 1154 | term += left[l] * right[l] * diagptable[l]; |
|---|
| 1155 | |
|---|
| 1156 | if(fastScaling) |
|---|
| 1157 | term = LOG(FABS(term)); |
|---|
| 1158 | else |
|---|
| 1159 | term = LOG(FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 1160 | |
|---|
| 1161 | sum += wptr[i] * term; |
|---|
| 1162 | } |
|---|
| 1163 | } |
|---|
| 1164 | else |
|---|
| 1165 | { |
|---|
| 1166 | |
|---|
| 1167 | for (i = 0; i < n; i++) |
|---|
| 1168 | { |
|---|
| 1169 | left = &x1[7 * i]; |
|---|
| 1170 | right = &x2[7 * i]; |
|---|
| 1171 | |
|---|
| 1172 | diagptable = &diagptable_start[7 * cptr[i]]; |
|---|
| 1173 | |
|---|
| 1174 | for(l = 0, term = 0.0; l < 7; l++) |
|---|
| 1175 | term += left[l] * right[l] * diagptable[l]; |
|---|
| 1176 | |
|---|
| 1177 | if(fastScaling) |
|---|
| 1178 | term = LOG(FABS(term)); |
|---|
| 1179 | else |
|---|
| 1180 | term = LOG(FABS(term)) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 1181 | |
|---|
| 1182 | sum += wptr[i] * term; |
|---|
| 1183 | } |
|---|
| 1184 | } |
|---|
| 1185 | |
|---|
| 1186 | return sum; |
|---|
| 1187 | } |
|---|
| 1188 | |
|---|
| 1189 | static double evaluateGTRCAT_BINARY (int *ex1, int *ex2, int *cptr, int *wptr, |
|---|
| 1190 | double *x1_start, double *x2_start, double *tipVector, |
|---|
| 1191 | unsigned char *tipX1, int n, double *diagptable_start, const boolean fastScaling) |
|---|
| 1192 | { |
|---|
| 1193 | double sum = 0.0, term; |
|---|
| 1194 | int i; |
|---|
| 1195 | #ifndef __SIM_SSE3 |
|---|
| 1196 | int j; |
|---|
| 1197 | #endif |
|---|
| 1198 | double *diagptable, *x1, *x2; |
|---|
| 1199 | |
|---|
| 1200 | if(tipX1) |
|---|
| 1201 | { |
|---|
| 1202 | for (i = 0; i < n; i++) |
|---|
| 1203 | { |
|---|
| 1204 | #ifdef __SIM_SSE3 |
|---|
| 1205 | double t[2] __attribute__ ((aligned (BYTE_ALIGNMENT))); |
|---|
| 1206 | #endif |
|---|
| 1207 | x1 = &(tipVector[2 * tipX1[i]]); |
|---|
| 1208 | x2 = &(x2_start[2 * i]); |
|---|
| 1209 | |
|---|
| 1210 | diagptable = &(diagptable_start[2 * cptr[i]]); |
|---|
| 1211 | |
|---|
| 1212 | #ifdef __SIM_SSE3 |
|---|
| 1213 | _mm_store_pd(t, _mm_mul_pd(_mm_load_pd(x1), _mm_mul_pd(_mm_load_pd(x2), _mm_load_pd(diagptable)))); |
|---|
| 1214 | |
|---|
| 1215 | if(fastScaling) |
|---|
| 1216 | term = LOG(FABS(t[0] + t[1])); |
|---|
| 1217 | else |
|---|
| 1218 | term = LOG(FABS(t[0] + t[1])) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 1219 | #else |
|---|
| 1220 | for(j = 0, term = 0.0; j < 2; j++) |
|---|
| 1221 | term += x1[j] * x2[j] * diagptable[j]; |
|---|
| 1222 | |
|---|
| 1223 | if(fastScaling) |
|---|
| 1224 | term = LOG(FABS(term)); |
|---|
| 1225 | else |
|---|
| 1226 | term = LOG(FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 1227 | #endif |
|---|
| 1228 | |
|---|
| 1229 | sum += wptr[i] * term; |
|---|
| 1230 | } |
|---|
| 1231 | } |
|---|
| 1232 | else |
|---|
| 1233 | { |
|---|
| 1234 | for (i = 0; i < n; i++) |
|---|
| 1235 | { |
|---|
| 1236 | #ifdef __SIM_SSE3 |
|---|
| 1237 | double t[2] __attribute__ ((aligned (BYTE_ALIGNMENT))); |
|---|
| 1238 | #endif |
|---|
| 1239 | x1 = &x1_start[2 * i]; |
|---|
| 1240 | x2 = &x2_start[2 * i]; |
|---|
| 1241 | |
|---|
| 1242 | diagptable = &diagptable_start[2 * cptr[i]]; |
|---|
| 1243 | #ifdef __SIM_SSE3 |
|---|
| 1244 | _mm_store_pd(t, _mm_mul_pd(_mm_load_pd(x1), _mm_mul_pd(_mm_load_pd(x2), _mm_load_pd(diagptable)))); |
|---|
| 1245 | |
|---|
| 1246 | if(fastScaling) |
|---|
| 1247 | term = LOG(FABS(t[0] + t[1])); |
|---|
| 1248 | else |
|---|
| 1249 | term = LOG(FABS(t[0] + t[1])) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 1250 | #else |
|---|
| 1251 | for(j = 0, term = 0.0; j < 2; j++) |
|---|
| 1252 | term += x1[j] * x2[j] * diagptable[j]; |
|---|
| 1253 | |
|---|
| 1254 | if(fastScaling) |
|---|
| 1255 | term = LOG(FABS(term)); |
|---|
| 1256 | else |
|---|
| 1257 | term = LOG(FABS(term)) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 1258 | #endif |
|---|
| 1259 | |
|---|
| 1260 | sum += wptr[i] * term; |
|---|
| 1261 | } |
|---|
| 1262 | } |
|---|
| 1263 | |
|---|
| 1264 | return sum; |
|---|
| 1265 | } |
|---|
| 1266 | |
|---|
| 1267 | |
|---|
| 1268 | static double evaluateGTRGAMMA_BINARY(int *ex1, int *ex2, int *wptr, |
|---|
| 1269 | double *x1_start, double *x2_start, |
|---|
| 1270 | double *tipVector, |
|---|
| 1271 | unsigned char *tipX1, const int n, double *diagptable, const boolean fastScaling) |
|---|
| 1272 | { |
|---|
| 1273 | double sum = 0.0, term; |
|---|
| 1274 | int i, j; |
|---|
| 1275 | #ifndef __SIM_SSE3 |
|---|
| 1276 | int k; |
|---|
| 1277 | #endif |
|---|
| 1278 | double *x1, *x2; |
|---|
| 1279 | |
|---|
| 1280 | if(tipX1) |
|---|
| 1281 | { |
|---|
| 1282 | for (i = 0; i < n; i++) |
|---|
| 1283 | { |
|---|
| 1284 | #ifdef __SIM_SSE3 |
|---|
| 1285 | double t[2] __attribute__ ((aligned (BYTE_ALIGNMENT))); |
|---|
| 1286 | __m128d termv, x1v, x2v, dv; |
|---|
| 1287 | #endif |
|---|
| 1288 | x1 = &(tipVector[2 * tipX1[i]]); |
|---|
| 1289 | x2 = &x2_start[8 * i]; |
|---|
| 1290 | #ifdef __SIM_SSE3 |
|---|
| 1291 | termv = _mm_set1_pd(0.0); |
|---|
| 1292 | |
|---|
| 1293 | for(j = 0; j < 4; j++) |
|---|
| 1294 | { |
|---|
| 1295 | x1v = _mm_load_pd(&x1[0]); |
|---|
| 1296 | x2v = _mm_load_pd(&x2[j * 2]); |
|---|
| 1297 | dv = _mm_load_pd(&diagptable[j * 2]); |
|---|
| 1298 | |
|---|
| 1299 | x1v = _mm_mul_pd(x1v, x2v); |
|---|
| 1300 | x1v = _mm_mul_pd(x1v, dv); |
|---|
| 1301 | |
|---|
| 1302 | termv = _mm_add_pd(termv, x1v); |
|---|
| 1303 | } |
|---|
| 1304 | |
|---|
| 1305 | _mm_store_pd(t, termv); |
|---|
| 1306 | |
|---|
| 1307 | if(fastScaling) |
|---|
| 1308 | term = LOG(0.25 * (FABS(t[0] + t[1]))); |
|---|
| 1309 | else |
|---|
| 1310 | term = LOG(0.25 * (FABS(t[0] + t[1]))) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 1311 | #else |
|---|
| 1312 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1313 | for(k = 0; k < 2; k++) |
|---|
| 1314 | term += x1[k] * x2[j * 2 + k] * diagptable[j * 2 + k]; |
|---|
| 1315 | |
|---|
| 1316 | if(fastScaling) |
|---|
| 1317 | term = LOG(0.25 * FABS(term)); |
|---|
| 1318 | else |
|---|
| 1319 | term = LOG(0.25 * FABS(term)) + ex2[i] * LOG(minlikelihood); |
|---|
| 1320 | #endif |
|---|
| 1321 | |
|---|
| 1322 | sum += wptr[i] * term; |
|---|
| 1323 | } |
|---|
| 1324 | } |
|---|
| 1325 | else |
|---|
| 1326 | { |
|---|
| 1327 | for (i = 0; i < n; i++) |
|---|
| 1328 | { |
|---|
| 1329 | #ifdef __SIM_SSE3 |
|---|
| 1330 | double t[2] __attribute__ ((aligned (BYTE_ALIGNMENT))); |
|---|
| 1331 | __m128d termv, x1v, x2v, dv; |
|---|
| 1332 | #endif |
|---|
| 1333 | x1 = &x1_start[8 * i]; |
|---|
| 1334 | x2 = &x2_start[8 * i]; |
|---|
| 1335 | |
|---|
| 1336 | #ifdef __SIM_SSE3 |
|---|
| 1337 | termv = _mm_set1_pd(0.0); |
|---|
| 1338 | |
|---|
| 1339 | for(j = 0; j < 4; j++) |
|---|
| 1340 | { |
|---|
| 1341 | x1v = _mm_load_pd(&x1[j * 2]); |
|---|
| 1342 | x2v = _mm_load_pd(&x2[j * 2]); |
|---|
| 1343 | dv = _mm_load_pd(&diagptable[j * 2]); |
|---|
| 1344 | |
|---|
| 1345 | x1v = _mm_mul_pd(x1v, x2v); |
|---|
| 1346 | x1v = _mm_mul_pd(x1v, dv); |
|---|
| 1347 | |
|---|
| 1348 | termv = _mm_add_pd(termv, x1v); |
|---|
| 1349 | } |
|---|
| 1350 | |
|---|
| 1351 | _mm_store_pd(t, termv); |
|---|
| 1352 | |
|---|
| 1353 | |
|---|
| 1354 | if(fastScaling) |
|---|
| 1355 | term = LOG(0.25 * (FABS(t[0] + t[1]))); |
|---|
| 1356 | else |
|---|
| 1357 | term = LOG(0.25 * (FABS(t[0] + t[1]))) + ((ex1[i] +ex2[i]) * LOG(minlikelihood)); |
|---|
| 1358 | #else |
|---|
| 1359 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1360 | for(k = 0; k < 2; k++) |
|---|
| 1361 | term += x1[j * 2 + k] * x2[j * 2 + k] * diagptable[j * 2 + k]; |
|---|
| 1362 | |
|---|
| 1363 | if(fastScaling) |
|---|
| 1364 | term = LOG(0.25 * FABS(term)); |
|---|
| 1365 | else |
|---|
| 1366 | term = LOG(0.25 * FABS(term)) + (ex1[i] + ex2[i]) * LOG(minlikelihood); |
|---|
| 1367 | #endif |
|---|
| 1368 | |
|---|
| 1369 | sum += wptr[i] * term; |
|---|
| 1370 | } |
|---|
| 1371 | } |
|---|
| 1372 | |
|---|
| 1373 | return sum; |
|---|
| 1374 | } |
|---|
| 1375 | |
|---|
| 1376 | static double evaluateGTRGAMMAINVAR_BINARY (int *ex1, int *ex2, int *wptr, int *iptr, |
|---|
| 1377 | double *x1_start, double *x2_start, |
|---|
| 1378 | double *tipVector, double *tFreqs, double invariants, |
|---|
| 1379 | unsigned char *tipX1, int n, double *diagptable, const boolean fastScaling) |
|---|
| 1380 | { |
|---|
| 1381 | int i, j, k; |
|---|
| 1382 | double *x1, *x2; |
|---|
| 1383 | double |
|---|
| 1384 | freqs[2], |
|---|
| 1385 | scaler = 0.25 * (1.0 - invariants), |
|---|
| 1386 | sum = 0.0, |
|---|
| 1387 | term; |
|---|
| 1388 | |
|---|
| 1389 | freqs[0] = tFreqs[0] * invariants; |
|---|
| 1390 | freqs[1] = tFreqs[1] * invariants; |
|---|
| 1391 | |
|---|
| 1392 | if(tipX1) |
|---|
| 1393 | { |
|---|
| 1394 | for (i = 0; i < n; i++) |
|---|
| 1395 | { |
|---|
| 1396 | x1 = &(tipVector[2 * tipX1[i]]); |
|---|
| 1397 | x2 = &x2_start[8 * i]; |
|---|
| 1398 | |
|---|
| 1399 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1400 | for(k = 0; k < 2; k++) |
|---|
| 1401 | term += x1[k] * x2[j * 2 + k] * diagptable[j * 2 + k]; |
|---|
| 1402 | |
|---|
| 1403 | if(iptr[i] < 2) |
|---|
| 1404 | if(fastScaling) |
|---|
| 1405 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 1406 | else |
|---|
| 1407 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + ex2[i] * LOG(minlikelihood); |
|---|
| 1408 | else |
|---|
| 1409 | if(fastScaling) |
|---|
| 1410 | term = LOG(scaler * FABS(term)); |
|---|
| 1411 | else |
|---|
| 1412 | term = LOG(scaler * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 1413 | |
|---|
| 1414 | sum += wptr[i] * term; |
|---|
| 1415 | } |
|---|
| 1416 | } |
|---|
| 1417 | else |
|---|
| 1418 | { |
|---|
| 1419 | |
|---|
| 1420 | for (i = 0; i < n; i++) |
|---|
| 1421 | { |
|---|
| 1422 | x1 = &x1_start[8 * i]; |
|---|
| 1423 | x2 = &x2_start[8 * i]; |
|---|
| 1424 | |
|---|
| 1425 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1426 | for(k = 0; k < 2; k++) |
|---|
| 1427 | term += x1[j * 2 + k] * x2[j * 2 + k] * diagptable[j * 2 + k]; |
|---|
| 1428 | |
|---|
| 1429 | if(iptr[i] < 2) |
|---|
| 1430 | if(fastScaling) |
|---|
| 1431 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 1432 | else |
|---|
| 1433 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + (ex2[i] + ex1[i]) * LOG(minlikelihood); |
|---|
| 1434 | else |
|---|
| 1435 | if(fastScaling) |
|---|
| 1436 | term = LOG(scaler * FABS(term)); |
|---|
| 1437 | else |
|---|
| 1438 | term = LOG(scaler * FABS(term)) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 1439 | |
|---|
| 1440 | sum += wptr[i] * term; |
|---|
| 1441 | } |
|---|
| 1442 | } |
|---|
| 1443 | |
|---|
| 1444 | return sum; |
|---|
| 1445 | } |
|---|
| 1446 | |
|---|
| 1447 | |
|---|
| 1448 | static double evaluateGTRCAT (int *ex1, int *ex2, int *cptr, int *wptr, |
|---|
| 1449 | double *x1_start, double *x2_start, double *tipVector, |
|---|
| 1450 | unsigned char *tipX1, int n, double *diagptable_start, const boolean fastScaling) |
|---|
| 1451 | { |
|---|
| 1452 | double sum = 0.0, term; |
|---|
| 1453 | int i; |
|---|
| 1454 | #ifndef __SIM_SSE3 |
|---|
| 1455 | int j; |
|---|
| 1456 | #endif |
|---|
| 1457 | double *diagptable, *x1, *x2; |
|---|
| 1458 | |
|---|
| 1459 | if(tipX1) |
|---|
| 1460 | { |
|---|
| 1461 | for (i = 0; i < n; i++) |
|---|
| 1462 | { |
|---|
| 1463 | #ifdef __SIM_SSE3 |
|---|
| 1464 | double t[2] __attribute__ ((aligned (BYTE_ALIGNMENT))); |
|---|
| 1465 | __m128d x1v1, x1v2, x2v1, x2v2, dv1, dv2; |
|---|
| 1466 | #endif |
|---|
| 1467 | x1 = &(tipVector[4 * tipX1[i]]); |
|---|
| 1468 | x2 = &x2_start[4 * i]; |
|---|
| 1469 | |
|---|
| 1470 | diagptable = &diagptable_start[4 * cptr[i]]; |
|---|
| 1471 | |
|---|
| 1472 | #ifdef __SIM_SSE3 |
|---|
| 1473 | x1v1 = _mm_load_pd(&x1[0]); |
|---|
| 1474 | x1v2 = _mm_load_pd(&x1[2]); |
