| 1 | // =============================================================== // |
|---|
| 2 | // // |
|---|
| 3 | // File : AP_tree_nlen.cxx // |
|---|
| 4 | // Purpose : // |
|---|
| 5 | // // |
|---|
| 6 | // Coded by Ralf Westram (coder@reallysoft.de) in Summer 1995 // |
|---|
| 7 | // Institute of Microbiology (Technical University Munich) // |
|---|
| 8 | // http://www.arb-home.de/ // |
|---|
| 9 | // // |
|---|
| 10 | // =============================================================== // |
|---|
| 11 | |
|---|
| 12 | #include "ap_tree_nlen.hxx" |
|---|
| 13 | #include "ap_main.hxx" |
|---|
| 14 | |
|---|
| 15 | #include <AP_seq_dna.hxx> |
|---|
| 16 | #include <aw_root.hxx> |
|---|
| 17 | |
|---|
| 18 | using namespace std; |
|---|
| 19 | |
|---|
| 20 | // --------------------------------- |
|---|
| 21 | // Section base operations: |
|---|
| 22 | // --------------------------------- |
|---|
| 23 | |
|---|
| 24 | AP_UPDATE_FLAGS AP_pars_root::check_update() { |
|---|
| 25 | // disables load if tree changes in DB |
|---|
| 26 | // (ignore changes performed in arb_ntree while tree is loaded in arb_pars) |
|---|
| 27 | AP_UPDATE_FLAGS res = AP_tree_root::check_update(); |
|---|
| 28 | return res == AP_UPDATE_RELOADED ? AP_UPDATE_OK : res; |
|---|
| 29 | } |
|---|
| 30 | |
|---|
| 31 | ostream& operator<<(ostream& out, const AP_tree_nlen *node) { |
|---|
| 32 | out << ' '; |
|---|
| 33 | |
|---|
| 34 | if (!node) { |
|---|
| 35 | out << "NULp"; |
|---|
| 36 | } |
|---|
| 37 | if (node->is_leaf()) { |
|---|
| 38 | out << ((void *)node) << '(' << node->name << ')'; |
|---|
| 39 | } |
|---|
| 40 | else { |
|---|
| 41 | static int notTooDeep; |
|---|
| 42 | |
|---|
| 43 | if (notTooDeep) { |
|---|
| 44 | out << ((void *)node); |
|---|
| 45 | if (!node->father) out << " (ROOT)"; |
|---|
| 46 | } |
|---|
| 47 | else { |
|---|
| 48 | notTooDeep = 1; |
|---|
| 49 | |
|---|
| 50 | out << "NODE(" << ((void *)node); |
|---|
| 51 | |
|---|
| 52 | if (!node->father) { |
|---|
| 53 | out << " (ROOT)"; |
|---|
| 54 | } |
|---|
| 55 | else { |
|---|
| 56 | out << ", father=" << node->father; |
|---|
| 57 | } |
|---|
| 58 | |
|---|
| 59 | out << ", leftson=" << node->leftson |
|---|
| 60 | << ", rightson=" << node->rightson |
|---|
| 61 | << ", edge[0]=" << node->edge[0] |
|---|
| 62 | << ", edge[1]=" << node->edge[1] |
|---|
| 63 | << ", edge[2]=" << node->edge[2] |
|---|
| 64 | << ")"; |
|---|
| 65 | |
|---|
| 66 | notTooDeep = 0; |
|---|
| 67 | } |
|---|
| 68 | } |
|---|
| 69 | |
|---|
| 70 | return out << ' '; |
|---|
| 71 | } |
|---|
| 72 | |
|---|
| 73 | int AP_tree_nlen::unusedEdgeIndex() const { |
|---|
| 74 | for (int e=0; e<3; e++) if (!edge[e]) return e; |
|---|
| 75 | return -1; |
|---|
| 76 | } |
|---|
| 77 | |
|---|
| 78 | AP_tree_edge* AP_tree_nlen::edgeTo(const AP_tree_nlen *neighbour) const { |
|---|
| 79 | for (int e=0; e<3; e++) { |
|---|
| 80 | if (edge[e] && edge[e]->node[1-index[e]]==neighbour) { |
|---|
| 81 | return edge[e]; |
|---|
| 82 | } |
|---|
| 83 | } |
|---|
| 84 | return NULp; |
|---|
| 85 | } |
|---|
| 86 | |
|---|
| 87 | AP_tree_edge* AP_tree_nlen::nextEdge(const AP_tree_edge *afterThatEdge) const { |
|---|
| 88 | /*! @return one edge of 'this' |
|---|
| 89 | * |
|---|
| 90 | * @param afterThatEdge |
|---|
| 91 | * - if == NULp -> returns the "first" edge (edge[0]) |
|---|
| 92 | * - otherwise -> returns the next edge following 'afterThatEdge' in the array edge[] |
|---|
| 93 | */ |
|---|
| 94 | return edge[afterThatEdge ? ((indexOf(afterThatEdge)+1) % 3) : 0]; |
|---|
| 95 | } |
|---|
| 96 | |
|---|
| 97 | void AP_tree_nlen::unlinkAllEdges(AP_tree_edge **edgePtr1, AP_tree_edge **edgePtr2, AP_tree_edge **edgePtr3) { |
|---|
| 98 | ap_assert(edge[0]); |
|---|
| 99 | ap_assert(edge[1]); |
|---|
| 100 | ap_assert(edge[2]); |
|---|
| 101 | |
|---|
| 102 | *edgePtr1 = edge[0]->unlink(); |
|---|
| 103 | *edgePtr2 = edge[1]->unlink(); |
|---|
| 104 | *edgePtr3 = edge[2]->unlink(); |
|---|
| 105 | } |
|---|
| 106 | |
|---|
| 107 | void AP_tree_nlen::linkAllEdges(AP_tree_edge *edge1, AP_tree_edge *edge2, AP_tree_edge *edge3) { |
|---|
| 108 | ap_assert(!edge[0]); |
|---|
| 109 | ap_assert(!edge[1]); |
|---|
| 110 | ap_assert(!edge[2]); |
|---|
| 111 | |
|---|
| 112 | edge1->relink(this, get_father()->get_father() ? get_father() : get_brother()); |
|---|
| 113 | edge2->relink(this, get_leftson()); |
|---|
| 114 | edge3->relink(this, get_rightson()); |
|---|
| 115 | } |
|---|
| 116 | |
|---|
| 117 | // ----------------------------- |
|---|
| 118 | // Check tree structure |
|---|
| 119 | |
|---|
| 120 | #if defined(PROVIDE_TREE_STRUCTURE_TESTS) |
|---|
| 121 | |
|---|
| 122 | #if defined(DEBUG) |
|---|
| 123 | #define DUMP_INVALID_SUBTREES |
|---|
| 124 | #endif |
|---|
| 125 | |
|---|
| 126 | #if defined(DEVEL_RALF) |
|---|
| 127 | #define CHECK_CORRECT_INVALIDATION // recombines all up-to-date nodes to find missing invalidations (VERY slow) |
|---|
| 128 | #endif |
|---|
| 129 | |
|---|
| 130 | |
|---|
| 131 | #if defined(DUMP_INVALID_SUBTREES) |
|---|
| 132 | inline void dumpSubtree(const char *msg, const AP_tree_nlen *node) { |
|---|
| 133 | fprintf(stderr, "%s:\n", msg); |
|---|
| 134 | char *printable = GBT_tree_2_newick(node, NewickFormat(nSIMPLE|nWRAP), true); |
|---|
| 135 | fputs(printable, stderr); |
|---|
| 136 | fputc('\n', stderr); |
|---|
| 137 | free(printable); |
|---|
| 138 | } |
|---|
| 139 | #endif |
|---|
| 140 | |
|---|
| 141 | inline const AP_tree_edge *edge_between(const AP_tree_nlen *node1, const AP_tree_nlen *node2) { |
|---|
| 142 | AP_tree_edge *edge_12 = node1->edgeTo(node2); |
|---|
| 143 | |
|---|
| 144 | #if defined(ASSERTION_USED) |
|---|
| 145 | AP_tree_edge *edge_21 = node2->edgeTo(node1); |
|---|
| 146 | ap_assert(edge_12 == edge_21); // nodes should agree about their edge |
|---|
| 147 | #endif |
|---|
| 148 | |
|---|
| 149 | return edge_12; |
|---|
| 150 | } |
|---|
| 151 | |
|---|
| 152 | inline const char *no_valid_edge_between(const AP_tree_nlen *node1, const AP_tree_nlen *node2) { |
|---|
| 153 | AP_tree_edge *edge_12 = node1->edgeTo(node2); |
|---|
| 154 | AP_tree_edge *edge_21 = node2->edgeTo(node1); |
|---|
| 155 | |
|---|
| 156 | if (edge_12 == edge_21) { |
|---|
| 157 | return edge_12 ? NULp : "edge missing"; |
|---|
| 158 | } |
|---|
| 159 | return "edge inconsistent"; |
|---|
| 160 | } |
|---|
| 161 | |
|---|
| 162 | #if defined(DUMP_INVALID_SUBTREES) |
|---|
| 163 | #define PRINT_BAD_EDGE(msg,node) dumpSubtree(msg,node) |
|---|
| 164 | #else // !defined(DUMP_INVALID_SUBTREES) |
|---|
| 165 | #define PRINT_BAD_EDGE(msg,node) fprintf(stderr, "Warning: %s (at node=%p)\n", (msg), (node)) |
|---|
| 166 | #endif |
|---|
| 167 | |
|---|
| 168 | #define SHOW_BAD_EDGE(format,str,node) do{ \ |
|---|
| 169 | char *msg = GBS_global_string_copy(format,str); \ |
|---|
| 170 | PRINT_BAD_EDGE(msg, node); \ |
|---|
| 171 | free(msg); \ |
|---|
| 172 | }while(0) |
|---|
| 173 | |
|---|
| 174 | Validity AP_tree_nlen::has_valid_edges() const { |
|---|
| 175 | Validity valid; |
|---|
| 176 | if (get_father()) { // root has no edges |
|---|
| 177 | if (get_father()->is_root_node()) { // sons of root have one edge between them |
|---|
| 178 | if (is_leftson()) { // test root-edge only from one son |
|---|
| 179 | const char *invalid = no_valid_edge_between(this, get_brother()); |
|---|
