1 | __VERSION__="ete2-2.2rev1026" |
---|
2 | # -*- coding: utf-8 -*- |
---|
3 | # #START_LICENSE########################################################### |
---|
4 | # |
---|
5 | # |
---|
6 | # This file is part of the Environment for Tree Exploration program |
---|
7 | # (ETE). http://ete.cgenomics.org |
---|
8 | # |
---|
9 | # ETE is free software: you can redistribute it and/or modify it |
---|
10 | # under the terms of the GNU General Public License as published by |
---|
11 | # the Free Software Foundation, either version 3 of the License, or |
---|
12 | # (at your option) any later version. |
---|
13 | # |
---|
14 | # ETE is distributed in the hope that it will be useful, but WITHOUT |
---|
15 | # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
16 | # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
17 | # License for more details. |
---|
18 | # |
---|
19 | # You should have received a copy of the GNU General Public License |
---|
20 | # along with ETE. If not, see <http://www.gnu.org/licenses/>. |
---|
21 | # |
---|
22 | # |
---|
23 | # ABOUT THE ETE PACKAGE |
---|
24 | # ===================== |
---|
25 | # |
---|
26 | # ETE is distributed under the GPL copyleft license (2008-2011). |
---|
27 | # |
---|
28 | # If you make use of ETE in published work, please cite: |
---|
29 | # |
---|
30 | # Jaime Huerta-Cepas, Joaquin Dopazo and Toni Gabaldon. |
---|
31 | # ETE: a python Environment for Tree Exploration. Jaime BMC |
---|
32 | # Bioinformatics 2010,:24doi:10.1186/1471-2105-11-24 |
---|
33 | # |
---|
34 | # Note that extra references to the specific methods implemented in |
---|
35 | # the toolkit are available in the documentation. |
---|
36 | # |
---|
37 | # More info at http://ete.cgenomics.org |
---|
38 | # |
---|
39 | # |
---|
40 | # #END_LICENSE############################################################# |
---|
41 | |
---|
42 | |
---|
43 | import sys |
---|
44 | import re |
---|
45 | import math |
---|
46 | from os import path |
---|
47 | |
---|
48 | import numpy |
---|
49 | from ete2.parser.text_arraytable import write_arraytable, read_arraytable |
---|
50 | |
---|
51 | __all__ = ["ArrayTable"] |
---|
52 | |
---|
53 | class ArrayTable(object): |
---|
54 | """This object is thought to work with matrix datasets (like |
---|
55 | microarrays). It allows to load the matrix an access easily to row |
---|
56 | and column vectors. """ |
---|
57 | |
---|
58 | def __repr__(self): |
---|
59 | return "ArrayTable (%s)" %hex(self.__hash__()) |
---|
60 | |
---|
61 | def __str__(self): |
---|
62 | return str(self.matrix) |
---|
63 | |
---|
64 | def __init__(self, matrix_file=None, mtype="float"): |
---|
65 | self.colNames = [] |
---|
66 | self.rowNames = [] |
---|
67 | self.colValues = {} |
---|
68 | self.rowValues = {} |
---|
69 | self.matrix = None |
---|
70 | self.mtype = None |
---|
71 | |
---|
72 | # If matrix file is supplied |
---|
73 | if matrix_file is not None: |
---|
74 | read_arraytable(matrix_file, \ |
---|
75 | mtype=mtype, \ |
---|
76 | arraytable_object = self) |
---|
77 | |
---|
78 | def get_row_vector(self,rowname): |
---|
79 | """ Returns the vector associated to the given row name """ |
---|
80 | return self.rowValues.get(rowname,None) |
---|
81 | |
---|
82 | |
---|
83 | def get_column_vector(self,colname): |
---|
84 | """ Returns the vector associated to the given column name """ |
---|
85 | return self.colValues.get(colname,None) |
---|
86 | |
---|
87 | |
---|
88 | def get_several_column_vectors(self,colnames): |
---|
89 | """ Returns a list of vectors associated to several column names """ |