|---|
| 1475 | x2v1 = _mm_load_pd(&x2[0]); |
|---|
| 1476 | x2v2 = _mm_load_pd(&x2[2]); |
|---|
| 1477 | dv1 = _mm_load_pd(&diagptable[0]); |
|---|
| 1478 | dv2 = _mm_load_pd(&diagptable[2]); |
|---|
| 1479 | |
|---|
| 1480 | x1v1 = _mm_mul_pd(x1v1, x2v1); |
|---|
| 1481 | x1v1 = _mm_mul_pd(x1v1, dv1); |
|---|
| 1482 | |
|---|
| 1483 | x1v2 = _mm_mul_pd(x1v2, x2v2); |
|---|
| 1484 | x1v2 = _mm_mul_pd(x1v2, dv2); |
|---|
| 1485 | |
|---|
| 1486 | x1v1 = _mm_add_pd(x1v1, x1v2); |
|---|
| 1487 | |
|---|
| 1488 | _mm_store_pd(t, x1v1); |
|---|
| 1489 | |
|---|
| 1490 | if(fastScaling) |
|---|
| 1491 | term = LOG(FABS(t[0] + t[1])); |
|---|
| 1492 | else |
|---|
| 1493 | term = LOG(FABS(t[0] + t[1])) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 1494 | #else |
|---|
| 1495 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1496 | term += x1[j] * x2[j] * diagptable[j]; |
|---|
| 1497 | |
|---|
| 1498 | /*{ |
|---|
| 1499 | double |
|---|
| 1500 | term[4], |
|---|
| 1501 | sum = 0.0; |
|---|
| 1502 | |
|---|
| 1503 | for(j = 0; j < 4; j++) |
|---|
| 1504 | { |
|---|
| 1505 | term[j] = ABS(x1[j] * x2[j] * diagptable[j]); |
|---|
| 1506 | sum += term[j]; |
|---|
| 1507 | } |
|---|
| 1508 | |
|---|
| 1509 | printf("RRRRRRR %1.80f %1.80f %1.80f %1.80f\n", term[0]/sum, term[1]/sum, term[2]/sum, term[3]/sum); |
|---|
| 1510 | }*/ |
|---|
| 1511 | |
|---|
| 1512 | if(fastScaling) |
|---|
| 1513 | term = LOG(FABS(term)); |
|---|
| 1514 | else |
|---|
| 1515 | term = LOG(FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 1516 | #endif |
|---|
| 1517 | sum += wptr[i] * term; |
|---|
| 1518 | } |
|---|
| 1519 | } |
|---|
| 1520 | else |
|---|
| 1521 | { |
|---|
| 1522 | for (i = 0; i < n; i++) |
|---|
| 1523 | { |
|---|
| 1524 | #ifdef __SIM_SSE3 |
|---|
| 1525 | double t[2] __attribute__ ((aligned (BYTE_ALIGNMENT))); |
|---|
| 1526 | __m128d x1v1, x1v2, x2v1, x2v2, dv1, dv2; |
|---|
| 1527 | #endif |
|---|
| 1528 | x1 = &x1_start[4 * i]; |
|---|
| 1529 | x2 = &x2_start[4 * i]; |
|---|
| 1530 | |
|---|
| 1531 | diagptable = &diagptable_start[4 * cptr[i]]; |
|---|
| 1532 | |
|---|
| 1533 | #ifdef __SIM_SSE3 |
|---|
| 1534 | x1v1 = _mm_load_pd(&x1[0]); |
|---|
| 1535 | x1v2 = _mm_load_pd(&x1[2]); |
|---|
| 1536 | x2v1 = _mm_load_pd(&x2[0]); |
|---|
| 1537 | x2v2 = _mm_load_pd(&x2[2]); |
|---|
| 1538 | dv1 = _mm_load_pd(&diagptable[0]); |
|---|
| 1539 | dv2 = _mm_load_pd(&diagptable[2]); |
|---|
| 1540 | |
|---|
| 1541 | x1v1 = _mm_mul_pd(x1v1, x2v1); |
|---|
| 1542 | x1v1 = _mm_mul_pd(x1v1, dv1); |
|---|
| 1543 | |
|---|
| 1544 | x1v2 = _mm_mul_pd(x1v2, x2v2); |
|---|
| 1545 | x1v2 = _mm_mul_pd(x1v2, dv2); |
|---|
| 1546 | |
|---|
| 1547 | x1v1 = _mm_add_pd(x1v1, x1v2); |
|---|
| 1548 | |
|---|
| 1549 | _mm_store_pd(t, x1v1); |
|---|
| 1550 | |
|---|
| 1551 | if(fastScaling) |
|---|
| 1552 | term = LOG(FABS(t[0] + t[1])); |
|---|
| 1553 | else |
|---|
| 1554 | term = LOG(FABS(t[0] + t[1])) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 1555 | #else |
|---|
| 1556 | |
|---|
| 1557 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1558 | term += x1[j] * x2[j] * diagptable[j]; |
|---|
| 1559 | |
|---|
| 1560 | if(fastScaling) |
|---|
| 1561 | term = LOG(FABS(term)); |
|---|
| 1562 | else |
|---|
| 1563 | term = LOG(FABS(term)) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 1564 | #endif |
|---|
| 1565 | sum += wptr[i] * term; |
|---|
| 1566 | } |
|---|
| 1567 | } |
|---|
| 1568 | |
|---|
| 1569 | return sum; |
|---|
| 1570 | } |
|---|
| 1571 | |
|---|
| 1572 | |
|---|
| 1573 | #ifdef __SIM_SSE3 |
|---|
| 1574 | |
|---|
| 1575 | |
|---|
| 1576 | |
|---|
| 1577 | static double evaluateGTRGAMMA_GAPPED_SAVE(int *ex1, int *ex2, int *wptr, |
|---|
| 1578 | double *x1_start, double *x2_start, |
|---|
| 1579 | double *tipVector, |
|---|
| 1580 | unsigned char *tipX1, const int n, double *diagptable, const boolean fastScaling, |
|---|
| 1581 | double *x1_gapColumn, double *x2_gapColumn, unsigned int *x1_gap, unsigned int *x2_gap) |
|---|
| 1582 | { |
|---|
| 1583 | double sum = 0.0, term; |
|---|
| 1584 | int i, j; |
|---|
| 1585 | double |
|---|
| 1586 | *x1, |
|---|
| 1587 | *x2, |
|---|
| 1588 | *x1_ptr = x1_start, |
|---|
| 1589 | *x2_ptr = x2_start; |
|---|
| 1590 | |
|---|
| 1591 | |
|---|
| 1592 | |
|---|
| 1593 | if(tipX1) |
|---|
| 1594 | { |
|---|
| 1595 | |
|---|
| 1596 | |
|---|
| 1597 | for (i = 0; i < n; i++) |
|---|
| 1598 | { |
|---|
| 1599 | double t[2] __attribute__ ((aligned (BYTE_ALIGNMENT))); |
|---|
| 1600 | __m128d termv, x1v, x2v, dv; |
|---|
| 1601 | |
|---|
| 1602 | x1 = &(tipVector[4 * tipX1[i]]); |
|---|
| 1603 | if(x2_gap[i / 32] & mask32[i % 32]) |
|---|
| 1604 | x2 = x2_gapColumn; |
|---|
| 1605 | else |
|---|
| 1606 | { |
|---|
| 1607 | x2 = x2_ptr; |
|---|
| 1608 | x2_ptr += 16; |
|---|
| 1609 | } |
|---|
| 1610 | |
|---|
| 1611 | |
|---|
| 1612 | termv = _mm_set1_pd(0.0); |
|---|
| 1613 | |
|---|
| 1614 | for(j = 0; j < 4; j++) |
|---|
| 1615 | { |
|---|
| 1616 | x1v = _mm_load_pd(&x1[0]); |
|---|
| 1617 | x2v = _mm_load_pd(&x2[j * 4]); |
|---|
| 1618 | dv = _mm_load_pd(&diagptable[j * 4]); |
|---|
| 1619 | |
|---|
| 1620 | x1v = _mm_mul_pd(x1v, x2v); |
|---|
| 1621 | x1v = _mm_mul_pd(x1v, dv); |
|---|
| 1622 | |
|---|
| 1623 | termv = _mm_add_pd(termv, x1v); |
|---|
| 1624 | |
|---|
| 1625 | x1v = _mm_load_pd(&x1[2]); |
|---|
| 1626 | x2v = _mm_load_pd(&x2[j * 4 + 2]); |
|---|
| 1627 | dv = _mm_load_pd(&diagptable[j * 4 + 2]); |
|---|
| 1628 | |
|---|
| 1629 | x1v = _mm_mul_pd(x1v, x2v); |
|---|
| 1630 | x1v = _mm_mul_pd(x1v, dv); |
|---|
| 1631 | |
|---|
| 1632 | termv = _mm_add_pd(termv, x1v); |
|---|
| 1633 | } |
|---|
| 1634 | |
|---|
| 1635 | _mm_store_pd(t, termv); |
|---|
| 1636 | |
|---|
| 1637 | if(fastScaling) |
|---|
| 1638 | term = LOG(0.25 * FABS(t[0] + t[1])); |
|---|
| 1639 | else |
|---|
| 1640 | term = LOG(0.25 * FABS(t[0] + t[1])) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 1641 | |
|---|
| 1642 | sum += wptr[i] * term; |
|---|
| 1643 | } |
|---|
| 1644 | } |
|---|
| 1645 | else |
|---|
| 1646 | { |
|---|
| 1647 | |
|---|
| 1648 | for (i = 0; i < n; i++) |
|---|
| 1649 | { |
|---|
| 1650 | |
|---|
| 1651 | double t[2] __attribute__ ((aligned (BYTE_ALIGNMENT))); |
|---|
| 1652 | __m128d termv, x1v, x2v, dv; |
|---|
| 1653 | |
|---|
| 1654 | if(x1_gap[i / 32] & mask32[i % 32]) |
|---|
| 1655 | x1 = x1_gapColumn; |
|---|
| 1656 | else |
|---|
| 1657 | { |
|---|
| 1658 | x1 = x1_ptr; |
|---|
| 1659 | x1_ptr += 16; |
|---|
| 1660 | } |
|---|
| 1661 | |
|---|
| 1662 | if(x2_gap[i / 32] & mask32[i % 32]) |
|---|
| 1663 | x2 = x2_gapColumn; |
|---|
| 1664 | else |
|---|
| 1665 | { |
|---|
| 1666 | x2 = x2_ptr; |
|---|
| 1667 | x2_ptr += 16; |
|---|
| 1668 | } |
|---|
| 1669 | |
|---|
| 1670 | termv = _mm_set1_pd(0.0); |
|---|
| 1671 | |
|---|
| 1672 | for(j = 0; j < 4; j++) |
|---|
| 1673 | { |
|---|
| 1674 | x1v = _mm_load_pd(&x1[j * 4]); |
|---|
| 1675 | x2v = _mm_load_pd(&x2[j * 4]); |
|---|
| 1676 | dv = _mm_load_pd(&diagptable[j * 4]); |
|---|
| 1677 | |
|---|
| 1678 | x1v = _mm_mul_pd(x1v, x2v); |
|---|
| 1679 | x1v = _mm_mul_pd(x1v, dv); |
|---|
| 1680 | |
|---|
| 1681 | termv = _mm_add_pd(termv, x1v); |
|---|
| 1682 | |
|---|
| 1683 | x1v = _mm_load_pd(&x1[j * 4 + 2]); |
|---|
| 1684 | x2v = _mm_load_pd(&x2[j * 4 + 2]); |
|---|
| 1685 | dv = _mm_load_pd(&diagptable[j * 4 + 2]); |
|---|
| 1686 | |
|---|
| 1687 | x1v = _mm_mul_pd(x1v, x2v); |
|---|
| 1688 | x1v = _mm_mul_pd(x1v, dv); |
|---|
| 1689 | |
|---|
| 1690 | termv = _mm_add_pd(termv, x1v); |
|---|
| 1691 | } |
|---|
| 1692 | |
|---|
| 1693 | _mm_store_pd(t, termv); |
|---|
| 1694 | |
|---|
| 1695 | if(fastScaling) |
|---|
| 1696 | term = LOG(0.25 * FABS(t[0] + t[1])); |
|---|
| 1697 | else |
|---|
| 1698 | term = LOG(0.25 * FABS(t[0] + t[1])) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 1699 | |
|---|
| 1700 | sum += wptr[i] * term; |
|---|
| 1701 | } |
|---|
| 1702 | } |
|---|
| 1703 | |
|---|
| 1704 | return sum; |
|---|
| 1705 | } |
|---|
| 1706 | |
|---|
| 1707 | #else |
|---|
| 1708 | |
|---|
| 1709 | |
|---|
| 1710 | |
|---|
| 1711 | #endif |
|---|
| 1712 | |
|---|
| 1713 | static double evaluateGTRGAMMA(int *ex1, int *ex2, int *wptr, |
|---|
| 1714 | double *x1_start, double *x2_start, |
|---|
| 1715 | double *tipVector, |
|---|
| 1716 | unsigned char *tipX1, const int n, double *diagptable, const boolean fastScaling) |
|---|
| 1717 | { |
|---|
| 1718 | double sum = 0.0, term; |
|---|
| 1719 | int i, j; |
|---|
| 1720 | #ifndef __SIM_SSE3 |
|---|
| 1721 | int k; |
|---|
| 1722 | #endif |
|---|
| 1723 | double *x1, *x2; |
|---|
| 1724 | |
|---|
| 1725 | |
|---|
| 1726 | |
|---|
| 1727 | if(tipX1) |
|---|
| 1728 | { |
|---|
| 1729 | for (i = 0; i < n; i++) |
|---|
| 1730 | { |
|---|
| 1731 | #ifdef __SIM_SSE3 |
|---|
| 1732 | double t[2] __attribute__ ((aligned (BYTE_ALIGNMENT))); |
|---|
| 1733 | __m128d termv, x1v, x2v, dv; |
|---|
| 1734 | #endif |
|---|
| 1735 | x1 = &(tipVector[4 * tipX1[i]]); |
|---|
| 1736 | x2 = &x2_start[16 * i]; |
|---|
| 1737 | |
|---|
| 1738 | #ifdef __SIM_SSE3 |
|---|
| 1739 | termv = _mm_set1_pd(0.0); |
|---|
| 1740 | |
|---|
| 1741 | for(j = 0; j < 4; j++) |
|---|
| 1742 | { |
|---|
| 1743 | x1v = _mm_load_pd(&x1[0]); |
|---|
| 1744 | x2v = _mm_load_pd(&x2[j * 4]); |
|---|
| 1745 | dv = _mm_load_pd(&diagptable[j * 4]); |
|---|
| 1746 | |
|---|
| 1747 | x1v = _mm_mul_pd(x1v, x2v); |
|---|
| 1748 | x1v = _mm_mul_pd(x1v, dv); |
|---|
| 1749 | |
|---|
| 1750 | termv = _mm_add_pd(termv, x1v); |
|---|
| 1751 | |
|---|
| 1752 | x1v = _mm_load_pd(&x1[2]); |
|---|
| 1753 | x2v = _mm_load_pd(&x2[j * 4 + 2]); |
|---|
| 1754 | dv = _mm_load_pd(&diagptable[j * 4 + 2]); |
|---|
| 1755 | |
|---|
| 1756 | x1v = _mm_mul_pd(x1v, x2v); |
|---|
| 1757 | x1v = _mm_mul_pd(x1v, dv); |
|---|
| 1758 | |
|---|
| 1759 | termv = _mm_add_pd(termv, x1v); |
|---|
| 1760 | } |
|---|
| 1761 | |
|---|
| 1762 | _mm_store_pd(t, termv); |
|---|
| 1763 | |
|---|
| 1764 | |
|---|
| 1765 | if(fastScaling) |
|---|
| 1766 | term = LOG(0.25 * FABS(t[0] + t[1])); |
|---|
| 1767 | else |
|---|
| 1768 | term = LOG(0.25 * FABS(t[0] + t[1])) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 1769 | #else |
|---|
| 1770 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1771 | for(k = 0; k < 4; k++) |
|---|
| 1772 | term += x1[k] * x2[j * 4 + k] * diagptable[j * 4 + k]; |
|---|
| 1773 | |
|---|
| 1774 | if(fastScaling) |
|---|
| 1775 | term = LOG(0.25 * FABS(term)); |
|---|
| 1776 | else |
|---|
| 1777 | term = LOG(0.25 * FABS(term)) + ex2[i] * LOG(minlikelihood); |
|---|
| 1778 | #endif |
|---|
| 1779 | |
|---|
| 1780 | sum += wptr[i] * term; |
|---|
| 1781 | } |
|---|
| 1782 | } |
|---|
| 1783 | else |
|---|
| 1784 | { |
|---|
| 1785 | for (i = 0; i < n; i++) |
|---|
| 1786 | { |
|---|
| 1787 | #ifdef __SIM_SSE3 |
|---|
| 1788 | double t[2] __attribute__ ((aligned (BYTE_ALIGNMENT))); |
|---|
| 1789 | __m128d termv, x1v, x2v, dv; |
|---|
| 1790 | #endif |
|---|
| 1791 | |
|---|
| 1792 | x1 = &x1_start[16 * i]; |
|---|
| 1793 | x2 = &x2_start[16 * i]; |
|---|
| 1794 | |
|---|
| 1795 | #ifdef __SIM_SSE3 |
|---|
| 1796 | termv = _mm_set1_pd(0.0); |
|---|
| 1797 | |
|---|
| 1798 | for(j = 0; j < 4; j++) |
|---|
| 1799 | { |
|---|
| 1800 | x1v = _mm_load_pd(&x1[j * 4]); |
|---|
| 1801 | x2v = _mm_load_pd(&x2[j * 4]); |
|---|
| 1802 | dv = _mm_load_pd(&diagptable[j * 4]); |
|---|
| 1803 | |
|---|
| 1804 | x1v = _mm_mul_pd(x1v, x2v); |
|---|
| 1805 | x1v = _mm_mul_pd(x1v, dv); |
|---|
| 1806 | |
|---|
| 1807 | termv = _mm_add_pd(termv, x1v); |
|---|
| 1808 | |
|---|
| 1809 | x1v = _mm_load_pd(&x1[j * 4 + 2]); |
|---|
| 1810 | x2v = _mm_load_pd(&x2[j * 4 + 2]); |
|---|
| 1811 | dv = _mm_load_pd(&diagptable[j * 4 + 2]); |
|---|
| 1812 | |
|---|
| 1813 | x1v = _mm_mul_pd(x1v, x2v); |
|---|
| 1814 | x1v = _mm_mul_pd(x1v, dv); |
|---|
| 1815 | |
|---|