| 180 | if (invalid) { |
|---|
| 181 | SHOW_BAD_EDGE("root-%s. root", invalid, get_father()); |
|---|
| 182 | valid = Validity(false, "no valid edge between sons of root"); |
|---|
| 183 | } |
|---|
| 184 | } |
|---|
| 185 | const char *invalid = no_valid_edge_between(this, get_father()); |
|---|
| 186 | if (!invalid || !strstr(invalid, "missing")) { |
|---|
| 187 | SHOW_BAD_EDGE("unexpected edge (%s) between root and son", invalid ? invalid : "valid", this); |
|---|
| 188 | valid = Validity(false, "unexpected edge between son-of-root and root"); |
|---|
| 189 | } |
|---|
| 190 | } |
|---|
| 191 | else { |
|---|
| 192 | const char *invalid = no_valid_edge_between(this, get_father()); |
|---|
| 193 | if (invalid) { |
|---|
| 194 | SHOW_BAD_EDGE("son-%s. father", invalid, get_father()); |
|---|
| 195 | SHOW_BAD_EDGE("parent-%s. son", invalid, this); |
|---|
| 196 | valid = Validity(false, "invalid edge between son and father"); |
|---|
| 197 | } |
|---|
| 198 | } |
|---|
| 199 | } |
|---|
| 200 | |
|---|
| 201 | if (!is_leaf()) { |
|---|
| 202 | if (valid) valid = get_leftson()->has_valid_edges(); |
|---|
| 203 | if (valid) valid = get_rightson()->has_valid_edges(); |
|---|
| 204 | } |
|---|
| 205 | return valid; |
|---|
| 206 | } |
|---|
| 207 | |
|---|
| 208 | Validity AP_tree_nlen::sequence_state_valid() const { |
|---|
| 209 | // if some node has a sequence, all son-nodes have to have sequences! |
|---|
| 210 | |
|---|
| 211 | Validity valid; |
|---|
| 212 | |
|---|
| 213 | const AP_combinableSeq *sequence = get_seq(); |
|---|
| 214 | if (sequence) { |
|---|
| 215 | if (sequence->hasSequence()) { |
|---|
| 216 | if (!is_leaf()) { |
|---|
| 217 | bool leftson_hasSequence = get_leftson()->hasSequence(); |
|---|
| 218 | bool rightson_hasSequence = get_rightson()->hasSequence(); |
|---|
| 219 | |
|---|
| 220 | #if defined(DUMP_INVALID_SUBTREES) |
|---|
| 221 | if (!leftson_hasSequence) dumpSubtree("left subtree has no sequence", get_leftson()); |
|---|
| 222 | if (!rightson_hasSequence) dumpSubtree("right subtree has no sequence", get_rightson()); |
|---|
| 223 | if (!(leftson_hasSequence && rightson_hasSequence)) { |
|---|
| 224 | dumpSubtree("while father HAS sequence", this); |
|---|
| 225 | } |
|---|
| 226 | #endif |
|---|
| 227 | |
|---|
| 228 | valid = Validity(leftson_hasSequence && rightson_hasSequence, "node has sequence and son w/o sequence"); |
|---|
| 229 | |
|---|
| 230 | #if defined(CHECK_CORRECT_INVALIDATION) |
|---|
| 231 | if (valid) { |
|---|
| 232 | // check for missing invalidations |
|---|
| 233 | // (if recalculating a node (via combine) does not reproduce the current sequence, it should have been invalidated) |
|---|
| 234 | |
|---|
| 235 | AP_combinableSeq *recombined = sequence->dup(); |
|---|
| 236 | Mutations mutations_from_combine = recombined->noncounting_combine_seq(get_leftson()->get_seq(), get_rightson()->get_seq()); |
|---|
| 237 | |
|---|
| 238 | valid = Validity(recombined->combinedEquals(sequence), "recombining changed existing sequence (missing invalidation?)"); |
|---|
| 239 | if (valid) { |
|---|
| 240 | Mutations expected_mutrate = mutations_from_combine + get_leftson()->mutations + get_rightson()->mutations; |
|---|
| 241 | valid = Validity(expected_mutrate == mutations, "invalid mutation_rate"); |
|---|
| 242 | } |
|---|
| 243 | |
|---|
| 244 | delete recombined; |
|---|
| 245 | |
|---|
| 246 | #if defined(DUMP_INVALID_SUBTREES) |
|---|
| 247 | if (!valid) { |
|---|
| 248 | dumpSubtree(valid.why_not(), this); |
|---|
| 249 | } |
|---|
| 250 | #endif |
|---|
| 251 | } |
|---|
| 252 | #endif |
|---|
| 253 | } |
|---|
| 254 | } |
|---|
| 255 | #if defined(ASSERTION_USED) |
|---|
| 256 | else { |
|---|
| 257 | if (is_leaf()) ap_assert(sequence->is_bound_to_species()); // can do lazy load if needed |
|---|
| 258 | } |
|---|
| 259 | #endif |
|---|
| 260 | } |
|---|
| 261 | |
|---|
| 262 | if (!is_leaf()) { |
|---|
| 263 | if (valid) valid = get_leftson()->sequence_state_valid(); |
|---|
| 264 | if (valid) valid = get_rightson()->sequence_state_valid(); |
|---|
| 265 | } |
|---|
| 266 | |
|---|
| 267 | return valid; |
|---|
| 268 | } |
|---|
| 269 | |
|---|
| 270 | Validity AP_tree_nlen::is_valid() const { |
|---|
| 271 | ap_assert(knownNonNull(this)); |
|---|
| 272 | |
|---|
| 273 | Validity valid = AP_tree::is_valid(); |
|---|
| 274 | if (valid) valid = has_valid_edges(); |
|---|
| 275 | if (valid) valid = sequence_state_valid(); |
|---|
| 276 | |
|---|
| 277 | return valid; |
|---|
| 278 | } |
|---|
| 279 | |
|---|
| 280 | #endif // PROVIDE_TREE_STRUCTURE_TESTS |
|---|
| 281 | |
|---|
| 282 | // ------------------------- |
|---|
| 283 | // Tree operations: |
|---|
| 284 | // |
|---|
| 285 | // insert |
|---|
| 286 | // remove |
|---|
| 287 | // swap |
|---|
| 288 | // set_root |
|---|
| 289 | // move |
|---|
| 290 | // costs |
|---|
| 291 | |
|---|
| 292 | |
|---|
| 293 | inline void push_all_upnode_sequences(AP_tree_nlen *nodeBelow) { |
|---|
| 294 | for (AP_tree_nlen *upnode = nodeBelow->get_father(); |
|---|
| 295 | upnode; |
|---|
| 296 | upnode = upnode->get_father()) |
|---|
| 297 | { |
|---|
| 298 | ap_main->push_node(upnode, SEQUENCE); |
|---|
| 299 | } |
|---|
| 300 | } |
|---|
| 301 | |
|---|
| 302 | inline void sortOldestFirst(AP_tree_edge **e1, AP_tree_edge **e2) { |
|---|
| 303 | if ((*e1)->Age() > (*e2)->Age()) { |
|---|
| 304 | swap(*e1, *e2); |
|---|
| 305 | } |
|---|
| 306 | } |
|---|
| 307 | |
|---|
| 308 | inline void sortOldestFirst(AP_tree_edge **e1, AP_tree_edge **e2, AP_tree_edge **e3) { |
|---|
| 309 | sortOldestFirst(e1, e2); |
|---|
| 310 | sortOldestFirst(e2, e3); |
|---|
| 311 | sortOldestFirst(e1, e2); |
|---|
| 312 | } |
|---|
| 313 | |
|---|
| 314 | void AP_tree_nlen::initial_insert(AP_tree_nlen *newBrother, AP_pars_root *troot) { |
|---|
| 315 | // construct initial tree from 'this' and 'newBrother' |
|---|
| 316 | // (both have to be leafs) |
|---|
| 317 | |
|---|
| 318 | ap_assert(newBrother); |
|---|
| 319 | ap_assert(is_leaf()); |
|---|
| 320 | ap_assert(newBrother->is_leaf()); |
|---|
| 321 | |
|---|
| 322 | AP_tree::initial_insert(newBrother, troot); |
|---|
| 323 | makeEdge(newBrother, this); // build the root edge |
|---|
| 324 | |
|---|
| 325 | ASSERT_VALID_TREE(this->get_father()); |
|---|
| 326 | } |
|---|
| 327 | |
|---|
| 328 | void AP_tree_nlen::insert(AP_tree_nlen *newBrother) { |
|---|
| 329 | // inserts 'this' (a new node) at the father-edge of 'newBrother' |
|---|
| 330 | ap_assert(newBrother); |
|---|
| 331 | ap_assert(rootNode()->has_valid_root_remarks()); |
|---|
| 332 | |
|---|
| 333 | ASSERT_VALID_TREE(this); |
|---|
| 334 | ASSERT_VALID_TREE(newBrother); |
|---|
| 335 | |
|---|
| 336 | ap_main->push_node(this, STRUCTURE); |
|---|
| 337 | ap_main->push_node(newBrother, STRUCTURE); |
|---|
| 338 | |
|---|
| 339 | AP_tree_nlen *brothersFather = newBrother->get_father(); |
|---|
| 340 | if (brothersFather) { |
|---|
| 341 | ap_main->push_node(brothersFather, BOTH); |
|---|
| 342 | push_all_upnode_sequences(brothersFather); |
|---|
| 343 | |
|---|
| 344 | if (brothersFather->get_father()) { |
|---|
| 345 | AP_tree_edge *oldEdge = newBrother->edgeTo(newBrother->get_father())->unlink(); |
|---|
| 346 | AP_tree::insert(newBrother); |
|---|
| 347 | oldEdge->relink(get_father(), get_father()->get_father()); |
|---|
| 348 | } |
|---|
| 349 | else { // insert to son of root |
