1 | #include <stdio.h> |
---|
2 | #include <stdlib.h> |
---|
3 | // #include <malloc.h> |
---|
4 | #include <string.h> |
---|
5 | #include <iostream> |
---|
6 | #include <math.h> |
---|
7 | #include <arbdb.h> |
---|
8 | #include <arbdbt.h> |
---|
9 | // |
---|
10 | #include <awt_tree.hxx> |
---|
11 | #include <awt_seq_dna.hxx> |
---|
12 | #include "AP_buffer.hxx" |
---|
13 | #include "parsimony.hxx" |
---|
14 | #include "pars_debug.hxx" |
---|
15 | #include "ap_tree_nlen.hxx" |
---|
16 | // #include <aw_root.hxx> |
---|
17 | |
---|
18 | using namespace std; |
---|
19 | |
---|
20 | #define ap_assert(x) arb_assert(x) |
---|
21 | |
---|
22 | // --------------------------------- |
---|
23 | // Section base operations: |
---|
24 | // --------------------------------- |
---|
25 | |
---|
26 | // constructor/destructor |
---|
27 | // dup |
---|
28 | // check_update |
---|
29 | // copy |
---|
30 | // ostream&<< |
---|
31 | |
---|
32 | AP_tree_nlen::AP_tree_nlen(AP_tree_root *Tree_root) |
---|
33 | : AP_tree(Tree_root) |
---|
34 | { |
---|
35 | // this->init(); |
---|
36 | kernighan = AP_NONE; |
---|
37 | sequence = NULL; |
---|
38 | |
---|
39 | edge[0] = edge[1] = edge[2] = NULL; |
---|
40 | index[0] = index[1] = index[2] = 0; |
---|
41 | distance = INT_MAX; |
---|
42 | |
---|
43 | // cout << "AP_tree_nlen-constructor\n"; |
---|
44 | } |
---|
45 | |
---|
46 | AP_tree *AP_tree_nlen::dup(void) |
---|
47 | { |
---|
48 | return (AP_tree *) new AP_tree_nlen(this->tree_root); |
---|
49 | } |
---|
50 | |
---|
51 | AP_UPDATE_FLAGS AP_tree_nlen::check_update(void) |
---|
52 | { |
---|
53 | AP_UPDATE_FLAGS res = this->AP_tree::check_update(); |
---|
54 | |
---|
55 | if (res == AP_UPDATE_RELOADED) { |
---|
56 | return AP_UPDATE_OK; |
---|
57 | } |
---|
58 | |
---|
59 | return res; |
---|
60 | } |
---|
61 | |
---|
62 | void AP_tree_nlen::copy(AP_tree_nlen *tree) |
---|
63 | { |
---|
64 | // like = operator |
---|
65 | // but copies sequence if is leaf |
---|
66 | |
---|
67 | this->is_leaf = tree->is_leaf; |
---|
68 | this->leftlen = tree->leftlen; |
---|
69 | this->rightlen = tree->rightlen; |
---|
70 | this->gb_node = tree->gb_node; |
---|
71 | |
---|
72 | if(tree->name != NULL) { |
---|
73 | this->name = strdup(tree->name); |
---|
74 | } |
---|
75 | else { |
---|
76 | this->name = NULL; |
---|
77 | } |
---|
78 | |
---|
79 | if (is_leaf == GB_TRUE) { |
---|
80 | if (tree->sequence) { |
---|
81 | this->sequence = tree->sequence; |
---|
82 | } |
---|
83 | else { |
---|
84 | cout << "empty sequence at leaf"; |
---|
85 | this->sequence = 0; |
---|
86 | } |
---|
87 | } |
---|
88 | } |
---|
89 | |
---|
90 | ostream& operator<<(ostream& out, const AP_tree_nlen& node) |
---|
91 | { |
---|
92 | static int notTooDeep; |
---|
93 | |
---|
94 | out << ' '; |
---|
95 | |
---|
96 | if (&node==NULL) { |
---|
97 | out << "NULL"; |
---|
98 | } |
---|
99 | if (node.is_leaf) { |
---|
100 | out << ((void *)&node) << '(' << node.name << ')'; |
---|
101 | } |
---|
102 | else { |
---|
103 | if (notTooDeep) { |
---|
104 | out << ((void *)&node); |
---|
105 | if (!node.father) out << " (ROOT)"; |
---|
106 | } |
---|
107 | else { |
---|
108 | notTooDeep = 1; |
---|
109 | |
---|
110 | out << "NODE(" << ((void *)&node); |
---|
111 | |
---|
112 | if (!node.father) { |
---|
113 | out << " (ROOT)"; |
---|
114 | } |
---|
115 | else { |
---|
116 | out << ", father=" << node.father; |
---|
117 | } |
---|
118 | |
---|
119 | out << ", leftson=" << node.leftson |
---|
120 | << ", rightson=" << node.rightson |
---|
121 | << ", edge[0]=" << *(node.edge[0]) |
---|
122 | << ", edge[1]=" << *(node.edge[1]) |
---|
123 | << ", edge[2]=" << *(node.edge[2]) |
---|
124 | << ")"; |
---|
125 | |
---|
126 | notTooDeep = 0; |
---|
127 | } |
---|
128 | } |
---|
129 | |
---|
130 | return out << ' '; |
---|
131 | } |
---|
132 | |
---|
133 | /******************************************** |
---|
134 | |
---|
135 | Section Edge operations: |
---|
136 | |
---|
137 | unusedEdge |
---|
138 | edgeTo |
---|
139 | nextEdge |
---|
140 | unlinkAllEdges |
---|
141 | destroyAllEdges |
---|
142 | |
---|
143 | ********************************************/ |
---|
144 | |
---|
145 | int AP_tree_nlen::unusedEdge() const |
---|
146 | { |
---|
147 | int e; |
---|
148 | |
---|
149 | for (e=0; e<3; e++) if (edge[e]==NULL) return e; |
---|
150 | |
---|
151 | cout << "No unused edge found at" << *this << '\n'; |
---|
152 | return -1; |
---|
153 | } |
---|
154 | |
---|
155 | AP_tree_edge* AP_tree_nlen::edgeTo(const AP_tree_nlen *neighbour) const |
---|
156 | { |
---|
157 | int e; |
---|
158 | |
---|
159 | for (e=0; e<3; e++) { |
---|
160 | if (edge[e]!=NULL && edge[e]->node[1-index[e]]==neighbour) { |
---|
161 | return edge[e]; |
---|
162 | } |
---|
163 | } |
---|
164 | cout << "AP_tree_nlen::edgeTo: " << *this << "\nhas no edge to " << *neighbour << '\n'; |
---|
165 | ap_assert(0); |
---|
166 | return NULL; |
---|
167 | } |
---|
168 | |
---|
169 | AP_tree_edge* AP_tree_nlen::nextEdge(const AP_tree_edge *thisEdge) const |
---|
170 | // returns the next edge adjacent to the actual node |
---|
171 | // |
---|
172 | // if thisEdge == NULL then we return the "first" edge (edge[0]) |
---|
173 | // otherwise we return the next edge following 'thisEdge' in the array edge[] |
---|
174 | { |
---|
175 | return edge[ thisEdge ? ((indexOf(thisEdge)+1) % 3) : 0 ]; |
---|
176 | } |
---|
177 | |
---|
178 | void AP_tree_nlen::unlinkAllEdges(AP_tree_edge **edgePtr1, AP_tree_edge **edgePtr2, AP_tree_edge **edgePtr3) |
---|
179 | { |
---|
180 | ap_assert(edge[0]!=NULL); |
---|
181 | ap_assert(edge[1]!=NULL); |
---|
182 | ap_assert(edge[2]!=NULL); |
---|
183 | |
---|
184 | *edgePtr1 = edge[0]->unlink(); |
---|
185 | *edgePtr2 = edge[1]->unlink(); |
---|
186 | *edgePtr3 = edge[2]->unlink(); |
---|
187 | } |
---|
188 | |
---|
189 | void AP_tree_nlen::linkAllEdges(AP_tree_edge *edge1, AP_tree_edge *edge2, AP_tree_edge *edge3) |
---|
190 | { |
---|
191 | ap_assert(edge[0]==NULL); |
---|
192 | ap_assert(edge[1]==NULL); |
---|
193 | ap_assert(edge[2]==NULL); |
---|
194 | |
---|
195 | edge1->relink(this,Father()->Father() ? Father() : Brother()); |
---|