| 1816 | termv = _mm_add_pd(termv, x1v); |
|---|
| 1817 | } |
|---|
| 1818 | |
|---|
| 1819 | _mm_store_pd(t, termv); |
|---|
| 1820 | |
|---|
| 1821 | if(fastScaling) |
|---|
| 1822 | term = LOG(0.25 * FABS(t[0] + t[1])); |
|---|
| 1823 | else |
|---|
| 1824 | term = LOG(0.25 * FABS(t[0] + t[1])) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 1825 | #else |
|---|
| 1826 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1827 | for(k = 0; k < 4; k++) |
|---|
| 1828 | term += x1[j * 4 + k] * x2[j * 4 + k] * diagptable[j * 4 + k]; |
|---|
| 1829 | |
|---|
| 1830 | if(fastScaling) |
|---|
| 1831 | term = LOG(0.25 * FABS(term)); |
|---|
| 1832 | else |
|---|
| 1833 | term = LOG(0.25 * FABS(term)) + (ex1[i] + ex2[i]) * LOG(minlikelihood); |
|---|
| 1834 | #endif |
|---|
| 1835 | |
|---|
| 1836 | sum += wptr[i] * term; |
|---|
| 1837 | } |
|---|
| 1838 | } |
|---|
| 1839 | |
|---|
| 1840 | return sum; |
|---|
| 1841 | } |
|---|
| 1842 | |
|---|
| 1843 | |
|---|
| 1844 | |
|---|
| 1845 | |
|---|
| 1846 | |
|---|
| 1847 | |
|---|
| 1848 | |
|---|
| 1849 | |
|---|
| 1850 | |
|---|
| 1851 | static double evaluateGTRGAMMAINVAR (int *ex1, int *ex2, int *wptr, int *iptr, |
|---|
| 1852 | double *x1_start, double *x2_start, |
|---|
| 1853 | double *tipVector, double *tFreqs, double invariants, |
|---|
| 1854 | unsigned char *tipX1, int n, double *diagptable, const boolean fastScaling) |
|---|
| 1855 | { |
|---|
| 1856 | int i, j, k; |
|---|
| 1857 | double *x1, *x2; |
|---|
| 1858 | double |
|---|
| 1859 | freqs[4], |
|---|
| 1860 | scaler = 0.25 * (1.0 - invariants), |
|---|
| 1861 | sum = 0.0, |
|---|
| 1862 | term; |
|---|
| 1863 | |
|---|
| 1864 | freqs[0] = tFreqs[0] * invariants; |
|---|
| 1865 | freqs[1] = tFreqs[1] * invariants; |
|---|
| 1866 | freqs[2] = tFreqs[2] * invariants; |
|---|
| 1867 | freqs[3] = tFreqs[3] * invariants; |
|---|
| 1868 | |
|---|
| 1869 | if(tipX1) |
|---|
| 1870 | { |
|---|
| 1871 | for (i = 0; i < n; i++) |
|---|
| 1872 | { |
|---|
| 1873 | x1 = &(tipVector[4 * tipX1[i]]); |
|---|
| 1874 | x2 = &x2_start[16 * i]; |
|---|
| 1875 | |
|---|
| 1876 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1877 | for(k = 0; k < 4; k++) |
|---|
| 1878 | term += x1[k] * x2[j * 4 + k] * diagptable[j * 4 + k]; |
|---|
| 1879 | |
|---|
| 1880 | if(iptr[i] < 4) |
|---|
| 1881 | if(fastScaling) |
|---|
| 1882 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 1883 | else |
|---|
| 1884 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + ex2[i] * LOG(minlikelihood); |
|---|
| 1885 | else |
|---|
| 1886 | if(fastScaling) |
|---|
| 1887 | term = LOG(scaler * FABS(term)); |
|---|
| 1888 | else |
|---|
| 1889 | term = LOG(scaler * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 1890 | |
|---|
| 1891 | sum += wptr[i] * term; |
|---|
| 1892 | } |
|---|
| 1893 | } |
|---|
| 1894 | else |
|---|
| 1895 | { |
|---|
| 1896 | |
|---|
| 1897 | for (i = 0; i < n; i++) |
|---|
| 1898 | { |
|---|
| 1899 | x1 = &x1_start[16 * i]; |
|---|
| 1900 | x2 = &x2_start[16 * i]; |
|---|
| 1901 | |
|---|
| 1902 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1903 | for(k = 0; k < 4; k++) |
|---|
| 1904 | term += x1[j * 4 + k] * x2[j * 4 + k] * diagptable[j * 4 + k]; |
|---|
| 1905 | |
|---|
| 1906 | if(iptr[i] < 4) |
|---|
| 1907 | if(fastScaling) |
|---|
| 1908 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 1909 | else |
|---|
| 1910 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + (ex2[i] + ex1[i]) * LOG(minlikelihood); |
|---|
| 1911 | else |
|---|
| 1912 | if(fastScaling) |
|---|
| 1913 | term = LOG(scaler * FABS(term)); |
|---|
| 1914 | else |
|---|
| 1915 | term = LOG(scaler * FABS(term)) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 1916 | |
|---|
| 1917 | sum += wptr[i] * term; |
|---|
| 1918 | } |
|---|
| 1919 | } |
|---|
| 1920 | |
|---|
| 1921 | return sum; |
|---|
| 1922 | } |
|---|
| 1923 | |
|---|
| 1924 | |
|---|
| 1925 | |
|---|
| 1926 | |
|---|
| 1927 | static double evaluateGTRGAMMAPROT (int *ex1, int *ex2, int *wptr, |
|---|
| 1928 | double *x1, double *x2, |
|---|
| 1929 | double *tipVector, |
|---|
| 1930 | unsigned char *tipX1, int n, double *diagptable, const boolean fastScaling) |
|---|
| 1931 | { |
|---|
| 1932 | double sum = 0.0, term; |
|---|
| 1933 | int i, j, l; |
|---|
| 1934 | double *left, *right; |
|---|
| 1935 | |
|---|
| 1936 | if(tipX1) |
|---|
| 1937 | { |
|---|
| 1938 | for (i = 0; i < n; i++) |
|---|
| 1939 | { |
|---|
| 1940 | #ifdef __SIM_SSE3 |
|---|
| 1941 | __m128d tv = _mm_setzero_pd(); |
|---|
| 1942 | left = &(tipVector[20 * tipX1[i]]); |
|---|
| 1943 | |
|---|
| 1944 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1945 | { |
|---|
| 1946 | double *d = &diagptable[j * 20]; |
|---|
| 1947 | right = &(x2[80 * i + 20 * j]); |
|---|
| 1948 | for(l = 0; l < 20; l+=2) |
|---|
| 1949 | { |
|---|
| 1950 | __m128d mul = _mm_mul_pd(_mm_load_pd(&left[l]), _mm_load_pd(&right[l])); |
|---|
| 1951 | tv = _mm_add_pd(tv, _mm_mul_pd(mul, _mm_load_pd(&d[l]))); |
|---|
| 1952 | } |
|---|
| 1953 | } |
|---|
| 1954 | tv = _mm_hadd_pd(tv, tv); |
|---|
| 1955 | _mm_storel_pd(&term, tv); |
|---|
| 1956 | |
|---|
| 1957 | #else |
|---|
| 1958 | left = &(tipVector[20 * tipX1[i]]); |
|---|
| 1959 | |
|---|
| 1960 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1961 | { |
|---|
| 1962 | right = &(x2[80 * i + 20 * j]); |
|---|
| 1963 | for(l = 0; l < 20; l++) |
|---|
| 1964 | term += left[l] * right[l] * diagptable[j * 20 + l]; |
|---|
| 1965 | } |
|---|
| 1966 | #endif |
|---|
| 1967 | |
|---|
| 1968 | if(fastScaling) |
|---|
| 1969 | term = LOG(0.25 * FABS(term)); |
|---|
| 1970 | else |
|---|
| 1971 | term = LOG(0.25 * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 1972 | |
|---|
| 1973 | sum += wptr[i] * term; |
|---|
| 1974 | } |
|---|
| 1975 | } |
|---|
| 1976 | else |
|---|
| 1977 | { |
|---|
| 1978 | for (i = 0; i < n; i++) |
|---|
| 1979 | { |
|---|
| 1980 | #ifdef __SIM_SSE3 |
|---|
| 1981 | __m128d tv = _mm_setzero_pd(); |
|---|
| 1982 | |
|---|
| 1983 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1984 | { |
|---|
| 1985 | double *d = &diagptable[j * 20]; |
|---|
| 1986 | left = &(x1[80 * i + 20 * j]); |
|---|
| 1987 | right = &(x2[80 * i + 20 * j]); |
|---|
| 1988 | |
|---|
| 1989 | for(l = 0; l < 20; l+=2) |
|---|
| 1990 | { |
|---|
| 1991 | __m128d mul = _mm_mul_pd(_mm_load_pd(&left[l]), _mm_load_pd(&right[l])); |
|---|
| 1992 | tv = _mm_add_pd(tv, _mm_mul_pd(mul, _mm_load_pd(&d[l]))); |
|---|
| 1993 | } |
|---|
| 1994 | } |
|---|
| 1995 | tv = _mm_hadd_pd(tv, tv); |
|---|
| 1996 | _mm_storel_pd(&term, tv); |
|---|
| 1997 | #else |
|---|
| 1998 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 1999 | { |
|---|
| 2000 | left = &(x1[80 * i + 20 * j]); |
|---|
| 2001 | right = &(x2[80 * i + 20 * j]); |
|---|
| 2002 | |
|---|
| 2003 | for(l = 0; l < 20; l++) |
|---|
| 2004 | term += left[l] * right[l] * diagptable[j * 20 + l]; |
|---|
| 2005 | } |
|---|
| 2006 | #endif |
|---|
| 2007 | |
|---|
| 2008 | if(fastScaling) |
|---|
| 2009 | term = LOG(0.25 * FABS(term)); |
|---|
| 2010 | else |
|---|
| 2011 | term = LOG(0.25 * FABS(term)) + ((ex1[i] + ex2[i])*LOG(minlikelihood)); |
|---|
| 2012 | |
|---|
| 2013 | sum += wptr[i] * term; |
|---|
| 2014 | } |
|---|
| 2015 | } |
|---|
| 2016 | |
|---|
| 2017 | return sum; |
|---|
| 2018 | } |
|---|
| 2019 | |
|---|
| 2020 | |
|---|
| 2021 | static double evaluateGTRGAMMAPROT_LG4(int *ex1, int *ex2, int *wptr, |
|---|
| 2022 | double *x1, double *x2, |
|---|
| 2023 | double *tipVector[4], |
|---|
| 2024 | unsigned char *tipX1, int n, double *diagptable, const boolean fastScaling, double *weights) |
|---|
| 2025 | { |
|---|
| 2026 | double sum = 0.0, term; |
|---|
| 2027 | int i, j, l; |
|---|
| 2028 | double *left, *right; |
|---|
| 2029 | |
|---|
| 2030 | if(tipX1) |
|---|
| 2031 | { |
|---|
| 2032 | for (i = 0; i < n; i++) |
|---|
| 2033 | { |
|---|
| 2034 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2035 | { |
|---|
| 2036 | double |
|---|
| 2037 | t = 0.0; |
|---|
| 2038 | |
|---|
| 2039 | left = &(tipVector[j][20 * tipX1[i]]); |
|---|
| 2040 | right = &(x2[80 * i + 20 * j]); |
|---|
| 2041 | |
|---|
| 2042 | for(l = 0; l < 20; l++) |
|---|
| 2043 | t += left[l] * right[l] * diagptable[j * 20 + l]; |
|---|
| 2044 | |
|---|
| 2045 | term += weights[j] * t; |
|---|
| 2046 | } |
|---|
| 2047 | |
|---|
| 2048 | if(fastScaling) |
|---|
| 2049 | term = LOG(FABS(term)); |
|---|
| 2050 | else |
|---|
| 2051 | term = LOG(FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 2052 | |
|---|
| 2053 | sum += wptr[i] * term; |
|---|
| 2054 | } |
|---|
| 2055 | } |
|---|
| 2056 | else |
|---|
| 2057 | { |
|---|
| 2058 | for (i = 0; i < n; i++) |
|---|
| 2059 | { |
|---|
| 2060 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2061 | { |
|---|
| 2062 | double |
|---|
| 2063 | t = 0.0; |
|---|
| 2064 | |
|---|
| 2065 | left = &(x1[80 * i + 20 * j]); |
|---|
| 2066 | right = &(x2[80 * i + 20 * j]); |
|---|
| 2067 | |
|---|
| 2068 | for(l = 0; l < 20; l++) |
|---|
| 2069 | t += left[l] * right[l] * diagptable[j * 20 + l]; |
|---|
| 2070 | |
|---|
| 2071 | term += weights[j] * t; |
|---|
| 2072 | } |
|---|
| 2073 | |
|---|
| 2074 | if(fastScaling) |
|---|
| 2075 | term = LOG(FABS(term)); |
|---|
| 2076 | else |
|---|
| 2077 | term = LOG(FABS(term)) + ((ex1[i] + ex2[i])*LOG(minlikelihood)); |
|---|
| 2078 | |
|---|
| 2079 | sum += wptr[i] * term; |
|---|
| 2080 | } |
|---|
| 2081 | } |
|---|
| 2082 | |
|---|
| 2083 | return sum; |
|---|
| 2084 | } |
|---|
| 2085 | |
|---|
| 2086 | |
|---|
| 2087 | |
|---|
| 2088 | |
|---|
| 2089 | #ifdef __SIM_SSE3 |
|---|
| 2090 | |
|---|
| 2091 | static double evaluateGTRGAMMAPROT_GAPPED_SAVE (int *ex1, int *ex2, int *wptr, |
|---|
| 2092 | double *x1, double *x2, |
|---|
| 2093 | double *tipVector, |
|---|
| 2094 | unsigned char *tipX1, int n, double *diagptable, const boolean fastScaling, |
|---|
| 2095 | double *x1_gapColumn, double *x2_gapColumn, unsigned int *x1_gap, unsigned int *x2_gap) |
|---|
| 2096 | { |
|---|
| 2097 | double sum = 0.0, term; |
|---|
| 2098 | int i, j, l; |
|---|
| 2099 | double |
|---|
| 2100 | *left, |
|---|
| 2101 | *right, |
|---|
| 2102 | *x1_ptr = x1, |
|---|
| 2103 | *x2_ptr = x2, |
|---|
| 2104 | *x1v, |
|---|
| 2105 | *x2v; |
|---|
| 2106 | |
|---|
| 2107 | if(tipX1) |
|---|
| 2108 | { |
|---|
| 2109 | for (i = 0; i < n; i++) |
|---|
| 2110 | { |
|---|
| 2111 | if(x2_gap[i / 32] & mask32[i % 32]) |
|---|
| 2112 | x2v = x2_gapColumn; |
|---|
| 2113 | else |
|---|
| 2114 | { |
|---|
| 2115 | x2v = x2_ptr; |
|---|
| 2116 | x2_ptr += 80; |
|---|
| 2117 | } |
|---|
| 2118 | |
|---|
| 2119 | __m128d tv = _mm_setzero_pd(); |
|---|
| 2120 | left = &(tipVector[20 * tipX1[i]]); |
|---|
| 2121 | |
|---|
| 2122 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2123 | { |
|---|
| 2124 | double *d = &diagptable[j * 20]; |
|---|
| 2125 | right = &(x2v[20 * j]); |
|---|
| 2126 | for(l = 0; l < 20; l+=2) |
|---|
| 2127 | { |
|---|
| 2128 | __m128d mul = _mm_mul_pd(_mm_load_pd(&left[l]), _mm_load_pd(&right[l])); |
|---|
| 2129 | tv = _mm_add_pd(tv, _mm_mul_pd(mul, _mm_load_pd(&d[l]))); |
|---|
| 2130 | } |
|---|
| 2131 | } |
|---|
| 2132 | |
|---|
| 2133 | tv = _mm_hadd_pd(tv, tv); |
|---|
| 2134 | _mm_storel_pd(&term, tv); |
|---|
| 2135 | |
|---|
| 2136 | |
|---|
| 2137 | if(fastScaling) |
|---|
| 2138 | term = LOG(0.25 * term); |
|---|
| 2139 | else |
|---|
| 2140 | term = LOG(0.25 * term) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 2141 | |
|---|
| 2142 | sum += wptr[i] * term; |
|---|
| 2143 | } |
|---|
| 2144 | } |
|---|
| 2145 | else |
|---|
| 2146 | { |
|---|
| 2147 | for (i = 0; i < n; i++) |
|---|
| 2148 | { |
|---|
| 2149 | if(x1_gap[i / 32] & mask32[i % 32]) |
|---|
| 2150 | x1v = x1_gapColumn; |
|---|
| 2151 | else |
|---|
| 2152 | { |
|---|
| 2153 | x1v = x1_ptr; |
|---|