|---|
| 350 | AP_tree_nlen *brothersOldBrother = newBrother->get_brother(); |
|---|
| 351 | ap_main->push_node(brothersOldBrother, STRUCTURE); |
|---|
| 352 | |
|---|
| 353 | AP_tree_edge *oldEdge = newBrother->edgeTo(brothersOldBrother)->unlink(); |
|---|
| 354 | AP_tree::insert(newBrother); |
|---|
| 355 | oldEdge->relink(get_father(), get_father()->get_brother()); |
|---|
| 356 | } |
|---|
| 357 | |
|---|
| 358 | makeEdge(this, get_father()); |
|---|
| 359 | makeEdge(get_father(), newBrother); |
|---|
| 360 | |
|---|
| 361 | ASSERT_VALID_TREE(get_father()->get_father()); |
|---|
| 362 | } |
|---|
| 363 | else { // insert at root |
|---|
| 364 | ap_assert(!newBrother->is_leaf()); // either swap 'this' and 'newBrother' or use initial_insert() to construct the initial tree |
|---|
| 365 | |
|---|
| 366 | AP_tree_nlen *lson = newBrother->get_leftson(); |
|---|
| 367 | AP_tree_nlen *rson = newBrother->get_rightson(); |
|---|
| 368 | |
|---|
| 369 | ap_main->push_node(lson, STRUCTURE); |
|---|
| 370 | ap_main->push_node(rson, STRUCTURE); |
|---|
| 371 | |
|---|
| 372 | AP_tree_edge *oldEdge = lson->edgeTo(rson)->unlink(); |
|---|
| 373 | |
|---|
| 374 | AP_tree::insert(newBrother); |
|---|
| 375 | |
|---|
| 376 | oldEdge->relink(this, newBrother); |
|---|
| 377 | makeEdge(newBrother, rson); |
|---|
| 378 | makeEdge(newBrother, lson); |
|---|
| 379 | |
|---|
| 380 | ASSERT_VALID_TREE(get_father()); |
|---|
| 381 | } |
|---|
| 382 | ap_assert(rootNode()->has_valid_root_remarks()); |
|---|
| 383 | } |
|---|
| 384 | |
|---|
| 385 | AP_tree_nlen *AP_tree_nlen::REMOVE() { |
|---|
| 386 | // Removes 'this' and its father from the tree: |
|---|
| 387 | // |
|---|
| 388 | // grandpa grandpa |
|---|
| 389 | // / / |
|---|
| 390 | // / / |
|---|
| 391 | // father => brother |
|---|
| 392 | // / \ . |
|---|
| 393 | // / \ . |
|---|
| 394 | // this brother |
|---|
| 395 | // |
|---|
| 396 | // One of the edges is relinked between brother and grandpa. |
|---|
| 397 | // 'father' is destroyed, 'this' is returned. |
|---|
| 398 | |
|---|
| 399 | AP_tree_nlen *oldBrother = get_brother(); |
|---|
| 400 | |
|---|
| 401 | ASSERT_VALID_TREE(this); |
|---|
| 402 | |
|---|
| 403 | ap_assert(father); // can't remove complete tree, |
|---|
| 404 | |
|---|
| 405 | ap_main->push_node(this, STRUCTURE); |
|---|
| 406 | ap_main->push_node(oldBrother, STRUCTURE); |
|---|
| 407 | push_all_upnode_sequences(get_father()); |
|---|
| 408 | |
|---|
| 409 | AP_tree_edge *oldEdge; |
|---|
| 410 | AP_tree_nlen *grandPa = get_father()->get_father(); |
|---|
| 411 | if (grandPa) { |
|---|
| 412 | ASSERT_VALID_TREE(grandPa); |
|---|
| 413 | |
|---|
| 414 | ap_main->push_node(get_father(), BOTH); |
|---|
| 415 | ap_main->push_node(grandPa, STRUCTURE); |
|---|
| 416 | |
|---|
| 417 | destroyEdge(edgeTo(get_father())->unlink()); |
|---|
| 418 | destroyEdge(get_father()->edgeTo(oldBrother)->unlink()); |
|---|
| 419 | |
|---|
| 420 | if (grandPa->father) { |
|---|
| 421 | oldEdge = get_father()->edgeTo(grandPa)->unlink(); |
|---|
| 422 | AP_tree::REMOVE(); |
|---|
| 423 | oldEdge->relink(oldBrother, grandPa); |
|---|
| 424 | } |
|---|
| 425 | else { // remove grandson of root |
|---|
| 426 | AP_tree_nlen *uncle = get_father()->get_brother(); |
|---|
| 427 | ap_main->push_node(uncle, STRUCTURE); |
|---|
| 428 | |
|---|
| 429 | oldEdge = get_father()->edgeTo(uncle)->unlink(); |
|---|
| 430 | AP_tree::REMOVE(); |
|---|
| 431 | oldEdge->relink(oldBrother, uncle); |
|---|
| 432 | } |
|---|
| 433 | ASSERT_VALID_TREE(grandPa); |
|---|
| 434 | } |
|---|
| 435 | else { // remove son of root |
|---|
| 436 | AP_tree_nlen *oldRoot = get_father(); |
|---|
| 437 | ASSERT_VALID_TREE(oldRoot); |
|---|
| 438 | |
|---|
| 439 | if (oldBrother->is_leaf()) { |
|---|
| 440 | // root |
|---|
| 441 | // oo |
|---|
| 442 | // o o |
|---|
| 443 | // o o |
|---|
| 444 | // oldBrother --- this -----> NULp |
|---|
| 445 | // |
|---|
| 446 | ap_main->push_node(oldRoot, ROOT); |
|---|
| 447 | |
|---|
| 448 | destroyEdge(edgeTo(oldBrother)->unlink()); |
|---|
| 449 | |
|---|
| 450 | #if defined(ASSERTION_USED) |
|---|
| 451 | AP_pars_root *troot = get_tree_root(); |
|---|
| 452 | #endif // ASSERTION_USED |
|---|
| 453 | AP_tree::REMOVE(); |
|---|
| 454 | ap_assert(!troot->get_root_node()); // tree should have been removed |
|---|
| 455 | } |
|---|
| 456 | else { |
|---|
| 457 | // |
|---|
| 458 | // root |
|---|
| 459 | // oo . |
|---|
| 460 | // o o root (=oldBrother) |
|---|
| 461 | // o o oo . |
|---|
| 462 | // oldBrother --- this -----> o o . |
|---|
| 463 | // /\ o o . |
|---|
| 464 | // / \ lson ----- rson |
|---|
| 465 | // / \ . |
|---|
| 466 | // lson rson |
|---|
| 467 | // |
|---|
| 468 | AP_tree_nlen *lson = oldBrother->get_leftson(); |
|---|
| 469 | AP_tree_nlen *rson = oldBrother->get_rightson(); |
|---|
| 470 | |
|---|
| 471 | ap_assert(lson && rson); |
|---|
| 472 | |
|---|
| 473 | ap_main->push_node(lson, STRUCTURE); |
|---|
| 474 | ap_main->push_node(rson, STRUCTURE); |
|---|
| 475 | ap_main->push_node(oldRoot, ROOT); |
|---|
| 476 | |
|---|
| 477 | destroyEdge(edgeTo(oldBrother)->unlink()); |
|---|
| 478 | destroyEdge(oldBrother->edgeTo(lson)->unlink()); |
|---|
| 479 | |
|---|
| 480 | oldEdge = oldBrother->edgeTo(rson)->unlink(); |
|---|
| 481 | AP_tree::REMOVE(); |
|---|
| 482 | oldEdge->relink(lson, rson); |
|---|
| 483 | |
|---|
| 484 | ap_assert(lson->get_tree_root()->get_root_node() == oldBrother); |
|---|
| 485 | ASSERT_VALID_TREE(oldBrother); |
|---|
| 486 | } |
|---|
| 487 | } |
|---|
| 488 | |
|---|
| 489 | father = NULp; |
|---|
| 490 | set_tree_root(NULp); |
|---|
| 491 | |
|---|
| 492 | ASSERT_VALID_TREE(this); |
|---|
| 493 | return this; |
|---|
| 494 | } |
|---|
| 495 | |
|---|
| 496 | void AP_tree_nlen::swap_sons() { |
|---|
| 497 | ap_assert(!is_leaf()); // cannot swap sons at leafs |
|---|
| 498 | |
|---|
| 499 | ap_main->push_node(this, STRUCTURE); |
|---|
| 500 | AP_tree::swap_sons(); |
|---|
| 501 | } |
|---|
| 502 | |
|---|
| 503 | void AP_tree_nlen::swap_assymetric(AP_TREE_SIDE mode) { |
|---|
| 504 | // mode AP_LEFT exchanges leftson with brother |
|---|
| 505 | // mode AP_RIGHT exchanges rightson with brother |
|---|
| 506 | |
|---|
| 507 | // @@@ "NNI" works really bad for keeled groups (fixable?; #785) |
|---|
| 508 | |
|---|
| 509 | ap_assert(!is_leaf()); // cannot swap leafs |
|---|
| 510 | ap_assert(father); // cannot swap root (has no brother) |
|---|
| 511 | ap_assert(mode == AP_LEFT || mode == AP_RIGHT); // illegal mode |
|---|
| 512 | |
|---|
| 513 | AP_tree_nlen *oldBrother = get_brother(); |
|---|
| 514 | AP_tree_nlen *movedSon = mode == AP_LEFT ? get_leftson() : get_rightson(); |
|---|
| 515 | |
|---|
| 516 | if (!father->father) { |
|---|
| 517 | // son of root case |
|---|
| 518 | // take leftson of brother to exchange with |
|---|
| 519 | |
|---|
| 520 | if (!oldBrother->is_leaf()) { // swap needed ? |
|---|
| 521 | AP_tree_nlen *nephew = oldBrother->get_leftson(); |
|---|
| 522 | |
|---|
| 523 | ap_main->push_node(this, BOTH); |
|---|
| 524 | ap_main->push_node(movedSon, STRUCTURE); |
|---|
| 525 | ap_main->push_node(get_father(), SEQUENCE); |
|---|
| 526 | ap_main->push_node(nephew, STRUCTURE); |
|---|
| 527 | ap_main->push_node(oldBrother, BOTH); |
|---|
| 528 | |
|---|
| 529 | AP_tree_edge *edge1 = edgeTo(movedSon)->unlink(); |