196 | edge2->relink(this,Leftson()); |
---|
197 | edge3->relink(this,Rightson()); |
---|
198 | } |
---|
199 | |
---|
200 | /******************************************** |
---|
201 | |
---|
202 | Section Tree operations: |
---|
203 | |
---|
204 | insert |
---|
205 | remove |
---|
206 | swap |
---|
207 | set_root |
---|
208 | move |
---|
209 | costs |
---|
210 | |
---|
211 | ********************************************/ |
---|
212 | |
---|
213 | void AP_tree_nlen::insert(AP_tree *new_brother) { |
---|
214 | // inserts a node at the father-edge of new_brother |
---|
215 | |
---|
216 | AP_tree *pntr; |
---|
217 | AP_tree_nlen *newBrother = dynamic_cast<AP_tree_nlen*>(new_brother); |
---|
218 | ap_assert(new_brother); |
---|
219 | |
---|
220 | AP_tree_edge *oldEdge; |
---|
221 | |
---|
222 | ap_main->push_node(new_brother, STRUCTURE); |
---|
223 | |
---|
224 | if (new_brother->father) { |
---|
225 | ap_main->push_node(new_brother->father, BOTH); |
---|
226 | for (pntr = new_brother->father->father; pntr; pntr = pntr->father) { |
---|
227 | ap_main->push_node(pntr, SEQUENCE); |
---|
228 | } |
---|
229 | |
---|
230 | if (new_brother->father->father) { |
---|
231 | oldEdge = newBrother->edgeTo(newBrother->Father())->unlink(); |
---|
232 | AP_tree::insert(new_brother); |
---|
233 | oldEdge->relink(Father(),Father()->Father()); |
---|
234 | } |
---|
235 | else { // insert to son of root |
---|
236 | oldEdge = newBrother->edgeTo(newBrother->Brother())->unlink(); |
---|
237 | AP_tree::insert(new_brother); |
---|
238 | oldEdge->relink(Father(),Father()->Brother()); |
---|
239 | } |
---|
240 | |
---|
241 | new AP_tree_edge(this,Father()); |
---|
242 | new AP_tree_edge(Father(),newBrother); |
---|
243 | } |
---|
244 | else { // insert at root |
---|
245 | AP_tree_nlen *lson = newBrother->Leftson(); |
---|
246 | AP_tree_nlen *rson = newBrother->Rightson(); |
---|
247 | |
---|
248 | ap_main->push_node(lson, STRUCTURE); |
---|
249 | ap_main->push_node(rson, STRUCTURE); |
---|
250 | |
---|
251 | oldEdge = lson->edgeTo(rson)->unlink(); |
---|
252 | #if defined(DEBUG) |
---|
253 | cout << "old Edge = " << oldEdge << '\n'; |
---|
254 | #endif // DEBUG |
---|
255 | |
---|
256 | AP_tree::insert(new_brother); |
---|
257 | |
---|
258 | oldEdge->relink(this,newBrother); |
---|
259 | new AP_tree_edge(newBrother,rson); |
---|
260 | new AP_tree_edge(newBrother,lson); |
---|
261 | } |
---|
262 | } |
---|
263 | |
---|
264 | void AP_tree_nlen::remove(void) { |
---|
265 | // Removes the node and its father from the tree: |
---|
266 | // |
---|
267 | // grandpa grandpa |
---|
268 | // / / |
---|
269 | // / / |
---|
270 | // father => brother |
---|
271 | // / \ . |
---|
272 | // / \ . |
---|
273 | // this brother |
---|
274 | // |
---|
275 | // One of the edges is relinked between brother and grandpa. |
---|
276 | // The other two edges are lost. This is not very relevant in respect to |
---|
277 | // memory usage because very few remove()s are really performed - the majority |
---|
278 | // is undone by a pop(). |
---|
279 | // In the last case the two unlinked edges will be re-used, cause their |
---|
280 | // memory location was stored in the tree-stack. |
---|
281 | |
---|
282 | AP_tree *pntr; |
---|
283 | AP_tree_edge *oldEdge; |
---|
284 | AP_tree_nlen *oldBrother = Brother(); |
---|
285 | |
---|
286 | ap_assert(father); |
---|
287 | |
---|
288 | ap_main->push_node(this, STRUCTURE); |
---|
289 | ap_main->push_node(brother(), STRUCTURE); |
---|
290 | |
---|
291 | for (pntr = father->father; pntr; pntr = pntr->father) { |
---|
292 | ap_main->push_node(pntr, SEQUENCE); |
---|
293 | } |
---|
294 | |
---|
295 | if (father->father) { |
---|
296 | AP_tree_nlen *grandPa = Father()->Father(); |
---|
297 | |
---|
298 | ap_main->push_node(father, BOTH); |
---|
299 | ap_main->push_node(grandPa, STRUCTURE); |
---|
300 | |
---|
301 | edgeTo(Father())->unlink(); |
---|
302 | Father()->edgeTo(oldBrother)->unlink(); |
---|
303 | |
---|
304 | if (grandPa->father) { |
---|
305 | oldEdge = Father()->edgeTo(grandPa)->unlink(); |
---|
306 | AP_tree::remove(); |
---|
307 | oldEdge->relink(oldBrother,grandPa); |
---|
308 | } |
---|
309 | else { // remove grandson of root |
---|
310 | AP_tree_nlen *uncle = Father()->Brother(); |
---|
311 | ap_main->push_node(uncle,STRUCTURE); |
---|
312 | |
---|
313 | oldEdge = Father()->edgeTo(uncle)->unlink(); |
---|
314 | AP_tree::remove(); |
---|
315 | oldEdge->relink(oldBrother,uncle); |
---|
316 | } |
---|
317 | } |
---|
318 | else { // remove son of root |
---|
319 | AP_tree_nlen *lson = Brother()->Leftson(); |
---|
320 | AP_tree_nlen *rson = Brother()->Rightson(); |
---|
321 | |
---|
322 | ap_assert(lson && rson); |
---|
323 | |
---|
324 | ap_main->push_node(lson,STRUCTURE); |
---|
325 | ap_main->push_node(rson,STRUCTURE); |
---|
326 | ap_main->push_node(father, ROOT); |
---|
327 | |
---|
328 | ap_main->set_tree_root(oldBrother); |
---|
329 | |
---|
330 | // delete edgeTo(oldBrother); |
---|
331 | oldBrother->edgeTo(lson)->unlink(); |
---|
332 | // delete oldBrother->edgeTo(lson); |
---|
333 | oldEdge = oldBrother->edgeTo(rson)->unlink(); |
---|
334 | AP_tree::remove(); |
---|
335 | oldEdge->relink(lson,rson); |
---|
336 | } |
---|
337 | } |
---|
338 | |
---|
339 | void AP_tree_nlen::swap_assymetric(AP_TREE_SIDE mode) { |
---|
340 | // mode AP_LEFT exchanges leftson with brother |
---|
341 | // mode AP_RIGHT exchanges rightson with brother |
---|
342 | |
---|
343 | ap_assert(!is_leaf); // cannot swap leafs |
---|
344 | ap_assert(father); // cannot swap root (has no brother) |
---|
345 | ap_assert(mode == AP_LEFT || mode == AP_RIGHT); // illegal mode |
---|
346 | |
---|
347 | AP_tree_nlen *oldBrother = Brother(); |
---|
348 | AP_tree_nlen *movedSon = mode == AP_LEFT ? Leftson() : Rightson(); |
---|
349 | |
---|
350 | if (!father->father) { |
---|
351 | //son of root case |
---|
352 | //take leftson of brother to exchange with |
---|
353 | |
---|
354 | if (!oldBrother->is_leaf) { // swap needed ? |
---|
355 | AP_tree_nlen *nephew = oldBrother->Leftson(); |
---|
356 | |
---|
357 | ap_main->push_node(this, BOTH); |
---|
358 | ap_main->push_node(movedSon,STRUCTURE); |