| 2154 | x1_ptr += 80; |
|---|
| 2155 | } |
|---|
| 2156 | |
|---|
| 2157 | if(x2_gap[i / 32] & mask32[i % 32]) |
|---|
| 2158 | x2v = x2_gapColumn; |
|---|
| 2159 | else |
|---|
| 2160 | { |
|---|
| 2161 | x2v = x2_ptr; |
|---|
| 2162 | x2_ptr += 80; |
|---|
| 2163 | } |
|---|
| 2164 | |
|---|
| 2165 | __m128d tv = _mm_setzero_pd(); |
|---|
| 2166 | |
|---|
| 2167 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2168 | { |
|---|
| 2169 | double *d = &diagptable[j * 20]; |
|---|
| 2170 | left = &(x1v[20 * j]); |
|---|
| 2171 | right = &(x2v[20 * j]); |
|---|
| 2172 | |
|---|
| 2173 | for(l = 0; l < 20; l+=2) |
|---|
| 2174 | { |
|---|
| 2175 | __m128d mul = _mm_mul_pd(_mm_load_pd(&left[l]), _mm_load_pd(&right[l])); |
|---|
| 2176 | tv = _mm_add_pd(tv, _mm_mul_pd(mul, _mm_load_pd(&d[l]))); |
|---|
| 2177 | } |
|---|
| 2178 | } |
|---|
| 2179 | tv = _mm_hadd_pd(tv, tv); |
|---|
| 2180 | _mm_storel_pd(&term, tv); |
|---|
| 2181 | |
|---|
| 2182 | if(fastScaling) |
|---|
| 2183 | term = LOG(0.25 * term); |
|---|
| 2184 | else |
|---|
| 2185 | term = LOG(0.25 * term) + ((ex1[i] + ex2[i])*LOG(minlikelihood)); |
|---|
| 2186 | |
|---|
| 2187 | sum += wptr[i] * term; |
|---|
| 2188 | } |
|---|
| 2189 | } |
|---|
| 2190 | |
|---|
| 2191 | return sum; |
|---|
| 2192 | } |
|---|
| 2193 | |
|---|
| 2194 | |
|---|
| 2195 | #endif |
|---|
| 2196 | |
|---|
| 2197 | |
|---|
| 2198 | |
|---|
| 2199 | |
|---|
| 2200 | |
|---|
| 2201 | |
|---|
| 2202 | static double evaluateGTRGAMMASECONDARY (int *ex1, int *ex2, int *wptr, |
|---|
| 2203 | double *x1, double *x2, |
|---|
| 2204 | double *tipVector, |
|---|
| 2205 | unsigned char *tipX1, int n, double *diagptable, const boolean fastScaling) |
|---|
| 2206 | { |
|---|
| 2207 | double sum = 0.0, term; |
|---|
| 2208 | int i, j, l; |
|---|
| 2209 | double *left, *right; |
|---|
| 2210 | |
|---|
| 2211 | if(tipX1) |
|---|
| 2212 | { |
|---|
| 2213 | for (i = 0; i < n; i++) |
|---|
| 2214 | { |
|---|
| 2215 | left = &(tipVector[16 * tipX1[i]]); |
|---|
| 2216 | |
|---|
| 2217 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2218 | { |
|---|
| 2219 | right = &(x2[64 * i + 16 * j]); |
|---|
| 2220 | |
|---|
| 2221 | for(l = 0; l < 16; l++) |
|---|
| 2222 | term += left[l] * right[l] * diagptable[j * 16 + l]; |
|---|
| 2223 | } |
|---|
| 2224 | |
|---|
| 2225 | if(fastScaling) |
|---|
| 2226 | term = LOG(0.25 * FABS(term)); |
|---|
| 2227 | else |
|---|
| 2228 | term = LOG(0.25 * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 2229 | |
|---|
| 2230 | sum += wptr[i] * term; |
|---|
| 2231 | } |
|---|
| 2232 | } |
|---|
| 2233 | else |
|---|
| 2234 | { |
|---|
| 2235 | for (i = 0; i < n; i++) |
|---|
| 2236 | { |
|---|
| 2237 | |
|---|
| 2238 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2239 | { |
|---|
| 2240 | left = &(x1[64 * i + 16 * j]); |
|---|
| 2241 | right = &(x2[64 * i + 16 * j]); |
|---|
| 2242 | |
|---|
| 2243 | for(l = 0; l < 16; l++) |
|---|
| 2244 | term += left[l] * right[l] * diagptable[j * 16 + l]; |
|---|
| 2245 | } |
|---|
| 2246 | |
|---|
| 2247 | if(fastScaling) |
|---|
| 2248 | term = LOG(0.25 * FABS(term)); |
|---|
| 2249 | else |
|---|
| 2250 | term = LOG(0.25 * FABS(term)) + ((ex1[i] + ex2[i])*LOG(minlikelihood)); |
|---|
| 2251 | |
|---|
| 2252 | sum += wptr[i] * term; |
|---|
| 2253 | } |
|---|
| 2254 | } |
|---|
| 2255 | |
|---|
| 2256 | return sum; |
|---|
| 2257 | } |
|---|
| 2258 | |
|---|
| 2259 | static double evaluateGTRGAMMASECONDARY_6 (int *ex1, int *ex2, int *wptr, |
|---|
| 2260 | double *x1, double *x2, |
|---|
| 2261 | double *tipVector, |
|---|
| 2262 | unsigned char *tipX1, int n, double *diagptable, const boolean fastScaling) |
|---|
| 2263 | { |
|---|
| 2264 | double sum = 0.0, term; |
|---|
| 2265 | int i, j, l; |
|---|
| 2266 | double *left, *right; |
|---|
| 2267 | |
|---|
| 2268 | if(tipX1) |
|---|
| 2269 | { |
|---|
| 2270 | for (i = 0; i < n; i++) |
|---|
| 2271 | { |
|---|
| 2272 | left = &(tipVector[6 * tipX1[i]]); |
|---|
| 2273 | |
|---|
| 2274 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2275 | { |
|---|
| 2276 | right = &(x2[24 * i + 6 * j]); |
|---|
| 2277 | |
|---|
| 2278 | for(l = 0; l < 6; l++) |
|---|
| 2279 | term += left[l] * right[l] * diagptable[j * 6 + l]; |
|---|
| 2280 | } |
|---|
| 2281 | |
|---|
| 2282 | if(fastScaling) |
|---|
| 2283 | term = LOG(0.25 * FABS(term)); |
|---|
| 2284 | else |
|---|
| 2285 | term = LOG(0.25 * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 2286 | |
|---|
| 2287 | sum += wptr[i] * term; |
|---|
| 2288 | } |
|---|
| 2289 | } |
|---|
| 2290 | else |
|---|
| 2291 | { |
|---|
| 2292 | for (i = 0; i < n; i++) |
|---|
| 2293 | { |
|---|
| 2294 | |
|---|
| 2295 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2296 | { |
|---|
| 2297 | left = &(x1[24 * i + 6 * j]); |
|---|
| 2298 | right = &(x2[24 * i + 6 * j]); |
|---|
| 2299 | |
|---|
| 2300 | for(l = 0; l < 6; l++) |
|---|
| 2301 | term += left[l] * right[l] * diagptable[j * 6 + l]; |
|---|
| 2302 | } |
|---|
| 2303 | |
|---|
| 2304 | if(fastScaling) |
|---|
| 2305 | term = LOG(0.25 * FABS(term)); |
|---|
| 2306 | else |
|---|
| 2307 | term = LOG(0.25 * FABS(term)) + ((ex1[i] + ex2[i])*LOG(minlikelihood)); |
|---|
| 2308 | |
|---|
| 2309 | sum += wptr[i] * term; |
|---|
| 2310 | } |
|---|
| 2311 | } |
|---|
| 2312 | |
|---|
| 2313 | return sum; |
|---|
| 2314 | } |
|---|
| 2315 | |
|---|
| 2316 | static double evaluateGTRGAMMASECONDARY_7 (int *ex1, int *ex2, int *wptr, |
|---|
| 2317 | double *x1, double *x2, |
|---|
| 2318 | double *tipVector, |
|---|
| 2319 | unsigned char *tipX1, int n, double *diagptable, const boolean fastScaling) |
|---|
| 2320 | { |
|---|
| 2321 | double sum = 0.0, term; |
|---|
| 2322 | int i, j, l; |
|---|
| 2323 | double *left, *right; |
|---|
| 2324 | |
|---|
| 2325 | if(tipX1) |
|---|
| 2326 | { |
|---|
| 2327 | for (i = 0; i < n; i++) |
|---|
| 2328 | { |
|---|
| 2329 | left = &(tipVector[7 * tipX1[i]]); |
|---|
| 2330 | |
|---|
| 2331 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2332 | { |
|---|
| 2333 | right = &(x2[28 * i + 7 * j]); |
|---|
| 2334 | |
|---|
| 2335 | for(l = 0; l < 7; l++) |
|---|
| 2336 | term += left[l] * right[l] * diagptable[j * 7 + l]; |
|---|
| 2337 | } |
|---|
| 2338 | |
|---|
| 2339 | if(fastScaling) |
|---|
| 2340 | term = LOG(0.25 * FABS(term)); |
|---|
| 2341 | else |
|---|
| 2342 | term = LOG(0.25 * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 2343 | |
|---|
| 2344 | sum += wptr[i] * term; |
|---|
| 2345 | } |
|---|
| 2346 | } |
|---|
| 2347 | else |
|---|
| 2348 | { |
|---|
| 2349 | for (i = 0; i < n; i++) |
|---|
| 2350 | { |
|---|
| 2351 | |
|---|
| 2352 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2353 | { |
|---|
| 2354 | left = &(x1[28 * i + 7 * j]); |
|---|
| 2355 | right = &(x2[28 * i + 7 * j]); |
|---|
| 2356 | |
|---|
| 2357 | for(l = 0; l < 7; l++) |
|---|
| 2358 | term += left[l] * right[l] * diagptable[j * 7 + l]; |
|---|
| 2359 | } |
|---|
| 2360 | |
|---|
| 2361 | if(fastScaling) |
|---|
| 2362 | term = LOG(0.25 * FABS(term)); |
|---|
| 2363 | else |
|---|
| 2364 | term = LOG(0.25 * FABS(term)) + ((ex1[i] + ex2[i])*LOG(minlikelihood)); |
|---|
| 2365 | |
|---|
| 2366 | sum += wptr[i] * term; |
|---|
| 2367 | } |
|---|
| 2368 | } |
|---|
| 2369 | |
|---|
| 2370 | return sum; |
|---|
| 2371 | } |
|---|
| 2372 | |
|---|
| 2373 | static double evaluateGTRGAMMAPROTINVAR (int *ex1, int *ex2, int *wptr, int *iptr, |
|---|
| 2374 | double *x1, double *x2, |
|---|
| 2375 | double *tipVector,double *tFreqs, double invariants, |
|---|
| 2376 | unsigned char *tipX1, int n, double *diagptable, const boolean fastScaling) |
|---|
| 2377 | { |
|---|
| 2378 | double |
|---|
| 2379 | sum = 0.0, term, freqs[20], |
|---|
| 2380 | scaler = 0.25 * (1.0 - invariants); |
|---|
| 2381 | int i, j, l; |
|---|
| 2382 | double *left, *right; |
|---|
| 2383 | |
|---|
| 2384 | for(i = 0; i < 20; i++) |
|---|
| 2385 | freqs[i] = tFreqs[i] * invariants; |
|---|
| 2386 | |
|---|
| 2387 | if(tipX1) |
|---|
| 2388 | { |
|---|
| 2389 | for (i = 0; i < n; i++) |
|---|
| 2390 | { |
|---|
| 2391 | left = &(tipVector[20 * tipX1[i]]); |
|---|
| 2392 | |
|---|
| 2393 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2394 | { |
|---|
| 2395 | right = &(x2[80 * i + 20 * j]); |
|---|
| 2396 | |
|---|
| 2397 | for(l = 0; l < 20; l++) |
|---|
| 2398 | term += left[l] * right[l] * diagptable[j * 20 + l]; |
|---|
| 2399 | } |
|---|
| 2400 | |
|---|
| 2401 | if(iptr[i] < 20) |
|---|
| 2402 | if(fastScaling) |
|---|
| 2403 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 2404 | else |
|---|
| 2405 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + ex2[i] * LOG(minlikelihood); |
|---|
| 2406 | else |
|---|
| 2407 | if(fastScaling) |
|---|
| 2408 | term = LOG(scaler * FABS(term)); |
|---|
| 2409 | else |
|---|
| 2410 | term = LOG(scaler * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 2411 | |
|---|
| 2412 | sum += wptr[i] * term; |
|---|
| 2413 | } |
|---|
| 2414 | } |
|---|
| 2415 | else |
|---|
| 2416 | { |
|---|
| 2417 | for (i = 0; i < n; i++) |
|---|
| 2418 | { |
|---|
| 2419 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2420 | { |
|---|
| 2421 | left = &(x1[80 * i + 20 * j]); |
|---|
| 2422 | right = &(x2[80 * i + 20 * j]); |
|---|
| 2423 | |
|---|
| 2424 | for(l = 0; l < 20; l++) |
|---|
| 2425 | term += left[l] * right[l] * diagptable[j * 20 + l]; |
|---|
| 2426 | } |
|---|
| 2427 | |
|---|
| 2428 | if(iptr[i] < 20) |
|---|
| 2429 | if(fastScaling) |
|---|
| 2430 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 2431 | else |
|---|
| 2432 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + (ex1[i] + ex2[i]) * LOG(minlikelihood); |
|---|
| 2433 | else |
|---|
| 2434 | if(fastScaling) |
|---|
| 2435 | term = LOG(scaler * FABS(term)); |
|---|
| 2436 | else |
|---|
| 2437 | term = LOG(scaler * FABS(term)) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 2438 | sum += wptr[i] * term; |
|---|
| 2439 | } |
|---|
| 2440 | } |
|---|
| 2441 | |
|---|
| 2442 | return sum; |
|---|
| 2443 | } |
|---|
| 2444 | |
|---|
| 2445 | static double evaluateGTRGAMMASECONDARYINVAR (int *ex1, int *ex2, int *wptr, int *iptr, |
|---|
| 2446 | double *x1, double *x2, |
|---|
| 2447 | double *tipVector,double *tFreqs, double invariants, |
|---|
| 2448 | unsigned char *tipX1, int n, double *diagptable, const boolean fastScaling) |
|---|
| 2449 | { |
|---|
| 2450 | double |
|---|
| 2451 | sum = 0.0, term, freqs[16], |
|---|
| 2452 | scaler = 0.25 * (1.0 - invariants); |
|---|
| 2453 | int i, j, l; |
|---|
| 2454 | double *left, *right; |
|---|
| 2455 | |
|---|
| 2456 | for(i = 0; i < 16; i++) |
|---|
| 2457 | freqs[i] = tFreqs[i] * invariants; |
|---|
| 2458 | |
|---|
| 2459 | if(tipX1) |
|---|
| 2460 | { |
|---|
| 2461 | for (i = 0; i < n; i++) |
|---|
| 2462 | { |
|---|
| 2463 | left = &(tipVector[16 * tipX1[i]]); |
|---|
| 2464 | |
|---|
| 2465 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2466 | { |
|---|
| 2467 | right = &(x2[64 * i + 16 * j]); |
|---|
| 2468 | |
|---|
| 2469 | for(l = 0; l < 16; l++) |
|---|
| 2470 | term += left[l] * right[l] * diagptable[j * 16 + l]; |
|---|
| 2471 | } |
|---|
| 2472 | |
|---|
| 2473 | if(iptr[i] < 16) |
|---|
| 2474 | if(fastScaling) |
|---|
| 2475 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 2476 | else |
|---|
| 2477 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + ex2[i] * LOG(minlikelihood); |
|---|
| 2478 | else |
|---|
| 2479 | if(fastScaling) |
|---|
| 2480 | term = LOG(scaler * FABS(term)); |
|---|
| 2481 | else |
|---|
| 2482 | term = LOG(scaler * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 2483 | |
|---|
| 2484 | sum += wptr[i] * term; |
|---|
| 2485 | } |
|---|
| 2486 | } |
|---|
| 2487 | else |
|---|
| 2488 | { |
|---|
| 2489 | for (i = 0; i < n; i++) |
|---|
| 2490 | { |
|---|
| 2491 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2492 | { |