|---|
| 530 | AP_tree_edge *edge2 = oldBrother->edgeTo(nephew)->unlink(); |
|---|
| 531 | |
|---|
| 532 | if (mode == AP_LEFT) { |
|---|
| 533 | swap(leftson->father, nephew->father); |
|---|
| 534 | swap(leftson, oldBrother->leftson); |
|---|
| 535 | } |
|---|
| 536 | else { |
|---|
| 537 | swap(rightson->father, nephew->father); |
|---|
| 538 | swap(rightson, oldBrother->leftson); |
|---|
| 539 | } |
|---|
| 540 | |
|---|
| 541 | edge2->relink(this, nephew); |
|---|
| 542 | edge1->relink(oldBrother, movedSon); |
|---|
| 543 | |
|---|
| 544 | if (nephew->gr.mark_sum != movedSon->gr.mark_sum) { |
|---|
| 545 | get_brother()->recalc_marked_from_sons(); |
|---|
| 546 | this->recalc_marked_from_sons_and_forward_upwards(); |
|---|
| 547 | } |
|---|
| 548 | } |
|---|
| 549 | } |
|---|
| 550 | else { |
|---|
| 551 | ap_main->push_node(this, BOTH); |
|---|
| 552 | ap_main->push_node(get_father(), BOTH); |
|---|
| 553 | ap_main->push_node(oldBrother, STRUCTURE); |
|---|
| 554 | ap_main->push_node(movedSon, STRUCTURE); |
|---|
| 555 | |
|---|
| 556 | push_all_upnode_sequences(get_father()); |
|---|
| 557 | |
|---|
| 558 | AP_tree_edge *edge1 = edgeTo(movedSon)->unlink(); |
|---|
| 559 | AP_tree_edge *edge2 = get_father()->edgeTo(oldBrother)->unlink(); |
|---|
| 560 | |
|---|
| 561 | if (mode == AP_LEFT) { // swap leftson with brother |
|---|
| 562 | swap(leftson->father, oldBrother->father); |
|---|
| 563 | if (father->leftson == this) { |
|---|
| 564 | swap(leftson, father->rightson); |
|---|
| 565 | } |
|---|
| 566 | else { |
|---|
| 567 | swap(leftson, father->leftson); |
|---|
| 568 | } |
|---|
| 569 | } |
|---|
| 570 | else { // swap rightson with brother |
|---|
| 571 | swap(rightson->father, oldBrother->father); |
|---|
| 572 | if (father->leftson == this) { |
|---|
| 573 | swap(rightson, father->rightson); |
|---|
| 574 | } |
|---|
| 575 | else { |
|---|
| 576 | swap(rightson, father->leftson); |
|---|
| 577 | } |
|---|
| 578 | } |
|---|
| 579 | |
|---|
| 580 | edge2->relink(this, oldBrother); |
|---|
| 581 | edge1->relink(get_father(), movedSon); |
|---|
| 582 | |
|---|
| 583 | if (oldBrother->gr.mark_sum != movedSon->gr.mark_sum) { |
|---|
| 584 | recalc_marked_from_sons_and_forward_upwards(); // father is done implicit |
|---|
| 585 | } |
|---|
| 586 | } |
|---|
| 587 | } |
|---|
| 588 | |
|---|
| 589 | void AP_tree_nlen::set_root() { |
|---|
| 590 | if (at_root()) return; // already root |
|---|
| 591 | |
|---|
| 592 | // from this to root buffer the nodes |
|---|
| 593 | ap_main->push_node(this, STRUCTURE); |
|---|
| 594 | ap_assert(rootNode()->has_valid_root_remarks()); |
|---|
| 595 | |
|---|
| 596 | AP_tree_nlen *son_of_root = NULp; // in previous topology 'this' was contained inside 'son_of_root' |
|---|
| 597 | AP_tree_nlen *old_root = NULp; |
|---|
| 598 | { |
|---|
| 599 | AP_tree_nlen *pntr; |
|---|
| 600 | for (pntr = get_father(); pntr->father; pntr = pntr->get_father()) { |
|---|
| 601 | ap_main->push_node(pntr, BOTH); |
|---|
| 602 | son_of_root = pntr; |
|---|
| 603 | } |
|---|
| 604 | old_root = pntr; |
|---|
| 605 | } |
|---|
| 606 | |
|---|
| 607 | ap_assert(son_of_root); // always true |
|---|
| 608 | |
|---|
| 609 | { |
|---|
| 610 | AP_tree_nlen *other_son_of_root = son_of_root->get_brother(); |
|---|
| 611 | ap_main->push_node(other_son_of_root, STRUCTURE); |
|---|
| 612 | } |
|---|
| 613 | |
|---|
| 614 | ap_main->push_node(old_root, ROOT); |
|---|
| 615 | ap_assert(old_root->has_valid_root_remarks()); |
|---|
| 616 | AP_tree::set_root(); |
|---|
| 617 | |
|---|
| 618 | for (AP_tree_nlen *node = son_of_root; node ; node = node->get_father()) { |
|---|
| 619 | node->recalc_marked_from_sons(); |
|---|
| 620 | } |
|---|
| 621 | } |
|---|
| 622 | |
|---|
| 623 | void AP_tree_nlen::moveNextTo(AP_tree_nlen *newBrother, AP_FLOAT rel_pos) { |
|---|
| 624 | // Note: see http://bugs.arb-home.de/ticket/627#comment:8 for an experimental |
|---|
| 625 | // replacement of moveNextTo with REMOVE() + insert() |
|---|
| 626 | |
|---|
| 627 | ap_assert(father); |
|---|
| 628 | ap_assert(newBrother); |
|---|
| 629 | ap_assert(newBrother->father); |
|---|
| 630 | ap_assert(newBrother->father != father); // already there |
|---|
| 631 | ap_assert(newBrother != father); // already there |
|---|
| 632 | |
|---|
| 633 | ASSERT_VALID_TREE(rootNode()); |
|---|
| 634 | |
|---|
| 635 | // push everything that will be modified onto stack |
|---|
| 636 | ap_main->push_node(this, STRUCTURE); |
|---|
| 637 | ap_main->push_node(get_brother(), STRUCTURE); |
|---|
| 638 | |
|---|
| 639 | if (father->father) { |
|---|
| 640 | AP_tree_nlen *grandpa = get_father()->get_father(); |
|---|
| 641 | |
|---|
| 642 | ap_main->push_node(get_father(), BOTH); |
|---|
| 643 | |
|---|
| 644 | if (grandpa->father) { |
|---|
| 645 | ap_main->push_node(grandpa, BOTH); |
|---|
| 646 | push_all_upnode_sequences(grandpa); |
|---|
| 647 | } |
|---|
| 648 | else { // 'this' is grandson of root |
|---|
| 649 | ap_main->push_node(grandpa, ROOT); |
|---|
| 650 | ap_main->push_node(get_father()->get_brother(), STRUCTURE); |
|---|
| 651 | } |
|---|
| 652 | } |
|---|
| 653 | else { // 'this' is son of root |
|---|
| 654 | ap_main->push_node(get_father(), ROOT); |
|---|
| 655 | |
|---|
| 656 | if (!get_brother()->is_leaf()) { |
|---|
| 657 | ap_main->push_node(get_brother()->get_leftson(), STRUCTURE); |
|---|
| 658 | ap_main->push_node(get_brother()->get_rightson(), STRUCTURE); |
|---|
| 659 | } |
|---|
| 660 | } |
|---|
| 661 | |
|---|
| 662 | ap_main->push_node(newBrother, STRUCTURE); |
|---|
| 663 | if (newBrother->father) { |
|---|
| 664 | AP_tree_nlen *newBrothersFather = newBrother->get_father(); |
|---|
| 665 | ap_main->push_node(newBrothersFather, BOTH); |
|---|
| 666 | if (newBrothersFather->is_son_of_root()) { |
|---|
| 667 | ap_main->push_node(newBrothersFather->get_brother(), STRUCTURE); |
|---|
| 668 | } |
|---|
| 669 | |
|---|
| 670 | if (newBrother->is_son_of_root()) { // move to son of root |
|---|
| 671 | ap_main->push_node(newBrother->get_brother(), STRUCTURE); |
|---|
| 672 | } |
|---|
| 673 | push_all_upnode_sequences(newBrothersFather); |
|---|
| 674 | } |
|---|
| 675 | |
|---|
| 676 | AP_tree_nlen *thisFather = get_father(); |
|---|
| 677 | AP_tree_nlen *grandFather = thisFather->get_father(); |
|---|
| 678 | AP_tree_nlen *oldBrother = get_brother(); |
|---|
| 679 | AP_tree_nlen *newBrothersFather = newBrother->get_father(); |
|---|
| 680 | AP_tree_edge *e1, *e2, *e3; |
|---|
| 681 | |
|---|
| 682 | if (thisFather==newBrothersFather->get_father()) { // son -> son of brother |
|---|
| 683 | if (grandFather) { |
|---|
| 684 | if (grandFather->get_father()) { |
|---|
| 685 | // covered by test at PARS_main.cxx@COVER3 |
|---|
| 686 | thisFather->unlinkAllEdges(&e1, &e2, &e3); |
|---|
| 687 | AP_tree_edge *e4 = newBrother->edgeTo(oldBrother)->unlink(); |
|---|
| 688 | |
|---|
| 689 | AP_tree::moveNextTo(newBrother, rel_pos); |
|---|
| 690 | |
|---|
| 691 | sortOldestFirst(&e1, &e2, &e3); |
|---|
| 692 | e1->relink(oldBrother, grandFather); // use oldest edge at remove position |
|---|
| 693 | thisFather->linkAllEdges(e2, e3, e4); |
|---|
| 694 | } |
|---|
| 695 | else { // grandson of root -> son of brother |
|---|
| 696 | // covered by test at PARS_main.cxx@COVER2 |
|---|
| 697 | AP_tree_nlen *uncle = thisFather->get_brother(); |
|---|
| 698 | |