---|
359 | ap_main->push_node(father, SEQUENCE); |
---|
360 | ap_main->push_node(nephew, STRUCTURE); |
---|
361 | ap_main->push_node(oldBrother, BOTH); |
---|
362 | |
---|
363 | AP_tree_edge *edge1 = edgeTo(movedSon)->unlink(); |
---|
364 | AP_tree_edge *edge2 = oldBrother->edgeTo(nephew)->unlink(); |
---|
365 | |
---|
366 | AP_tree::swap_assymetric(mode); |
---|
367 | |
---|
368 | edge1->relink(this,nephew); |
---|
369 | edge2->relink(oldBrother,movedSon); |
---|
370 | } |
---|
371 | } |
---|
372 | else { |
---|
373 | ap_main->push_node(this, BOTH); |
---|
374 | ap_main->push_node(father, BOTH); |
---|
375 | ap_main->push_node(oldBrother, STRUCTURE); |
---|
376 | ap_main->push_node(movedSon,STRUCTURE); |
---|
377 | |
---|
378 | // from father to root buffer all sequences |
---|
379 | |
---|
380 | for (AP_tree *pntr = father->father; pntr ; pntr = pntr->father) { |
---|
381 | ap_main->push_node(pntr, SEQUENCE); |
---|
382 | } |
---|
383 | |
---|
384 | AP_tree_edge *edge1 = edgeTo(movedSon)->unlink(); |
---|
385 | AP_tree_edge *edge2 = Father()->edgeTo(oldBrother)->unlink(); |
---|
386 | |
---|
387 | AP_tree::swap_assymetric(mode); |
---|
388 | |
---|
389 | edge1->relink(this,oldBrother); |
---|
390 | edge2->relink(Father(),movedSon); |
---|
391 | } |
---|
392 | } |
---|
393 | |
---|
394 | |
---|
395 | /*----------------------- |
---|
396 | set_root |
---|
397 | -----------------------*/ |
---|
398 | void AP_tree_nlen::set_root() { |
---|
399 | if (!father || !father->father) return; // already root |
---|
400 | |
---|
401 | // from this to root buffer the nodes |
---|
402 | ap_main->push_node(this , STRUCTURE); |
---|
403 | |
---|
404 | AP_tree *old_brother = 0; |
---|
405 | AP_tree *old_root; |
---|
406 | { |
---|
407 | AP_tree *pntr; |
---|
408 | for (pntr = father; pntr->father; pntr = pntr->father) { |
---|
409 | ap_main->push_node(pntr, BOTH); |
---|
410 | old_brother = pntr; |
---|
411 | } |
---|
412 | old_root = pntr; |
---|
413 | } |
---|
414 | |
---|
415 | if (old_brother) { |
---|
416 | old_brother = old_brother->brother(); |
---|
417 | ap_main->push_node(old_brother , STRUCTURE); |
---|
418 | } |
---|
419 | |
---|
420 | ap_main->push_node(old_root, ROOT); |
---|
421 | AP_tree::set_root(); |
---|
422 | } |
---|
423 | |
---|
424 | /*----------------------- |
---|
425 | move |
---|
426 | -----------------------*/ |
---|
427 | GB_INLINE void sort(AP_tree_edge **e1, AP_tree_edge **e2) { |
---|
428 | if ((*e1)->Age() > (*e2)->Age()) { |
---|
429 | AP_tree_edge *tmp = *e1; |
---|
430 | *e1 = *e2; |
---|
431 | *e2 = tmp; |
---|
432 | } |
---|
433 | } |
---|
434 | |
---|
435 | GB_INLINE void sort(AP_tree_edge **e1, AP_tree_edge **e2, AP_tree_edge **e3) { |
---|
436 | sort(e1,e2); |
---|
437 | sort(e2,e3); |
---|
438 | sort(e1,e2); |
---|
439 | } |
---|
440 | |
---|
441 | void AP_tree_nlen::moveTo(AP_tree *new_brother,AP_FLOAT rel_pos) { |
---|
442 | ap_assert(father); |
---|
443 | ap_assert(new_brother->father); |
---|
444 | |
---|
445 | AP_tree *pntr; |
---|
446 | |
---|
447 | ap_main->push_node(this , STRUCTURE); |
---|
448 | ap_main->push_node(brother(), STRUCTURE); |
---|
449 | |
---|
450 | if (father->father) { |
---|
451 | AP_tree *grandpa = father->father; |
---|
452 | |
---|
453 | ap_main->push_node(father , BOTH); |
---|
454 | |
---|
455 | if (grandpa->father) { |
---|
456 | ap_main->push_node(grandpa, BOTH); |
---|
457 | for (pntr = grandpa->father; pntr; pntr = pntr->father) { |
---|
458 | ap_main->push_node( pntr, SEQUENCE); |
---|
459 | } |
---|
460 | } |
---|
461 | else { // grandson of root |
---|
462 | ap_main->push_node(grandpa, ROOT); |
---|
463 | ap_main->push_node(father->brother(), STRUCTURE); |
---|
464 | } |
---|
465 | } |
---|
466 | else { // son of root |
---|
467 | ap_main->push_node(father , ROOT); |
---|
468 | |
---|
469 | if (!brother()->is_leaf) { |
---|
470 | ap_main->push_node(brother()->leftson, STRUCTURE); |
---|
471 | ap_main->push_node(brother()->rightson, STRUCTURE); |
---|
472 | } |
---|
473 | } |
---|
474 | |
---|
475 | ap_main->push_node(new_brother , STRUCTURE); |
---|
476 | if (new_brother->father) { |
---|
477 | if (new_brother->father->father) { |
---|
478 | ap_main->push_node(new_brother->father , BOTH); |
---|
479 | } |
---|
480 | else { // move to son of root |
---|
481 | ap_main->push_node(new_brother->father , BOTH); |
---|
482 | ap_main->push_node(new_brother->brother(), STRUCTURE); |
---|
483 | } |
---|
484 | |
---|
485 | for (pntr = new_brother->father->father; pntr; pntr = pntr->father) { |
---|
486 | ap_main->push_node( pntr, SEQUENCE); |
---|
487 | } |
---|
488 | } |
---|
489 | |
---|
490 | AP_tree_nlen *thisFather = Father(); |
---|
491 | AP_tree_nlen *newBrother = (AP_tree_nlen*)new_brother; |
---|
492 | AP_tree_nlen *grandFather = thisFather->Father(); |
---|
493 | AP_tree_nlen *oldBrother = Brother(); |
---|
494 | AP_tree_nlen *newBrothersFather = newBrother->Father(); |
---|
495 | int edgesChange = ! (father==new_brother || new_brother->father==this->father); |
---|
496 | AP_tree_edge *e1,*e2,*e3,*e4; |
---|
497 | |
---|
498 | if (edgesChange) { |
---|
499 | if (thisFather==newBrothersFather->Father()) { // son -> son of brother |
---|
500 | if (grandFather) { |
---|
501 | if(grandFather->Father()) { |
---|
502 | // cout << "son -> son of brother\n"; |
---|
503 | |
---|
504 | thisFather->unlinkAllEdges(&e1,&e2,&e3); |
---|
505 | e4 = newBrother->edgeTo(oldBrother)->unlink(); |
---|
506 | |
---|
507 | AP_tree::moveTo(new_brother,rel_pos); |
---|
508 | |
---|
509 | sort(&e1,&e2,&e3); // sort by age (e1==oldest edge) |
---|
510 | e1->relink(oldBrother,grandFather); // use oldest edge at remove position |
---|
511 | thisFather->linkAllEdges(e2,e3,e4); |
---|
512 | } |
---|
513 | else { // grandson of root -> son of brother |
---|
514 | AP_tree_nlen *uncle = thisFather->Brother(); |
---|
515 | |
---|
516 | thisFather->unlinkAllEdges(&e1,&e2,&e3); |
---|
517 | e4 = newBrother->edgeTo(oldBrother)->unlink(); |
---|
518 | |
---|
519 | AP_tree::moveTo(new_brother,rel_pos); |
---|
520 | |
---|
521 | sort(&e1,&e2,&e3); // sort by age (e1==oldest edge) |
---|