|---|
| 2493 | left = &(x1[64 * i + 16 * j]); |
|---|
| 2494 | right = &(x2[64 * i + 16 * j]); |
|---|
| 2495 | |
|---|
| 2496 | for(l = 0; l < 16; l++) |
|---|
| 2497 | term += left[l] * right[l] * diagptable[j * 16 + l]; |
|---|
| 2498 | } |
|---|
| 2499 | |
|---|
| 2500 | if(iptr[i] < 16) |
|---|
| 2501 | if(fastScaling) |
|---|
| 2502 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 2503 | else |
|---|
| 2504 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + (ex1[i] + ex2[i]) * LOG(minlikelihood); |
|---|
| 2505 | else |
|---|
| 2506 | if(fastScaling) |
|---|
| 2507 | term = LOG(scaler * FABS(term)); |
|---|
| 2508 | else |
|---|
| 2509 | term = LOG(scaler * FABS(term)) + (ex1[i] + ex2[i]) * LOG(minlikelihood); |
|---|
| 2510 | |
|---|
| 2511 | sum += wptr[i] * term; |
|---|
| 2512 | } |
|---|
| 2513 | } |
|---|
| 2514 | |
|---|
| 2515 | return sum; |
|---|
| 2516 | } |
|---|
| 2517 | |
|---|
| 2518 | static double evaluateGTRGAMMASECONDARYINVAR_6 (int *ex1, int *ex2, int *wptr, int *iptr, |
|---|
| 2519 | double *x1, double *x2, |
|---|
| 2520 | double *tipVector,double *tFreqs, double invariants, |
|---|
| 2521 | unsigned char *tipX1, int n, double *diagptable, const boolean fastScaling) |
|---|
| 2522 | { |
|---|
| 2523 | double |
|---|
| 2524 | sum = 0.0, term, freqs[6], |
|---|
| 2525 | scaler = 0.25 * (1.0 - invariants); |
|---|
| 2526 | int i, j, l; |
|---|
| 2527 | double *left, *right; |
|---|
| 2528 | |
|---|
| 2529 | for(i = 0; i < 6; i++) |
|---|
| 2530 | freqs[i] = tFreqs[i] * invariants; |
|---|
| 2531 | |
|---|
| 2532 | if(tipX1) |
|---|
| 2533 | { |
|---|
| 2534 | for (i = 0; i < n; i++) |
|---|
| 2535 | { |
|---|
| 2536 | left = &(tipVector[6 * tipX1[i]]); |
|---|
| 2537 | |
|---|
| 2538 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2539 | { |
|---|
| 2540 | right = &(x2[24 * i + 6 * j]); |
|---|
| 2541 | |
|---|
| 2542 | for(l = 0; l < 6; l++) |
|---|
| 2543 | term += left[l] * right[l] * diagptable[j * 6 + l]; |
|---|
| 2544 | } |
|---|
| 2545 | |
|---|
| 2546 | if(iptr[i] < 6) |
|---|
| 2547 | if(fastScaling) |
|---|
| 2548 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 2549 | else |
|---|
| 2550 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + ex2[i] * LOG(minlikelihood); |
|---|
| 2551 | else |
|---|
| 2552 | if(fastScaling) |
|---|
| 2553 | term = LOG(scaler * FABS(term)); |
|---|
| 2554 | else |
|---|
| 2555 | term = LOG(scaler * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 2556 | |
|---|
| 2557 | sum += wptr[i] * term; |
|---|
| 2558 | } |
|---|
| 2559 | } |
|---|
| 2560 | else |
|---|
| 2561 | { |
|---|
| 2562 | for (i = 0; i < n; i++) |
|---|
| 2563 | { |
|---|
| 2564 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2565 | { |
|---|
| 2566 | left = &(x1[24 * i + 6 * j]); |
|---|
| 2567 | right = &(x2[24 * i + 6 * j]); |
|---|
| 2568 | |
|---|
| 2569 | for(l = 0; l < 6; l++) |
|---|
| 2570 | term += left[l] * right[l] * diagptable[j * 6 + l]; |
|---|
| 2571 | } |
|---|
| 2572 | |
|---|
| 2573 | if(iptr[i] < 6) |
|---|
| 2574 | if(fastScaling) |
|---|
| 2575 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 2576 | else |
|---|
| 2577 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + (ex2[i] + ex1[i]) * LOG(minlikelihood); |
|---|
| 2578 | else |
|---|
| 2579 | if(fastScaling) |
|---|
| 2580 | term = LOG(scaler * FABS(term)); |
|---|
| 2581 | else |
|---|
| 2582 | term = LOG(scaler * FABS(term)) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 2583 | |
|---|
| 2584 | sum += wptr[i] * term; |
|---|
| 2585 | } |
|---|
| 2586 | } |
|---|
| 2587 | |
|---|
| 2588 | return sum; |
|---|
| 2589 | } |
|---|
| 2590 | |
|---|
| 2591 | static double evaluateGTRGAMMASECONDARYINVAR_7 (int *ex1, int *ex2, int *wptr, int *iptr, |
|---|
| 2592 | double *x1, double *x2, |
|---|
| 2593 | double *tipVector,double *tFreqs, double invariants, |
|---|
| 2594 | unsigned char *tipX1, int n, double *diagptable, const boolean fastScaling) |
|---|
| 2595 | { |
|---|
| 2596 | double |
|---|
| 2597 | sum = 0.0, term, freqs[7], |
|---|
| 2598 | scaler = 0.25 * (1.0 - invariants); |
|---|
| 2599 | int i, j, l; |
|---|
| 2600 | double *left, *right; |
|---|
| 2601 | |
|---|
| 2602 | for(i = 0; i < 7; i++) |
|---|
| 2603 | freqs[i] = tFreqs[i] * invariants; |
|---|
| 2604 | |
|---|
| 2605 | if(tipX1) |
|---|
| 2606 | { |
|---|
| 2607 | for (i = 0; i < n; i++) |
|---|
| 2608 | { |
|---|
| 2609 | left = &(tipVector[7 * tipX1[i]]); |
|---|
| 2610 | |
|---|
| 2611 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2612 | { |
|---|
| 2613 | right = &(x2[28 * i + 7 * j]); |
|---|
| 2614 | |
|---|
| 2615 | for(l = 0; l < 7; l++) |
|---|
| 2616 | term += left[l] * right[l] * diagptable[j * 7 + l]; |
|---|
| 2617 | } |
|---|
| 2618 | |
|---|
| 2619 | if(iptr[i] < 7) |
|---|
| 2620 | if(fastScaling) |
|---|
| 2621 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 2622 | else |
|---|
| 2623 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + ex2[i] * LOG(minlikelihood); |
|---|
| 2624 | else |
|---|
| 2625 | if(fastScaling) |
|---|
| 2626 | term = LOG(scaler * FABS(term)); |
|---|
| 2627 | else |
|---|
| 2628 | term = LOG(scaler * FABS(term)) + (ex2[i] * LOG(minlikelihood)); |
|---|
| 2629 | |
|---|
| 2630 | sum += wptr[i] * term; |
|---|
| 2631 | } |
|---|
| 2632 | } |
|---|
| 2633 | else |
|---|
| 2634 | { |
|---|
| 2635 | for (i = 0; i < n; i++) |
|---|
| 2636 | { |
|---|
| 2637 | for(j = 0, term = 0.0; j < 4; j++) |
|---|
| 2638 | { |
|---|
| 2639 | left = &(x1[28 * i + 7 * j]); |
|---|
| 2640 | right = &(x2[28 * i + 7 * j]); |
|---|
| 2641 | |
|---|
| 2642 | for(l = 0; l < 7; l++) |
|---|
| 2643 | term += left[l] * right[l] * diagptable[j * 7 + l]; |
|---|
| 2644 | } |
|---|
| 2645 | |
|---|
| 2646 | if(iptr[i] < 7) |
|---|
| 2647 | if(fastScaling) |
|---|
| 2648 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])); |
|---|
| 2649 | else |
|---|
| 2650 | term = LOG(((scaler * FABS(term)) + freqs[iptr[i]])) + (ex2[i] + ex1[i]) * LOG(minlikelihood); |
|---|
| 2651 | else |
|---|
| 2652 | if(fastScaling) |
|---|
| 2653 | term = LOG(scaler * FABS(term)); |
|---|
| 2654 | else |
|---|
| 2655 | term = LOG(scaler * FABS(term)) + ((ex1[i] + ex2[i]) * LOG(minlikelihood)); |
|---|
| 2656 | |
|---|
| 2657 | sum += wptr[i] * term; |
|---|
| 2658 | } |
|---|
| 2659 | } |
|---|
| 2660 | |
|---|
| 2661 | return sum; |
|---|
| 2662 | } |
|---|
| 2663 | |
|---|
| 2664 | |
|---|
| 2665 | double evaluateIterative(tree *tr, boolean writeVector) |
|---|
| 2666 | { |
|---|
| 2667 | double |
|---|
| 2668 | *pz = tr->td[0].ti[0].qz, |
|---|
| 2669 | result = 0.0; |
|---|
| 2670 | |
|---|
| 2671 | #if defined(__SIM_SSE3) |
|---|
| 2672 | int |
|---|
| 2673 | rateHet; |
|---|
| 2674 | #endif |
|---|
| 2675 | |
|---|
| 2676 | int |
|---|
| 2677 | pNumber = tr->td[0].ti[0].pNumber, |
|---|
| 2678 | qNumber = tr->td[0].ti[0].qNumber, |
|---|
| 2679 | model; |
|---|
| 2680 | |
|---|
| 2681 | #if defined(__SIM_SSE3) |
|---|
| 2682 | if(tr->rateHetModel == CAT) |
|---|
| 2683 | rateHet = 1; |
|---|
| 2684 | else |
|---|
| 2685 | rateHet = 4; |
|---|
| 2686 | #endif |
|---|
| 2687 | |
|---|
| 2688 | newviewIterative(tr); |
|---|
| 2689 | |
|---|
| 2690 | if(writeVector) |
|---|
| 2691 | assert(!tr->useFastScaling); |
|---|
| 2692 | |
|---|
| 2693 | #ifdef _DEBUG_MULTI_EPA |
|---|
| 2694 | printf("EV: "); |
|---|
| 2695 | #endif |
|---|
| 2696 | |
|---|
| 2697 | for(model = 0; model < tr->NumberOfModels; model++) |
|---|
| 2698 | { |
|---|
| 2699 | #ifdef _DEBUG_MULTI_EPA |
|---|
| 2700 | printf("%d ", tr->executeModel[model]); |
|---|
| 2701 | #endif |
|---|
| 2702 | |
|---|
| 2703 | if(tr->executeModel[model]) |
|---|
| 2704 | { |
|---|
| 2705 | int |
|---|
| 2706 | width = tr->partitionData[model].width, |
|---|
| 2707 | states = tr->partitionData[model].states; |
|---|
| 2708 | |
|---|
| 2709 | double |
|---|
| 2710 | z, |
|---|
| 2711 | partitionLikelihood = 0.0, |
|---|
| 2712 | *_vector; |
|---|
| 2713 | |
|---|
| 2714 | int |
|---|
| 2715 | *ex1 = (int*)NULL, |
|---|
| 2716 | *ex2 = (int*)NULL; |
|---|
| 2717 | |
|---|
| 2718 | #if defined(__SIM_SSE3) |
|---|
| 2719 | unsigned int |
|---|
| 2720 | *x1_gap = (unsigned int*)NULL, |
|---|
| 2721 | *x2_gap = (unsigned int*)NULL; |
|---|
| 2722 | #endif |
|---|
| 2723 | |
|---|
| 2724 | double |
|---|
| 2725 | *weights = tr->partitionData[model].weights, |
|---|
| 2726 | *x1_start = (double*)NULL, |
|---|
| 2727 | *x2_start = (double*)NULL, |
|---|
| 2728 | *diagptable = (double*)NULL; |
|---|
| 2729 | |
|---|
| 2730 | #if defined(__SIM_SSE3) |
|---|
| 2731 | double |
|---|
| 2732 | *x1_gapColumn = (double*)NULL, |
|---|
| 2733 | *x2_gapColumn = (double*)NULL; |
|---|
| 2734 | #endif |
|---|
| 2735 | |
|---|
| 2736 | unsigned char |
|---|
| 2737 | *tip = (unsigned char*)NULL; |
|---|
| 2738 | |
|---|
| 2739 | if(writeVector) |
|---|
| 2740 | _vector = tr->partitionData[model].perSiteLL; |
|---|
| 2741 | else |
|---|
| 2742 | _vector = (double*)NULL; |
|---|
| 2743 | |
|---|
| 2744 | |
|---|
| 2745 | diagptable = tr->partitionData[model].left; |
|---|
| 2746 | |
|---|
| 2747 | |
|---|
| 2748 | if(isTip(pNumber, tr->mxtips) || isTip(qNumber, tr->mxtips)) |
|---|
| 2749 | { |
|---|
| 2750 | if(isTip(qNumber, tr->mxtips)) |
|---|
| 2751 | { |
|---|
| 2752 | x2_start = tr->partitionData[model].xVector[pNumber - tr->mxtips -1]; |
|---|
| 2753 | |
|---|
| 2754 | if(!tr->useFastScaling) |
|---|
| 2755 | ex2 = tr->partitionData[model].expVector[pNumber - tr->mxtips - 1]; |
|---|
| 2756 | |
|---|
| 2757 | #if defined(__SIM_SSE3) |
|---|
| 2758 | if(tr->saveMemory) |
|---|
| 2759 | { |
|---|
| 2760 | x2_gap = &(tr->partitionData[model].gapVector[pNumber * tr->partitionData[model].gapVectorLength]); |
|---|
| 2761 | x2_gapColumn = &tr->partitionData[model].gapColumn[(pNumber - tr->mxtips - 1) * states * rateHet]; |
|---|
| 2762 | } |
|---|
| 2763 | #endif |
|---|
| 2764 | |
|---|
| 2765 | tip = tr->partitionData[model].yVector[qNumber]; |
|---|
| 2766 | } |
|---|
| 2767 | else |
|---|
| 2768 | { |
|---|
| 2769 | |
|---|
| 2770 | x2_start = tr->partitionData[model].xVector[qNumber - tr->mxtips - 1]; |
|---|
| 2771 | |
|---|
| 2772 | |
|---|
| 2773 | if(!tr->useFastScaling) |
|---|
| 2774 | ex2 = tr->partitionData[model].expVector[qNumber - tr->mxtips - 1]; |
|---|
| 2775 | |
|---|
| 2776 | #if defined(__SIM_SSE3) |
|---|
| 2777 | if(tr->saveMemory) |
|---|
| 2778 | { |
|---|
| 2779 | x2_gap = &(tr->partitionData[model].gapVector[qNumber * tr->partitionData[model].gapVectorLength]); |
|---|
| 2780 | x2_gapColumn = &tr->partitionData[model].gapColumn[(qNumber - tr->mxtips - 1) * states * rateHet]; |
|---|
| 2781 | } |
|---|
| 2782 | #endif |
|---|
| 2783 | |
|---|
| 2784 | tip = tr->partitionData[model].yVector[pNumber]; |
|---|
| 2785 | } |
|---|
| 2786 | } |
|---|
| 2787 | else |
|---|
| 2788 | { |
|---|
| 2789 | #if defined(__SIM_SSE3) |
|---|
| 2790 | if(tr->saveMemory) |
|---|
| 2791 | { |
|---|
| 2792 | x1_gap = &(tr->partitionData[model].gapVector[pNumber * tr->partitionData[model].gapVectorLength]); |
|---|
| 2793 | x2_gap = &(tr->partitionData[model].gapVector[qNumber * tr->partitionData[model].gapVectorLength]); |
|---|
| 2794 | x1_gapColumn = &tr->partitionData[model].gapColumn[(pNumber - tr->mxtips - 1) * states * rateHet]; |
|---|
| 2795 | x2_gapColumn = &tr->partitionData[model].gapColumn[(qNumber - tr->mxtips - 1) * states * rateHet]; |
|---|
| 2796 | } |
|---|
| 2797 | #endif |
|---|
| 2798 | |
|---|
| 2799 | x1_start = tr->partitionData[model].xVector[pNumber - tr->mxtips - 1]; |
|---|
| 2800 | x2_start = tr->partitionData[model].xVector[qNumber - tr->mxtips - 1]; |
|---|
| 2801 | |
|---|
| 2802 | if(!tr->useFastScaling) |
|---|
| 2803 | { |
|---|
| 2804 | ex1 = tr->partitionData[model].expVector[pNumber - tr->mxtips - 1]; |
|---|