|---|
| 699 | thisFather->unlinkAllEdges(&e1, &e2, &e3); |
|---|
| 700 | AP_tree_edge *e4 = newBrother->edgeTo(oldBrother)->unlink(); |
|---|
| 701 | |
|---|
| 702 | AP_tree::moveNextTo(newBrother, rel_pos); |
|---|
| 703 | |
|---|
| 704 | sortOldestFirst(&e1, &e2, &e3); |
|---|
| 705 | e1->relink(oldBrother, uncle); |
|---|
| 706 | thisFather->linkAllEdges(e2, e3, e4); |
|---|
| 707 | } |
|---|
| 708 | } |
|---|
| 709 | else { // son of root -> grandson of root |
|---|
| 710 | // covered by test at PARS_main.cxx@COVER1 |
|---|
| 711 | oldBrother->unlinkAllEdges(&e1, &e2, &e3); |
|---|
| 712 | AP_tree::moveNextTo(newBrother, rel_pos); |
|---|
| 713 | thisFather->linkAllEdges(e1, e2, e3); |
|---|
| 714 | } |
|---|
| 715 | } |
|---|
| 716 | else if (grandFather==newBrothersFather) { // son -> brother of father |
|---|
| 717 | if (grandFather->father) { |
|---|
| 718 | // covered by test at PARS_main.cxx@COVER4 |
|---|
| 719 | thisFather->unlinkAllEdges(&e1, &e2, &e3); |
|---|
| 720 | AP_tree_edge *e4 = grandFather->edgeTo(newBrother)->unlink(); |
|---|
| 721 | |
|---|
| 722 | AP_tree::moveNextTo(newBrother, rel_pos); |
|---|
| 723 | |
|---|
| 724 | sortOldestFirst(&e1, &e2, &e3); |
|---|
| 725 | e1->relink(oldBrother, grandFather); |
|---|
| 726 | thisFather->linkAllEdges(e2, e3, e4); |
|---|
| 727 | } |
|---|
| 728 | else { // no edges change if we move grandson of root -> son of root |
|---|
| 729 | AP_tree::moveNextTo(newBrother, rel_pos); |
|---|
| 730 | } |
|---|
| 731 | } |
|---|
| 732 | else { |
|---|
| 733 | // now we are sure, the minimal distance |
|---|
| 734 | // between 'this' and 'newBrother' is 4 edges |
|---|
| 735 | // or if the root-edge is between them, the |
|---|
| 736 | // minimal distance is 3 edges |
|---|
| 737 | |
|---|
| 738 | if (!grandFather) { // son of root |
|---|
| 739 | oldBrother->unlinkAllEdges(&e1, &e2, &e3); |
|---|
| 740 | AP_tree_edge *e4 = newBrother->edgeTo(newBrothersFather)->unlink(); |
|---|
| 741 | |
|---|
| 742 | AP_tree::moveNextTo(newBrother, rel_pos); |
|---|
| 743 | |
|---|
| 744 | sortOldestFirst(&e1, &e2, &e3); |
|---|
| 745 | e1->relink(oldBrother->get_leftson(), oldBrother->get_rightson()); // new root-edge |
|---|
| 746 | thisFather->linkAllEdges(e2, e3, e4); // old root |
|---|
| 747 | } |
|---|
| 748 | else if (!grandFather->get_father()) { // grandson of root |
|---|
| 749 | if (newBrothersFather->is_son_of_root()) { // grandson of root -> grandson of root |
|---|
| 750 | thisFather->unlinkAllEdges(&e1, &e2, &e3); |
|---|
| 751 | AP_tree_edge *e4 = newBrother->edgeTo(newBrothersFather)->unlink(); |
|---|
| 752 | |
|---|
| 753 | AP_tree::moveNextTo(newBrother, rel_pos); |
|---|
| 754 | |
|---|
| 755 | sortOldestFirst(&e1, &e2, &e3); |
|---|
| 756 | e1->relink(oldBrother, newBrothersFather); // new root-edge |
|---|
| 757 | thisFather->linkAllEdges(e2, e3, e4); |
|---|
| 758 | } |
|---|
| 759 | else { |
|---|
| 760 | AP_tree_nlen *uncle = thisFather->get_brother(); |
|---|
| 761 | |
|---|
| 762 | thisFather->unlinkAllEdges(&e1, &e2, &e3); |
|---|
| 763 | AP_tree_edge *e4 = newBrother->edgeTo(newBrothersFather)->unlink(); |
|---|
| 764 | |
|---|
| 765 | AP_tree::moveNextTo(newBrother, rel_pos); |
|---|
| 766 | |
|---|
| 767 | sortOldestFirst(&e1, &e2, &e3); |
|---|
| 768 | e1->relink(oldBrother, uncle); |
|---|
| 769 | thisFather->linkAllEdges(e2, e3, e4); |
|---|
| 770 | } |
|---|
| 771 | } |
|---|
| 772 | else { |
|---|
| 773 | if (!newBrothersFather->get_father()) { // move to son of root |
|---|
| 774 | AP_tree_nlen *newBrothersBrother = newBrother->get_brother(); |
|---|
| 775 | |
|---|
| 776 | thisFather->unlinkAllEdges(&e1, &e2, &e3); |
|---|
| 777 | AP_tree_edge *e4 = newBrother->edgeTo(newBrothersBrother)->unlink(); |
|---|
| 778 | |
|---|
| 779 | AP_tree::moveNextTo(newBrother, rel_pos); |
|---|
| 780 | |
|---|
| 781 | sortOldestFirst(&e1, &e2, &e3); |
|---|
| 782 | e1->relink(oldBrother, grandFather); |
|---|
| 783 | thisFather->linkAllEdges(e2, e3, e4); |
|---|
| 784 | } |
|---|
| 785 | else { // simple independent move |
|---|
| 786 | thisFather->unlinkAllEdges(&e1, &e2, &e3); |
|---|
| 787 | AP_tree_edge *e4 = newBrother->edgeTo(newBrothersFather)->unlink(); |
|---|
| 788 | |
|---|
| 789 | AP_tree::moveNextTo(newBrother, rel_pos); |
|---|
| 790 | |
|---|
| 791 | sortOldestFirst(&e1, &e2, &e3); |
|---|
| 792 | e1->relink(oldBrother, grandFather); |
|---|
| 793 | thisFather->linkAllEdges(e2, e3, e4); |
|---|
| 794 | } |
|---|
| 795 | } |
|---|
| 796 | } |
|---|
| 797 | |
|---|
| 798 | ASSERT_VALID_TREE(this); |
|---|
| 799 | ASSERT_VALID_TREE(rootNode()); |
|---|
| 800 | |
|---|
| 801 | ap_assert(is_leftson()); |
|---|
| 802 | ap_assert(get_brother() == newBrother); |
|---|
| 803 | } |
|---|
| 804 | |
|---|
| 805 | void AP_tree_nlen::unhash_sequence() { |
|---|
| 806 | /*! removes the parsimony sequence from an inner node |
|---|
| 807 | * (has no effect for leafs) |
|---|
| 808 | */ |
|---|
| 809 | |
|---|
| 810 | AP_sequence *sequence = get_seq(); |
|---|
| 811 | if (sequence && !is_leaf()) sequence->forget_sequence(); |
|---|
| 812 | } |
|---|
| 813 | |
|---|
| 814 | bool AP_tree_nlen::acceptCurrentState(Level frame_level) { |
|---|
| 815 | // returns |
|---|
| 816 | // - true if the top state has been removed |
|---|
| 817 | // - false if the top state was kept/extended for possible revert at lower frame_level |
|---|
| 818 | |
|---|
| 819 | if (remembered_for_frame != frame_level) { |
|---|
| 820 | ap_assert(0); // internal control number check failed |
|---|
| 821 | return false; |
|---|
| 822 | } |
|---|
| 823 | |
|---|
| 824 | NodeState *state = states.pop(); |
|---|
| 825 | bool removed = true; |
|---|
| 826 | |
|---|
| 827 | Level next_frame_level = frame_level-1; |
|---|
| 828 | Level stored_frame_level = state->frameNr; |
|---|
| 829 | |
|---|
| 830 | if (!next_frame_level) { // accept() called at top-level |
|---|
| 831 | delete state; |
|---|
| 832 | } |
|---|
| 833 | else if (stored_frame_level == next_frame_level) { |
|---|
| 834 | // node already is buffered for next_frame_level |
|---|
| 835 | |
|---|
| 836 | // if the currently accepted state->mode is not completely covered by previous state->mode |
|---|
| 837 | // => a future revert() would only restore partially |
|---|
| 838 | // To avoid that, move missing state information to previous NodeState |
|---|
| 839 | { |
|---|
| 840 | NodeState *prev_state = states.top(); |
|---|
| 841 | AP_STACK_MODE prev_mode = prev_state->mode; |
|---|
| 842 | AP_STACK_MODE common = AP_STACK_MODE(prev_mode & state->mode); |
|---|
| 843 | |
|---|
| 844 | if (common != state->mode) { |
|---|
| 845 | AP_STACK_MODE missing = AP_STACK_MODE(state->mode & ~common); // previous is missing this state information |
|---|
| 846 | |
|---|
| 847 | ap_assert((prev_mode&missing) == NOTHING); |
|---|
| 848 | state->move_info_to(*prev_state, missing); |
|---|
| 849 | } |
|---|
| 850 | } |
|---|
| 851 | |
|---|
| 852 | delete state; |
|---|
| 853 | } |
|---|
| 854 | else { |
|---|
| 855 | // keep state for future revert |
|---|
| 856 | states.push(state); |
|---|
| 857 | removed = false; |
|---|
| 858 | } |
|---|
| 859 | remembered_for_frame = next_frame_level; |
|---|
| 860 | |
|---|
| 861 | return removed; |
|---|
| 862 | } |
|---|
| 863 | |
|---|
| 864 | |
|---|
| 865 | bool AP_tree_nlen::rememberState(AP_STACK_MODE mode, Level frame_level) { |