522 | e1->relink(oldBrother,uncle); |
---|
523 | thisFather->linkAllEdges(e2,e3,e4); |
---|
524 | } |
---|
525 | } |
---|
526 | else { // son of root -> grandson of root |
---|
527 | oldBrother->unlinkAllEdges(&e1,&e2,&e3); |
---|
528 | AP_tree::moveTo(new_brother,rel_pos); |
---|
529 | thisFather->linkAllEdges(e1,e2,e3); |
---|
530 | } |
---|
531 | } |
---|
532 | else if (grandFather==newBrothersFather) { // son -> brother of father |
---|
533 | if (grandFather->father) { |
---|
534 | thisFather->unlinkAllEdges(&e1,&e2,&e3); |
---|
535 | e4 = grandFather->edgeTo(newBrother)->unlink(); |
---|
536 | |
---|
537 | AP_tree::moveTo(new_brother,rel_pos); |
---|
538 | |
---|
539 | sort(&e1,&e2,&e3); |
---|
540 | e1->relink(oldBrother,grandFather); |
---|
541 | thisFather->linkAllEdges(e2,e3,e4); |
---|
542 | } |
---|
543 | else { // no edges change if we move grandson of root -> son of root |
---|
544 | AP_tree::moveTo(new_brother,rel_pos); |
---|
545 | } |
---|
546 | } |
---|
547 | else { |
---|
548 | // now we are sure, the minimal distance |
---|
549 | // between 'this' and 'newBrother' is 4 edges |
---|
550 | // or if the root-edge is between them, the |
---|
551 | // minimal distance is 3 edges |
---|
552 | |
---|
553 | if (!grandFather) { // son of root |
---|
554 | oldBrother->unlinkAllEdges(&e1,&e2,&e3); |
---|
555 | e4 = newBrother->edgeTo(newBrothersFather)->unlink(); |
---|
556 | |
---|
557 | AP_tree::moveTo(new_brother,rel_pos); |
---|
558 | |
---|
559 | sort(&e1,&e2,&e3); |
---|
560 | e1->relink(oldBrother->Leftson(),oldBrother->Rightson()); // new root-edge |
---|
561 | thisFather->linkAllEdges(e2,e3,e4); // old root |
---|
562 | } |
---|
563 | else if (!grandFather->Father()) { // grandson of root |
---|
564 | if (newBrothersFather->Father()->Father()==NULL) { // grandson of root -> grandson of root |
---|
565 | thisFather->unlinkAllEdges(&e1,&e2,&e3); |
---|
566 | e4 = newBrother->edgeTo(newBrothersFather)->unlink(); |
---|
567 | |
---|
568 | AP_tree::moveTo(new_brother,rel_pos); |
---|
569 | |
---|
570 | sort(&e1,&e2,&e3); |
---|
571 | e1->relink(oldBrother,newBrothersFather); // new root-edge |
---|
572 | thisFather->linkAllEdges(e2,e3,e4); |
---|
573 | } |
---|
574 | else { |
---|
575 | AP_tree_nlen *uncle = thisFather->Brother(); |
---|
576 | |
---|
577 | thisFather->unlinkAllEdges(&e1,&e2,&e3); |
---|
578 | e4 = newBrother->edgeTo(newBrothersFather)->unlink(); |
---|
579 | |
---|
580 | AP_tree::moveTo(new_brother,rel_pos); |
---|
581 | |
---|
582 | sort(&e1,&e2,&e3); |
---|
583 | e1->relink(oldBrother,uncle); |
---|
584 | thisFather->linkAllEdges(e2,e3,e4); |
---|
585 | } |
---|
586 | } |
---|
587 | else { |
---|
588 | if (newBrothersFather->Father()==NULL) { // move to son of root |
---|
589 | AP_tree_nlen *newBrothersBrother = newBrother->Brother(); |
---|
590 | |
---|
591 | thisFather->unlinkAllEdges(&e1,&e2,&e3); |
---|
592 | e4 = newBrother->edgeTo(newBrothersBrother)->unlink(); |
---|
593 | |
---|
594 | AP_tree::moveTo(new_brother,rel_pos); |
---|
595 | |
---|
596 | sort(&e1,&e2,&e3); |
---|
597 | e1->relink(oldBrother,grandFather); |
---|
598 | thisFather->linkAllEdges(e2,e3,e4); |
---|
599 | } |
---|
600 | else { // simple independent move |
---|
601 | thisFather->unlinkAllEdges(&e1,&e2,&e3); |
---|
602 | e4 = newBrother->edgeTo(newBrothersFather)->unlink(); |
---|
603 | |
---|
604 | AP_tree::moveTo(new_brother,rel_pos); |
---|
605 | |
---|
606 | sort(&e1,&e2,&e3); |
---|
607 | e1->relink(oldBrother,grandFather); |
---|
608 | thisFather->linkAllEdges(e2,e3,e4); |
---|
609 | } |
---|
610 | } |
---|
611 | } |
---|
612 | } |
---|
613 | else { // edgesChange==0 |
---|
614 | AP_tree::moveTo(new_brother,rel_pos); |
---|
615 | } |
---|
616 | } |
---|
617 | |
---|
618 | /*----------------------- |
---|
619 | costs |
---|
620 | -----------------------*/ |
---|
621 | |
---|
622 | AP_FLOAT AP_tree_nlen::costs(void) { /* cost of a tree (number of changes ..) */ |
---|
623 | if (! this->tree_root->sequence_template) return 0.0; |
---|
624 | this->parsimony_rek(); |
---|
625 | return (AP_FLOAT)this->mutation_rate; |
---|
626 | } |
---|
627 | |
---|
628 | /******************************************* |
---|
629 | |
---|
630 | Section Buffer Operations: |
---|
631 | |
---|
632 | unhash_sequence() // only deletes an existing parsimony sequence |
---|
633 | push() |
---|
634 | pop() |
---|
635 | clear() |
---|
636 | |
---|
637 | ********************************************/ |
---|
638 | |
---|
639 | void AP_tree_nlen::unhash_sequence() { |
---|
640 | //removes the current sequence |
---|
641 | //(not leaf) |
---|
642 | |
---|
643 | if (sequence != 0) { |
---|
644 | if (!is_leaf) { |
---|
645 | sequence->is_set_flag = AP_FALSE; |
---|
646 | } |
---|
647 | } |
---|
648 | |
---|
649 | return; |
---|
650 | } |
---|
651 | |
---|
652 | AP_BOOL AP_tree_nlen::clear(unsigned long datum, unsigned long user_buffer_count) { |
---|
653 | // returns AP_TRUE if the first element is removed |
---|
654 | // AP_FALSE if it is copied into the previous level |
---|
655 | // according if user_buffer is greater than datum |
---|
656 | |
---|
657 | // cout << "clear\n"; |
---|
658 | |
---|
659 | AP_tree_buffer * buff; |
---|
660 | AP_BOOL result; |
---|
661 | |
---|
662 | if (!this->stack_level == datum) |
---|
663 | { |
---|
664 | AW_ERROR("AP_tree_nlen::clear: internal control number check failed"); |
---|
665 | return AP_FALSE; |
---|
666 | } |
---|
667 | |
---|
668 | buff = stack.pop(); |
---|
669 | |
---|
670 | if (buff->controll == datum - 1 || user_buffer_count >= datum) { |
---|
671 | //previous node is buffered |
---|
672 | |
---|
673 | if (buff->mode & SEQUENCE) delete buff->sequence; |
---|
674 | |
---|
675 | stack_level = buff->controll; |
---|
676 | delete buff; |
---|
677 | result = AP_TRUE; |
---|
678 | } |
---|
679 | else { |
---|
680 | stack_level = datum - 1; |
---|
681 | stack.push(buff); |
---|
682 | result = AP_FALSE; |
---|
683 | } |
---|
684 | |
---|
685 | return result; |
---|
686 | } |
---|
687 | |
---|
688 | |
---|
689 | AP_BOOL AP_tree_nlen::push(AP_STACK_MODE mode, unsigned long datum) { |
---|
690 | // according to mode |
---|