---|
90 | vectors = [self.colValues[cname] for cname in colnames] |
---|
91 | return numpy.array(vectors) |
---|
92 | |
---|
93 | def get_several_row_vectors(self,rownames): |
---|
94 | """ Returns a list vectors associated to several row names """ |
---|
95 | vectors = [self.rowValues[rname] for rname in rownames] |
---|
96 | return numpy.array(vectors) |
---|
97 | |
---|
98 | def remove_column(self,colname): |
---|
99 | """Removes the given column form the current dataset """ |
---|
100 | col_value = self.colValues.pop(colname, None) |
---|
101 | if col_value != None: |
---|
102 | new_indexes = range(len(self.colNames)) |
---|
103 | index = self.colNames.index(colname) |
---|
104 | self.colNames.pop(index) |
---|
105 | new_indexes.pop(index) |
---|
106 | newmatrix = self.matrix.swapaxes(0,1) |
---|
107 | newmatrix = newmatrix[new_indexes].swapaxes(0,1) |
---|
108 | self._link_names2matrix(newmatrix) |
---|
109 | |
---|
110 | def merge_columns(self, groups, grouping_criterion): |
---|
111 | """ Returns a new ArrayTable object in which columns are |
---|
112 | merged according to a given criterion. |
---|
113 | |
---|
114 | 'groups' argument must be a dictionary in which keys are the |
---|
115 | new column names, and each value is the list of current |
---|
116 | column names to be merged. |
---|
117 | |
---|
118 | 'grouping_criterion' must be 'min', 'max' or 'mean', and |
---|
119 | defines how numeric values will be merged. |
---|
120 | |
---|
121 | Example: |
---|
122 | my_groups = {'NewColumn':['column5', 'column6']} |
---|
123 | new_Array = Array.merge_columns(my_groups, 'max') |
---|
124 | |
---|
125 | """ |
---|
126 | |
---|
127 | if grouping_criterion == "max": |
---|
128 | grouping_f = get_max_vector |
---|
129 | elif grouping_criterion == "min": |
---|
130 | grouping_f = get_min_vector |
---|
131 | elif grouping_criterion == "mean": |
---|
132 | grouping_f = get_mean_vector |
---|
133 | else: |
---|
134 | raise ValueError, "grouping_criterion not supported. Use max|min|mean " |
---|
135 | |
---|
136 | grouped_array = self.__class__() |
---|
137 | grouped_matrix = [] |
---|
138 | colNames = [] |
---|
139 | alltnames = set([]) |
---|
140 | for gname,tnames in groups.iteritems(): |
---|
141 | all_vectors=[] |
---|
142 | for tn in tnames: |
---|
143 | if tn not in self.colValues: |
---|
144 | raise ValueError, str(tn)+" column not found." |
---|
145 | if tn in alltnames: |
---|
146 | raise ValueError, str(tn)+" duplicated column name for merging" |
---|
147 | alltnames.add(tn) |
---|
148 | vector = self.get_column_vector(tn).astype(float) |
---|
149 | all_vectors.append(vector) |
---|
150 | # Store the group vector = max expression of all items in group |
---|
151 | grouped_matrix.append(grouping_f(all_vectors)) |
---|
152 | # store group name |
---|
153 | colNames.append(gname) |
---|
154 | |
---|
155 | for cname in self.colNames: |
---|
156 | if cname not in alltnames: |
---|
157 | grouped_matrix.append(self.get_column_vector(cname)) |
---|
158 | colNames.append(cname) |
---|
159 | |
---|
160 | grouped_array.rowNames= self.rowNames |
---|
161 | grouped_array.colNames= colNames |
---|
162 | vmatrix = numpy.array(grouped_matrix).transpose() |
---|
163 | grouped_array._link_names2matrix(vmatrix) |
---|
164 | return grouped_array |
---|
165 | |
---|
166 | def transpose(self): |
---|
167 | """ Returns a new ArrayTable in which current matrix is transposed. """ |
---|
168 | |
---|
169 | transposedA = self.__class__() |
---|
170 | transposedM = self.matrix.transpose() |
---|
171 | transposedA.colNames = list(self.rowNames) |