| 2805 | ex2 = tr->partitionData[model].expVector[qNumber - tr->mxtips - 1]; |
|---|
| 2806 | } |
|---|
| 2807 | } |
|---|
| 2808 | |
|---|
| 2809 | |
|---|
| 2810 | if(tr->multiBranch) |
|---|
| 2811 | z = pz[model]; |
|---|
| 2812 | else |
|---|
| 2813 | z = pz[0]; |
|---|
| 2814 | |
|---|
| 2815 | if(writeVector) |
|---|
| 2816 | { |
|---|
| 2817 | switch(tr->rateHetModel) |
|---|
| 2818 | { |
|---|
| 2819 | case CAT: |
|---|
| 2820 | { |
|---|
| 2821 | calcDiagptableFlex(z, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable, states); |
|---|
| 2822 | |
|---|
| 2823 | partitionLikelihood = evaluateCatFlex(ex1, ex2, tr->partitionData[model].rateCategory, tr->partitionData[model].wgt, |
|---|
| 2824 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 2825 | tip, width, diagptable, _vector, writeVector, tr->useFastScaling, states); |
|---|
| 2826 | } |
|---|
| 2827 | break; |
|---|
| 2828 | case GAMMA: |
|---|
| 2829 | { |
|---|
| 2830 | if(tr->partitionData[model].protModels == LG4 || tr->partitionData[model].protModels == LG4X) |
|---|
| 2831 | { |
|---|
| 2832 | calcDiagptableFlex_LG4(z, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN_LG4, diagptable, 20); |
|---|
| 2833 | |
|---|
| 2834 | |
|---|
| 2835 | partitionLikelihood = evaluateGammaFlex_LG4(ex1, ex2, tr->partitionData[model].wgt, |
|---|
| 2836 | x1_start, x2_start, tr->partitionData[model].tipVector_LG4, |
|---|
| 2837 | tip, width, diagptable, _vector, writeVector, tr->useFastScaling, states, weights); |
|---|
| 2838 | } |
|---|
| 2839 | else |
|---|
| 2840 | { |
|---|
| 2841 | calcDiagptableFlex(z, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable, states); |
|---|
| 2842 | |
|---|
| 2843 | partitionLikelihood = evaluateGammaFlex(ex1, ex2, tr->partitionData[model].wgt, |
|---|
| 2844 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 2845 | tip, width, diagptable, _vector, writeVector, tr->useFastScaling, states); |
|---|
| 2846 | } |
|---|
| 2847 | } |
|---|
| 2848 | break; |
|---|
| 2849 | case GAMMA_I: |
|---|
| 2850 | { |
|---|
| 2851 | calcDiagptableFlex(z, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable, states); |
|---|
| 2852 | |
|---|
| 2853 | partitionLikelihood = evaluateGammaInvarFlex(ex1, ex2, tr->partitionData[model].wgt, tr->partitionData[model].invariant, |
|---|
| 2854 | x1_start, x2_start, |
|---|
| 2855 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 2856 | tr->partitionData[model].propInvariant, |
|---|
| 2857 | tip, width, diagptable, _vector, writeVector, tr->useFastScaling, states); |
|---|
| 2858 | } |
|---|
| 2859 | break; |
|---|
| 2860 | default: |
|---|
| 2861 | assert(0); |
|---|
| 2862 | } |
|---|
| 2863 | } |
|---|
| 2864 | else |
|---|
| 2865 | { |
|---|
| 2866 | switch(tr->partitionData[model].dataType) |
|---|
| 2867 | { |
|---|
| 2868 | case BINARY_DATA: |
|---|
| 2869 | switch(tr->rateHetModel) |
|---|
| 2870 | { |
|---|
| 2871 | case CAT: |
|---|
| 2872 | { |
|---|
| 2873 | calcDiagptable(z, BINARY_DATA, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 2874 | |
|---|
| 2875 | partitionLikelihood = evaluateGTRCAT_BINARY(ex1, ex2, tr->partitionData[model].rateCategory, tr->partitionData[model].wgt, |
|---|
| 2876 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 2877 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 2878 | } |
|---|
| 2879 | break; |
|---|
| 2880 | case GAMMA: |
|---|
| 2881 | { |
|---|
| 2882 | calcDiagptable(z, BINARY_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 2883 | |
|---|
| 2884 | partitionLikelihood = evaluateGTRGAMMA_BINARY(ex1, ex2, tr->partitionData[model].wgt, |
|---|
| 2885 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 2886 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 2887 | } |
|---|
| 2888 | break; |
|---|
| 2889 | case GAMMA_I: |
|---|
| 2890 | { |
|---|
| 2891 | calcDiagptable(z, BINARY_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 2892 | |
|---|
| 2893 | partitionLikelihood = evaluateGTRGAMMAINVAR_BINARY(ex1, ex2, tr->partitionData[model].wgt, tr->partitionData[model].invariant, |
|---|
| 2894 | x1_start, x2_start, |
|---|
| 2895 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 2896 | tr->partitionData[model].propInvariant, |
|---|
| 2897 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 2898 | } |
|---|
| 2899 | break; |
|---|
| 2900 | default: |
|---|
| 2901 | assert(0); |
|---|
| 2902 | } |
|---|
| 2903 | break; |
|---|
| 2904 | case DNA_DATA: |
|---|
| 2905 | switch(tr->rateHetModel) |
|---|
| 2906 | { |
|---|
| 2907 | case CAT: |
|---|
| 2908 | |
|---|
| 2909 | calcDiagptable(z, DNA_DATA, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 2910 | #ifdef __SIM_SSE3 |
|---|
| 2911 | if(tr->saveMemory) |
|---|
| 2912 | { |
|---|
| 2913 | partitionLikelihood = evaluateGTRCAT_SAVE(ex1, ex2, tr->partitionData[model].rateCategory, tr->partitionData[model].wgt, |
|---|
| 2914 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 2915 | tip, width, diagptable, tr->useFastScaling, x1_gapColumn, x2_gapColumn, x1_gap, x2_gap); |
|---|
| 2916 | } |
|---|
| 2917 | else |
|---|
| 2918 | #endif |
|---|
| 2919 | partitionLikelihood = evaluateGTRCAT(ex1, ex2, tr->partitionData[model].rateCategory, tr->partitionData[model].wgt, |
|---|
| 2920 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 2921 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 2922 | break; |
|---|
| 2923 | case GAMMA: |
|---|
| 2924 | |
|---|
| 2925 | calcDiagptable(z, DNA_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 2926 | #ifdef __SIM_SSE3 |
|---|
| 2927 | if(tr->saveMemory) |
|---|
| 2928 | partitionLikelihood = evaluateGTRGAMMA_GAPPED_SAVE(ex1, ex2, tr->partitionData[model].wgt, |
|---|
| 2929 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 2930 | tip, width, diagptable, tr->useFastScaling, |
|---|
| 2931 | x1_gapColumn, x2_gapColumn, x1_gap, x2_gap); |
|---|
| 2932 | else |
|---|
| 2933 | #endif |
|---|
| 2934 | |
|---|
| 2935 | partitionLikelihood = evaluateGTRGAMMA(ex1, ex2, tr->partitionData[model].wgt, |
|---|
| 2936 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 2937 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 2938 | break; |
|---|
| 2939 | case GAMMA_I: |
|---|
| 2940 | { |
|---|
| 2941 | calcDiagptable(z, DNA_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 2942 | |
|---|
| 2943 | partitionLikelihood = evaluateGTRGAMMAINVAR(ex1, ex2, tr->partitionData[model].wgt, tr->partitionData[model].invariant, |
|---|
| 2944 | x1_start, x2_start, |
|---|
| 2945 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 2946 | tr->partitionData[model].propInvariant, |
|---|
| 2947 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 2948 | } |
|---|
| 2949 | break; |
|---|
| 2950 | default: |
|---|
| 2951 | assert(0); |
|---|
| 2952 | } |
|---|
| 2953 | break; |
|---|
| 2954 | case AA_DATA: |
|---|
| 2955 | switch(tr->rateHetModel) |
|---|
| 2956 | { |
|---|
| 2957 | case CAT: |
|---|
| 2958 | |
|---|
| 2959 | calcDiagptable(z, AA_DATA, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 2960 | #ifdef __SIM_SSE3 |
|---|
| 2961 | if(tr->saveMemory) |
|---|
| 2962 | { |
|---|
| 2963 | partitionLikelihood = evaluateGTRCATPROT_SAVE(ex1, ex2, tr->partitionData[model].rateCategory, tr->partitionData[model].wgt, |
|---|
| 2964 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 2965 | tip, width, diagptable, tr->useFastScaling, x1_gapColumn, x2_gapColumn, x1_gap, x2_gap); |
|---|
| 2966 | } |
|---|
| 2967 | else |
|---|
| 2968 | #endif |
|---|
| 2969 | partitionLikelihood = evaluateGTRCATPROT(ex1, ex2, tr->partitionData[model].rateCategory, tr->partitionData[model].wgt, |
|---|
| 2970 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 2971 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 2972 | |
|---|
| 2973 | break; |
|---|
| 2974 | case GAMMA: |
|---|
| 2975 | if(tr->partitionData[model].protModels == LG4 || tr->partitionData[model].protModels == LG4X) |
|---|
| 2976 | { |
|---|
| 2977 | calcDiagptableFlex_LG4(z, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN_LG4, diagptable, 20); |
|---|
| 2978 | |
|---|
| 2979 | partitionLikelihood = evaluateGTRGAMMAPROT_LG4(ex1, ex2, tr->partitionData[model].wgt, |
|---|
| 2980 | x1_start, x2_start, tr->partitionData[model].tipVector_LG4, |
|---|
| 2981 | tip, width, diagptable, tr->useFastScaling, weights); |
|---|
| 2982 | |
|---|
| 2983 | } |
|---|
| 2984 | else |
|---|
| 2985 | { |
|---|
| 2986 | calcDiagptable(z, AA_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 2987 | #ifdef __SIM_SSE3 |
|---|
| 2988 | if(tr->saveMemory) |
|---|
| 2989 | partitionLikelihood = evaluateGTRGAMMAPROT_GAPPED_SAVE(ex1, ex2, tr->partitionData[model].wgt, |
|---|
| 2990 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 2991 | tip, width, diagptable, tr->useFastScaling, |
|---|
| 2992 | x1_gapColumn, x2_gapColumn, x1_gap, x2_gap); |
|---|
| 2993 | else |
|---|
| 2994 | #endif |
|---|
| 2995 | partitionLikelihood = evaluateGTRGAMMAPROT(ex1, ex2, tr->partitionData[model].wgt, |
|---|
| 2996 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 2997 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 2998 | } |
|---|
| 2999 | break; |
|---|
| 3000 | case GAMMA_I: |
|---|
| 3001 | { |
|---|
| 3002 | calcDiagptable(z, AA_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3003 | |
|---|
| 3004 | partitionLikelihood = evaluateGTRGAMMAPROTINVAR(ex1, ex2, tr->partitionData[model].wgt, tr->partitionData[model].invariant, |
|---|
| 3005 | x1_start, x2_start, |
|---|
| 3006 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 3007 | tr->partitionData[model].propInvariant, |
|---|
| 3008 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3009 | } |
|---|
| 3010 | break; |
|---|
| 3011 | default: |
|---|
| 3012 | assert(0); |
|---|
| 3013 | } |
|---|
| 3014 | break; |
|---|
| 3015 | case GENERIC_32: |
|---|
| 3016 | switch(tr->rateHetModel) |
|---|
| 3017 | { |
|---|
| 3018 | case CAT: |
|---|
| 3019 | { |
|---|
| 3020 | calcDiagptableFlex(z, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable, states); |
|---|
| 3021 | |
|---|
| 3022 | partitionLikelihood = evaluateCatFlex(ex1, ex2, tr->partitionData[model].rateCategory, tr->partitionData[model].wgt, |
|---|
| 3023 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3024 | tip, width, diagptable, _vector, writeVector, tr->useFastScaling, states); |
|---|
| 3025 | } |
|---|
| 3026 | break; |
|---|
| 3027 | case GAMMA: |
|---|
| 3028 | { |
|---|
| 3029 | calcDiagptableFlex(z, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable, states); |
|---|
| 3030 | |
|---|
| 3031 | partitionLikelihood = evaluateGammaFlex(ex1, ex2, tr->partitionData[model].wgt, |
|---|
| 3032 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3033 | tip, width, diagptable, _vector, writeVector, tr->useFastScaling, states); |
|---|
| 3034 | } |
|---|
| 3035 | break; |
|---|
| 3036 | case GAMMA_I: |
|---|
| 3037 | { |
|---|
| 3038 | calcDiagptableFlex(z, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable, states); |
|---|
| 3039 | |
|---|
| 3040 | partitionLikelihood = evaluateGammaInvarFlex(ex1, ex2, tr->partitionData[model].wgt, tr->partitionData[model].invariant, |
|---|
| 3041 | x1_start, x2_start, |
|---|
| 3042 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 3043 | tr->partitionData[model].propInvariant, |
|---|
| 3044 | tip, width, diagptable, _vector, writeVector, tr->useFastScaling, states); |
|---|
| 3045 | } |
|---|
| 3046 | break; |
|---|
| 3047 | default: |
|---|
| 3048 | assert(0); |
|---|
| 3049 | } |
|---|
| 3050 | break; |
|---|
| 3051 | case SECONDARY_DATA: |
|---|
| 3052 | switch(tr->rateHetModel) |
|---|
| 3053 | { |
|---|
| 3054 | case CAT: |
|---|
| 3055 | { |
|---|
| 3056 | calcDiagptable(z, SECONDARY_DATA, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3057 | |
|---|
| 3058 | partitionLikelihood = evaluateGTRCATSECONDARY(ex1, ex2, tr->partitionData[model].rateCategory, tr->partitionData[model].wgt, |