691 | // tree_structure / sequence is buffered in the node |
---|
692 | |
---|
693 | AP_tree_buffer *new_buff; |
---|
694 | AP_BOOL ret; |
---|
695 | |
---|
696 | if (is_leaf && !(STRUCTURE & mode)) return AP_FALSE; // tips push only structure |
---|
697 | |
---|
698 | if (this->stack_level == datum) { |
---|
699 | AP_tree_buffer *last_buffer = stack.get_first(); |
---|
700 | if (sequence &&(mode & SEQUENCE)) sequence->is_set_flag = AP_FALSE; |
---|
701 | if (0 == (mode & ~last_buffer->mode)) { // already buffered |
---|
702 | return AP_FALSE; |
---|
703 | } |
---|
704 | new_buff = last_buffer; |
---|
705 | ret = AP_FALSE; |
---|
706 | } |
---|
707 | else { |
---|
708 | new_buff = new AP_tree_buffer; |
---|
709 | new_buff->count = 1; |
---|
710 | new_buff->controll = stack_level; |
---|
711 | new_buff->mode = NOTHING; |
---|
712 | |
---|
713 | stack.push(new_buff); |
---|
714 | this->stack_level = datum; |
---|
715 | ret = AP_TRUE; |
---|
716 | } |
---|
717 | |
---|
718 | if ( (mode & STRUCTURE) && !(new_buff->mode & STRUCTURE) ) { |
---|
719 | // cout << "push structure " << *this << '\n'; |
---|
720 | new_buff->father = father; |
---|
721 | new_buff->leftson = leftson; |
---|
722 | new_buff->rightson = rightson; |
---|
723 | new_buff->leftlen = leftlen; |
---|
724 | new_buff->rightlen = rightlen; |
---|
725 | new_buff->gb_node = gb_node; |
---|
726 | new_buff->distance = distance; |
---|
727 | |
---|
728 | for (int e=0; e<3; e++) { |
---|
729 | new_buff->edge[e] = edge[e]; |
---|
730 | new_buff->edgeIndex[e] = index[e]; |
---|
731 | if (edge[e]) { |
---|
732 | new_buff->edgeData[e] = edge[e]->data; |
---|
733 | } |
---|
734 | } |
---|
735 | } |
---|
736 | |
---|
737 | if ( (mode & SEQUENCE) && !(new_buff->mode & SEQUENCE) ) { |
---|
738 | if (sequence) { |
---|
739 | new_buff->sequence = sequence; |
---|
740 | new_buff->mutation_rate = mutation_rate; |
---|
741 | mutation_rate = 0.0; |
---|
742 | sequence = 0; |
---|
743 | } |
---|
744 | else { |
---|
745 | new_buff->sequence = 0; |
---|
746 | AW_ERROR("Sequence not found %s",this->name); |
---|
747 | } |
---|
748 | } |
---|
749 | |
---|
750 | new_buff->mode = (AP_STACK_MODE)(new_buff->mode|mode); |
---|
751 | |
---|
752 | return ret; |
---|
753 | } |
---|
754 | |
---|
755 | void AP_tree_nlen::pop(unsigned long datum) { /* pop old tree costs */ |
---|
756 | AP_tree_buffer *buff; |
---|
757 | |
---|
758 | if (stack_level != datum) { |
---|
759 | AW_ERROR("AP_tree_nlen::pop(): Error in Node Stack"); |
---|
760 | } |
---|
761 | |
---|
762 | buff = stack.pop(); |
---|
763 | |
---|
764 | AP_STACK_MODE mode = buff->mode; |
---|
765 | |
---|
766 | if (mode&STRUCTURE) { |
---|
767 | // cout << "pop structure " << this << '\n'; |
---|
768 | |
---|
769 | father = buff->father; |
---|
770 | leftson = buff->leftson; |
---|
771 | rightson = buff->rightson; |
---|
772 | leftlen = buff->leftlen; |
---|
773 | rightlen = buff->rightlen; |
---|
774 | gb_node = buff->gb_node; |
---|
775 | distance = buff->distance; |
---|
776 | |
---|
777 | for (int e=0; e<3; e++) { |
---|
778 | edge[e] = buff->edge[e]; |
---|
779 | |
---|
780 | if (edge[e]) { |
---|
781 | index[e] = buff->edgeIndex[e]; |
---|
782 | |
---|
783 | edge[e]->index[index[e]] = e; |
---|
784 | edge[e]->node[index[e]] = this; |
---|
785 | edge[e]->data = buff->edgeData[e]; |
---|
786 | } |
---|
787 | } |
---|
788 | } |
---|
789 | |
---|
790 | if (mode&SEQUENCE) { |
---|
791 | if (sequence) delete sequence; |
---|
792 | |
---|
793 | sequence = buff->sequence; |
---|
794 | mutation_rate = buff->mutation_rate; |
---|
795 | } |
---|
796 | |
---|
797 | if (ROOT==mode) { |
---|
798 | // cout << "root popped:" << this << "\n"; |
---|
799 | ap_main->set_tree_root(this); |
---|
800 | } |
---|
801 | |
---|
802 | stack_level = buff->controll; |
---|
803 | delete buff; |
---|
804 | } |
---|
805 | |
---|
806 | /******************************************************** |
---|
807 | Section Parsimony: |
---|
808 | ********************************************************/ |
---|
809 | |
---|
810 | void AP_tree_nlen::parsimony_rek(void) |
---|
811 | { |
---|
812 | if (sequence && sequence->is_set_flag) return; |
---|
813 | |
---|
814 | if (is_leaf) { |
---|
815 | sequence->is_set_flag = AP_TRUE; |
---|
816 | return; |
---|
817 | } |
---|
818 | |
---|
819 | if (!Leftson()->sequence || !Leftson()->sequence->is_set_flag ) Leftson()->parsimony_rek(); |
---|
820 | if (!Rightson()->sequence|| !Rightson()->sequence->is_set_flag ) Rightson()->parsimony_rek(); |
---|
821 | |
---|
822 | if (!Leftson()->sequence->is_set_flag || !Rightson()->sequence->is_set_flag) { |
---|
823 | AW_ERROR("AP_tree_nlen::parsimony_rek: Cannot set sequence"); |
---|
824 | return; |
---|
825 | } |
---|
826 | |
---|
827 | if (sequence == 0) sequence = tree_root->sequence_template->dup(); |
---|
828 | |
---|
829 | AP_FLOAT mutations_for_combine = sequence->combine(Leftson()->sequence, Rightson()->sequence); |
---|
830 | mutation_rate = Leftson()->mutation_rate + Rightson()->mutation_rate + mutations_for_combine; |
---|
831 | |
---|
832 | #if defined(DEBUG) && 0 |
---|
833 | printf("mutation-rates: left=%f right=%f combine=%f overall=%f %s\n", |
---|
834 | Leftson()->mutation_rate, rightson->mutation_rate, mutations_for_combine, mutation_rate, |
---|
835 | fullname()); |
---|
836 | #endif // DEBUG |
---|
837 | |
---|
838 | sequence->is_set_flag = AP_TRUE; |
---|
839 | } |
---|
840 | |
---|
841 | /******************************************************** |
---|
842 | Section NNI |
---|
843 | ********************************************************/ |
---|
844 | |
---|
845 | AP_FLOAT AP_tree_nlen::nn_interchange_rek(AP_BOOL openclosestatus, int &Abort,int deep, AP_BL_MODE mode, GB_BOOL skip_hidden) |
---|
846 | { |
---|
847 | if (!father) |
---|
848 | { |
---|
849 | return rootEdge()->nni_rek(openclosestatus,Abort,deep,skip_hidden,mode); |
---|
850 | } |
---|
851 | |
---|
852 | if (!father->father) |
---|
853 | { |
---|
854 | AP_tree_edge *e = rootEdge(); |
---|
855 | |
---|
856 | return e->nni_rek(openclosestatus,Abort,deep,skip_hidden,mode,e->otherNode(this)); |
---|
857 | } |
---|
858 | |
---|