---|
172 | transposedA.rowNames = list(self.colNames) |
---|
173 | transposedA._link_names2matrix(transposedM) |
---|
174 | |
---|
175 | # Check that everything is ok |
---|
176 | # for n in self.colNames: |
---|
177 | # print self.get_column_vector(n) == transposedA.get_row_vector(n) |
---|
178 | # for n in self.rowNames: |
---|
179 | # print self.get_row_vector(n) == transposedA.get_column_vector(n) |
---|
180 | return transposedA |
---|
181 | |
---|
182 | def _link_names2matrix(self, m): |
---|
183 | """ Synchronize curent column and row names to the given matrix""" |
---|
184 | if len(self.rowNames) != m.shape[0]: |
---|
185 | raise ValueError , "Expecting matrix with %d rows" % m.size[0] |
---|
186 | |
---|
187 | if len(self.colNames) != m.shape[1]: |
---|
188 | raise ValueError , "Expecting matrix with %d columns" % m.size[1] |
---|
189 | |
---|
190 | self.matrix = m |
---|
191 | self.colValues.clear() |
---|
192 | self.rowValues.clear() |
---|
193 | # link columns names to vectors |
---|
194 | i = 0 |
---|
195 | for colname in self.colNames: |
---|
196 | self.colValues[colname] = self.matrix[:,i] |
---|
197 | i+=1 |
---|
198 | # link row names to vectors |
---|
199 | i = 0 |
---|
200 | for rowname in self.rowNames: |
---|
201 | self.rowValues[rowname] = self.matrix[i,:] |
---|
202 | i+=1 |
---|
203 | |
---|
204 | def write(self, fname, colnames=None): |
---|
205 | write_arraytable(self, fname, colnames=colnames) |
---|
206 | |
---|
207 | |
---|
208 | |
---|
209 | def get_centroid_dist(vcenter,vlist,fdist): |
---|
210 | d = 0.0 |
---|
211 | for v in vlist: |
---|
212 | d += fdist(v,vcenter) |
---|
213 | return 2*(d / len(vlist)) |
---|
214 | |
---|
215 | def get_average_centroid_linkage_dist(vcenter1,vlist1,vcenter2,vlist2,fdist): |
---|
216 | d1,d2 = 0.0, 0.0 |
---|
217 | for v in vlist1: |
---|
218 | d1 += fdist(v,vcenter2) |
---|
219 | for v in vlist2: |
---|
220 | d2 += fdist(v,vcenter1) |
---|
221 | return (d1+d2) / (len(vlist1)+len(vlist2)) |
---|
222 | |
---|
223 | def safe_mean(values): |
---|
224 | """ Returns mean value discarding non finite values """ |
---|
225 | valid_values = [] |
---|
226 | for v in values: |
---|
227 | if numpy.isfinite(v): |
---|
228 | valid_values.append(v) |
---|
229 | return numpy.mean(valid_values), numpy.std(valid_values) |
---|
230 | |
---|
231 | def safe_mean_vector(vectors): |
---|
232 | """ Returns mean profile discarding non finite values """ |
---|
233 | # if only one vector, avg = itself |
---|
234 | if len(vectors)==1: |
---|
235 | return vectors[0], numpy.zeros(len(vectors[0])) |
---|
236 | # Takes the vector length form the first item |
---|
237 | length = len(vectors[0]) |
---|
238 | |
---|
239 | safe_mean = [] |
---|
240 | safe_std = [] |
---|
241 | |
---|
242 | for pos in xrange(length): |
---|
243 | pos_mean = [] |
---|
244 | for v in vectors: |
---|
245 | if numpy.isfinite(v[pos]): |
---|
246 | pos_mean.append(v[pos]) |
---|
247 | safe_mean.append(numpy.mean(pos_mean)) |
---|
248 | safe_std.append(numpy.std(pos_mean)) |
---|
249 | return safe_mean, safe_std |
---|
250 | |
---|
251 | def get_mean_vector(vlist): |
---|
252 | a = numpy.array(vlist) |
---|
253 | return numpy.mean(a,0) |
---|
254 | |
---|
255 | def get_median_vector(vlist): |
---|
256 | a = numpy.array(vlist) |
---|
257 | return numpy.median(a) |
---|
258 | |
---|
259 | def get_max_vector(vlist): |
---|
260 | a = numpy.array(vlist) |
---|
261 | return numpy.max(a,0) |
---|
262 | |
---|
263 | def get_min_vector(vlist): |
---|
264 | a = numpy.array(vlist) |
---|
265 | return numpy.min(a,0) |
---|