|---|
| 3059 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3060 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3061 | } |
|---|
| 3062 | break; |
|---|
| 3063 | case GAMMA: |
|---|
| 3064 | { |
|---|
| 3065 | calcDiagptable(z, SECONDARY_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3066 | |
|---|
| 3067 | partitionLikelihood = evaluateGTRGAMMASECONDARY(ex1, ex2, tr->partitionData[model].wgt, |
|---|
| 3068 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3069 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3070 | } |
|---|
| 3071 | break; |
|---|
| 3072 | case GAMMA_I: |
|---|
| 3073 | { |
|---|
| 3074 | calcDiagptable(z, SECONDARY_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3075 | |
|---|
| 3076 | partitionLikelihood = evaluateGTRGAMMASECONDARYINVAR(ex1, ex2, tr->partitionData[model].wgt, tr->partitionData[model].invariant, |
|---|
| 3077 | x1_start, x2_start, |
|---|
| 3078 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 3079 | tr->partitionData[model].propInvariant, |
|---|
| 3080 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3081 | } |
|---|
| 3082 | break; |
|---|
| 3083 | default: |
|---|
| 3084 | assert(0); |
|---|
| 3085 | } |
|---|
| 3086 | break; |
|---|
| 3087 | case SECONDARY_DATA_6: |
|---|
| 3088 | switch(tr->rateHetModel) |
|---|
| 3089 | { |
|---|
| 3090 | case CAT: |
|---|
| 3091 | { |
|---|
| 3092 | calcDiagptable(z, SECONDARY_DATA_6, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3093 | |
|---|
| 3094 | partitionLikelihood = evaluateGTRCATSECONDARY_6(ex1, ex2, tr->partitionData[model].rateCategory, tr->partitionData[model].wgt, |
|---|
| 3095 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3096 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3097 | } |
|---|
| 3098 | break; |
|---|
| 3099 | case GAMMA: |
|---|
| 3100 | { |
|---|
| 3101 | calcDiagptable(z, SECONDARY_DATA_6, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3102 | |
|---|
| 3103 | partitionLikelihood = evaluateGTRGAMMASECONDARY_6(ex1, ex2, tr->partitionData[model].wgt, |
|---|
| 3104 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3105 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3106 | } |
|---|
| 3107 | break; |
|---|
| 3108 | case GAMMA_I: |
|---|
| 3109 | { |
|---|
| 3110 | calcDiagptable(z, SECONDARY_DATA_6, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3111 | |
|---|
| 3112 | partitionLikelihood = evaluateGTRGAMMASECONDARYINVAR_6(ex1, ex2, tr->partitionData[model].wgt, tr->partitionData[model].invariant, |
|---|
| 3113 | x1_start, x2_start, |
|---|
| 3114 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 3115 | tr->partitionData[model].propInvariant, |
|---|
| 3116 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3117 | } |
|---|
| 3118 | break; |
|---|
| 3119 | default: |
|---|
| 3120 | assert(0); |
|---|
| 3121 | } |
|---|
| 3122 | break; |
|---|
| 3123 | case SECONDARY_DATA_7: |
|---|
| 3124 | switch(tr->rateHetModel) |
|---|
| 3125 | { |
|---|
| 3126 | case CAT: |
|---|
| 3127 | { |
|---|
| 3128 | calcDiagptable(z, SECONDARY_DATA_7, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3129 | |
|---|
| 3130 | partitionLikelihood = evaluateGTRCATSECONDARY_7(ex1, ex2, tr->partitionData[model].rateCategory, tr->partitionData[model].wgt, |
|---|
| 3131 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3132 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3133 | } |
|---|
| 3134 | break; |
|---|
| 3135 | case GAMMA: |
|---|
| 3136 | { |
|---|
| 3137 | calcDiagptable(z, SECONDARY_DATA_7, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3138 | |
|---|
| 3139 | partitionLikelihood = evaluateGTRGAMMASECONDARY_7(ex1, ex2, tr->partitionData[model].wgt, |
|---|
| 3140 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3141 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3142 | } |
|---|
| 3143 | break; |
|---|
| 3144 | case GAMMA_I: |
|---|
| 3145 | { |
|---|
| 3146 | calcDiagptable(z, SECONDARY_DATA_7, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3147 | |
|---|
| 3148 | partitionLikelihood = evaluateGTRGAMMASECONDARYINVAR_7(ex1, ex2, tr->partitionData[model].wgt, tr->partitionData[model].invariant, |
|---|
| 3149 | x1_start, x2_start, |
|---|
| 3150 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 3151 | tr->partitionData[model].propInvariant, |
|---|
| 3152 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3153 | } |
|---|
| 3154 | break; |
|---|
| 3155 | default: |
|---|
| 3156 | assert(0); |
|---|
| 3157 | } |
|---|
| 3158 | break; |
|---|
| 3159 | default: |
|---|
| 3160 | assert(0); |
|---|
| 3161 | } |
|---|
| 3162 | } |
|---|
| 3163 | |
|---|
| 3164 | if(width > 0) |
|---|
| 3165 | { |
|---|
| 3166 | assert(partitionLikelihood < 0.0); |
|---|
| 3167 | |
|---|
| 3168 | if(tr->useFastScaling) |
|---|
| 3169 | partitionLikelihood += (tr->partitionData[model].globalScaler[pNumber] + tr->partitionData[model].globalScaler[qNumber]) * LOG(minlikelihood); |
|---|
| 3170 | } |
|---|
| 3171 | |
|---|
| 3172 | result += partitionLikelihood; |
|---|
| 3173 | tr->perPartitionLH[model] = partitionLikelihood; |
|---|
| 3174 | } |
|---|
| 3175 | } |
|---|
| 3176 | #ifdef _DEBUG_MULTI_EPA |
|---|
| 3177 | printf("\n"); |
|---|
| 3178 | #endif |
|---|
| 3179 | return result; |
|---|
| 3180 | } |
|---|
| 3181 | |
|---|
| 3182 | |
|---|
| 3183 | |
|---|
| 3184 | |
|---|
| 3185 | double evaluateGeneric (tree *tr, nodeptr p) |
|---|
| 3186 | { |
|---|
| 3187 | volatile |
|---|
| 3188 | double result; |
|---|
| 3189 | |
|---|
| 3190 | nodeptr |
|---|
| 3191 | q = p->back; |
|---|
| 3192 | |
|---|
| 3193 | int |
|---|
| 3194 | i; |
|---|
| 3195 | |
|---|
| 3196 | |
|---|
| 3197 | tr->td[0].ti[0].pNumber = p->number; |
|---|
| 3198 | tr->td[0].ti[0].qNumber = q->number; |
|---|
| 3199 | |
|---|
| 3200 | for(i = 0; i < tr->numBranches; i++) |
|---|
| 3201 | tr->td[0].ti[0].qz[i] = q->z[i]; |
|---|
| 3202 | |
|---|
| 3203 | tr->td[0].count = 1; |
|---|
| 3204 | |
|---|
| 3205 | if(!p->x) |
|---|
| 3206 | computeTraversalInfo(p, &(tr->td[0].ti[0]), &(tr->td[0].count), tr->mxtips, tr->numBranches); |
|---|
| 3207 | |
|---|
| 3208 | if(!q->x) |
|---|
| 3209 | computeTraversalInfo(q, &(tr->td[0].ti[0]), &(tr->td[0].count), tr->mxtips, tr->numBranches); |
|---|
| 3210 | |
|---|
| 3211 | #ifdef _USE_PTHREADS |
|---|
| 3212 | { |
|---|
| 3213 | int j; |
|---|
| 3214 | |
|---|
| 3215 | masterBarrier(THREAD_EVALUATE, tr); |
|---|
| 3216 | |
|---|
| 3217 | if(tr->NumberOfModels == 1) |
|---|
| 3218 | { |
|---|
| 3219 | for(i = 0, result = 0.0; i < NumberOfThreads; i++) |
|---|
| 3220 | result += reductionBuffer[i]; |
|---|
| 3221 | |
|---|
| 3222 | tr->perPartitionLH[0] = result; |
|---|
| 3223 | } |
|---|
| 3224 | else |
|---|
| 3225 | { |
|---|
| 3226 | volatile |
|---|
| 3227 | double partitionResult; |
|---|
| 3228 | |
|---|
| 3229 | result = 0.0; |
|---|
| 3230 | |
|---|
| 3231 | for(j = 0; j < tr->NumberOfModels; j++) |
|---|
| 3232 | { |
|---|
| 3233 | for(i = 0, partitionResult = 0.0; i < NumberOfThreads; i++) |
|---|
| 3234 | partitionResult += reductionBuffer[i * tr->NumberOfModels + j]; |
|---|
| 3235 | result += partitionResult; |
|---|
| 3236 | tr->perPartitionLH[j] = partitionResult; |
|---|
| 3237 | } |
|---|
| 3238 | } |
|---|
| 3239 | } |
|---|
| 3240 | #else |
|---|
| 3241 | result = evaluateIterative(tr, FALSE); |
|---|
| 3242 | #endif |
|---|
| 3243 | |
|---|
| 3244 | tr->likelihood = result; |
|---|
| 3245 | |
|---|
| 3246 | return result; |
|---|
| 3247 | } |
|---|
| 3248 | |
|---|
| 3249 | |
|---|
| 3250 | |
|---|
| 3251 | |
|---|
| 3252 | double evaluateGenericInitrav (tree *tr, nodeptr p) |
|---|
| 3253 | { |
|---|
| 3254 | volatile double |
|---|
| 3255 | result; |
|---|
| 3256 | |
|---|
| 3257 | determineFullTraversal(p, tr); |
|---|
| 3258 | |
|---|
| 3259 | #ifdef _USE_PTHREADS |
|---|
| 3260 | { |
|---|
| 3261 | int |
|---|
| 3262 | i, |
|---|
| 3263 | j; |
|---|
| 3264 | |
|---|
| 3265 | masterBarrier(THREAD_EVALUATE, tr); |
|---|
| 3266 | |
|---|
| 3267 | if(tr->NumberOfModels == 1) |
|---|
| 3268 | { |
|---|
| 3269 | for(i = 0, result = 0.0; i < NumberOfThreads; i++) |
|---|
| 3270 | result += reductionBuffer[i]; |
|---|
| 3271 | |
|---|
| 3272 | tr->perPartitionLH[0] = result; |
|---|
| 3273 | } |
|---|
| 3274 | else |
|---|
| 3275 | { |
|---|
| 3276 | volatile double |
|---|
| 3277 | partitionResult; |
|---|
| 3278 | |
|---|
| 3279 | result = 0.0; |
|---|
| 3280 | |
|---|
| 3281 | for(j = 0; j < tr->NumberOfModels; j++) |
|---|
| 3282 | { |
|---|
| 3283 | for(i = 0, partitionResult = 0.0; i < NumberOfThreads; i++) |
|---|
| 3284 | partitionResult += reductionBuffer[i * tr->NumberOfModels + j]; |
|---|
| 3285 | result += partitionResult; |
|---|
| 3286 | tr->perPartitionLH[j] = partitionResult; |
|---|
| 3287 | } |
|---|
| 3288 | } |
|---|
| 3289 | } |
|---|
| 3290 | #else |
|---|
| 3291 | result = evaluateIterative(tr, FALSE); |
|---|
| 3292 | #endif |
|---|
| 3293 | |
|---|
| 3294 | tr->likelihood = result; |
|---|
| 3295 | |
|---|
| 3296 | return result; |
|---|
| 3297 | } |
|---|
| 3298 | |
|---|
| 3299 | |
|---|
| 3300 | |
|---|
| 3301 | |
|---|
| 3302 | void onlyInitrav(tree *tr, nodeptr p) |
|---|
| 3303 | { |
|---|
| 3304 | determineFullTraversal(p, tr); |
|---|
| 3305 | |
|---|
| 3306 | #ifdef _USE_PTHREADS |
|---|
| 3307 | masterBarrier(THREAD_NEWVIEW, tr); |
|---|
| 3308 | #else |
|---|
| 3309 | newviewIterative(tr); |
|---|
| 3310 | #endif |
|---|
| 3311 | } |
|---|
| 3312 | |
|---|
| 3313 | |
|---|
| 3314 | |
|---|
| 3315 | |
|---|
| 3316 | |
|---|
| 3317 | |
|---|
| 3318 | #ifdef _USE_PTHREADS |
|---|
| 3319 | |
|---|
| 3320 | double evalCL(tree *tr, double *x2, int *_ex2, unsigned char *_tip, double *pz, int insertion) |
|---|
| 3321 | { |
|---|
| 3322 | double |
|---|
| 3323 | *x1_start = (double*)NULL, |
|---|
| 3324 | result = 0.0; |
|---|
| 3325 | |
|---|
| 3326 | int |
|---|
| 3327 | *ex1 = (int*)NULL, |
|---|
| 3328 | model, |
|---|
| 3329 | columnCounter, |
|---|
| 3330 | offsetCounter; |
|---|
| 3331 | |
|---|
| 3332 | unsigned char |
|---|
| 3333 | *tip = (unsigned char*)NULL; |
|---|
| 3334 | |
|---|
| 3335 | setPartitionMask(tr, insertion, tr->executeModel); |
|---|
| 3336 | |
|---|
| 3337 | #ifdef _DEBUG_MULTI_EPA |
|---|
| 3338 | if(tr->threadID == THREAD_TO_DEBUG) |
|---|
| 3339 | printf("EV %s: ", tr->nameList[tr->inserts[insertion]]); |
|---|
| 3340 | #endif |
|---|
| 3341 | |
|---|
| 3342 | for(model = 0, columnCounter = 0, offsetCounter = 0; model < tr->NumberOfModels; model++) |
|---|
| 3343 | { |
|---|
| 3344 | int |
|---|
| 3345 | width = tr->partitionData[model].upper - tr->partitionData[model].lower; |
|---|
| 3346 | |
|---|
| 3347 | #ifdef _DEBUG_MULTI_EPA |
|---|
| 3348 | if(tr->threadID == THREAD_TO_DEBUG) |
|---|
| 3349 | printf("%d", tr->executeModel[model]); |
|---|
| 3350 | #endif |
|---|
| 3351 | |
|---|
| 3352 | if(tr->executeModel[model]) |
|---|
| 3353 | { |
|---|
| 3354 | int |
|---|
| 3355 | *ex2, |
|---|
| 3356 | *rateCategory, |
|---|
| 3357 | *wgt, |
|---|
| 3358 | *invariant; |
|---|
| 3359 | |
|---|
| 3360 | double |
|---|
| 3361 | *x2_start, |
|---|
| 3362 | z, |
|---|
| 3363 | partitionLikelihood, |
|---|
| 3364 | *diagptable = tr->partitionData[model].left; |
|---|
| 3365 | |
|---|
| 3366 | |
|---|
| 3367 | rateCategory = &tr->contiguousRateCategory[columnCounter]; |
|---|
| 3368 | wgt = &tr->contiguousWgt[columnCounter]; |
|---|
| 3369 | invariant = &tr->contiguousInvariant[columnCounter]; |
|---|
| 3370 | tip = &_tip[columnCounter]; |
|---|
| 3371 | x2_start = &x2[offsetCounter]; |
|---|
| 3372 | ex2 = &_ex2[columnCounter]; |
|---|
| 3373 | |
|---|
| 3374 | if(tr->multiBranch) |
|---|
| 3375 | z = pz[model]; |
|---|
| 3376 | else |
|---|
| 3377 | z = pz[0]; |
|---|
| 3378 | |
|---|
| 3379 | switch(tr->partitionData[model].dataType) |
|---|
| 3380 | { |