859 | return edgeTo(Father())->nni_rek(openclosestatus,Abort,deep,skip_hidden,mode,Father()); |
---|
860 | } |
---|
861 | |
---|
862 | |
---|
863 | |
---|
864 | /******************************************************** |
---|
865 | Section Kernighan-Lin |
---|
866 | ********************************************************/ |
---|
867 | |
---|
868 | void AP_tree_nlen:: |
---|
869 | kernighan_rek(int rek_deep, int *rek_2_width, int rek_2_width_max, const int rek_deep_max, |
---|
870 | double(*funktion) (double, double *, int), double *param_liste, int param_anz, |
---|
871 | AP_FLOAT pars_best, AP_FLOAT pars_start, AP_FLOAT pars_prev, |
---|
872 | AP_KL_FLAG rek_width_type, AP_BOOL *abort_flag) |
---|
873 | { |
---|
874 | // |
---|
875 | // rek_deep Rekursionstiefe |
---|
876 | // rek_2_width Verzweigungsgrad |
---|
877 | // neg_counter zaehler fuer die Aeste in denen Kerninghan Lin schon angewendet wurde |
---|
878 | // funktino Funktion fuer den dynamischen Schwellwert |
---|
879 | // pars_ Verschiedene Parsimonywerte |
---|
880 | |
---|
881 | AP_FLOAT help, pars[8]; |
---|
882 | //acht parsimony werte |
---|
883 | AP_tree_nlen * pars_refpntr[8]; |
---|
884 | //zeiger auf die naechsten Aeste |
---|
885 | int help_ref, pars_ref[8]; |
---|
886 | //referenzen auf die vertauschten parsimonies |
---|
887 | static AP_TREE_SIDE pars_side_ref[8]; |
---|
888 | //linker oder rechter ast |
---|
889 | int i, t, bubblesort_change = 0; |
---|
890 | // |
---|
891 | int rek_width, rek_width_static = 0, rek_width_dynamic = 0; |
---|
892 | AP_FLOAT schwellwert = funktion(rek_deep, param_liste, param_anz) + pars_start; |
---|
893 | |
---|
894 | //parameterausgabe |
---|
895 | |
---|
896 | #if 0 |
---|
897 | cout << "DEEP " << rek_deep << " "; |
---|
898 | cout << " maxdeep " << rek_deep_max << " suche " << rek_width_type << " abbruch " << *abort_flag; |
---|
899 | cout << "\npbest " << pars_best << " pstart " << pars_start << " pprev " << pars_prev << "\nParam : "; |
---|
900 | for (i = 0; i < param_anz; i++) |
---|
901 | cout << i << " : " << param_liste[i] << " "; |
---|
902 | cout << "\nSchwellwert " << schwellwert << "\n"; |
---|
903 | cout.flush(); |
---|
904 | #endif |
---|
905 | if (rek_deep >= rek_deep_max) return; |
---|
906 | if (is_leaf == GB_TRUE) return; |
---|
907 | if (*abort_flag == AP_TRUE) return; |
---|
908 | |
---|
909 | // |
---|
910 | //Referenzzeiger auf die vier Kanten und |
---|
911 | // zwei swapmoeglichkeiten initialisieren |
---|
912 | // |
---|
913 | AP_tree *this_brother = this->brother(); |
---|
914 | if (rek_deep == 0) { |
---|
915 | for (i = 0; i < 8; i+=2) { |
---|
916 | pars_side_ref[i] = AP_LEFT; |
---|
917 | pars_side_ref[i+1] = AP_RIGHT; |
---|
918 | } |
---|
919 | pars_refpntr[0] = pars_refpntr[1] = static_cast<AP_tree_nlen *>(this); |
---|
920 | pars_refpntr[2] = pars_refpntr[3] = 0; |
---|
921 | pars_refpntr[4] = pars_refpntr[5] = 0; |
---|
922 | pars_refpntr[6] = pars_refpntr[7] = 0; |
---|
923 | // cout << "NEW REKURSION\n\n"; |
---|
924 | }else{ |
---|
925 | pars_refpntr[0] = pars_refpntr[1] = static_cast<AP_tree_nlen *>(this->leftson); |
---|
926 | pars_refpntr[2] = pars_refpntr[3] = static_cast<AP_tree_nlen *>(this->rightson); |
---|
927 | if (father->father != 0) { |
---|
928 | //Referenzzeiger falls nicht an der Wurzel |
---|
929 | pars_refpntr[4] = pars_refpntr[5] = static_cast<AP_tree_nlen *>(this->father); |
---|
930 | pars_refpntr[6] = pars_refpntr[7] = static_cast<AP_tree_nlen *>(this_brother); |
---|
931 | } else { |
---|
932 | //an der Wurzel nehme linken und rechten Sohns des Bruders |
---|
933 | if (this->brother()->is_leaf == GB_FALSE) { |
---|
934 | pars_refpntr[4] = pars_refpntr[5] = static_cast<AP_tree_nlen *>(this_brother->leftson); |
---|
935 | pars_refpntr[6] = pars_refpntr[7] = static_cast<AP_tree_nlen *>(this_brother->rightson); |
---|
936 | } else { |
---|
937 | pars_refpntr[4] = pars_refpntr[5] = 0; |
---|
938 | pars_refpntr[6] = pars_refpntr[7] = 0; |
---|
939 | } |
---|
940 | } |
---|
941 | } |
---|
942 | |
---|
943 | |
---|
944 | if (!father) return; // no kl at root |
---|
945 | |
---|
946 | // |
---|
947 | //parsimony werte bestimmen |
---|
948 | // |
---|
949 | |
---|
950 | // Wurzel setzen |
---|
951 | |
---|
952 | ap_main->push(); |
---|
953 | this->set_root(); |
---|
954 | (*ap_main->tree_root)->costs(); |
---|
955 | |
---|
956 | int visited_subtrees = 0; |
---|
957 | int better_subtrees = 0; |
---|
958 | for (i = 0; i < 8; i++) { |
---|
959 | pars_ref[i] = i; |
---|
960 | pars[i] = -1; |
---|
961 | |
---|
962 | if (!pars_refpntr[i]) continue; |
---|
963 | if (pars_refpntr[i]->is_leaf) continue; |
---|
964 | if (!pars_refpntr[i]->kernighan == AP_NONE) continue; |
---|
965 | if (pars_refpntr[i]->gr.hidden) continue; |
---|
966 | if (pars_refpntr[i]->father->gr.hidden) continue; |
---|
967 | |
---|
968 | //nur wenn kein Blatt ist |
---|
969 | ap_main->push(); |
---|
970 | pars_refpntr[i]->swap_assymetric(pars_side_ref[i]); |
---|
971 | pars[i] = (*ap_main->tree_root)->costs(); |
---|
972 | if (pars[i] < pars_best) { |
---|
973 | better_subtrees++; |
---|
974 | pars_best = pars[i]; |
---|
975 | rek_width_type = AP_BETTER; |
---|
976 | } |
---|
977 | if (pars[i] < schwellwert) { |
---|
978 | rek_width_dynamic++; |
---|
979 | } |
---|
980 | ap_main->pop(); |
---|
981 | visited_subtrees ++; |
---|
982 | |
---|
983 | } |
---|
984 | //Bubblesort, in pars[0] steht kleinstes element |
---|
985 | // |
---|
986 | //!!CAUTION ! !The original parsimonies will be exchanged |
---|
987 | |
---|
988 | |
---|
989 | for (i=7,t=0;t<i;t++) { |
---|
990 | if (pars[t] <0) { |
---|
991 | pars[t] = pars[i]; |
---|
992 | pars_ref[t] = i; |
---|
993 | t--; |
---|
994 | i--; |
---|
995 | } |
---|
996 | } |
---|
997 | |
---|
998 | bubblesort_change = 0; |
---|
999 | for (t = visited_subtrees - 1; t > 0; t--) { |
---|
1000 | for (i = 0; i < t; i++) { |
---|
1001 | if (pars[i] > pars[i+1] ) { |
---|
1002 | bubblesort_change = 1; |
---|
1003 | help_ref = pars_ref[i]; |
---|
1004 | pars_ref[i] = pars_ref[i + 1]; |
---|
1005 | pars_ref[i + 1] = help_ref; |
---|
1006 | help = pars[i]; |
---|
1007 | pars[i] = pars[i + 1]; |
---|