|---|
| 866 | // according to mode |
|---|
| 867 | // tree_structure or sequence is buffered in the node |
|---|
| 868 | |
|---|
| 869 | NodeState *store; |
|---|
| 870 | bool ret; |
|---|
| 871 | |
|---|
| 872 | if (is_leaf() && !(STRUCTURE & mode)) return false; // tips push only structure |
|---|
| 873 | |
|---|
| 874 | if (remembered_for_frame == frame_level) { // node already has a push (at current frame_level) |
|---|
| 875 | NodeState *is_stored = states.top(); |
|---|
| 876 | |
|---|
| 877 | if (0 == (mode & ~is_stored->mode)) { // already buffered |
|---|
| 878 | AP_sequence *sequence = get_seq(); |
|---|
| 879 | if (sequence && (mode & SEQUENCE)) sequence->forget_sequence(); |
|---|
| 880 | return false; |
|---|
| 881 | } |
|---|
| 882 | store = is_stored; |
|---|
| 883 | ret = false; |
|---|
| 884 | } |
|---|
| 885 | else { // first push for this node (in current stack frame) |
|---|
| 886 | store = new NodeState(remembered_for_frame); |
|---|
| 887 | states.push(store); |
|---|
| 888 | |
|---|
| 889 | remembered_for_frame = frame_level; |
|---|
| 890 | ret = true; |
|---|
| 891 | } |
|---|
| 892 | |
|---|
| 893 | if ((mode & (STRUCTURE|SEQUENCE)) && !(store->mode & (STRUCTURE|SEQUENCE))) { |
|---|
| 894 | store->mark_sum = gr.mark_sum; |
|---|
| 895 | } |
|---|
| 896 | if ((mode & STRUCTURE) && !(store->mode & STRUCTURE)) { |
|---|
| 897 | store->father = get_father(); |
|---|
| 898 | store->leftson = get_leftson(); |
|---|
| 899 | store->rightson = get_rightson(); |
|---|
| 900 | store->leftlen = leftlen; |
|---|
| 901 | store->rightlen = rightlen; |
|---|
| 902 | store->root = get_tree_root(); |
|---|
| 903 | store->gb_node = gb_node; |
|---|
| 904 | store->keelState = keeledStateInfo(); |
|---|
| 905 | |
|---|
| 906 | if (!is_leaf()) store->remark = get_remark_ptr(); |
|---|
| 907 | |
|---|
| 908 | for (int e=0; e<3; e++) { |
|---|
| 909 | store->edge[e] = edge[e]; |
|---|
| 910 | store->edgeIndex[e] = index[e]; |
|---|
| 911 | } |
|---|
| 912 | } |
|---|
| 913 | |
|---|
| 914 | if (mode & SEQUENCE) { |
|---|
| 915 | ap_assert(!is_leaf()); // only allowed to push SEQUENCE for inner nodes |
|---|
| 916 | if (!(store->mode & SEQUENCE)) { |
|---|
| 917 | AP_sequence *sequence = take_seq(); |
|---|
| 918 | store->sequence = sequence; |
|---|
| 919 | store->mutations = mutations; |
|---|
| 920 | mutations = 0; |
|---|
| 921 | } |
|---|
| 922 | else { |
|---|
| 923 | AP_sequence *sequence = get_seq(); |
|---|
| 924 | if (sequence) sequence->forget_sequence(); |
|---|
| 925 | } |
|---|
| 926 | } |
|---|
| 927 | |
|---|
| 928 | store->mode = (AP_STACK_MODE)(store->mode|mode); |
|---|
| 929 | |
|---|
| 930 | return ret; |
|---|
| 931 | } |
|---|
| 932 | |
|---|
| 933 | void NodeState::move_info_to(NodeState& target, AP_STACK_MODE what) { |
|---|
| 934 | // rescue partial NodeState information |
|---|
| 935 | |
|---|
| 936 | ap_assert((mode&what) == what); // this has to contain 'what' is moved |
|---|
| 937 | ap_assert((target.mode&what) == NOTHING); // target shall not already contain 'what' is moved |
|---|
| 938 | |
|---|
| 939 | if ((what & (STRUCTURE|SEQUENCE)) && !(target.mode & (STRUCTURE|SEQUENCE))) { |
|---|
| 940 | target.mark_sum = mark_sum; |
|---|
| 941 | } |
|---|
| 942 | if (what & STRUCTURE) { |
|---|
| 943 | target.father = father; |
|---|
| 944 | target.leftson = leftson; |
|---|
| 945 | target.rightson = rightson; |
|---|
| 946 | target.leftlen = leftlen; |
|---|
| 947 | target.rightlen = rightlen; |
|---|
| 948 | target.root = root; |
|---|
| 949 | target.gb_node = gb_node; |
|---|
| 950 | target.keelState = keelState; |
|---|
| 951 | target.remark = remark; |
|---|
| 952 | |
|---|
| 953 | for (int e=0; e<3; e++) { |
|---|
| 954 | target.edge[e] = edge[e]; |
|---|
| 955 | target.edgeIndex[e] = edgeIndex[e]; |
|---|
| 956 | } |
|---|
| 957 | } |
|---|
| 958 | if (what & SEQUENCE) { |
|---|
| 959 | target.sequence = sequence; |
|---|
| 960 | target.mutations = mutations; |
|---|
| 961 | sequence = NULp; |
|---|
| 962 | |
|---|
| 963 | } |
|---|
| 964 | // nothing needs to be done for ROOT |
|---|
| 965 | target.mode = AP_STACK_MODE(target.mode|what); |
|---|
| 966 | } |
|---|
| 967 | |
|---|
| 968 | void AP_tree_nlen::restore_structure(const NodeState& state) { |
|---|
| 969 | father = state.father; |
|---|
| 970 | leftson = state.leftson; |
|---|
| 971 | rightson = state.rightson; |
|---|
| 972 | leftlen = state.leftlen; |
|---|
| 973 | rightlen = state.rightlen; |
|---|
| 974 | set_tree_root(state.root); |
|---|
| 975 | gb_node = state.gb_node; |
|---|
| 976 | setKeeledState(state.keelState); |
|---|
| 977 | |
|---|
| 978 | if (!is_leaf()) use_as_remark(state.remark); |
|---|
| 979 | |
|---|
| 980 | gr.mark_sum = state.mark_sum; |
|---|
| 981 | |
|---|
| 982 | for (int e=0; e<3; e++) { |
|---|
| 983 | edge[e] = state.edge[e]; |
|---|
| 984 | index[e] = state.edgeIndex[e]; |
|---|
| 985 | if (edge[e]) { |
|---|
| 986 | edge[e]->index[index[e]] = e; |
|---|
| 987 | edge[e]->node[index[e]] = this; |
|---|
| 988 | } |
|---|
| 989 | } |
|---|
| 990 | } |
|---|
| 991 | void AP_tree_nlen::restore_sequence(NodeState& state) { |
|---|
| 992 | replace_seq(state.sequence); |
|---|
| 993 | state.sequence = NULp; |
|---|
| 994 | mutations = state.mutations; |
|---|
| 995 | gr.mark_sum = state.mark_sum; |
|---|
| 996 | } |
|---|
| 997 | void AP_tree_nlen::restore_sequence_nondestructive(const NodeState& state) { |
|---|
| 998 | replace_seq(state.sequence ? state.sequence->dup() : NULp); |
|---|
| 999 | mutations = state.mutations; |
|---|
| 1000 | } |
|---|
| 1001 | void AP_tree_nlen::restore_root(const NodeState& state) { |
|---|
| 1002 | state.root->change_root(state.root->get_root_node(), this); |
|---|
| 1003 | } |
|---|
| 1004 | |
|---|
| 1005 | void AP_tree_nlen::restore(NodeState& state) { |
|---|
| 1006 | //! restore 'this' from NodeState (cheap; only call once for each 'state') |
|---|
| 1007 | AP_STACK_MODE mode = state.mode; |
|---|
| 1008 | if (mode&STRUCTURE) restore_structure(state); |
|---|
| 1009 | if (mode&SEQUENCE) restore_sequence(state); |
|---|
| 1010 | if (ROOT==mode) restore_root(state); |
|---|
| 1011 | } |
|---|
| 1012 | void AP_tree_nlen::restore_nondestructive(const NodeState& state) { |
|---|
| 1013 | //! restore 'this' from NodeState (expensive; may be called multiple times for each 'state') |
|---|
| 1014 | AP_STACK_MODE mode = state.mode; |
|---|
| 1015 | if (mode&STRUCTURE) restore_structure(state); |
|---|
| 1016 | if (mode&SEQUENCE) restore_sequence_nondestructive(state); |
|---|
| 1017 | if (ROOT==mode) restore_root(state); |
|---|
| 1018 | } |
|---|
| 1019 | |
|---|
| 1020 | void AP_tree_nlen::revertToPreviousState(Level IF_ASSERTION_USED(curr_frameLevel), bool& IF_ASSERTION_USED(rootPopped)) { // pop old tree costs |
|---|
| 1021 | ap_assert(remembered_for_frame == curr_frameLevel); // error in node stack (node wasnt remembered in current frame!) |
|---|
| 1022 | |
|---|
| 1023 | NodeState *previous = states.pop(); |
|---|
| 1024 | #if defined(ASSERTION_USED) |
|---|
| 1025 | if (previous->mode == ROOT) { // @@@ remove test code later |
|---|
| 1026 | ap_assert(!rootPopped); // only allowed once |
|---|
| 1027 | rootPopped = true; |
|---|
| 1028 | } |
|---|
| 1029 | #endif |
|---|
| 1030 | restore(*previous); |
|---|
| 1031 | |
|---|