|---|
| 3381 | case BINARY_DATA: |
|---|
| 3382 | switch(tr->rateHetModel) |
|---|
| 3383 | { |
|---|
| 3384 | case CAT: |
|---|
| 3385 | calcDiagptable(z, BINARY_DATA, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3386 | |
|---|
| 3387 | partitionLikelihood = evaluateGTRCAT_BINARY(ex1, ex2, rateCategory, wgt, |
|---|
| 3388 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3389 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3390 | break; |
|---|
| 3391 | case GAMMA: |
|---|
| 3392 | calcDiagptable(z, BINARY_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3393 | |
|---|
| 3394 | partitionLikelihood = evaluateGTRGAMMA_BINARY(ex1, ex2,wgt, |
|---|
| 3395 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3396 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3397 | |
|---|
| 3398 | break; |
|---|
| 3399 | case GAMMA_I: |
|---|
| 3400 | calcDiagptable(z, BINARY_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3401 | |
|---|
| 3402 | partitionLikelihood = evaluateGTRGAMMAINVAR_BINARY(ex1, ex2,wgt, invariant, |
|---|
| 3403 | x1_start, x2_start, |
|---|
| 3404 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 3405 | tr->partitionData[model].propInvariant, |
|---|
| 3406 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3407 | break; |
|---|
| 3408 | default: |
|---|
| 3409 | assert(0); |
|---|
| 3410 | } |
|---|
| 3411 | break; |
|---|
| 3412 | case DNA_DATA: |
|---|
| 3413 | switch(tr->rateHetModel) |
|---|
| 3414 | { |
|---|
| 3415 | case CAT: |
|---|
| 3416 | calcDiagptable(z, DNA_DATA, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3417 | |
|---|
| 3418 | partitionLikelihood = evaluateGTRCAT(ex1, ex2, rateCategory,wgt, |
|---|
| 3419 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3420 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3421 | break; |
|---|
| 3422 | case GAMMA: |
|---|
| 3423 | calcDiagptable(z, DNA_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3424 | |
|---|
| 3425 | partitionLikelihood = evaluateGTRGAMMA(ex1, ex2,wgt, |
|---|
| 3426 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3427 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3428 | break; |
|---|
| 3429 | case GAMMA_I: |
|---|
| 3430 | calcDiagptable(z, DNA_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3431 | |
|---|
| 3432 | partitionLikelihood = evaluateGTRGAMMAINVAR(ex1, ex2,wgt,invariant, |
|---|
| 3433 | x1_start, x2_start, |
|---|
| 3434 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 3435 | tr->partitionData[model].propInvariant, |
|---|
| 3436 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3437 | break; |
|---|
| 3438 | default: |
|---|
| 3439 | assert(0); |
|---|
| 3440 | } |
|---|
| 3441 | break; |
|---|
| 3442 | case AA_DATA: |
|---|
| 3443 | switch(tr->rateHetModel) |
|---|
| 3444 | { |
|---|
| 3445 | case CAT: |
|---|
| 3446 | calcDiagptable(z, AA_DATA, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3447 | |
|---|
| 3448 | partitionLikelihood = evaluateGTRCATPROT(ex1, ex2, rateCategory,wgt, |
|---|
| 3449 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3450 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3451 | break; |
|---|
| 3452 | case GAMMA: |
|---|
| 3453 | calcDiagptable(z, AA_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3454 | |
|---|
| 3455 | partitionLikelihood = evaluateGTRGAMMAPROT(ex1, ex2,wgt, |
|---|
| 3456 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3457 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3458 | break; |
|---|
| 3459 | case GAMMA_I: |
|---|
| 3460 | calcDiagptable(z, AA_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3461 | |
|---|
| 3462 | partitionLikelihood = evaluateGTRGAMMAPROTINVAR(ex1, ex2,wgt,invariant, |
|---|
| 3463 | x1_start, x2_start, |
|---|
| 3464 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 3465 | tr->partitionData[model].propInvariant, |
|---|
| 3466 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3467 | break; |
|---|
| 3468 | default: |
|---|
| 3469 | assert(0); |
|---|
| 3470 | } |
|---|
| 3471 | break; |
|---|
| 3472 | case SECONDARY_DATA: |
|---|
| 3473 | switch(tr->rateHetModel) |
|---|
| 3474 | { |
|---|
| 3475 | case CAT: |
|---|
| 3476 | calcDiagptable(z, SECONDARY_DATA, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3477 | |
|---|
| 3478 | partitionLikelihood = evaluateGTRCATSECONDARY(ex1, ex2, rateCategory,wgt, |
|---|
| 3479 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3480 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3481 | break; |
|---|
| 3482 | case GAMMA: |
|---|
| 3483 | calcDiagptable(z, SECONDARY_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3484 | |
|---|
| 3485 | partitionLikelihood = evaluateGTRGAMMASECONDARY(ex1, ex2,wgt, |
|---|
| 3486 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3487 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3488 | break; |
|---|
| 3489 | case GAMMA_I: |
|---|
| 3490 | calcDiagptable(z, SECONDARY_DATA, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3491 | |
|---|
| 3492 | partitionLikelihood = evaluateGTRGAMMASECONDARYINVAR(ex1, ex2,wgt,invariant, |
|---|
| 3493 | x1_start, x2_start, |
|---|
| 3494 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 3495 | tr->partitionData[model].propInvariant, |
|---|
| 3496 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3497 | break; |
|---|
| 3498 | default: |
|---|
| 3499 | assert(0); |
|---|
| 3500 | } |
|---|
| 3501 | break; |
|---|
| 3502 | case SECONDARY_DATA_6: |
|---|
| 3503 | switch(tr->rateHetModel) |
|---|
| 3504 | { |
|---|
| 3505 | case CAT: |
|---|
| 3506 | calcDiagptable(z, SECONDARY_DATA_6, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3507 | |
|---|
| 3508 | partitionLikelihood = evaluateGTRCATSECONDARY_6(ex1, ex2, rateCategory,wgt, |
|---|
| 3509 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3510 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3511 | break; |
|---|
| 3512 | case GAMMA: |
|---|
| 3513 | calcDiagptable(z, SECONDARY_DATA_6, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3514 | |
|---|
| 3515 | partitionLikelihood = evaluateGTRGAMMASECONDARY_6(ex1, ex2,wgt, |
|---|
| 3516 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3517 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3518 | break; |
|---|
| 3519 | case GAMMA_I: |
|---|
| 3520 | calcDiagptable(z, SECONDARY_DATA_6, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3521 | |
|---|
| 3522 | partitionLikelihood = evaluateGTRGAMMASECONDARYINVAR_6(ex1, ex2,wgt,invariant, |
|---|
| 3523 | x1_start, x2_start, |
|---|
| 3524 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 3525 | tr->partitionData[model].propInvariant, |
|---|
| 3526 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3527 | break; |
|---|
| 3528 | default: |
|---|
| 3529 | assert(0); |
|---|
| 3530 | } |
|---|
| 3531 | break; |
|---|
| 3532 | case SECONDARY_DATA_7: |
|---|
| 3533 | switch(tr->rateHetModel) |
|---|
| 3534 | { |
|---|
| 3535 | case CAT: |
|---|
| 3536 | calcDiagptable(z, SECONDARY_DATA_7, tr->partitionData[model].numberOfCategories, tr->partitionData[model].perSiteRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3537 | |
|---|
| 3538 | partitionLikelihood = evaluateGTRCATSECONDARY_7(ex1, ex2, rateCategory,wgt, |
|---|
| 3539 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3540 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3541 | break; |
|---|
| 3542 | case GAMMA: |
|---|
| 3543 | calcDiagptable(z, SECONDARY_DATA_7, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3544 | |
|---|
| 3545 | partitionLikelihood = evaluateGTRGAMMASECONDARY_7(ex1, ex2,wgt, |
|---|
| 3546 | x1_start, x2_start, tr->partitionData[model].tipVector, |
|---|
| 3547 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3548 | break; |
|---|
| 3549 | case GAMMA_I: |
|---|
| 3550 | calcDiagptable(z, SECONDARY_DATA_7, 4, tr->partitionData[model].gammaRates, tr->partitionData[model].EIGN, diagptable); |
|---|
| 3551 | |
|---|
| 3552 | partitionLikelihood = evaluateGTRGAMMASECONDARYINVAR_7(ex1, ex2,wgt,invariant, |
|---|
| 3553 | x1_start, x2_start, |
|---|
| 3554 | tr->partitionData[model].tipVector, tr->partitionData[model].frequencies, |
|---|
| 3555 | tr->partitionData[model].propInvariant, |
|---|
| 3556 | tip, width, diagptable, tr->useFastScaling); |
|---|
| 3557 | break; |
|---|
| 3558 | default: |
|---|
| 3559 | assert(0); |
|---|
| 3560 | } |
|---|
| 3561 | break; |
|---|
| 3562 | default: |
|---|
| 3563 | assert(0); |
|---|
| 3564 | } |
|---|
| 3565 | |
|---|
| 3566 | assert(!tr->useFastScaling); |
|---|
| 3567 | |
|---|
| 3568 | /* error ? */ |
|---|
| 3569 | |
|---|
| 3570 | tr->perPartitionLH[model] = partitionLikelihood; |
|---|
| 3571 | |
|---|
| 3572 | result += partitionLikelihood; |
|---|
| 3573 | } |
|---|
| 3574 | |
|---|
| 3575 | columnCounter += width; |
|---|
| 3576 | offsetCounter += width * tr->partitionData[model].states * tr->discreteRateCategories; |
|---|
| 3577 | } |
|---|
| 3578 | |
|---|
| 3579 | resetPartitionMask(tr, tr->executeModel); |
|---|
| 3580 | #ifdef _DEBUG_MULTI_EPA |
|---|
| 3581 | if(tr->threadID == THREAD_TO_DEBUG) |
|---|
| 3582 | printf("\n"); |
|---|
| 3583 | #endif |
|---|
| 3584 | if(tr->perPartitionEPA) |
|---|
| 3585 | { |
|---|
| 3586 | |
|---|
| 3587 | return (tr->perPartitionLH[tr->readPartition[insertion]]); |
|---|
| 3588 | } |
|---|
| 3589 | else |
|---|
| 3590 | { |
|---|
| 3591 | return result; |
|---|
| 3592 | } |
|---|
| 3593 | } |
|---|
| 3594 | |
|---|
| 3595 | |
|---|
| 3596 | |
|---|
| 3597 | |
|---|
| 3598 | |
|---|
| 3599 | |
|---|
| 3600 | |
|---|
| 3601 | #endif |
|---|
| 3602 | |
|---|
| 3603 | |
|---|
| 3604 | |
|---|
| 3605 | |
|---|
| 3606 | /*****************************************************************************************************/ |
|---|
| 3607 | |
|---|
| 3608 | |
|---|
| 3609 | |
|---|
| 3610 | double evaluateGenericVector (tree *tr, nodeptr p) |
|---|
| 3611 | { |
|---|
| 3612 | volatile double result; |
|---|
| 3613 | nodeptr q = p->back; |
|---|
| 3614 | int i; |
|---|
| 3615 | |
|---|
| 3616 | |
|---|
| 3617 | { |
|---|
| 3618 | tr->td[0].ti[0].pNumber = p->number; |
|---|
| 3619 | tr->td[0].ti[0].qNumber = q->number; |
|---|
| 3620 | |
|---|
| 3621 | for(i = 0; i < tr->numBranches; i++) |
|---|
| 3622 | tr->td[0].ti[0].qz[i] = q->z[i]; |
|---|
| 3623 | |
|---|
| 3624 | tr->td[0].count = 1; |
|---|
| 3625 | if(!p->x) |
|---|
| 3626 | computeTraversalInfo(p, &(tr->td[0].ti[0]), &(tr->td[0].count), tr->mxtips, tr->numBranches); |
|---|
| 3627 | if(!q->x) |
|---|
| 3628 | computeTraversalInfo(q, &(tr->td[0].ti[0]), &(tr->td[0].count), tr->mxtips, tr->numBranches); |
|---|
| 3629 | |
|---|
| 3630 | #ifdef _USE_PTHREADS |
|---|
| 3631 | { |
|---|
| 3632 | int j; |
|---|
| 3633 | |
|---|
| 3634 | masterBarrier(THREAD_EVALUATE_VECTOR, tr); |
|---|
| 3635 | if(tr->NumberOfModels == 1) |
|---|
| 3636 | { |
|---|
| 3637 | for(i = 0, result = 0.0; i < NumberOfThreads; i++) |
|---|
| 3638 | result += reductionBuffer[i]; |
|---|
| 3639 | |
|---|
| 3640 | tr->perPartitionLH[0] = result; |
|---|
| 3641 | } |
|---|
| 3642 | else |
|---|
| 3643 | { |
|---|
| 3644 | volatile double partitionResult; |
|---|
| 3645 | |
|---|
| 3646 | result = 0.0; |
|---|
| 3647 | |
|---|
| 3648 | for(j = 0; j < tr->NumberOfModels; j++) |
|---|
| 3649 | { |
|---|
| 3650 | for(i = 0, partitionResult = 0.0; i < NumberOfThreads; i++) |
|---|
| 3651 | partitionResult += reductionBuffer[i * tr->NumberOfModels + j]; |
|---|
| 3652 | result += partitionResult; |
|---|
| 3653 | tr->perPartitionLH[j] = partitionResult; |
|---|
| 3654 | } |
|---|
| 3655 | } |
|---|
| 3656 | } |
|---|
| 3657 | #else |
|---|
| 3658 | result = evaluateIterative(tr, TRUE); |
|---|
| 3659 | #endif |
|---|
| 3660 | } |
|---|
| 3661 | |
|---|
| 3662 | tr->likelihood = result; |
|---|
| 3663 | |
|---|
| 3664 | return result; |
|---|
| 3665 | } |
|---|