1008 | pars[i + 1] = help; |
---|
1009 | } |
---|
1010 | } |
---|
1011 | if (bubblesort_change == 0) |
---|
1012 | break; |
---|
1013 | } |
---|
1014 | |
---|
1015 | display_out(pars, visited_subtrees, pars_prev, pars_start, rek_deep); |
---|
1016 | //Darstellen |
---|
1017 | |
---|
1018 | |
---|
1019 | // for (i=0;i<visited_subtrees;i++) cout << " " << pars[i]; |
---|
1020 | |
---|
1021 | |
---|
1022 | if (rek_deep < rek_2_width_max) rek_width_static = rek_2_width[rek_deep]; |
---|
1023 | else rek_width_static = 1; |
---|
1024 | |
---|
1025 | rek_width = visited_subtrees; |
---|
1026 | if (rek_width_type == AP_BETTER) { |
---|
1027 | rek_width = better_subtrees; |
---|
1028 | } |
---|
1029 | else { |
---|
1030 | if (rek_width_type & AP_STATIC) { |
---|
1031 | if (rek_width> rek_width_static) rek_width = rek_width_static; |
---|
1032 | } |
---|
1033 | if (rek_width_type & AP_DYNAMIK) { |
---|
1034 | if (rek_width> rek_width_dynamic) rek_width = rek_width_dynamic; |
---|
1035 | }else if (!(rek_width_type & AP_STATIC)) { |
---|
1036 | if (rek_width> 1) rek_width = 1; |
---|
1037 | } |
---|
1038 | |
---|
1039 | } |
---|
1040 | |
---|
1041 | if (rek_width > visited_subtrees) rek_width = visited_subtrees; |
---|
1042 | |
---|
1043 | // cout << " rek_width: " << rek_width << "\n"; |
---|
1044 | // cout.flush(); |
---|
1045 | |
---|
1046 | for (i=0;i < rek_width; i++) { |
---|
1047 | ap_main->push(); |
---|
1048 | pars_refpntr[pars_ref[i]]->kernighan = pars_side_ref[pars_ref[i]]; |
---|
1049 | //Markieren |
---|
1050 | pars_refpntr[pars_ref[i]]->swap_assymetric(pars_side_ref[pars_ref[i]]); |
---|
1051 | //vertausche seite |
---|
1052 | (*ap_main->tree_root)->parsimony_rek(); |
---|
1053 | switch (rek_width_type) { |
---|
1054 | case AP_BETTER:{ |
---|
1055 | //starte kerninghan_rek mit rekursionstiefe 3, statisch |
---|
1056 | AP_BOOL flag = AP_FALSE; |
---|
1057 | cout << "found better !\n"; |
---|
1058 | pars_refpntr[pars_ref[i]]->kernighan_rek(rek_deep + 1, rek_2_width, |
---|
1059 | rek_2_width_max, rek_deep_max + 4, |
---|
1060 | funktion, param_liste, param_anz, |
---|
1061 | pars_best, pars_start, pars[i], |
---|
1062 | AP_STATIC, &flag); |
---|
1063 | *abort_flag = AP_TRUE; |
---|
1064 | break; |
---|
1065 | } |
---|
1066 | default: |
---|
1067 | pars_refpntr[pars_ref[i]]->kernighan_rek(rek_deep + 1, rek_2_width, |
---|
1068 | rek_2_width_max, rek_deep_max, |
---|
1069 | funktion, param_liste, param_anz, |
---|
1070 | pars_best, pars_start, pars[i], |
---|
1071 | rek_width_type, abort_flag); |
---|
1072 | break; |
---|
1073 | } |
---|
1074 | pars_refpntr[pars_ref[i]]->kernighan = AP_NONE; |
---|
1075 | //Demarkieren |
---|
1076 | if (*abort_flag == AP_TRUE) { |
---|
1077 | cout << " parsimony: " << pars_best << "took: " << i <<"\n"; |
---|
1078 | for (i=0;i<visited_subtrees;i++) cout << " " << pars[i]; |
---|
1079 | cout << "\n"; |
---|
1080 | if (!rek_deep){ |
---|
1081 | cout << "NEW RECURSION\n\n"; |
---|
1082 | } |
---|
1083 | cout.flush(); |
---|
1084 | |
---|
1085 | ap_main->clear(); |
---|
1086 | break; |
---|
1087 | } else { |
---|
1088 | ap_main->pop(); |
---|
1089 | } |
---|
1090 | } |
---|
1091 | if (*abort_flag == AP_TRUE) { // pop/clear wegen set_root |
---|
1092 | ap_main->clear(); |
---|
1093 | } else { |
---|
1094 | ap_main->pop(); |
---|
1095 | } |
---|
1096 | return; |
---|
1097 | } |
---|
1098 | |
---|
1099 | /************************************************************************* |
---|
1100 | Section Crossover List (Funktionen die die crossover liste aufbauen): |
---|
1101 | |
---|
1102 | createListRekUp |
---|
1103 | createListRekSide |
---|
1104 | createList |
---|
1105 | |
---|
1106 | **************************************************************************/ |
---|
1107 | |
---|
1108 | #if 0 |
---|
1109 | |
---|
1110 | void addToList(AP_CO_LIST *list,int *number,AP_tree_nlen *pntr,CO_LISTEL& wert0,CO_LISTEL& wert1) { |
---|
1111 | if (wert0.isLeaf == AP_TRUE) { |
---|
1112 | list[*number].leaf0 = wert0.refLeaf; |
---|
1113 | list[*number].node0 = -10; |
---|
1114 | } else { |
---|
1115 | list[*number].leaf0 = 0; |
---|
1116 | list[*number].node0 = wert0.refNode; |
---|
1117 | } |
---|
1118 | if (wert1.isLeaf == AP_TRUE) { |
---|
1119 | list[*number].leaf1 = wert1.refLeaf; |
---|
1120 | list[*number].node1 = -1; |
---|
1121 | } else { |
---|
1122 | list[*number].leaf1 = 0; |
---|
1123 | list[*number].node1 = wert1.refNode; |
---|
1124 | } |
---|
1125 | list[*number].pntr = pntr; |
---|
1126 | return; |
---|
1127 | } |
---|
1128 | |
---|
1129 | void AP_tree_nlen::createListRekUp(AP_CO_LIST *list,int *cn) { |
---|
1130 | if (this->is_leaf == AP_TRUE) { |
---|
1131 | refUp.init = AP_TRUE; |
---|
1132 | refUp.isLeaf = AP_TRUE; |
---|
1133 | refUp.refLeaf = gb_node; |
---|
1134 | return; |
---|
1135 | } |
---|
1136 | if (refUp.init == AP_FALSE) { |
---|
1137 | if (leftson->refUp.init == AP_FALSE) leftson->createListRekUp(list,cn); |
---|
1138 | if (rightson->refUp.init == AP_FALSE) rightson->createListRekUp(list,cn); |
---|
1139 | |
---|
1140 | refUp.init = AP_TRUE; |
---|
1141 | refUp.isLeaf = AP_FALSE; |
---|
1142 | refUp.refNode = *cn; |
---|
1143 | (*cn)++; |
---|
1144 | |
---|
1145 | |
---|
1146 | addToList(list,cn,this,leftson->refUp,rightson->refUp); |
---|
1147 | if (father == 0) { // at root |
---|
1148 | refRight.init = rightson->refUp.init; |
---|
1149 | if ((refRight.isLeaf = rightson->refUp.isLeaf) == AP_TRUE) { |
---|
1150 | refRight.refLeaf = rightson->refUp.refLeaf; |
---|
1151 | } |
---|
1152 | else { |
---|
1153 | refRight.refNode = rightson->refUp.refNode; |
---|
1154 | } |
---|
1155 | |
---|
1156 | refLeft.init = leftson->refUp.init; |
---|
1157 | if ((refLeft.isLeaf = leftson->refUp.isLeaf) == AP_TRUE) { |
---|
1158 | refLeft.refLeaf = leftson->refUp.refLeaf; |
---|
1159 | } |
---|
1160 | else { |
---|
1161 | refLeft.refNode = leftson->refUp.refNode; |
---|
1162 | } |
---|
1163 | } |
---|
1164 | } |
---|
1165 | return; |
---|
1166 | } |
---|
1167 | |
---|
1168 | void AP_tree_nlen::createListRekSide(AP_CO_LIST *list,int *cn) { |
---|
1169 | // |
---|
1170 | // has to be called after createListRekUp !! |