| 1032 | remembered_for_frame = previous->frameNr; |
|---|
| 1033 | delete previous; |
|---|
| 1034 | } |
|---|
| 1035 | |
|---|
| 1036 | void AP_tree_nlen::parsimony_rec(char *mutPerSite) { |
|---|
| 1037 | AP_combinableSeq *sequence = get_seq(); |
|---|
| 1038 | |
|---|
| 1039 | if (is_leaf()) { |
|---|
| 1040 | ap_assert(sequence); // tree w/o aliview? |
|---|
| 1041 | sequence->ensure_sequence_loaded(); |
|---|
| 1042 | } |
|---|
| 1043 | else { |
|---|
| 1044 | if (!sequence) { |
|---|
| 1045 | sequence = set_seq(get_tree_root()->get_seqTemplate()->dup()); |
|---|
| 1046 | ap_assert(sequence); |
|---|
| 1047 | } |
|---|
| 1048 | |
|---|
| 1049 | if (!sequence->hasSequence()) { |
|---|
| 1050 | AP_tree_nlen *lson = get_leftson(); |
|---|
| 1051 | AP_tree_nlen *rson = get_rightson(); |
|---|
| 1052 | |
|---|
| 1053 | ap_assert(lson); |
|---|
| 1054 | ap_assert(rson); |
|---|
| 1055 | |
|---|
| 1056 | lson->parsimony_rec(mutPerSite); |
|---|
| 1057 | rson->parsimony_rec(mutPerSite); |
|---|
| 1058 | |
|---|
| 1059 | AP_combinableSeq *lseq = lson->get_seq(); |
|---|
| 1060 | AP_combinableSeq *rseq = rson->get_seq(); |
|---|
| 1061 | |
|---|
| 1062 | ap_assert(lseq); |
|---|
| 1063 | ap_assert(rseq); |
|---|
| 1064 | |
|---|
| 1065 | Mutations mutations_for_combine = sequence->combine_seq(lseq, rseq, mutPerSite); |
|---|
| 1066 | mutations = lson->mutations + rson->mutations + mutations_for_combine; |
|---|
| 1067 | } |
|---|
| 1068 | } |
|---|
| 1069 | } |
|---|
| 1070 | |
|---|
| 1071 | Mutations AP_tree_nlen::costs(char *mutPerSite) { |
|---|
| 1072 | // returns costs of a tree ( = number of mutations) |
|---|
| 1073 | |
|---|
| 1074 | ap_assert(get_tree_root()->get_seqTemplate()); // forgot to set_seqTemplate() ? (previously returned 0.0 in this case) |
|---|
| 1075 | ap_assert(sequence_state_valid()); |
|---|
| 1076 | |
|---|
| 1077 | parsimony_rec(mutPerSite); |
|---|
| 1078 | return mutations; |
|---|
| 1079 | } |
|---|
| 1080 | |
|---|
| 1081 | Mutations AP_tree_nlen::nn_interchange_rec(EdgeSpec whichEdges, AP_BL_MODE mode) { |
|---|
| 1082 | if (!father) { |
|---|
| 1083 | return rootEdge()->nni_rec(whichEdges, mode, NULp, true); |
|---|
| 1084 | } |
|---|
| 1085 | if (!father->father) { |
|---|
| 1086 | AP_tree_edge *e = rootEdge(); |
|---|
| 1087 | return e->nni_rec(whichEdges, mode, e->otherNode(this), false); |
|---|
| 1088 | } |
|---|
| 1089 | return edgeTo(get_father())->nni_rec(whichEdges, mode, get_father(), false); |
|---|
| 1090 | } |
|---|
| 1091 | |
|---|
| 1092 | CONSTEXPR_INLINE AP_TREE_SIDE idx2side(const int idx) { |
|---|
| 1093 | return idx&1 ? AP_RIGHT : AP_LEFT; |
|---|
| 1094 | } |
|---|
| 1095 | |
|---|
| 1096 | bool AP_tree_edge::kl_rec(const KL_params& KL, const int rec_depth, Mutations pars_best) { |
|---|
| 1097 | /*! does K.L. recursion |
|---|
| 1098 | * @param KL parameters defining how recursion is done |
|---|
| 1099 | * @param rec_depth current recursion depth (starts with 0) |
|---|
| 1100 | * @param pars_best current parsimony value of topology |
|---|
| 1101 | */ |
|---|
| 1102 | |
|---|
| 1103 | ap_assert(!is_leaf_edge()); |
|---|
| 1104 | if (rec_depth >= KL.max_rec_depth) return false; |
|---|
| 1105 | |
|---|
| 1106 | ap_assert(implicated(rec_depth>0, kl_visited)); |
|---|
| 1107 | |
|---|
| 1108 | int order[8]; |
|---|
| 1109 | AP_tree_edge *descend[8]; |
|---|
| 1110 | |
|---|
| 1111 | { |
|---|
| 1112 | if (rec_depth == 0) { |
|---|
| 1113 | descend[0] = this; |
|---|
| 1114 | descend[2] = NULp; |
|---|
| 1115 | descend[4] = NULp; |
|---|
| 1116 | descend[6] = NULp; |
|---|
| 1117 | } |
|---|
| 1118 | else { |
|---|
| 1119 | AP_tree_nlen *son = sonNode(); |
|---|
| 1120 | AP_tree_nlen *notSon = otherNode(son); // brother or father |
|---|
| 1121 | |
|---|
| 1122 | descend[0] = notSon->nextEdge(this); |
|---|
| 1123 | descend[2] = notSon->nextEdge(descend[0]); |
|---|
| 1124 | |
|---|
| 1125 | ap_assert(descend[2] != this); |
|---|
| 1126 | |
|---|
| 1127 | descend[4] = son->nextEdge(this); |
|---|
| 1128 | descend[6] = son->nextEdge(descend[4]); |
|---|
| 1129 | |
|---|
| 1130 | ap_assert(descend[6] != this); |
|---|
| 1131 | } |
|---|
| 1132 | |
|---|
| 1133 | descend[1] = descend[0]; |
|---|
| 1134 | descend[3] = descend[2]; |
|---|
| 1135 | descend[5] = descend[4]; |
|---|
| 1136 | descend[7] = descend[6]; |
|---|
| 1137 | } |
|---|
| 1138 | |
|---|
| 1139 | // --------------------------------- |
|---|
| 1140 | // detect parsimony values |
|---|
| 1141 | |
|---|
| 1142 | ap_main->remember(); // @@@ i think this is unneeded. better reset root after all done in caller |
|---|
| 1143 | set_root(); |
|---|
| 1144 | rootNode()->costs(); |
|---|
| 1145 | |
|---|
| 1146 | int rec_width_dynamic = 0; |
|---|
| 1147 | int visited_subtrees = 0; |
|---|
| 1148 | int better_subtrees = 0; |
|---|
| 1149 | |
|---|
| 1150 | Mutations pars[8]; // eight parsimony values (produced by 2*swap_assymetric at each adjacent edge) |
|---|
| 1151 | |
|---|
| 1152 | #if defined(ASSERTION_USED) |
|---|
| 1153 | int forbidden_descends = 0; |
|---|
| 1154 | #endif |
|---|
| 1155 | { |
|---|
| 1156 | AP_FLOAT schwellwert = KL.thresFunctor.calculate(rec_depth); // @@@ skip if not needed |
|---|
| 1157 | for (int i = 0; i < 8; i++) { |
|---|
| 1158 | order[i] = i; |
|---|
| 1159 | AP_tree_edge * const subedge = descend[i]; |
|---|
| 1160 | |
|---|
| 1161 | if (subedge && |
|---|
| 1162 | !subedge->is_leaf_edge() && |
|---|
| 1163 | !subedge->kl_visited && |
|---|
| 1164 | (!KL.stopAtFoldedGroups || !subedge->next_to_folded_group()) |
|---|
| 1165 | ) |
|---|
| 1166 | { |
|---|
| 1167 | ap_main->remember(); |
|---|
| 1168 | subedge->sonNode()->swap_assymetric(idx2side(i)); |
|---|
| 1169 | pars[i] = rootNode()->costs(); |
|---|
| 1170 | if (pars[i] < pars_best) { |
|---|
| 1171 | better_subtrees++; |
|---|
| 1172 | pars_best = pars[i]; // @@@ do not overwrite yet; store and overwrite when done with this loop |
|---|
| 1173 | } |
|---|
| 1174 | if (pars[i] < schwellwert) { |
|---|
| 1175 | rec_width_dynamic++; |
|---|
| 1176 | } |
|---|
| 1177 | ap_main->revert(); |
|---|
| 1178 | visited_subtrees++; |
|---|
| 1179 | } |
|---|
| 1180 | else { |
|---|
| 1181 | pars[i] = -1; |
|---|
| 1182 | #if defined(ASSERTION_USED) |
|---|
| 1183 | if (subedge && subedge->kl_visited) { |
|---|
| 1184 | forbidden_descends++; |
|---|
| 1185 | } |
|---|
| 1186 | #endif |
|---|
| 1187 | } |
|---|
| 1188 | } |
|---|
| 1189 | } |
|---|
| 1190 | |
|---|
| 1191 | // bubblesort pars[]+order[], such that pars[0] contains best (=smallest) parsimony value |
|---|
| 1192 | { |
|---|
| 1193 | for (int i=7, t=0; t<i; t++) { // move negative (=unused) parsimony values to the end |
|---|
| 1194 | if (pars[t] <0) { |
|---|
| 1195 | pars[t] = pars[i]; |
|---|
| 1196 | order[t] = i; |
|---|
| 1197 | t--; |
|---|
| 1198 | i--; |
|---|
| 1199 | } |
|---|
| 1200 | } |
|---|
| 1201 | |
|---|
| 1202 | for (int t = visited_subtrees - 1; t > 0; t--) { |
|---|
| 1203 | bool bubbled = false; |
|---|
| 1204 | for (int i = 0; i < t; i++) { |
|---|
| 1205 | if (pars[i] > pars[i+1]) { |
|---|
| 1206 | std::swap(order[i], order[i+1]); |
|---|
| 1207 | std::swap(pars[i], pars[i+1]); |
|---|
| 1208 | bubbled = true; |
|---|
| 1209 | } |
|---|
| 1210 | } |
|---|
| 1211 | if (!bubbled) break; |
|---|
| 1212 | } |
|---|
| 1213 | } |
|---|
| 1214 | |
|---|
| 1215 | #if defined(ASSERTION_USED) |
