1 | SINA - reference based multiple sequence alignment |
---|
2 | ================================================== |
---|
3 | |
---|
4 | |latest| |Bioconda| |downloads| |TravisCI| |CircleCI| |Read the Docs| |Codecov| |
---|
5 | |
---|
6 | .. |latest| image:: https://img.shields.io/github/release/epruesse/SINA/all.svg?label=latest |
---|
7 | .. |release| image:: https://img.shields.io/github/release/epruesse/SINA.svg |
---|
8 | .. |Bioconda| image:: https://img.shields.io/conda/vn/Bioconda/sina.svg |
---|
9 | :target: https://bioconda.github.io/recipes/sina/README.html |
---|
10 | .. |TravisCI| image:: https://img.shields.io/travis/epruesse/SINA.svg?label=build%20(TravisCI) |
---|
11 | :target: https://travis-ci.org/epruesse/SINA |
---|
12 | .. |CircleCI| image:: https://img.shields.io/circleci/project/github/epruesse/SINA.svg?label=build%20(CircleCI) |
---|
13 | :target: https://circleci.com/gh/epruesse/SINA |
---|
14 | .. |Codecov| image:: https://img.shields.io/codecov/c/github/epruesse/sina.svg |
---|
15 | :target: https://codecov.io/gh/epruesse/SINA |
---|
16 | .. |Read the Docs| image:: https://img.shields.io/readthedocs/sina/latest.svg |
---|
17 | :target: https://readthedocs.org/projects/sina/builds |
---|
18 | .. |downloads| image:: https://img.shields.io/conda/dn/bioconda/sina.svg?style=flat |
---|
19 | |
---|
20 | |
---|
21 | SINA aligns nucleotide sequences to match a pre-existing MSA using |
---|
22 | a graph based alignment algorithm similar to PoA. The graph approach |
---|
23 | allows SINA to incorporate information from many reference sequences |
---|
24 | building without blurring highly variable regions. While |
---|
25 | pure NAST implementations depend highly on finding a good match in |
---|
26 | the reference database, SINA is able to align sequences relatively |
---|
27 | distant to references with good quality and will yield a robust result |
---|
28 | for query sequences with many close reference. |
---|
29 | |
---|
30 | Features |
---|
31 | -------- |
---|
32 | |
---|
33 | - Speed. Aligning 100,000 full length rRNA against the SILVA NR takes 40 minutes on a mid-sized 2018 desktop computer. Aligning 1,000,000 V4 amplicons takes about 60 minutes. |
---|
34 | - Accuracy. SINA is used to build the SILVA_ SSU and LSU rRNA databases. |
---|
35 | - Classification. SINA includes an LCA based classification module. |
---|
36 | - ARB. SINA is able to directly read and write ARB_ format files such as distributed by the SILVA_ project. |
---|
37 | |
---|
38 | .. _SILVA: https://www.arb-silva.de |
---|
39 | .. _ARB: https://www.arb-home.de |
---|
40 | |
---|
41 | Online Version |
---|
42 | -------------- |
---|
43 | |
---|
44 | An online version for submitting small batches of sequences is made |
---|
45 | available by the SILVA_ project as part of their |
---|
46 | `ACT: Alignment, Classification and Tree Service <https://www.arb-silva.de/aligner>`_. |
---|
47 | In addition to SINA's alignment and classification stages, ACT allows directly building |
---|
48 | phylogenetic trees with RAxML or FastTree from your sequences and (optionally) |
---|
49 | additional sequences chosen using SINA's add-neighbors feature. |
---|
50 | |
---|
51 | Installing SINA |
---|
52 | --------------- |
---|
53 | |
---|
54 | The preferred way to install SINA locally is via `Bioconda <https://bioconda.github.io>`_. |
---|
55 | If you have a working Bioconda installation, just run:: |
---|
56 | |
---|
57 | conda create -n sina sina |
---|
58 | conda activate sina |
---|
59 | |
---|
60 | Alternatively, self-contained images are available at |
---|
61 | https://github.com/epruesse/SINA/releases. Choose the most recent ``tar.gz`` |
---|
62 | appropriate for your operating system and unpack:: |
---|
63 | |
---|
64 | tar xf sina-1.7.2-dev-linux.tar.gz |
---|
65 | cd sina-1.7.2-dev |
---|
66 | ./sina |
---|
67 | |
---|
68 | |
---|
69 | Documentation |
---|
70 | ------------- |
---|
71 | |
---|
72 | The full documentation is available at https://sina.readthedocs.io. |
---|
73 | |
---|
74 | The algorithm is explained in the paper: |
---|
75 | |
---|
76 | Elmar Pruesse, Jörg Peplies, Frank Oliver Glöckner; *SINA: Accurate |
---|
77 | high-throughput multiple sequence alignment of ribosomal RNA |
---|
78 | genes.* Bioinformatics 2012; 28 (14): 1823-1829. |
---|
79 | `doi:10.1093/bioinformatics/bts252 <https://doi.org/10.1093/bioinformatics/bts252>`_ |
---|