---|
1171 | if (refRight.init == AP_FALSE) { |
---|
1172 | refRight.init = AP_TRUE; |
---|
1173 | refRight.isLeaf = AP_FALSE; |
---|
1174 | refRight.refNode = *cn; |
---|
1175 | (*cn)++; |
---|
1176 | |
---|
1177 | if (father->leftson == this) { |
---|
1178 | if (father->refLeft.init == AP_FALSE) father->createListRekSide(list,cn); |
---|
1179 | addToList(list,cn,this,leftson->refUp,father->refLeft); |
---|
1180 | } else { |
---|
1181 | if (father->refRight.init == AP_FALSE) father->createListRekSide(list,cn); |
---|
1182 | addToList(list,cn,this,leftson->refUp,father->refRight); |
---|
1183 | } |
---|
1184 | } |
---|
1185 | if (refLeft.init == AP_FALSE) { |
---|
1186 | refLeft.init = AP_TRUE; |
---|
1187 | refLeft.isLeaf = AP_FALSE; |
---|
1188 | refLeft.refNode = *cn; |
---|
1189 | (*cn)++; |
---|
1190 | if (father->leftson == this) { |
---|
1191 | if (father->refLeft.init == AP_FALSE) father->createListRekSide(list,cn); |
---|
1192 | addToList(list,cn,this,rightson->refUp,father->refLeft); |
---|
1193 | } else { |
---|
1194 | if (father->refRight.init == AP_FALSE) father->createListRekSide(list,cn); |
---|
1195 | addToList(list,cn,this,rightson->refUp,father->refRight); |
---|
1196 | } |
---|
1197 | } |
---|
1198 | return; |
---|
1199 | } |
---|
1200 | |
---|
1201 | |
---|
1202 | AP_CO_LIST * AP_tree_nlen::createList(int *size) |
---|
1203 | { |
---|
1204 | // returns an list with all |
---|
1205 | // tree combinations |
---|
1206 | AP_CO_LIST *list; |
---|
1207 | int number = 0; |
---|
1208 | if (father !=0) { |
---|
1209 | AW_ERROR("AP_tree_nlen::createList may be called with damaged tree"); |
---|
1210 | return 0; |
---|
1211 | } |
---|
1212 | this->test_tree_rek(); |
---|
1213 | // 3*knotenvisited_subtrees +1 platz reservieren |
---|
1214 | list = (AP_CO_LIST *) calloc((gr.node_sum-gr.leaf_sum)*3+1,sizeof(AP_CO_LIST)); |
---|
1215 | createListRekUp(list,&number); |
---|
1216 | createListRekSide(list,&number); |
---|
1217 | *size = number; |
---|
1218 | return list; |
---|
1219 | } |
---|
1220 | |
---|
1221 | #endif |
---|
1222 | |
---|
1223 | /************************************************************************* |
---|
1224 | Section Misc stuff: |
---|
1225 | |
---|
1226 | sortByName |
---|
1227 | test |
---|
1228 | fullname |
---|
1229 | |
---|
1230 | **************************************************************************/ |
---|
1231 | |
---|
1232 | const char* AP_tree_nlen::sortByName() |
---|
1233 | { |
---|
1234 | if (name) return name; // leaves |
---|
1235 | |
---|
1236 | const char *n1 = Leftson()->sortByName(); |
---|
1237 | const char *n2 = Rightson()->sortByName(); |
---|
1238 | |
---|
1239 | if (strcmp(n1,n2)<0) return n1; |
---|
1240 | |
---|
1241 | AP_tree::swap_sons(); |
---|
1242 | |
---|
1243 | return n2; |
---|
1244 | } |
---|
1245 | |
---|
1246 | int AP_tree_nlen::test(void) const |
---|
1247 | { |
---|
1248 | int edges = 0; |
---|
1249 | |
---|
1250 | for (int e=0; e<3; e++) if (edge[e]!=NULL) edges++; |
---|
1251 | |
---|
1252 | if (!sequence) cout << "Node" << *this << "has no sequence\n"; |
---|
1253 | |
---|
1254 | if (father) { |
---|
1255 | if (father->father == (AP_tree *)this) { |
---|
1256 | cout << "Ooops! I am my own grandfather! How is this possible?\n" << |
---|
1257 | *this << '\n' << |
---|
1258 | *Father() << '\n'; |
---|
1259 | } |
---|
1260 | |
---|
1261 | if (is_leaf) { |
---|
1262 | if (edges!=1) cout << "Leaf-Node" << *this << "has" << edges << " edges\n"; |
---|
1263 | } |
---|
1264 | else { |
---|
1265 | if (edges!=3) cout << "Inner-Node" << *this << "has" << edges << " edges\n"; |
---|
1266 | } |
---|
1267 | |
---|
1268 | int e; |
---|
1269 | |
---|
1270 | for (e=0; e<3; e++) { |
---|
1271 | if (edge[e]) { |
---|
1272 | if (edge[e]->isConnectedTo(this)) { |
---|
1273 | AP_tree_nlen *neighbour = edge[e]->otherNode(this); |
---|
1274 | |
---|
1275 | if ( ! (neighbour==father || neighbour==leftson || neighbour==rightson)) { |
---|
1276 | if (father->father==NULL) { |
---|
1277 | if (!(father->leftson==neighbour || father->rightson==neighbour)) { |
---|
1278 | cout << "Neighbour is not brother (at root)\n"; |
---|
1279 | } |
---|
1280 | } |
---|
1281 | else { |
---|
1282 | cout << "Edge " << edge[e] << " connects the nodes" |
---|
1283 | << *this << "and" << *(edge[e]->otherNode(this)) |
---|
1284 | << "(they are not neighbours)\n"; |
---|
1285 | } |
---|
1286 | } |
---|
1287 | } |
---|
1288 | else { |
---|
1289 | cout << "Node" << *this |
---|
1290 | << "is connected to wrong edge" |
---|
1291 | << edge[e] << '\n'; |
---|
1292 | } |
---|
1293 | } |
---|
1294 | } |
---|
1295 | } |
---|
1296 | else { |
---|
1297 | if (edges) { |
---|
1298 | cout << "Root" << *this << "has edges!\n"; |
---|
1299 | } |
---|
1300 | } |
---|
1301 | |
---|
1302 | test_tree(); // AP_tree:: |
---|
1303 | |
---|
1304 | return 0; |
---|
1305 | } |
---|
1306 | |
---|
1307 | const char *AP_tree_nlen::fullname() const |
---|
1308 | { |
---|
1309 | if (!name) { |
---|
1310 | static char *buffer; |
---|
1311 | char *lName = strdup(Leftson()->fullname()); |
---|
1312 | char *rName = strdup(Rightson()->fullname()); |
---|
1313 | int len = strlen(lName)+strlen(rName)+4; |
---|
1314 | |
---|
1315 | if (buffer) free(buffer); |
---|
1316 | |
---|
1317 | buffer = (char*)malloc(len); |
---|
1318 | |
---|
1319 | strcpy(buffer,"["); |
---|
1320 | strcat(buffer,lName); |
---|
1321 | strcat(buffer,","); |
---|
1322 | strcat(buffer,rName); |
---|
1323 | strcat(buffer,"]"); |
---|
1324 | |
---|
1325 | free(lName); |
---|
1326 | free(rName); |
---|
1327 | |
---|
1328 | return buffer; |
---|
1329 | } |
---|
1330 | |
---|
1331 | return name; |
---|
1332 | } |
---|
1333 | |
---|
1334 | |
---|
1335 | char* AP_tree_nlen::getSequence() |
---|
1336 | { |
---|
1337 | char *s; |
---|
1338 | |
---|
1339 | costs(); |
---|
1340 | AP_sequence_parsimony *pseq = (AP_sequence_parsimony*)sequence; |
---|
1341 | ap_assert(pseq->is_set_flag); |
---|
1342 | s = new char[pseq->sequence_len]; |
---|
1343 | memcpy(s,pseq->sequence,(unsigned int)pseq->sequence_len); |
---|
1344 | |
---|
1345 | return s; |
---|
1346 | } |
---|
1347 | |
---|