|---|
| 1216 | // rec_depth == 0 (called with start-node) |
|---|
| 1217 | // rec_depth == 1 (called twice with start-node (swap_assymetric AP_LEFT + AP_RIGHT)) |
|---|
| 1218 | // rec_depth == 2 (called twice with each adjacent node -> 8 calls) |
|---|
| 1219 | // rec_depth == 3 (called twice with each adjacent node, but not with those were recursion came from -> 6 calls) |
|---|
| 1220 | |
|---|
| 1221 | if (!is_root_edge()) { |
|---|
| 1222 | switch (rec_depth) { |
|---|
| 1223 | case 0: |
|---|
| 1224 | ap_assert(visited_subtrees == 2); |
|---|
| 1225 | ap_assert(forbidden_descends == 0); |
|---|
| 1226 | break; |
|---|
| 1227 | case 1: |
|---|
| 1228 | ap_assert(visited_subtrees <= 8); |
|---|
| 1229 | ap_assert(forbidden_descends == 0); |
|---|
| 1230 | break; |
|---|
| 1231 | default: |
|---|
| 1232 | ap_assert(visited_subtrees <= 6); |
|---|
| 1233 | ap_assert(forbidden_descends == 2); |
|---|
| 1234 | break; |
|---|
| 1235 | } |
|---|
| 1236 | } |
|---|
| 1237 | else { // at root |
|---|
| 1238 | switch (rec_depth) { |
|---|
| 1239 | case 0: |
|---|
| 1240 | ap_assert(visited_subtrees <= 2); |
|---|
| 1241 | break; |
|---|
| 1242 | case 1: |
|---|
| 1243 | ap_assert(visited_subtrees <= 8); |
|---|
| 1244 | ap_assert(forbidden_descends <= 2); // in case of subtree-optimization, 2 descends may be forbidden |
|---|
| 1245 | break; |
|---|
| 1246 | default: |
|---|
| 1247 | ap_assert(visited_subtrees <= 8); |
|---|
| 1248 | break; |
|---|
| 1249 | } |
|---|
| 1250 | } |
|---|
| 1251 | #endif |
|---|
| 1252 | |
|---|
| 1253 | int rec_width; |
|---|
| 1254 | if (better_subtrees) { |
|---|
| 1255 | rec_width = better_subtrees; // @@@ wrong if static/dynamic reduction would allow more |
|---|
| 1256 | |
|---|
| 1257 | // @@@ IMO the whole concept of incrementing depth when a better topology was found has no positive effect |
|---|
| 1258 | // (the better topology is kept anyway and next recursive KL will do a full optimization starting from that edge as well) |
|---|
| 1259 | |
|---|
| 1260 | } |
|---|
| 1261 | else { |
|---|
| 1262 | rec_width = visited_subtrees; |
|---|
| 1263 | if (KL.rec_type & AP_STATIC) { |
|---|
| 1264 | int rec_width_static = (rec_depth < CUSTOM_DEPTHS) ? KL.rec_width[rec_depth] : 1; |
|---|
| 1265 | rec_width = std::min(rec_width, rec_width_static); |
|---|
| 1266 | } |
|---|
| 1267 | if (KL.rec_type & AP_DYNAMIK) { |
|---|
| 1268 | rec_width = std::min(rec_width, rec_width_dynamic); |
|---|
| 1269 | } |
|---|
| 1270 | } |
|---|
| 1271 | ap_assert(rec_width<=visited_subtrees); |
|---|
| 1272 | |
|---|
| 1273 | bool found_better = false; |
|---|
| 1274 | for (int i=0; i<rec_width && !found_better; i++) { |
|---|
| 1275 | AP_tree_edge * const subedge = descend[order[i]]; |
|---|
| 1276 | |
|---|
| 1277 | ap_main->remember(); |
|---|
| 1278 | subedge->kl_visited = true; // mark |
|---|
| 1279 | subedge->sonNode()->swap_assymetric(idx2side(order[i])); // swap |
|---|
| 1280 | rootNode()->parsimony_rec(); |
|---|
| 1281 | |
|---|
| 1282 | if (better_subtrees) { |
|---|
| 1283 | KL_params modified = KL; |
|---|
| 1284 | modified.rec_type = AP_STATIC; |
|---|
| 1285 | modified.max_rec_depth += KL.inc_rec_depth; |
|---|
| 1286 | |
|---|
| 1287 | subedge->kl_rec(modified, rec_depth+1, pars_best); |
|---|
| 1288 | found_better = true; |
|---|
| 1289 | } |
|---|
| 1290 | else { |
|---|
| 1291 | found_better = subedge->kl_rec(KL, rec_depth+1, pars_best); |
|---|
| 1292 | } |
|---|
| 1293 | |
|---|
| 1294 | subedge->kl_visited = false; // unmark |
|---|
| 1295 | ap_main->accept_if(found_better); // revert |
|---|
| 1296 | } |
|---|
| 1297 | |
|---|
| 1298 | ap_main->accept_if(found_better); // undo set_root otherwise |
|---|
| 1299 | return found_better; |
|---|
| 1300 | } |
|---|
| 1301 | |
|---|
| 1302 | void AP_tree_nlen::exchange(AP_tree_nlen *other) { |
|---|
| 1303 | // exchange 'this' with other |
|---|
| 1304 | // 'this' has to be in tree; other has to be a "single node" |
|---|
| 1305 | // |
|---|
| 1306 | // Used by quick-add. |
|---|
| 1307 | |
|---|
| 1308 | AP_tree_root *root = get_tree_root(); |
|---|
| 1309 | ap_assert(root); |
|---|
| 1310 | ap_assert(!other->get_tree_root()); |
|---|
| 1311 | |
|---|
| 1312 | ASSERT_VALID_TREE(rootNode()); |
|---|
| 1313 | ASSERT_VALID_TREE(other); |
|---|
| 1314 | |
|---|
| 1315 | ap_main->push_node(this, STRUCTURE); |
|---|
| 1316 | ap_main->push_node(other, STRUCTURE); |
|---|
| 1317 | ap_main->push_node(get_father(), BOTH); |
|---|
| 1318 | push_all_upnode_sequences(get_father()); |
|---|
| 1319 | |
|---|
| 1320 | AP_tree_edge *myEdge = nextEdge(NULp); |
|---|
| 1321 | AP_tree_nlen *connected = myEdge->otherNode(this); |
|---|
| 1322 | myEdge->unlink(); |
|---|
| 1323 | |
|---|
| 1324 | if (is_leftson()) { |
|---|
| 1325 | father->leftson = other; |
|---|
| 1326 | } |
|---|
| 1327 | else { |
|---|
| 1328 | father->rightson = other; |
|---|
| 1329 | } |
|---|
| 1330 | other->father = father; |
|---|
| 1331 | father = NULp; |
|---|
| 1332 | |
|---|
| 1333 | other->set_tree_root(root); |
|---|
| 1334 | set_tree_root(NULp); |
|---|
| 1335 | |
|---|
| 1336 | myEdge->relink(other, connected); |
|---|
| 1337 | |
|---|
| 1338 | ASSERT_VALID_TREE(rootNode()); |
|---|
| 1339 | ASSERT_VALID_TREE(this); |
|---|
| 1340 | } |
|---|
| 1341 | |
|---|
| 1342 | const char* AP_tree_nlen::sortByName() { |
|---|
| 1343 | if (name) return name; // leafs |
|---|
| 1344 | |
|---|
| 1345 | const char *n1 = get_leftson()->sortByName(); |
|---|
| 1346 | const char *n2 = get_rightson()->sortByName(); |
|---|
| 1347 | |
|---|
| 1348 | if (strcmp(n1, n2)<0) return n1; |
|---|
| 1349 | |
|---|
| 1350 | AP_tree::swap_sons(); |
|---|
| 1351 | |
|---|
| 1352 | return n2; |
|---|
| 1353 | } |
|---|
| 1354 | |
|---|
| 1355 | const char *AP_tree_nlen::fullname() const { |
|---|
| 1356 | if (!name) { |
|---|
| 1357 | static char *buffer; |
|---|
| 1358 | char *lName = ARB_strdup(get_leftson()->fullname()); |
|---|
| 1359 | char *rName = ARB_strdup(get_rightson()->fullname()); |
|---|
| 1360 | int len = strlen(lName)+strlen(rName)+4; |
|---|
| 1361 | |
|---|
| 1362 | if (buffer) free(buffer); |
|---|
| 1363 | |
|---|
| 1364 | ARB_alloc(buffer, len); |
|---|
| 1365 | |
|---|
| 1366 | strcpy(buffer, "["); |
|---|
| 1367 | strcat(buffer, lName); |
|---|
| 1368 | strcat(buffer, ","); |
|---|
| 1369 | strcat(buffer, rName); |
|---|
| 1370 | strcat(buffer, "]"); |
|---|
| 1371 | |
|---|
| 1372 | free(lName); |
|---|
| 1373 | free(rName); |
|---|
| 1374 | |
|---|
| 1375 | return buffer; |
|---|
| 1376 | } |
|---|
| 1377 | |
|---|
| 1378 | return name; |
|---|
| 1379 | } |
|---|
| 1380 | |
|---|
| 1381 | |
|---|
| 1382 | char* AP_tree_nlen::getSequenceCopy() { |
|---|
| 1383 | costs(); |
|---|
| 1384 | |
|---|
| 1385 | AP_sequence_parsimony *pseq = DOWNCAST(AP_sequence_parsimony*, get_seq()); |
|---|
| 1386 | ap_assert(pseq->hasSequence()); |
|---|
| 1387 | |
|---|
| 1388 | size_t len = pseq->get_sequence_length(); |
|---|
| 1389 | char *s = new char[len]; |
|---|
| 1390 | memcpy(s, pseq->get_sequence(), len); |
|---|
| 1391 | |
|---|
| 1392 | return s; |
|---|
| 1393 | } |
|---|
| 1394 | |
|---|
| 1395 | |
|---|
| 1396 | GB_ERROR AP_pars_root::saveToDB() { |
|---|
| 1397 | has_been_saved = true; |
|---|
| 1398 | return AP_tree_root::saveToDB(); |
|---|
| 1399 | } |
|---|
| 1400 | |
|---|